xref: /openbmc/linux/drivers/dma/dmaengine.c (revision 78c99ba1)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 
22 /*
23  * This code implements the DMA subsystem. It provides a HW-neutral interface
24  * for other kernel code to use asynchronous memory copy capabilities,
25  * if present, and allows different HW DMA drivers to register as providing
26  * this capability.
27  *
28  * Due to the fact we are accelerating what is already a relatively fast
29  * operation, the code goes to great lengths to avoid additional overhead,
30  * such as locking.
31  *
32  * LOCKING:
33  *
34  * The subsystem keeps a global list of dma_device structs it is protected by a
35  * mutex, dma_list_mutex.
36  *
37  * A subsystem can get access to a channel by calling dmaengine_get() followed
38  * by dma_find_channel(), or if it has need for an exclusive channel it can call
39  * dma_request_channel().  Once a channel is allocated a reference is taken
40  * against its corresponding driver to disable removal.
41  *
42  * Each device has a channels list, which runs unlocked but is never modified
43  * once the device is registered, it's just setup by the driver.
44  *
45  * See Documentation/dmaengine.txt for more details
46  */
47 
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
61 
62 static DEFINE_MUTEX(dma_list_mutex);
63 static LIST_HEAD(dma_device_list);
64 static long dmaengine_ref_count;
65 static struct idr dma_idr;
66 
67 /* --- sysfs implementation --- */
68 
69 /**
70  * dev_to_dma_chan - convert a device pointer to the its sysfs container object
71  * @dev - device node
72  *
73  * Must be called under dma_list_mutex
74  */
75 static struct dma_chan *dev_to_dma_chan(struct device *dev)
76 {
77 	struct dma_chan_dev *chan_dev;
78 
79 	chan_dev = container_of(dev, typeof(*chan_dev), device);
80 	return chan_dev->chan;
81 }
82 
83 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
84 {
85 	struct dma_chan *chan;
86 	unsigned long count = 0;
87 	int i;
88 	int err;
89 
90 	mutex_lock(&dma_list_mutex);
91 	chan = dev_to_dma_chan(dev);
92 	if (chan) {
93 		for_each_possible_cpu(i)
94 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
95 		err = sprintf(buf, "%lu\n", count);
96 	} else
97 		err = -ENODEV;
98 	mutex_unlock(&dma_list_mutex);
99 
100 	return err;
101 }
102 
103 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
104 				      char *buf)
105 {
106 	struct dma_chan *chan;
107 	unsigned long count = 0;
108 	int i;
109 	int err;
110 
111 	mutex_lock(&dma_list_mutex);
112 	chan = dev_to_dma_chan(dev);
113 	if (chan) {
114 		for_each_possible_cpu(i)
115 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
116 		err = sprintf(buf, "%lu\n", count);
117 	} else
118 		err = -ENODEV;
119 	mutex_unlock(&dma_list_mutex);
120 
121 	return err;
122 }
123 
124 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
125 {
126 	struct dma_chan *chan;
127 	int err;
128 
129 	mutex_lock(&dma_list_mutex);
130 	chan = dev_to_dma_chan(dev);
131 	if (chan)
132 		err = sprintf(buf, "%d\n", chan->client_count);
133 	else
134 		err = -ENODEV;
135 	mutex_unlock(&dma_list_mutex);
136 
137 	return err;
138 }
139 
140 static struct device_attribute dma_attrs[] = {
141 	__ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
142 	__ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
143 	__ATTR(in_use, S_IRUGO, show_in_use, NULL),
144 	__ATTR_NULL
145 };
146 
147 static void chan_dev_release(struct device *dev)
148 {
149 	struct dma_chan_dev *chan_dev;
150 
151 	chan_dev = container_of(dev, typeof(*chan_dev), device);
152 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
153 		mutex_lock(&dma_list_mutex);
154 		idr_remove(&dma_idr, chan_dev->dev_id);
155 		mutex_unlock(&dma_list_mutex);
156 		kfree(chan_dev->idr_ref);
157 	}
158 	kfree(chan_dev);
159 }
160 
161 static struct class dma_devclass = {
162 	.name		= "dma",
163 	.dev_attrs	= dma_attrs,
164 	.dev_release	= chan_dev_release,
165 };
166 
167 /* --- client and device registration --- */
168 
169 #define dma_device_satisfies_mask(device, mask) \
170 	__dma_device_satisfies_mask((device), &(mask))
171 static int
172 __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want)
173 {
174 	dma_cap_mask_t has;
175 
176 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
177 		DMA_TX_TYPE_END);
178 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
179 }
180 
181 static struct module *dma_chan_to_owner(struct dma_chan *chan)
182 {
183 	return chan->device->dev->driver->owner;
184 }
185 
186 /**
187  * balance_ref_count - catch up the channel reference count
188  * @chan - channel to balance ->client_count versus dmaengine_ref_count
189  *
190  * balance_ref_count must be called under dma_list_mutex
191  */
192 static void balance_ref_count(struct dma_chan *chan)
193 {
194 	struct module *owner = dma_chan_to_owner(chan);
195 
196 	while (chan->client_count < dmaengine_ref_count) {
197 		__module_get(owner);
198 		chan->client_count++;
199 	}
200 }
201 
202 /**
203  * dma_chan_get - try to grab a dma channel's parent driver module
204  * @chan - channel to grab
205  *
206  * Must be called under dma_list_mutex
207  */
208 static int dma_chan_get(struct dma_chan *chan)
209 {
210 	int err = -ENODEV;
211 	struct module *owner = dma_chan_to_owner(chan);
212 
213 	if (chan->client_count) {
214 		__module_get(owner);
215 		err = 0;
216 	} else if (try_module_get(owner))
217 		err = 0;
218 
219 	if (err == 0)
220 		chan->client_count++;
221 
222 	/* allocate upon first client reference */
223 	if (chan->client_count == 1 && err == 0) {
224 		int desc_cnt = chan->device->device_alloc_chan_resources(chan);
225 
226 		if (desc_cnt < 0) {
227 			err = desc_cnt;
228 			chan->client_count = 0;
229 			module_put(owner);
230 		} else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
231 			balance_ref_count(chan);
232 	}
233 
234 	return err;
235 }
236 
237 /**
238  * dma_chan_put - drop a reference to a dma channel's parent driver module
239  * @chan - channel to release
240  *
241  * Must be called under dma_list_mutex
242  */
243 static void dma_chan_put(struct dma_chan *chan)
244 {
245 	if (!chan->client_count)
246 		return; /* this channel failed alloc_chan_resources */
247 	chan->client_count--;
248 	module_put(dma_chan_to_owner(chan));
249 	if (chan->client_count == 0)
250 		chan->device->device_free_chan_resources(chan);
251 }
252 
253 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
254 {
255 	enum dma_status status;
256 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
257 
258 	dma_async_issue_pending(chan);
259 	do {
260 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
261 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
262 			printk(KERN_ERR "dma_sync_wait_timeout!\n");
263 			return DMA_ERROR;
264 		}
265 	} while (status == DMA_IN_PROGRESS);
266 
267 	return status;
268 }
269 EXPORT_SYMBOL(dma_sync_wait);
270 
271 /**
272  * dma_cap_mask_all - enable iteration over all operation types
273  */
274 static dma_cap_mask_t dma_cap_mask_all;
275 
276 /**
277  * dma_chan_tbl_ent - tracks channel allocations per core/operation
278  * @chan - associated channel for this entry
279  */
280 struct dma_chan_tbl_ent {
281 	struct dma_chan *chan;
282 };
283 
284 /**
285  * channel_table - percpu lookup table for memory-to-memory offload providers
286  */
287 static struct dma_chan_tbl_ent *channel_table[DMA_TX_TYPE_END];
288 
289 static int __init dma_channel_table_init(void)
290 {
291 	enum dma_transaction_type cap;
292 	int err = 0;
293 
294 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
295 
296 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
297 	 * but are not associated with an operation so they do not need
298 	 * an entry in the channel_table
299 	 */
300 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
301 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
302 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
303 
304 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
305 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
306 		if (!channel_table[cap]) {
307 			err = -ENOMEM;
308 			break;
309 		}
310 	}
311 
312 	if (err) {
313 		pr_err("dmaengine: initialization failure\n");
314 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
315 			if (channel_table[cap])
316 				free_percpu(channel_table[cap]);
317 	}
318 
319 	return err;
320 }
321 arch_initcall(dma_channel_table_init);
322 
323 /**
324  * dma_find_channel - find a channel to carry out the operation
325  * @tx_type: transaction type
326  */
327 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
328 {
329 	struct dma_chan *chan;
330 	int cpu;
331 
332 	cpu = get_cpu();
333 	chan = per_cpu_ptr(channel_table[tx_type], cpu)->chan;
334 	put_cpu();
335 
336 	return chan;
337 }
338 EXPORT_SYMBOL(dma_find_channel);
339 
340 /**
341  * dma_issue_pending_all - flush all pending operations across all channels
342  */
343 void dma_issue_pending_all(void)
344 {
345 	struct dma_device *device;
346 	struct dma_chan *chan;
347 
348 	rcu_read_lock();
349 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
350 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
351 			continue;
352 		list_for_each_entry(chan, &device->channels, device_node)
353 			if (chan->client_count)
354 				device->device_issue_pending(chan);
355 	}
356 	rcu_read_unlock();
357 }
358 EXPORT_SYMBOL(dma_issue_pending_all);
359 
360 /**
361  * nth_chan - returns the nth channel of the given capability
362  * @cap: capability to match
363  * @n: nth channel desired
364  *
365  * Defaults to returning the channel with the desired capability and the
366  * lowest reference count when 'n' cannot be satisfied.  Must be called
367  * under dma_list_mutex.
368  */
369 static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
370 {
371 	struct dma_device *device;
372 	struct dma_chan *chan;
373 	struct dma_chan *ret = NULL;
374 	struct dma_chan *min = NULL;
375 
376 	list_for_each_entry(device, &dma_device_list, global_node) {
377 		if (!dma_has_cap(cap, device->cap_mask) ||
378 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
379 			continue;
380 		list_for_each_entry(chan, &device->channels, device_node) {
381 			if (!chan->client_count)
382 				continue;
383 			if (!min)
384 				min = chan;
385 			else if (chan->table_count < min->table_count)
386 				min = chan;
387 
388 			if (n-- == 0) {
389 				ret = chan;
390 				break; /* done */
391 			}
392 		}
393 		if (ret)
394 			break; /* done */
395 	}
396 
397 	if (!ret)
398 		ret = min;
399 
400 	if (ret)
401 		ret->table_count++;
402 
403 	return ret;
404 }
405 
406 /**
407  * dma_channel_rebalance - redistribute the available channels
408  *
409  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
410  * operation type) in the SMP case,  and operation isolation (avoid
411  * multi-tasking channels) in the non-SMP case.  Must be called under
412  * dma_list_mutex.
413  */
414 static void dma_channel_rebalance(void)
415 {
416 	struct dma_chan *chan;
417 	struct dma_device *device;
418 	int cpu;
419 	int cap;
420 	int n;
421 
422 	/* undo the last distribution */
423 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
424 		for_each_possible_cpu(cpu)
425 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
426 
427 	list_for_each_entry(device, &dma_device_list, global_node) {
428 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
429 			continue;
430 		list_for_each_entry(chan, &device->channels, device_node)
431 			chan->table_count = 0;
432 	}
433 
434 	/* don't populate the channel_table if no clients are available */
435 	if (!dmaengine_ref_count)
436 		return;
437 
438 	/* redistribute available channels */
439 	n = 0;
440 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
441 		for_each_online_cpu(cpu) {
442 			if (num_possible_cpus() > 1)
443 				chan = nth_chan(cap, n++);
444 			else
445 				chan = nth_chan(cap, -1);
446 
447 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
448 		}
449 }
450 
451 static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev,
452 					  dma_filter_fn fn, void *fn_param)
453 {
454 	struct dma_chan *chan;
455 
456 	if (!__dma_device_satisfies_mask(dev, mask)) {
457 		pr_debug("%s: wrong capabilities\n", __func__);
458 		return NULL;
459 	}
460 	/* devices with multiple channels need special handling as we need to
461 	 * ensure that all channels are either private or public.
462 	 */
463 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
464 		list_for_each_entry(chan, &dev->channels, device_node) {
465 			/* some channels are already publicly allocated */
466 			if (chan->client_count)
467 				return NULL;
468 		}
469 
470 	list_for_each_entry(chan, &dev->channels, device_node) {
471 		if (chan->client_count) {
472 			pr_debug("%s: %s busy\n",
473 				 __func__, dma_chan_name(chan));
474 			continue;
475 		}
476 		if (fn && !fn(chan, fn_param)) {
477 			pr_debug("%s: %s filter said false\n",
478 				 __func__, dma_chan_name(chan));
479 			continue;
480 		}
481 		return chan;
482 	}
483 
484 	return NULL;
485 }
486 
487 /**
488  * dma_request_channel - try to allocate an exclusive channel
489  * @mask: capabilities that the channel must satisfy
490  * @fn: optional callback to disposition available channels
491  * @fn_param: opaque parameter to pass to dma_filter_fn
492  */
493 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param)
494 {
495 	struct dma_device *device, *_d;
496 	struct dma_chan *chan = NULL;
497 	int err;
498 
499 	/* Find a channel */
500 	mutex_lock(&dma_list_mutex);
501 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
502 		chan = private_candidate(mask, device, fn, fn_param);
503 		if (chan) {
504 			/* Found a suitable channel, try to grab, prep, and
505 			 * return it.  We first set DMA_PRIVATE to disable
506 			 * balance_ref_count as this channel will not be
507 			 * published in the general-purpose allocator
508 			 */
509 			dma_cap_set(DMA_PRIVATE, device->cap_mask);
510 			device->privatecnt++;
511 			err = dma_chan_get(chan);
512 
513 			if (err == -ENODEV) {
514 				pr_debug("%s: %s module removed\n", __func__,
515 					 dma_chan_name(chan));
516 				list_del_rcu(&device->global_node);
517 			} else if (err)
518 				pr_err("dmaengine: failed to get %s: (%d)\n",
519 				       dma_chan_name(chan), err);
520 			else
521 				break;
522 			if (--device->privatecnt == 0)
523 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
524 			chan->private = NULL;
525 			chan = NULL;
526 		}
527 	}
528 	mutex_unlock(&dma_list_mutex);
529 
530 	pr_debug("%s: %s (%s)\n", __func__, chan ? "success" : "fail",
531 		 chan ? dma_chan_name(chan) : NULL);
532 
533 	return chan;
534 }
535 EXPORT_SYMBOL_GPL(__dma_request_channel);
536 
537 void dma_release_channel(struct dma_chan *chan)
538 {
539 	mutex_lock(&dma_list_mutex);
540 	WARN_ONCE(chan->client_count != 1,
541 		  "chan reference count %d != 1\n", chan->client_count);
542 	dma_chan_put(chan);
543 	/* drop PRIVATE cap enabled by __dma_request_channel() */
544 	if (--chan->device->privatecnt == 0)
545 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
546 	chan->private = NULL;
547 	mutex_unlock(&dma_list_mutex);
548 }
549 EXPORT_SYMBOL_GPL(dma_release_channel);
550 
551 /**
552  * dmaengine_get - register interest in dma_channels
553  */
554 void dmaengine_get(void)
555 {
556 	struct dma_device *device, *_d;
557 	struct dma_chan *chan;
558 	int err;
559 
560 	mutex_lock(&dma_list_mutex);
561 	dmaengine_ref_count++;
562 
563 	/* try to grab channels */
564 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
565 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
566 			continue;
567 		list_for_each_entry(chan, &device->channels, device_node) {
568 			err = dma_chan_get(chan);
569 			if (err == -ENODEV) {
570 				/* module removed before we could use it */
571 				list_del_rcu(&device->global_node);
572 				break;
573 			} else if (err)
574 				pr_err("dmaengine: failed to get %s: (%d)\n",
575 				       dma_chan_name(chan), err);
576 		}
577 	}
578 
579 	/* if this is the first reference and there were channels
580 	 * waiting we need to rebalance to get those channels
581 	 * incorporated into the channel table
582 	 */
583 	if (dmaengine_ref_count == 1)
584 		dma_channel_rebalance();
585 	mutex_unlock(&dma_list_mutex);
586 }
587 EXPORT_SYMBOL(dmaengine_get);
588 
589 /**
590  * dmaengine_put - let dma drivers be removed when ref_count == 0
591  */
592 void dmaengine_put(void)
593 {
594 	struct dma_device *device;
595 	struct dma_chan *chan;
596 
597 	mutex_lock(&dma_list_mutex);
598 	dmaengine_ref_count--;
599 	BUG_ON(dmaengine_ref_count < 0);
600 	/* drop channel references */
601 	list_for_each_entry(device, &dma_device_list, global_node) {
602 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
603 			continue;
604 		list_for_each_entry(chan, &device->channels, device_node)
605 			dma_chan_put(chan);
606 	}
607 	mutex_unlock(&dma_list_mutex);
608 }
609 EXPORT_SYMBOL(dmaengine_put);
610 
611 static int get_dma_id(struct dma_device *device)
612 {
613 	int rc;
614 
615  idr_retry:
616 	if (!idr_pre_get(&dma_idr, GFP_KERNEL))
617 		return -ENOMEM;
618 	mutex_lock(&dma_list_mutex);
619 	rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
620 	mutex_unlock(&dma_list_mutex);
621 	if (rc == -EAGAIN)
622 		goto idr_retry;
623 	else if (rc != 0)
624 		return rc;
625 
626 	return 0;
627 }
628 
629 /**
630  * dma_async_device_register - registers DMA devices found
631  * @device: &dma_device
632  */
633 int dma_async_device_register(struct dma_device *device)
634 {
635 	int chancnt = 0, rc;
636 	struct dma_chan* chan;
637 	atomic_t *idr_ref;
638 
639 	if (!device)
640 		return -ENODEV;
641 
642 	/* validate device routines */
643 	BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
644 		!device->device_prep_dma_memcpy);
645 	BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
646 		!device->device_prep_dma_xor);
647 	BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) &&
648 		!device->device_prep_dma_zero_sum);
649 	BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
650 		!device->device_prep_dma_memset);
651 	BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
652 		!device->device_prep_dma_interrupt);
653 	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
654 		!device->device_prep_slave_sg);
655 	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
656 		!device->device_terminate_all);
657 
658 	BUG_ON(!device->device_alloc_chan_resources);
659 	BUG_ON(!device->device_free_chan_resources);
660 	BUG_ON(!device->device_is_tx_complete);
661 	BUG_ON(!device->device_issue_pending);
662 	BUG_ON(!device->dev);
663 
664 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
665 	if (!idr_ref)
666 		return -ENOMEM;
667 	rc = get_dma_id(device);
668 	if (rc != 0) {
669 		kfree(idr_ref);
670 		return rc;
671 	}
672 
673 	atomic_set(idr_ref, 0);
674 
675 	/* represent channels in sysfs. Probably want devs too */
676 	list_for_each_entry(chan, &device->channels, device_node) {
677 		rc = -ENOMEM;
678 		chan->local = alloc_percpu(typeof(*chan->local));
679 		if (chan->local == NULL)
680 			goto err_out;
681 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
682 		if (chan->dev == NULL) {
683 			free_percpu(chan->local);
684 			chan->local = NULL;
685 			goto err_out;
686 		}
687 
688 		chan->chan_id = chancnt++;
689 		chan->dev->device.class = &dma_devclass;
690 		chan->dev->device.parent = device->dev;
691 		chan->dev->chan = chan;
692 		chan->dev->idr_ref = idr_ref;
693 		chan->dev->dev_id = device->dev_id;
694 		atomic_inc(idr_ref);
695 		dev_set_name(&chan->dev->device, "dma%dchan%d",
696 			     device->dev_id, chan->chan_id);
697 
698 		rc = device_register(&chan->dev->device);
699 		if (rc) {
700 			free_percpu(chan->local);
701 			chan->local = NULL;
702 			kfree(chan->dev);
703 			atomic_dec(idr_ref);
704 			goto err_out;
705 		}
706 		chan->client_count = 0;
707 	}
708 	device->chancnt = chancnt;
709 
710 	mutex_lock(&dma_list_mutex);
711 	/* take references on public channels */
712 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
713 		list_for_each_entry(chan, &device->channels, device_node) {
714 			/* if clients are already waiting for channels we need
715 			 * to take references on their behalf
716 			 */
717 			if (dma_chan_get(chan) == -ENODEV) {
718 				/* note we can only get here for the first
719 				 * channel as the remaining channels are
720 				 * guaranteed to get a reference
721 				 */
722 				rc = -ENODEV;
723 				mutex_unlock(&dma_list_mutex);
724 				goto err_out;
725 			}
726 		}
727 	list_add_tail_rcu(&device->global_node, &dma_device_list);
728 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
729 		device->privatecnt++;	/* Always private */
730 	dma_channel_rebalance();
731 	mutex_unlock(&dma_list_mutex);
732 
733 	return 0;
734 
735 err_out:
736 	/* if we never registered a channel just release the idr */
737 	if (atomic_read(idr_ref) == 0) {
738 		mutex_lock(&dma_list_mutex);
739 		idr_remove(&dma_idr, device->dev_id);
740 		mutex_unlock(&dma_list_mutex);
741 		kfree(idr_ref);
742 		return rc;
743 	}
744 
745 	list_for_each_entry(chan, &device->channels, device_node) {
746 		if (chan->local == NULL)
747 			continue;
748 		mutex_lock(&dma_list_mutex);
749 		chan->dev->chan = NULL;
750 		mutex_unlock(&dma_list_mutex);
751 		device_unregister(&chan->dev->device);
752 		free_percpu(chan->local);
753 	}
754 	return rc;
755 }
756 EXPORT_SYMBOL(dma_async_device_register);
757 
758 /**
759  * dma_async_device_unregister - unregister a DMA device
760  * @device: &dma_device
761  *
762  * This routine is called by dma driver exit routines, dmaengine holds module
763  * references to prevent it being called while channels are in use.
764  */
765 void dma_async_device_unregister(struct dma_device *device)
766 {
767 	struct dma_chan *chan;
768 
769 	mutex_lock(&dma_list_mutex);
770 	list_del_rcu(&device->global_node);
771 	dma_channel_rebalance();
772 	mutex_unlock(&dma_list_mutex);
773 
774 	list_for_each_entry(chan, &device->channels, device_node) {
775 		WARN_ONCE(chan->client_count,
776 			  "%s called while %d clients hold a reference\n",
777 			  __func__, chan->client_count);
778 		mutex_lock(&dma_list_mutex);
779 		chan->dev->chan = NULL;
780 		mutex_unlock(&dma_list_mutex);
781 		device_unregister(&chan->dev->device);
782 	}
783 }
784 EXPORT_SYMBOL(dma_async_device_unregister);
785 
786 /**
787  * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
788  * @chan: DMA channel to offload copy to
789  * @dest: destination address (virtual)
790  * @src: source address (virtual)
791  * @len: length
792  *
793  * Both @dest and @src must be mappable to a bus address according to the
794  * DMA mapping API rules for streaming mappings.
795  * Both @dest and @src must stay memory resident (kernel memory or locked
796  * user space pages).
797  */
798 dma_cookie_t
799 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
800 			void *src, size_t len)
801 {
802 	struct dma_device *dev = chan->device;
803 	struct dma_async_tx_descriptor *tx;
804 	dma_addr_t dma_dest, dma_src;
805 	dma_cookie_t cookie;
806 	int cpu;
807 	unsigned long flags;
808 
809 	dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
810 	dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
811 	flags = DMA_CTRL_ACK |
812 		DMA_COMPL_SRC_UNMAP_SINGLE |
813 		DMA_COMPL_DEST_UNMAP_SINGLE;
814 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
815 
816 	if (!tx) {
817 		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
818 		dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
819 		return -ENOMEM;
820 	}
821 
822 	tx->callback = NULL;
823 	cookie = tx->tx_submit(tx);
824 
825 	cpu = get_cpu();
826 	per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
827 	per_cpu_ptr(chan->local, cpu)->memcpy_count++;
828 	put_cpu();
829 
830 	return cookie;
831 }
832 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
833 
834 /**
835  * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
836  * @chan: DMA channel to offload copy to
837  * @page: destination page
838  * @offset: offset in page to copy to
839  * @kdata: source address (virtual)
840  * @len: length
841  *
842  * Both @page/@offset and @kdata must be mappable to a bus address according
843  * to the DMA mapping API rules for streaming mappings.
844  * Both @page/@offset and @kdata must stay memory resident (kernel memory or
845  * locked user space pages)
846  */
847 dma_cookie_t
848 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
849 			unsigned int offset, void *kdata, size_t len)
850 {
851 	struct dma_device *dev = chan->device;
852 	struct dma_async_tx_descriptor *tx;
853 	dma_addr_t dma_dest, dma_src;
854 	dma_cookie_t cookie;
855 	int cpu;
856 	unsigned long flags;
857 
858 	dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
859 	dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
860 	flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE;
861 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
862 
863 	if (!tx) {
864 		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
865 		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
866 		return -ENOMEM;
867 	}
868 
869 	tx->callback = NULL;
870 	cookie = tx->tx_submit(tx);
871 
872 	cpu = get_cpu();
873 	per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
874 	per_cpu_ptr(chan->local, cpu)->memcpy_count++;
875 	put_cpu();
876 
877 	return cookie;
878 }
879 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
880 
881 /**
882  * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
883  * @chan: DMA channel to offload copy to
884  * @dest_pg: destination page
885  * @dest_off: offset in page to copy to
886  * @src_pg: source page
887  * @src_off: offset in page to copy from
888  * @len: length
889  *
890  * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
891  * address according to the DMA mapping API rules for streaming mappings.
892  * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
893  * (kernel memory or locked user space pages).
894  */
895 dma_cookie_t
896 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
897 	unsigned int dest_off, struct page *src_pg, unsigned int src_off,
898 	size_t len)
899 {
900 	struct dma_device *dev = chan->device;
901 	struct dma_async_tx_descriptor *tx;
902 	dma_addr_t dma_dest, dma_src;
903 	dma_cookie_t cookie;
904 	int cpu;
905 	unsigned long flags;
906 
907 	dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
908 	dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
909 				DMA_FROM_DEVICE);
910 	flags = DMA_CTRL_ACK;
911 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
912 
913 	if (!tx) {
914 		dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
915 		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
916 		return -ENOMEM;
917 	}
918 
919 	tx->callback = NULL;
920 	cookie = tx->tx_submit(tx);
921 
922 	cpu = get_cpu();
923 	per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
924 	per_cpu_ptr(chan->local, cpu)->memcpy_count++;
925 	put_cpu();
926 
927 	return cookie;
928 }
929 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
930 
931 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
932 	struct dma_chan *chan)
933 {
934 	tx->chan = chan;
935 	spin_lock_init(&tx->lock);
936 	INIT_LIST_HEAD(&tx->tx_list);
937 }
938 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
939 
940 /* dma_wait_for_async_tx - spin wait for a transaction to complete
941  * @tx: in-flight transaction to wait on
942  *
943  * This routine assumes that tx was obtained from a call to async_memcpy,
944  * async_xor, async_memset, etc which ensures that tx is "in-flight" (prepped
945  * and submitted).  Walking the parent chain is only meant to cover for DMA
946  * drivers that do not implement the DMA_INTERRUPT capability and may race with
947  * the driver's descriptor cleanup routine.
948  */
949 enum dma_status
950 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
951 {
952 	enum dma_status status;
953 	struct dma_async_tx_descriptor *iter;
954 	struct dma_async_tx_descriptor *parent;
955 
956 	if (!tx)
957 		return DMA_SUCCESS;
958 
959 	WARN_ONCE(tx->parent, "%s: speculatively walking dependency chain for"
960 		  " %s\n", __func__, dma_chan_name(tx->chan));
961 
962 	/* poll through the dependency chain, return when tx is complete */
963 	do {
964 		iter = tx;
965 
966 		/* find the root of the unsubmitted dependency chain */
967 		do {
968 			parent = iter->parent;
969 			if (!parent)
970 				break;
971 			else
972 				iter = parent;
973 		} while (parent);
974 
975 		/* there is a small window for ->parent == NULL and
976 		 * ->cookie == -EBUSY
977 		 */
978 		while (iter->cookie == -EBUSY)
979 			cpu_relax();
980 
981 		status = dma_sync_wait(iter->chan, iter->cookie);
982 	} while (status == DMA_IN_PROGRESS || (iter != tx));
983 
984 	return status;
985 }
986 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
987 
988 /* dma_run_dependencies - helper routine for dma drivers to process
989  *	(start) dependent operations on their target channel
990  * @tx: transaction with dependencies
991  */
992 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
993 {
994 	struct dma_async_tx_descriptor *dep = tx->next;
995 	struct dma_async_tx_descriptor *dep_next;
996 	struct dma_chan *chan;
997 
998 	if (!dep)
999 		return;
1000 
1001 	/* we'll submit tx->next now, so clear the link */
1002 	tx->next = NULL;
1003 	chan = dep->chan;
1004 
1005 	/* keep submitting up until a channel switch is detected
1006 	 * in that case we will be called again as a result of
1007 	 * processing the interrupt from async_tx_channel_switch
1008 	 */
1009 	for (; dep; dep = dep_next) {
1010 		spin_lock_bh(&dep->lock);
1011 		dep->parent = NULL;
1012 		dep_next = dep->next;
1013 		if (dep_next && dep_next->chan == chan)
1014 			dep->next = NULL; /* ->next will be submitted */
1015 		else
1016 			dep_next = NULL; /* submit current dep and terminate */
1017 		spin_unlock_bh(&dep->lock);
1018 
1019 		dep->tx_submit(dep);
1020 	}
1021 
1022 	chan->device->device_issue_pending(chan);
1023 }
1024 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1025 
1026 static int __init dma_bus_init(void)
1027 {
1028 	idr_init(&dma_idr);
1029 	mutex_init(&dma_list_mutex);
1030 	return class_register(&dma_devclass);
1031 }
1032 arch_initcall(dma_bus_init);
1033 
1034 
1035