xref: /openbmc/linux/drivers/dma/dmaengine.c (revision 724ba6751532055db75992fc6ae21c3e322e94a7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 
6 /*
7  * This code implements the DMA subsystem. It provides a HW-neutral interface
8  * for other kernel code to use asynchronous memory copy capabilities,
9  * if present, and allows different HW DMA drivers to register as providing
10  * this capability.
11  *
12  * Due to the fact we are accelerating what is already a relatively fast
13  * operation, the code goes to great lengths to avoid additional overhead,
14  * such as locking.
15  *
16  * LOCKING:
17  *
18  * The subsystem keeps a global list of dma_device structs it is protected by a
19  * mutex, dma_list_mutex.
20  *
21  * A subsystem can get access to a channel by calling dmaengine_get() followed
22  * by dma_find_channel(), or if it has need for an exclusive channel it can call
23  * dma_request_channel().  Once a channel is allocated a reference is taken
24  * against its corresponding driver to disable removal.
25  *
26  * Each device has a channels list, which runs unlocked but is never modified
27  * once the device is registered, it's just setup by the driver.
28  *
29  * See Documentation/driver-api/dmaengine for more details
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/platform_device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/device.h>
40 #include <linux/dmaengine.h>
41 #include <linux/hardirq.h>
42 #include <linux/spinlock.h>
43 #include <linux/percpu.h>
44 #include <linux/rcupdate.h>
45 #include <linux/mutex.h>
46 #include <linux/jiffies.h>
47 #include <linux/rculist.h>
48 #include <linux/idr.h>
49 #include <linux/slab.h>
50 #include <linux/acpi.h>
51 #include <linux/acpi_dma.h>
52 #include <linux/of_dma.h>
53 #include <linux/mempool.h>
54 #include <linux/numa.h>
55 
56 #include "dmaengine.h"
57 
58 static DEFINE_MUTEX(dma_list_mutex);
59 static DEFINE_IDA(dma_ida);
60 static LIST_HEAD(dma_device_list);
61 static long dmaengine_ref_count;
62 
63 /* --- debugfs implementation --- */
64 #ifdef CONFIG_DEBUG_FS
65 #include <linux/debugfs.h>
66 
67 static struct dentry *rootdir;
68 
69 static void dmaengine_debug_register(struct dma_device *dma_dev)
70 {
71 	dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev),
72 						   rootdir);
73 	if (IS_ERR(dma_dev->dbg_dev_root))
74 		dma_dev->dbg_dev_root = NULL;
75 }
76 
77 static void dmaengine_debug_unregister(struct dma_device *dma_dev)
78 {
79 	debugfs_remove_recursive(dma_dev->dbg_dev_root);
80 	dma_dev->dbg_dev_root = NULL;
81 }
82 
83 static void dmaengine_dbg_summary_show(struct seq_file *s,
84 				       struct dma_device *dma_dev)
85 {
86 	struct dma_chan *chan;
87 
88 	list_for_each_entry(chan, &dma_dev->channels, device_node) {
89 		if (chan->client_count) {
90 			seq_printf(s, " %-13s| %s", dma_chan_name(chan),
91 				   chan->dbg_client_name ?: "in-use");
92 
93 			if (chan->router)
94 				seq_printf(s, " (via router: %s)\n",
95 					dev_name(chan->router->dev));
96 			else
97 				seq_puts(s, "\n");
98 		}
99 	}
100 }
101 
102 static int dmaengine_summary_show(struct seq_file *s, void *data)
103 {
104 	struct dma_device *dma_dev = NULL;
105 
106 	mutex_lock(&dma_list_mutex);
107 	list_for_each_entry(dma_dev, &dma_device_list, global_node) {
108 		seq_printf(s, "dma%d (%s): number of channels: %u\n",
109 			   dma_dev->dev_id, dev_name(dma_dev->dev),
110 			   dma_dev->chancnt);
111 
112 		if (dma_dev->dbg_summary_show)
113 			dma_dev->dbg_summary_show(s, dma_dev);
114 		else
115 			dmaengine_dbg_summary_show(s, dma_dev);
116 
117 		if (!list_is_last(&dma_dev->global_node, &dma_device_list))
118 			seq_puts(s, "\n");
119 	}
120 	mutex_unlock(&dma_list_mutex);
121 
122 	return 0;
123 }
124 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary);
125 
126 static void __init dmaengine_debugfs_init(void)
127 {
128 	rootdir = debugfs_create_dir("dmaengine", NULL);
129 
130 	/* /sys/kernel/debug/dmaengine/summary */
131 	debugfs_create_file("summary", 0444, rootdir, NULL,
132 			    &dmaengine_summary_fops);
133 }
134 #else
135 static inline void dmaengine_debugfs_init(void) { }
136 static inline int dmaengine_debug_register(struct dma_device *dma_dev)
137 {
138 	return 0;
139 }
140 
141 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { }
142 #endif	/* DEBUG_FS */
143 
144 /* --- sysfs implementation --- */
145 
146 #define DMA_SLAVE_NAME	"slave"
147 
148 /**
149  * dev_to_dma_chan - convert a device pointer to its sysfs container object
150  * @dev:	device node
151  *
152  * Must be called under dma_list_mutex.
153  */
154 static struct dma_chan *dev_to_dma_chan(struct device *dev)
155 {
156 	struct dma_chan_dev *chan_dev;
157 
158 	chan_dev = container_of(dev, typeof(*chan_dev), device);
159 	return chan_dev->chan;
160 }
161 
162 static ssize_t memcpy_count_show(struct device *dev,
163 				 struct device_attribute *attr, char *buf)
164 {
165 	struct dma_chan *chan;
166 	unsigned long count = 0;
167 	int i;
168 	int err;
169 
170 	mutex_lock(&dma_list_mutex);
171 	chan = dev_to_dma_chan(dev);
172 	if (chan) {
173 		for_each_possible_cpu(i)
174 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
175 		err = sysfs_emit(buf, "%lu\n", count);
176 	} else
177 		err = -ENODEV;
178 	mutex_unlock(&dma_list_mutex);
179 
180 	return err;
181 }
182 static DEVICE_ATTR_RO(memcpy_count);
183 
184 static ssize_t bytes_transferred_show(struct device *dev,
185 				      struct device_attribute *attr, char *buf)
186 {
187 	struct dma_chan *chan;
188 	unsigned long count = 0;
189 	int i;
190 	int err;
191 
192 	mutex_lock(&dma_list_mutex);
193 	chan = dev_to_dma_chan(dev);
194 	if (chan) {
195 		for_each_possible_cpu(i)
196 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
197 		err = sysfs_emit(buf, "%lu\n", count);
198 	} else
199 		err = -ENODEV;
200 	mutex_unlock(&dma_list_mutex);
201 
202 	return err;
203 }
204 static DEVICE_ATTR_RO(bytes_transferred);
205 
206 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
207 			   char *buf)
208 {
209 	struct dma_chan *chan;
210 	int err;
211 
212 	mutex_lock(&dma_list_mutex);
213 	chan = dev_to_dma_chan(dev);
214 	if (chan)
215 		err = sysfs_emit(buf, "%d\n", chan->client_count);
216 	else
217 		err = -ENODEV;
218 	mutex_unlock(&dma_list_mutex);
219 
220 	return err;
221 }
222 static DEVICE_ATTR_RO(in_use);
223 
224 static struct attribute *dma_dev_attrs[] = {
225 	&dev_attr_memcpy_count.attr,
226 	&dev_attr_bytes_transferred.attr,
227 	&dev_attr_in_use.attr,
228 	NULL,
229 };
230 ATTRIBUTE_GROUPS(dma_dev);
231 
232 static void chan_dev_release(struct device *dev)
233 {
234 	struct dma_chan_dev *chan_dev;
235 
236 	chan_dev = container_of(dev, typeof(*chan_dev), device);
237 	kfree(chan_dev);
238 }
239 
240 static struct class dma_devclass = {
241 	.name		= "dma",
242 	.dev_groups	= dma_dev_groups,
243 	.dev_release	= chan_dev_release,
244 };
245 
246 /* --- client and device registration --- */
247 
248 /* enable iteration over all operation types */
249 static dma_cap_mask_t dma_cap_mask_all;
250 
251 /**
252  * struct dma_chan_tbl_ent - tracks channel allocations per core/operation
253  * @chan:	associated channel for this entry
254  */
255 struct dma_chan_tbl_ent {
256 	struct dma_chan *chan;
257 };
258 
259 /* percpu lookup table for memory-to-memory offload providers */
260 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
261 
262 static int __init dma_channel_table_init(void)
263 {
264 	enum dma_transaction_type cap;
265 	int err = 0;
266 
267 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
268 
269 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
270 	 * but are not associated with an operation so they do not need
271 	 * an entry in the channel_table
272 	 */
273 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
274 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
275 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
276 
277 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
278 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
279 		if (!channel_table[cap]) {
280 			err = -ENOMEM;
281 			break;
282 		}
283 	}
284 
285 	if (err) {
286 		pr_err("dmaengine dma_channel_table_init failure: %d\n", err);
287 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
288 			free_percpu(channel_table[cap]);
289 	}
290 
291 	return err;
292 }
293 arch_initcall(dma_channel_table_init);
294 
295 /**
296  * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU
297  * @chan:	DMA channel to test
298  * @cpu:	CPU index which the channel should be close to
299  *
300  * Returns true if the channel is in the same NUMA-node as the CPU.
301  */
302 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
303 {
304 	int node = dev_to_node(chan->device->dev);
305 	return node == NUMA_NO_NODE ||
306 		cpumask_test_cpu(cpu, cpumask_of_node(node));
307 }
308 
309 /**
310  * min_chan - finds the channel with min count and in the same NUMA-node as the CPU
311  * @cap:	capability to match
312  * @cpu:	CPU index which the channel should be close to
313  *
314  * If some channels are close to the given CPU, the one with the lowest
315  * reference count is returned. Otherwise, CPU is ignored and only the
316  * reference count is taken into account.
317  *
318  * Must be called under dma_list_mutex.
319  */
320 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
321 {
322 	struct dma_device *device;
323 	struct dma_chan *chan;
324 	struct dma_chan *min = NULL;
325 	struct dma_chan *localmin = NULL;
326 
327 	list_for_each_entry(device, &dma_device_list, global_node) {
328 		if (!dma_has_cap(cap, device->cap_mask) ||
329 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
330 			continue;
331 		list_for_each_entry(chan, &device->channels, device_node) {
332 			if (!chan->client_count)
333 				continue;
334 			if (!min || chan->table_count < min->table_count)
335 				min = chan;
336 
337 			if (dma_chan_is_local(chan, cpu))
338 				if (!localmin ||
339 				    chan->table_count < localmin->table_count)
340 					localmin = chan;
341 		}
342 	}
343 
344 	chan = localmin ? localmin : min;
345 
346 	if (chan)
347 		chan->table_count++;
348 
349 	return chan;
350 }
351 
352 /**
353  * dma_channel_rebalance - redistribute the available channels
354  *
355  * Optimize for CPU isolation (each CPU gets a dedicated channel for an
356  * operation type) in the SMP case, and operation isolation (avoid
357  * multi-tasking channels) in the non-SMP case.
358  *
359  * Must be called under dma_list_mutex.
360  */
361 static void dma_channel_rebalance(void)
362 {
363 	struct dma_chan *chan;
364 	struct dma_device *device;
365 	int cpu;
366 	int cap;
367 
368 	/* undo the last distribution */
369 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
370 		for_each_possible_cpu(cpu)
371 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
372 
373 	list_for_each_entry(device, &dma_device_list, global_node) {
374 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
375 			continue;
376 		list_for_each_entry(chan, &device->channels, device_node)
377 			chan->table_count = 0;
378 	}
379 
380 	/* don't populate the channel_table if no clients are available */
381 	if (!dmaengine_ref_count)
382 		return;
383 
384 	/* redistribute available channels */
385 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
386 		for_each_online_cpu(cpu) {
387 			chan = min_chan(cap, cpu);
388 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
389 		}
390 }
391 
392 static int dma_device_satisfies_mask(struct dma_device *device,
393 				     const dma_cap_mask_t *want)
394 {
395 	dma_cap_mask_t has;
396 
397 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
398 		DMA_TX_TYPE_END);
399 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
400 }
401 
402 static struct module *dma_chan_to_owner(struct dma_chan *chan)
403 {
404 	return chan->device->owner;
405 }
406 
407 /**
408  * balance_ref_count - catch up the channel reference count
409  * @chan:	channel to balance ->client_count versus dmaengine_ref_count
410  *
411  * Must be called under dma_list_mutex.
412  */
413 static void balance_ref_count(struct dma_chan *chan)
414 {
415 	struct module *owner = dma_chan_to_owner(chan);
416 
417 	while (chan->client_count < dmaengine_ref_count) {
418 		__module_get(owner);
419 		chan->client_count++;
420 	}
421 }
422 
423 static void dma_device_release(struct kref *ref)
424 {
425 	struct dma_device *device = container_of(ref, struct dma_device, ref);
426 
427 	list_del_rcu(&device->global_node);
428 	dma_channel_rebalance();
429 
430 	if (device->device_release)
431 		device->device_release(device);
432 }
433 
434 static void dma_device_put(struct dma_device *device)
435 {
436 	lockdep_assert_held(&dma_list_mutex);
437 	kref_put(&device->ref, dma_device_release);
438 }
439 
440 /**
441  * dma_chan_get - try to grab a DMA channel's parent driver module
442  * @chan:	channel to grab
443  *
444  * Must be called under dma_list_mutex.
445  */
446 static int dma_chan_get(struct dma_chan *chan)
447 {
448 	struct module *owner = dma_chan_to_owner(chan);
449 	int ret;
450 
451 	/* The channel is already in use, update client count */
452 	if (chan->client_count) {
453 		__module_get(owner);
454 		chan->client_count++;
455 		return 0;
456 	}
457 
458 	if (!try_module_get(owner))
459 		return -ENODEV;
460 
461 	ret = kref_get_unless_zero(&chan->device->ref);
462 	if (!ret) {
463 		ret = -ENODEV;
464 		goto module_put_out;
465 	}
466 
467 	/* allocate upon first client reference */
468 	if (chan->device->device_alloc_chan_resources) {
469 		ret = chan->device->device_alloc_chan_resources(chan);
470 		if (ret < 0)
471 			goto err_out;
472 	}
473 
474 	chan->client_count++;
475 
476 	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
477 		balance_ref_count(chan);
478 
479 	return 0;
480 
481 err_out:
482 	dma_device_put(chan->device);
483 module_put_out:
484 	module_put(owner);
485 	return ret;
486 }
487 
488 /**
489  * dma_chan_put - drop a reference to a DMA channel's parent driver module
490  * @chan:	channel to release
491  *
492  * Must be called under dma_list_mutex.
493  */
494 static void dma_chan_put(struct dma_chan *chan)
495 {
496 	/* This channel is not in use, bail out */
497 	if (!chan->client_count)
498 		return;
499 
500 	chan->client_count--;
501 
502 	/* This channel is not in use anymore, free it */
503 	if (!chan->client_count && chan->device->device_free_chan_resources) {
504 		/* Make sure all operations have completed */
505 		dmaengine_synchronize(chan);
506 		chan->device->device_free_chan_resources(chan);
507 	}
508 
509 	/* If the channel is used via a DMA request router, free the mapping */
510 	if (chan->router && chan->router->route_free) {
511 		chan->router->route_free(chan->router->dev, chan->route_data);
512 		chan->router = NULL;
513 		chan->route_data = NULL;
514 	}
515 
516 	dma_device_put(chan->device);
517 	module_put(dma_chan_to_owner(chan));
518 }
519 
520 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
521 {
522 	enum dma_status status;
523 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
524 
525 	dma_async_issue_pending(chan);
526 	do {
527 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
528 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
529 			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
530 			return DMA_ERROR;
531 		}
532 		if (status != DMA_IN_PROGRESS)
533 			break;
534 		cpu_relax();
535 	} while (1);
536 
537 	return status;
538 }
539 EXPORT_SYMBOL(dma_sync_wait);
540 
541 /**
542  * dma_find_channel - find a channel to carry out the operation
543  * @tx_type:	transaction type
544  */
545 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
546 {
547 	return this_cpu_read(channel_table[tx_type]->chan);
548 }
549 EXPORT_SYMBOL(dma_find_channel);
550 
551 /**
552  * dma_issue_pending_all - flush all pending operations across all channels
553  */
554 void dma_issue_pending_all(void)
555 {
556 	struct dma_device *device;
557 	struct dma_chan *chan;
558 
559 	rcu_read_lock();
560 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
561 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
562 			continue;
563 		list_for_each_entry(chan, &device->channels, device_node)
564 			if (chan->client_count)
565 				device->device_issue_pending(chan);
566 	}
567 	rcu_read_unlock();
568 }
569 EXPORT_SYMBOL(dma_issue_pending_all);
570 
571 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
572 {
573 	struct dma_device *device;
574 
575 	if (!chan || !caps)
576 		return -EINVAL;
577 
578 	device = chan->device;
579 
580 	/* check if the channel supports slave transactions */
581 	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
582 	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
583 		return -ENXIO;
584 
585 	/*
586 	 * Check whether it reports it uses the generic slave
587 	 * capabilities, if not, that means it doesn't support any
588 	 * kind of slave capabilities reporting.
589 	 */
590 	if (!device->directions)
591 		return -ENXIO;
592 
593 	caps->src_addr_widths = device->src_addr_widths;
594 	caps->dst_addr_widths = device->dst_addr_widths;
595 	caps->directions = device->directions;
596 	caps->min_burst = device->min_burst;
597 	caps->max_burst = device->max_burst;
598 	caps->max_sg_burst = device->max_sg_burst;
599 	caps->residue_granularity = device->residue_granularity;
600 	caps->descriptor_reuse = device->descriptor_reuse;
601 	caps->cmd_pause = !!device->device_pause;
602 	caps->cmd_resume = !!device->device_resume;
603 	caps->cmd_terminate = !!device->device_terminate_all;
604 
605 	/*
606 	 * DMA engine device might be configured with non-uniformly
607 	 * distributed slave capabilities per device channels. In this
608 	 * case the corresponding driver may provide the device_caps
609 	 * callback to override the generic capabilities with
610 	 * channel-specific ones.
611 	 */
612 	if (device->device_caps)
613 		device->device_caps(chan, caps);
614 
615 	return 0;
616 }
617 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
618 
619 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
620 					  struct dma_device *dev,
621 					  dma_filter_fn fn, void *fn_param)
622 {
623 	struct dma_chan *chan;
624 
625 	if (mask && !dma_device_satisfies_mask(dev, mask)) {
626 		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
627 		return NULL;
628 	}
629 	/* devices with multiple channels need special handling as we need to
630 	 * ensure that all channels are either private or public.
631 	 */
632 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
633 		list_for_each_entry(chan, &dev->channels, device_node) {
634 			/* some channels are already publicly allocated */
635 			if (chan->client_count)
636 				return NULL;
637 		}
638 
639 	list_for_each_entry(chan, &dev->channels, device_node) {
640 		if (chan->client_count) {
641 			dev_dbg(dev->dev, "%s: %s busy\n",
642 				 __func__, dma_chan_name(chan));
643 			continue;
644 		}
645 		if (fn && !fn(chan, fn_param)) {
646 			dev_dbg(dev->dev, "%s: %s filter said false\n",
647 				 __func__, dma_chan_name(chan));
648 			continue;
649 		}
650 		return chan;
651 	}
652 
653 	return NULL;
654 }
655 
656 static struct dma_chan *find_candidate(struct dma_device *device,
657 				       const dma_cap_mask_t *mask,
658 				       dma_filter_fn fn, void *fn_param)
659 {
660 	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
661 	int err;
662 
663 	if (chan) {
664 		/* Found a suitable channel, try to grab, prep, and return it.
665 		 * We first set DMA_PRIVATE to disable balance_ref_count as this
666 		 * channel will not be published in the general-purpose
667 		 * allocator
668 		 */
669 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
670 		device->privatecnt++;
671 		err = dma_chan_get(chan);
672 
673 		if (err) {
674 			if (err == -ENODEV) {
675 				dev_dbg(device->dev, "%s: %s module removed\n",
676 					__func__, dma_chan_name(chan));
677 				list_del_rcu(&device->global_node);
678 			} else
679 				dev_dbg(device->dev,
680 					"%s: failed to get %s: (%d)\n",
681 					 __func__, dma_chan_name(chan), err);
682 
683 			if (--device->privatecnt == 0)
684 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
685 
686 			chan = ERR_PTR(err);
687 		}
688 	}
689 
690 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
691 }
692 
693 /**
694  * dma_get_slave_channel - try to get specific channel exclusively
695  * @chan:	target channel
696  */
697 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
698 {
699 	/* lock against __dma_request_channel */
700 	mutex_lock(&dma_list_mutex);
701 
702 	if (chan->client_count == 0) {
703 		struct dma_device *device = chan->device;
704 		int err;
705 
706 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
707 		device->privatecnt++;
708 		err = dma_chan_get(chan);
709 		if (err) {
710 			dev_dbg(chan->device->dev,
711 				"%s: failed to get %s: (%d)\n",
712 				__func__, dma_chan_name(chan), err);
713 			chan = NULL;
714 			if (--device->privatecnt == 0)
715 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
716 		}
717 	} else
718 		chan = NULL;
719 
720 	mutex_unlock(&dma_list_mutex);
721 
722 
723 	return chan;
724 }
725 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
726 
727 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
728 {
729 	dma_cap_mask_t mask;
730 	struct dma_chan *chan;
731 
732 	dma_cap_zero(mask);
733 	dma_cap_set(DMA_SLAVE, mask);
734 
735 	/* lock against __dma_request_channel */
736 	mutex_lock(&dma_list_mutex);
737 
738 	chan = find_candidate(device, &mask, NULL, NULL);
739 
740 	mutex_unlock(&dma_list_mutex);
741 
742 	return IS_ERR(chan) ? NULL : chan;
743 }
744 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
745 
746 /**
747  * __dma_request_channel - try to allocate an exclusive channel
748  * @mask:	capabilities that the channel must satisfy
749  * @fn:		optional callback to disposition available channels
750  * @fn_param:	opaque parameter to pass to dma_filter_fn()
751  * @np:		device node to look for DMA channels
752  *
753  * Returns pointer to appropriate DMA channel on success or NULL.
754  */
755 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
756 				       dma_filter_fn fn, void *fn_param,
757 				       struct device_node *np)
758 {
759 	struct dma_device *device, *_d;
760 	struct dma_chan *chan = NULL;
761 
762 	/* Find a channel */
763 	mutex_lock(&dma_list_mutex);
764 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
765 		/* Finds a DMA controller with matching device node */
766 		if (np && device->dev->of_node && np != device->dev->of_node)
767 			continue;
768 
769 		chan = find_candidate(device, mask, fn, fn_param);
770 		if (!IS_ERR(chan))
771 			break;
772 
773 		chan = NULL;
774 	}
775 	mutex_unlock(&dma_list_mutex);
776 
777 	pr_debug("%s: %s (%s)\n",
778 		 __func__,
779 		 chan ? "success" : "fail",
780 		 chan ? dma_chan_name(chan) : NULL);
781 
782 	return chan;
783 }
784 EXPORT_SYMBOL_GPL(__dma_request_channel);
785 
786 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
787 						    const char *name,
788 						    struct device *dev)
789 {
790 	int i;
791 
792 	if (!device->filter.mapcnt)
793 		return NULL;
794 
795 	for (i = 0; i < device->filter.mapcnt; i++) {
796 		const struct dma_slave_map *map = &device->filter.map[i];
797 
798 		if (!strcmp(map->devname, dev_name(dev)) &&
799 		    !strcmp(map->slave, name))
800 			return map;
801 	}
802 
803 	return NULL;
804 }
805 
806 /**
807  * dma_request_chan - try to allocate an exclusive slave channel
808  * @dev:	pointer to client device structure
809  * @name:	slave channel name
810  *
811  * Returns pointer to appropriate DMA channel on success or an error pointer.
812  */
813 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
814 {
815 	struct dma_device *d, *_d;
816 	struct dma_chan *chan = NULL;
817 
818 	/* If device-tree is present get slave info from here */
819 	if (dev->of_node)
820 		chan = of_dma_request_slave_channel(dev->of_node, name);
821 
822 	/* If device was enumerated by ACPI get slave info from here */
823 	if (has_acpi_companion(dev) && !chan)
824 		chan = acpi_dma_request_slave_chan_by_name(dev, name);
825 
826 	if (PTR_ERR(chan) == -EPROBE_DEFER)
827 		return chan;
828 
829 	if (!IS_ERR_OR_NULL(chan))
830 		goto found;
831 
832 	/* Try to find the channel via the DMA filter map(s) */
833 	mutex_lock(&dma_list_mutex);
834 	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
835 		dma_cap_mask_t mask;
836 		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
837 
838 		if (!map)
839 			continue;
840 
841 		dma_cap_zero(mask);
842 		dma_cap_set(DMA_SLAVE, mask);
843 
844 		chan = find_candidate(d, &mask, d->filter.fn, map->param);
845 		if (!IS_ERR(chan))
846 			break;
847 	}
848 	mutex_unlock(&dma_list_mutex);
849 
850 	if (IS_ERR(chan))
851 		return chan;
852 	if (!chan)
853 		return ERR_PTR(-EPROBE_DEFER);
854 
855 found:
856 #ifdef CONFIG_DEBUG_FS
857 	chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev),
858 					  name);
859 #endif
860 
861 	chan->name = kasprintf(GFP_KERNEL, "dma:%s", name);
862 	if (!chan->name)
863 		return chan;
864 	chan->slave = dev;
865 
866 	if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj,
867 			      DMA_SLAVE_NAME))
868 		dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME);
869 	if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name))
870 		dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name);
871 
872 	return chan;
873 }
874 EXPORT_SYMBOL_GPL(dma_request_chan);
875 
876 /**
877  * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
878  * @mask:	capabilities that the channel must satisfy
879  *
880  * Returns pointer to appropriate DMA channel on success or an error pointer.
881  */
882 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
883 {
884 	struct dma_chan *chan;
885 
886 	if (!mask)
887 		return ERR_PTR(-ENODEV);
888 
889 	chan = __dma_request_channel(mask, NULL, NULL, NULL);
890 	if (!chan) {
891 		mutex_lock(&dma_list_mutex);
892 		if (list_empty(&dma_device_list))
893 			chan = ERR_PTR(-EPROBE_DEFER);
894 		else
895 			chan = ERR_PTR(-ENODEV);
896 		mutex_unlock(&dma_list_mutex);
897 	}
898 
899 	return chan;
900 }
901 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
902 
903 void dma_release_channel(struct dma_chan *chan)
904 {
905 	mutex_lock(&dma_list_mutex);
906 	WARN_ONCE(chan->client_count != 1,
907 		  "chan reference count %d != 1\n", chan->client_count);
908 	dma_chan_put(chan);
909 	/* drop PRIVATE cap enabled by __dma_request_channel() */
910 	if (--chan->device->privatecnt == 0)
911 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
912 
913 	if (chan->slave) {
914 		sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME);
915 		sysfs_remove_link(&chan->slave->kobj, chan->name);
916 		kfree(chan->name);
917 		chan->name = NULL;
918 		chan->slave = NULL;
919 	}
920 
921 #ifdef CONFIG_DEBUG_FS
922 	kfree(chan->dbg_client_name);
923 	chan->dbg_client_name = NULL;
924 #endif
925 	mutex_unlock(&dma_list_mutex);
926 }
927 EXPORT_SYMBOL_GPL(dma_release_channel);
928 
929 /**
930  * dmaengine_get - register interest in dma_channels
931  */
932 void dmaengine_get(void)
933 {
934 	struct dma_device *device, *_d;
935 	struct dma_chan *chan;
936 	int err;
937 
938 	mutex_lock(&dma_list_mutex);
939 	dmaengine_ref_count++;
940 
941 	/* try to grab channels */
942 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
943 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
944 			continue;
945 		list_for_each_entry(chan, &device->channels, device_node) {
946 			err = dma_chan_get(chan);
947 			if (err == -ENODEV) {
948 				/* module removed before we could use it */
949 				list_del_rcu(&device->global_node);
950 				break;
951 			} else if (err)
952 				dev_dbg(chan->device->dev,
953 					"%s: failed to get %s: (%d)\n",
954 					__func__, dma_chan_name(chan), err);
955 		}
956 	}
957 
958 	/* if this is the first reference and there were channels
959 	 * waiting we need to rebalance to get those channels
960 	 * incorporated into the channel table
961 	 */
962 	if (dmaengine_ref_count == 1)
963 		dma_channel_rebalance();
964 	mutex_unlock(&dma_list_mutex);
965 }
966 EXPORT_SYMBOL(dmaengine_get);
967 
968 /**
969  * dmaengine_put - let DMA drivers be removed when ref_count == 0
970  */
971 void dmaengine_put(void)
972 {
973 	struct dma_device *device, *_d;
974 	struct dma_chan *chan;
975 
976 	mutex_lock(&dma_list_mutex);
977 	dmaengine_ref_count--;
978 	BUG_ON(dmaengine_ref_count < 0);
979 	/* drop channel references */
980 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
981 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
982 			continue;
983 		list_for_each_entry(chan, &device->channels, device_node)
984 			dma_chan_put(chan);
985 	}
986 	mutex_unlock(&dma_list_mutex);
987 }
988 EXPORT_SYMBOL(dmaengine_put);
989 
990 static bool device_has_all_tx_types(struct dma_device *device)
991 {
992 	/* A device that satisfies this test has channels that will never cause
993 	 * an async_tx channel switch event as all possible operation types can
994 	 * be handled.
995 	 */
996 	#ifdef CONFIG_ASYNC_TX_DMA
997 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
998 		return false;
999 	#endif
1000 
1001 	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
1002 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
1003 		return false;
1004 	#endif
1005 
1006 	#if IS_ENABLED(CONFIG_ASYNC_XOR)
1007 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
1008 		return false;
1009 
1010 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1011 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
1012 		return false;
1013 	#endif
1014 	#endif
1015 
1016 	#if IS_ENABLED(CONFIG_ASYNC_PQ)
1017 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
1018 		return false;
1019 
1020 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1021 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
1022 		return false;
1023 	#endif
1024 	#endif
1025 
1026 	return true;
1027 }
1028 
1029 static int get_dma_id(struct dma_device *device)
1030 {
1031 	int rc = ida_alloc(&dma_ida, GFP_KERNEL);
1032 
1033 	if (rc < 0)
1034 		return rc;
1035 	device->dev_id = rc;
1036 	return 0;
1037 }
1038 
1039 static int __dma_async_device_channel_register(struct dma_device *device,
1040 					       struct dma_chan *chan)
1041 {
1042 	int rc;
1043 
1044 	chan->local = alloc_percpu(typeof(*chan->local));
1045 	if (!chan->local)
1046 		return -ENOMEM;
1047 	chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1048 	if (!chan->dev) {
1049 		rc = -ENOMEM;
1050 		goto err_free_local;
1051 	}
1052 
1053 	/*
1054 	 * When the chan_id is a negative value, we are dynamically adding
1055 	 * the channel. Otherwise we are static enumerating.
1056 	 */
1057 	chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL);
1058 	if (chan->chan_id < 0) {
1059 		pr_err("%s: unable to alloc ida for chan: %d\n",
1060 		       __func__, chan->chan_id);
1061 		rc = chan->chan_id;
1062 		goto err_free_dev;
1063 	}
1064 
1065 	chan->dev->device.class = &dma_devclass;
1066 	chan->dev->device.parent = device->dev;
1067 	chan->dev->chan = chan;
1068 	chan->dev->dev_id = device->dev_id;
1069 	dev_set_name(&chan->dev->device, "dma%dchan%d",
1070 		     device->dev_id, chan->chan_id);
1071 	rc = device_register(&chan->dev->device);
1072 	if (rc)
1073 		goto err_out_ida;
1074 	chan->client_count = 0;
1075 	device->chancnt++;
1076 
1077 	return 0;
1078 
1079  err_out_ida:
1080 	ida_free(&device->chan_ida, chan->chan_id);
1081  err_free_dev:
1082 	kfree(chan->dev);
1083  err_free_local:
1084 	free_percpu(chan->local);
1085 	chan->local = NULL;
1086 	return rc;
1087 }
1088 
1089 int dma_async_device_channel_register(struct dma_device *device,
1090 				      struct dma_chan *chan)
1091 {
1092 	int rc;
1093 
1094 	rc = __dma_async_device_channel_register(device, chan);
1095 	if (rc < 0)
1096 		return rc;
1097 
1098 	dma_channel_rebalance();
1099 	return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(dma_async_device_channel_register);
1102 
1103 static void __dma_async_device_channel_unregister(struct dma_device *device,
1104 						  struct dma_chan *chan)
1105 {
1106 	WARN_ONCE(!device->device_release && chan->client_count,
1107 		  "%s called while %d clients hold a reference\n",
1108 		  __func__, chan->client_count);
1109 	mutex_lock(&dma_list_mutex);
1110 	device->chancnt--;
1111 	chan->dev->chan = NULL;
1112 	mutex_unlock(&dma_list_mutex);
1113 	ida_free(&device->chan_ida, chan->chan_id);
1114 	device_unregister(&chan->dev->device);
1115 	free_percpu(chan->local);
1116 }
1117 
1118 void dma_async_device_channel_unregister(struct dma_device *device,
1119 					 struct dma_chan *chan)
1120 {
1121 	__dma_async_device_channel_unregister(device, chan);
1122 	dma_channel_rebalance();
1123 }
1124 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister);
1125 
1126 /**
1127  * dma_async_device_register - registers DMA devices found
1128  * @device:	pointer to &struct dma_device
1129  *
1130  * After calling this routine the structure should not be freed except in the
1131  * device_release() callback which will be called after
1132  * dma_async_device_unregister() is called and no further references are taken.
1133  */
1134 int dma_async_device_register(struct dma_device *device)
1135 {
1136 	int rc;
1137 	struct dma_chan* chan;
1138 
1139 	if (!device)
1140 		return -ENODEV;
1141 
1142 	/* validate device routines */
1143 	if (!device->dev) {
1144 		pr_err("DMAdevice must have dev\n");
1145 		return -EIO;
1146 	}
1147 
1148 	device->owner = device->dev->driver->owner;
1149 
1150 	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
1151 		dev_err(device->dev,
1152 			"Device claims capability %s, but op is not defined\n",
1153 			"DMA_MEMCPY");
1154 		return -EIO;
1155 	}
1156 
1157 	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
1158 		dev_err(device->dev,
1159 			"Device claims capability %s, but op is not defined\n",
1160 			"DMA_XOR");
1161 		return -EIO;
1162 	}
1163 
1164 	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
1165 		dev_err(device->dev,
1166 			"Device claims capability %s, but op is not defined\n",
1167 			"DMA_XOR_VAL");
1168 		return -EIO;
1169 	}
1170 
1171 	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
1172 		dev_err(device->dev,
1173 			"Device claims capability %s, but op is not defined\n",
1174 			"DMA_PQ");
1175 		return -EIO;
1176 	}
1177 
1178 	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
1179 		dev_err(device->dev,
1180 			"Device claims capability %s, but op is not defined\n",
1181 			"DMA_PQ_VAL");
1182 		return -EIO;
1183 	}
1184 
1185 	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
1186 		dev_err(device->dev,
1187 			"Device claims capability %s, but op is not defined\n",
1188 			"DMA_MEMSET");
1189 		return -EIO;
1190 	}
1191 
1192 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
1193 		dev_err(device->dev,
1194 			"Device claims capability %s, but op is not defined\n",
1195 			"DMA_INTERRUPT");
1196 		return -EIO;
1197 	}
1198 
1199 	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
1200 		dev_err(device->dev,
1201 			"Device claims capability %s, but op is not defined\n",
1202 			"DMA_CYCLIC");
1203 		return -EIO;
1204 	}
1205 
1206 	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
1207 		dev_err(device->dev,
1208 			"Device claims capability %s, but op is not defined\n",
1209 			"DMA_INTERLEAVE");
1210 		return -EIO;
1211 	}
1212 
1213 
1214 	if (!device->device_tx_status) {
1215 		dev_err(device->dev, "Device tx_status is not defined\n");
1216 		return -EIO;
1217 	}
1218 
1219 
1220 	if (!device->device_issue_pending) {
1221 		dev_err(device->dev, "Device issue_pending is not defined\n");
1222 		return -EIO;
1223 	}
1224 
1225 	if (!device->device_release)
1226 		dev_dbg(device->dev,
1227 			 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1228 
1229 	kref_init(&device->ref);
1230 
1231 	/* note: this only matters in the
1232 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1233 	 */
1234 	if (device_has_all_tx_types(device))
1235 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1236 
1237 	rc = get_dma_id(device);
1238 	if (rc != 0)
1239 		return rc;
1240 
1241 	ida_init(&device->chan_ida);
1242 
1243 	/* represent channels in sysfs. Probably want devs too */
1244 	list_for_each_entry(chan, &device->channels, device_node) {
1245 		rc = __dma_async_device_channel_register(device, chan);
1246 		if (rc < 0)
1247 			goto err_out;
1248 	}
1249 
1250 	mutex_lock(&dma_list_mutex);
1251 	/* take references on public channels */
1252 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1253 		list_for_each_entry(chan, &device->channels, device_node) {
1254 			/* if clients are already waiting for channels we need
1255 			 * to take references on their behalf
1256 			 */
1257 			if (dma_chan_get(chan) == -ENODEV) {
1258 				/* note we can only get here for the first
1259 				 * channel as the remaining channels are
1260 				 * guaranteed to get a reference
1261 				 */
1262 				rc = -ENODEV;
1263 				mutex_unlock(&dma_list_mutex);
1264 				goto err_out;
1265 			}
1266 		}
1267 	list_add_tail_rcu(&device->global_node, &dma_device_list);
1268 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1269 		device->privatecnt++;	/* Always private */
1270 	dma_channel_rebalance();
1271 	mutex_unlock(&dma_list_mutex);
1272 
1273 	dmaengine_debug_register(device);
1274 
1275 	return 0;
1276 
1277 err_out:
1278 	/* if we never registered a channel just release the idr */
1279 	if (!device->chancnt) {
1280 		ida_free(&dma_ida, device->dev_id);
1281 		return rc;
1282 	}
1283 
1284 	list_for_each_entry(chan, &device->channels, device_node) {
1285 		if (chan->local == NULL)
1286 			continue;
1287 		mutex_lock(&dma_list_mutex);
1288 		chan->dev->chan = NULL;
1289 		mutex_unlock(&dma_list_mutex);
1290 		device_unregister(&chan->dev->device);
1291 		free_percpu(chan->local);
1292 	}
1293 	return rc;
1294 }
1295 EXPORT_SYMBOL(dma_async_device_register);
1296 
1297 /**
1298  * dma_async_device_unregister - unregister a DMA device
1299  * @device:	pointer to &struct dma_device
1300  *
1301  * This routine is called by dma driver exit routines, dmaengine holds module
1302  * references to prevent it being called while channels are in use.
1303  */
1304 void dma_async_device_unregister(struct dma_device *device)
1305 {
1306 	struct dma_chan *chan, *n;
1307 
1308 	dmaengine_debug_unregister(device);
1309 
1310 	list_for_each_entry_safe(chan, n, &device->channels, device_node)
1311 		__dma_async_device_channel_unregister(device, chan);
1312 
1313 	mutex_lock(&dma_list_mutex);
1314 	/*
1315 	 * setting DMA_PRIVATE ensures the device being torn down will not
1316 	 * be used in the channel_table
1317 	 */
1318 	dma_cap_set(DMA_PRIVATE, device->cap_mask);
1319 	dma_channel_rebalance();
1320 	ida_free(&dma_ida, device->dev_id);
1321 	dma_device_put(device);
1322 	mutex_unlock(&dma_list_mutex);
1323 }
1324 EXPORT_SYMBOL(dma_async_device_unregister);
1325 
1326 static void dmaenginem_async_device_unregister(void *device)
1327 {
1328 	dma_async_device_unregister(device);
1329 }
1330 
1331 /**
1332  * dmaenginem_async_device_register - registers DMA devices found
1333  * @device:	pointer to &struct dma_device
1334  *
1335  * The operation is managed and will be undone on driver detach.
1336  */
1337 int dmaenginem_async_device_register(struct dma_device *device)
1338 {
1339 	int ret;
1340 
1341 	ret = dma_async_device_register(device);
1342 	if (ret)
1343 		return ret;
1344 
1345 	return devm_add_action_or_reset(device->dev, dmaenginem_async_device_unregister, device);
1346 }
1347 EXPORT_SYMBOL(dmaenginem_async_device_register);
1348 
1349 struct dmaengine_unmap_pool {
1350 	struct kmem_cache *cache;
1351 	const char *name;
1352 	mempool_t *pool;
1353 	size_t size;
1354 };
1355 
1356 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1357 static struct dmaengine_unmap_pool unmap_pool[] = {
1358 	__UNMAP_POOL(2),
1359 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1360 	__UNMAP_POOL(16),
1361 	__UNMAP_POOL(128),
1362 	__UNMAP_POOL(256),
1363 	#endif
1364 };
1365 
1366 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1367 {
1368 	int order = get_count_order(nr);
1369 
1370 	switch (order) {
1371 	case 0 ... 1:
1372 		return &unmap_pool[0];
1373 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1374 	case 2 ... 4:
1375 		return &unmap_pool[1];
1376 	case 5 ... 7:
1377 		return &unmap_pool[2];
1378 	case 8:
1379 		return &unmap_pool[3];
1380 #endif
1381 	default:
1382 		BUG();
1383 		return NULL;
1384 	}
1385 }
1386 
1387 static void dmaengine_unmap(struct kref *kref)
1388 {
1389 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1390 	struct device *dev = unmap->dev;
1391 	int cnt, i;
1392 
1393 	cnt = unmap->to_cnt;
1394 	for (i = 0; i < cnt; i++)
1395 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1396 			       DMA_TO_DEVICE);
1397 	cnt += unmap->from_cnt;
1398 	for (; i < cnt; i++)
1399 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1400 			       DMA_FROM_DEVICE);
1401 	cnt += unmap->bidi_cnt;
1402 	for (; i < cnt; i++) {
1403 		if (unmap->addr[i] == 0)
1404 			continue;
1405 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1406 			       DMA_BIDIRECTIONAL);
1407 	}
1408 	cnt = unmap->map_cnt;
1409 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1410 }
1411 
1412 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1413 {
1414 	if (unmap)
1415 		kref_put(&unmap->kref, dmaengine_unmap);
1416 }
1417 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1418 
1419 static void dmaengine_destroy_unmap_pool(void)
1420 {
1421 	int i;
1422 
1423 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1424 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1425 
1426 		mempool_destroy(p->pool);
1427 		p->pool = NULL;
1428 		kmem_cache_destroy(p->cache);
1429 		p->cache = NULL;
1430 	}
1431 }
1432 
1433 static int __init dmaengine_init_unmap_pool(void)
1434 {
1435 	int i;
1436 
1437 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1438 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1439 		size_t size;
1440 
1441 		size = sizeof(struct dmaengine_unmap_data) +
1442 		       sizeof(dma_addr_t) * p->size;
1443 
1444 		p->cache = kmem_cache_create(p->name, size, 0,
1445 					     SLAB_HWCACHE_ALIGN, NULL);
1446 		if (!p->cache)
1447 			break;
1448 		p->pool = mempool_create_slab_pool(1, p->cache);
1449 		if (!p->pool)
1450 			break;
1451 	}
1452 
1453 	if (i == ARRAY_SIZE(unmap_pool))
1454 		return 0;
1455 
1456 	dmaengine_destroy_unmap_pool();
1457 	return -ENOMEM;
1458 }
1459 
1460 struct dmaengine_unmap_data *
1461 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1462 {
1463 	struct dmaengine_unmap_data *unmap;
1464 
1465 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1466 	if (!unmap)
1467 		return NULL;
1468 
1469 	memset(unmap, 0, sizeof(*unmap));
1470 	kref_init(&unmap->kref);
1471 	unmap->dev = dev;
1472 	unmap->map_cnt = nr;
1473 
1474 	return unmap;
1475 }
1476 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1477 
1478 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1479 	struct dma_chan *chan)
1480 {
1481 	tx->chan = chan;
1482 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1483 	spin_lock_init(&tx->lock);
1484 	#endif
1485 }
1486 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1487 
1488 static inline int desc_check_and_set_metadata_mode(
1489 	struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode)
1490 {
1491 	/* Make sure that the metadata mode is not mixed */
1492 	if (!desc->desc_metadata_mode) {
1493 		if (dmaengine_is_metadata_mode_supported(desc->chan, mode))
1494 			desc->desc_metadata_mode = mode;
1495 		else
1496 			return -ENOTSUPP;
1497 	} else if (desc->desc_metadata_mode != mode) {
1498 		return -EINVAL;
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1505 				   void *data, size_t len)
1506 {
1507 	int ret;
1508 
1509 	if (!desc)
1510 		return -EINVAL;
1511 
1512 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT);
1513 	if (ret)
1514 		return ret;
1515 
1516 	if (!desc->metadata_ops || !desc->metadata_ops->attach)
1517 		return -ENOTSUPP;
1518 
1519 	return desc->metadata_ops->attach(desc, data, len);
1520 }
1521 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata);
1522 
1523 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1524 				      size_t *payload_len, size_t *max_len)
1525 {
1526 	int ret;
1527 
1528 	if (!desc)
1529 		return ERR_PTR(-EINVAL);
1530 
1531 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1532 	if (ret)
1533 		return ERR_PTR(ret);
1534 
1535 	if (!desc->metadata_ops || !desc->metadata_ops->get_ptr)
1536 		return ERR_PTR(-ENOTSUPP);
1537 
1538 	return desc->metadata_ops->get_ptr(desc, payload_len, max_len);
1539 }
1540 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr);
1541 
1542 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1543 				    size_t payload_len)
1544 {
1545 	int ret;
1546 
1547 	if (!desc)
1548 		return -EINVAL;
1549 
1550 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1551 	if (ret)
1552 		return ret;
1553 
1554 	if (!desc->metadata_ops || !desc->metadata_ops->set_len)
1555 		return -ENOTSUPP;
1556 
1557 	return desc->metadata_ops->set_len(desc, payload_len);
1558 }
1559 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len);
1560 
1561 /**
1562  * dma_wait_for_async_tx - spin wait for a transaction to complete
1563  * @tx:		in-flight transaction to wait on
1564  */
1565 enum dma_status
1566 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1567 {
1568 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1569 
1570 	if (!tx)
1571 		return DMA_COMPLETE;
1572 
1573 	while (tx->cookie == -EBUSY) {
1574 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1575 			dev_err(tx->chan->device->dev,
1576 				"%s timeout waiting for descriptor submission\n",
1577 				__func__);
1578 			return DMA_ERROR;
1579 		}
1580 		cpu_relax();
1581 	}
1582 	return dma_sync_wait(tx->chan, tx->cookie);
1583 }
1584 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1585 
1586 /**
1587  * dma_run_dependencies - process dependent operations on the target channel
1588  * @tx:		transaction with dependencies
1589  *
1590  * Helper routine for DMA drivers to process (start) dependent operations
1591  * on their target channel.
1592  */
1593 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1594 {
1595 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1596 	struct dma_async_tx_descriptor *dep_next;
1597 	struct dma_chan *chan;
1598 
1599 	if (!dep)
1600 		return;
1601 
1602 	/* we'll submit tx->next now, so clear the link */
1603 	txd_clear_next(tx);
1604 	chan = dep->chan;
1605 
1606 	/* keep submitting up until a channel switch is detected
1607 	 * in that case we will be called again as a result of
1608 	 * processing the interrupt from async_tx_channel_switch
1609 	 */
1610 	for (; dep; dep = dep_next) {
1611 		txd_lock(dep);
1612 		txd_clear_parent(dep);
1613 		dep_next = txd_next(dep);
1614 		if (dep_next && dep_next->chan == chan)
1615 			txd_clear_next(dep); /* ->next will be submitted */
1616 		else
1617 			dep_next = NULL; /* submit current dep and terminate */
1618 		txd_unlock(dep);
1619 
1620 		dep->tx_submit(dep);
1621 	}
1622 
1623 	chan->device->device_issue_pending(chan);
1624 }
1625 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1626 
1627 static int __init dma_bus_init(void)
1628 {
1629 	int err = dmaengine_init_unmap_pool();
1630 
1631 	if (err)
1632 		return err;
1633 
1634 	err = class_register(&dma_devclass);
1635 	if (!err)
1636 		dmaengine_debugfs_init();
1637 
1638 	return err;
1639 }
1640 arch_initcall(dma_bus_init);
1641