xref: /openbmc/linux/drivers/dma/dmaengine.c (revision 6d99a79c)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called COPYING.
16  */
17 
18 /*
19  * This code implements the DMA subsystem. It provides a HW-neutral interface
20  * for other kernel code to use asynchronous memory copy capabilities,
21  * if present, and allows different HW DMA drivers to register as providing
22  * this capability.
23  *
24  * Due to the fact we are accelerating what is already a relatively fast
25  * operation, the code goes to great lengths to avoid additional overhead,
26  * such as locking.
27  *
28  * LOCKING:
29  *
30  * The subsystem keeps a global list of dma_device structs it is protected by a
31  * mutex, dma_list_mutex.
32  *
33  * A subsystem can get access to a channel by calling dmaengine_get() followed
34  * by dma_find_channel(), or if it has need for an exclusive channel it can call
35  * dma_request_channel().  Once a channel is allocated a reference is taken
36  * against its corresponding driver to disable removal.
37  *
38  * Each device has a channels list, which runs unlocked but is never modified
39  * once the device is registered, it's just setup by the driver.
40  *
41  * See Documentation/driver-api/dmaengine for more details
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
61 #include <linux/slab.h>
62 #include <linux/acpi.h>
63 #include <linux/acpi_dma.h>
64 #include <linux/of_dma.h>
65 #include <linux/mempool.h>
66 
67 static DEFINE_MUTEX(dma_list_mutex);
68 static DEFINE_IDA(dma_ida);
69 static LIST_HEAD(dma_device_list);
70 static long dmaengine_ref_count;
71 
72 /* --- sysfs implementation --- */
73 
74 /**
75  * dev_to_dma_chan - convert a device pointer to the its sysfs container object
76  * @dev - device node
77  *
78  * Must be called under dma_list_mutex
79  */
80 static struct dma_chan *dev_to_dma_chan(struct device *dev)
81 {
82 	struct dma_chan_dev *chan_dev;
83 
84 	chan_dev = container_of(dev, typeof(*chan_dev), device);
85 	return chan_dev->chan;
86 }
87 
88 static ssize_t memcpy_count_show(struct device *dev,
89 				 struct device_attribute *attr, char *buf)
90 {
91 	struct dma_chan *chan;
92 	unsigned long count = 0;
93 	int i;
94 	int err;
95 
96 	mutex_lock(&dma_list_mutex);
97 	chan = dev_to_dma_chan(dev);
98 	if (chan) {
99 		for_each_possible_cpu(i)
100 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
101 		err = sprintf(buf, "%lu\n", count);
102 	} else
103 		err = -ENODEV;
104 	mutex_unlock(&dma_list_mutex);
105 
106 	return err;
107 }
108 static DEVICE_ATTR_RO(memcpy_count);
109 
110 static ssize_t bytes_transferred_show(struct device *dev,
111 				      struct device_attribute *attr, char *buf)
112 {
113 	struct dma_chan *chan;
114 	unsigned long count = 0;
115 	int i;
116 	int err;
117 
118 	mutex_lock(&dma_list_mutex);
119 	chan = dev_to_dma_chan(dev);
120 	if (chan) {
121 		for_each_possible_cpu(i)
122 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
123 		err = sprintf(buf, "%lu\n", count);
124 	} else
125 		err = -ENODEV;
126 	mutex_unlock(&dma_list_mutex);
127 
128 	return err;
129 }
130 static DEVICE_ATTR_RO(bytes_transferred);
131 
132 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
133 			   char *buf)
134 {
135 	struct dma_chan *chan;
136 	int err;
137 
138 	mutex_lock(&dma_list_mutex);
139 	chan = dev_to_dma_chan(dev);
140 	if (chan)
141 		err = sprintf(buf, "%d\n", chan->client_count);
142 	else
143 		err = -ENODEV;
144 	mutex_unlock(&dma_list_mutex);
145 
146 	return err;
147 }
148 static DEVICE_ATTR_RO(in_use);
149 
150 static struct attribute *dma_dev_attrs[] = {
151 	&dev_attr_memcpy_count.attr,
152 	&dev_attr_bytes_transferred.attr,
153 	&dev_attr_in_use.attr,
154 	NULL,
155 };
156 ATTRIBUTE_GROUPS(dma_dev);
157 
158 static void chan_dev_release(struct device *dev)
159 {
160 	struct dma_chan_dev *chan_dev;
161 
162 	chan_dev = container_of(dev, typeof(*chan_dev), device);
163 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
164 		ida_free(&dma_ida, chan_dev->dev_id);
165 		kfree(chan_dev->idr_ref);
166 	}
167 	kfree(chan_dev);
168 }
169 
170 static struct class dma_devclass = {
171 	.name		= "dma",
172 	.dev_groups	= dma_dev_groups,
173 	.dev_release	= chan_dev_release,
174 };
175 
176 /* --- client and device registration --- */
177 
178 #define dma_device_satisfies_mask(device, mask) \
179 	__dma_device_satisfies_mask((device), &(mask))
180 static int
181 __dma_device_satisfies_mask(struct dma_device *device,
182 			    const dma_cap_mask_t *want)
183 {
184 	dma_cap_mask_t has;
185 
186 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
187 		DMA_TX_TYPE_END);
188 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
189 }
190 
191 static struct module *dma_chan_to_owner(struct dma_chan *chan)
192 {
193 	return chan->device->dev->driver->owner;
194 }
195 
196 /**
197  * balance_ref_count - catch up the channel reference count
198  * @chan - channel to balance ->client_count versus dmaengine_ref_count
199  *
200  * balance_ref_count must be called under dma_list_mutex
201  */
202 static void balance_ref_count(struct dma_chan *chan)
203 {
204 	struct module *owner = dma_chan_to_owner(chan);
205 
206 	while (chan->client_count < dmaengine_ref_count) {
207 		__module_get(owner);
208 		chan->client_count++;
209 	}
210 }
211 
212 /**
213  * dma_chan_get - try to grab a dma channel's parent driver module
214  * @chan - channel to grab
215  *
216  * Must be called under dma_list_mutex
217  */
218 static int dma_chan_get(struct dma_chan *chan)
219 {
220 	struct module *owner = dma_chan_to_owner(chan);
221 	int ret;
222 
223 	/* The channel is already in use, update client count */
224 	if (chan->client_count) {
225 		__module_get(owner);
226 		goto out;
227 	}
228 
229 	if (!try_module_get(owner))
230 		return -ENODEV;
231 
232 	/* allocate upon first client reference */
233 	if (chan->device->device_alloc_chan_resources) {
234 		ret = chan->device->device_alloc_chan_resources(chan);
235 		if (ret < 0)
236 			goto err_out;
237 	}
238 
239 	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
240 		balance_ref_count(chan);
241 
242 out:
243 	chan->client_count++;
244 	return 0;
245 
246 err_out:
247 	module_put(owner);
248 	return ret;
249 }
250 
251 /**
252  * dma_chan_put - drop a reference to a dma channel's parent driver module
253  * @chan - channel to release
254  *
255  * Must be called under dma_list_mutex
256  */
257 static void dma_chan_put(struct dma_chan *chan)
258 {
259 	/* This channel is not in use, bail out */
260 	if (!chan->client_count)
261 		return;
262 
263 	chan->client_count--;
264 	module_put(dma_chan_to_owner(chan));
265 
266 	/* This channel is not in use anymore, free it */
267 	if (!chan->client_count && chan->device->device_free_chan_resources) {
268 		/* Make sure all operations have completed */
269 		dmaengine_synchronize(chan);
270 		chan->device->device_free_chan_resources(chan);
271 	}
272 
273 	/* If the channel is used via a DMA request router, free the mapping */
274 	if (chan->router && chan->router->route_free) {
275 		chan->router->route_free(chan->router->dev, chan->route_data);
276 		chan->router = NULL;
277 		chan->route_data = NULL;
278 	}
279 }
280 
281 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
282 {
283 	enum dma_status status;
284 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
285 
286 	dma_async_issue_pending(chan);
287 	do {
288 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
289 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
290 			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
291 			return DMA_ERROR;
292 		}
293 		if (status != DMA_IN_PROGRESS)
294 			break;
295 		cpu_relax();
296 	} while (1);
297 
298 	return status;
299 }
300 EXPORT_SYMBOL(dma_sync_wait);
301 
302 /**
303  * dma_cap_mask_all - enable iteration over all operation types
304  */
305 static dma_cap_mask_t dma_cap_mask_all;
306 
307 /**
308  * dma_chan_tbl_ent - tracks channel allocations per core/operation
309  * @chan - associated channel for this entry
310  */
311 struct dma_chan_tbl_ent {
312 	struct dma_chan *chan;
313 };
314 
315 /**
316  * channel_table - percpu lookup table for memory-to-memory offload providers
317  */
318 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
319 
320 static int __init dma_channel_table_init(void)
321 {
322 	enum dma_transaction_type cap;
323 	int err = 0;
324 
325 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
326 
327 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
328 	 * but are not associated with an operation so they do not need
329 	 * an entry in the channel_table
330 	 */
331 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
332 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
333 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
334 
335 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
336 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
337 		if (!channel_table[cap]) {
338 			err = -ENOMEM;
339 			break;
340 		}
341 	}
342 
343 	if (err) {
344 		pr_err("initialization failure\n");
345 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
346 			free_percpu(channel_table[cap]);
347 	}
348 
349 	return err;
350 }
351 arch_initcall(dma_channel_table_init);
352 
353 /**
354  * dma_find_channel - find a channel to carry out the operation
355  * @tx_type: transaction type
356  */
357 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
358 {
359 	return this_cpu_read(channel_table[tx_type]->chan);
360 }
361 EXPORT_SYMBOL(dma_find_channel);
362 
363 /**
364  * dma_issue_pending_all - flush all pending operations across all channels
365  */
366 void dma_issue_pending_all(void)
367 {
368 	struct dma_device *device;
369 	struct dma_chan *chan;
370 
371 	rcu_read_lock();
372 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
373 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
374 			continue;
375 		list_for_each_entry(chan, &device->channels, device_node)
376 			if (chan->client_count)
377 				device->device_issue_pending(chan);
378 	}
379 	rcu_read_unlock();
380 }
381 EXPORT_SYMBOL(dma_issue_pending_all);
382 
383 /**
384  * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
385  */
386 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
387 {
388 	int node = dev_to_node(chan->device->dev);
389 	return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
390 }
391 
392 /**
393  * min_chan - returns the channel with min count and in the same numa-node as the cpu
394  * @cap: capability to match
395  * @cpu: cpu index which the channel should be close to
396  *
397  * If some channels are close to the given cpu, the one with the lowest
398  * reference count is returned. Otherwise, cpu is ignored and only the
399  * reference count is taken into account.
400  * Must be called under dma_list_mutex.
401  */
402 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
403 {
404 	struct dma_device *device;
405 	struct dma_chan *chan;
406 	struct dma_chan *min = NULL;
407 	struct dma_chan *localmin = NULL;
408 
409 	list_for_each_entry(device, &dma_device_list, global_node) {
410 		if (!dma_has_cap(cap, device->cap_mask) ||
411 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
412 			continue;
413 		list_for_each_entry(chan, &device->channels, device_node) {
414 			if (!chan->client_count)
415 				continue;
416 			if (!min || chan->table_count < min->table_count)
417 				min = chan;
418 
419 			if (dma_chan_is_local(chan, cpu))
420 				if (!localmin ||
421 				    chan->table_count < localmin->table_count)
422 					localmin = chan;
423 		}
424 	}
425 
426 	chan = localmin ? localmin : min;
427 
428 	if (chan)
429 		chan->table_count++;
430 
431 	return chan;
432 }
433 
434 /**
435  * dma_channel_rebalance - redistribute the available channels
436  *
437  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
438  * operation type) in the SMP case,  and operation isolation (avoid
439  * multi-tasking channels) in the non-SMP case.  Must be called under
440  * dma_list_mutex.
441  */
442 static void dma_channel_rebalance(void)
443 {
444 	struct dma_chan *chan;
445 	struct dma_device *device;
446 	int cpu;
447 	int cap;
448 
449 	/* undo the last distribution */
450 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
451 		for_each_possible_cpu(cpu)
452 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
453 
454 	list_for_each_entry(device, &dma_device_list, global_node) {
455 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
456 			continue;
457 		list_for_each_entry(chan, &device->channels, device_node)
458 			chan->table_count = 0;
459 	}
460 
461 	/* don't populate the channel_table if no clients are available */
462 	if (!dmaengine_ref_count)
463 		return;
464 
465 	/* redistribute available channels */
466 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
467 		for_each_online_cpu(cpu) {
468 			chan = min_chan(cap, cpu);
469 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
470 		}
471 }
472 
473 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
474 {
475 	struct dma_device *device;
476 
477 	if (!chan || !caps)
478 		return -EINVAL;
479 
480 	device = chan->device;
481 
482 	/* check if the channel supports slave transactions */
483 	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
484 	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
485 		return -ENXIO;
486 
487 	/*
488 	 * Check whether it reports it uses the generic slave
489 	 * capabilities, if not, that means it doesn't support any
490 	 * kind of slave capabilities reporting.
491 	 */
492 	if (!device->directions)
493 		return -ENXIO;
494 
495 	caps->src_addr_widths = device->src_addr_widths;
496 	caps->dst_addr_widths = device->dst_addr_widths;
497 	caps->directions = device->directions;
498 	caps->max_burst = device->max_burst;
499 	caps->residue_granularity = device->residue_granularity;
500 	caps->descriptor_reuse = device->descriptor_reuse;
501 	caps->cmd_pause = !!device->device_pause;
502 	caps->cmd_resume = !!device->device_resume;
503 	caps->cmd_terminate = !!device->device_terminate_all;
504 
505 	return 0;
506 }
507 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
508 
509 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
510 					  struct dma_device *dev,
511 					  dma_filter_fn fn, void *fn_param)
512 {
513 	struct dma_chan *chan;
514 
515 	if (mask && !__dma_device_satisfies_mask(dev, mask)) {
516 		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
517 		return NULL;
518 	}
519 	/* devices with multiple channels need special handling as we need to
520 	 * ensure that all channels are either private or public.
521 	 */
522 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
523 		list_for_each_entry(chan, &dev->channels, device_node) {
524 			/* some channels are already publicly allocated */
525 			if (chan->client_count)
526 				return NULL;
527 		}
528 
529 	list_for_each_entry(chan, &dev->channels, device_node) {
530 		if (chan->client_count) {
531 			dev_dbg(dev->dev, "%s: %s busy\n",
532 				 __func__, dma_chan_name(chan));
533 			continue;
534 		}
535 		if (fn && !fn(chan, fn_param)) {
536 			dev_dbg(dev->dev, "%s: %s filter said false\n",
537 				 __func__, dma_chan_name(chan));
538 			continue;
539 		}
540 		return chan;
541 	}
542 
543 	return NULL;
544 }
545 
546 static struct dma_chan *find_candidate(struct dma_device *device,
547 				       const dma_cap_mask_t *mask,
548 				       dma_filter_fn fn, void *fn_param)
549 {
550 	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
551 	int err;
552 
553 	if (chan) {
554 		/* Found a suitable channel, try to grab, prep, and return it.
555 		 * We first set DMA_PRIVATE to disable balance_ref_count as this
556 		 * channel will not be published in the general-purpose
557 		 * allocator
558 		 */
559 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
560 		device->privatecnt++;
561 		err = dma_chan_get(chan);
562 
563 		if (err) {
564 			if (err == -ENODEV) {
565 				dev_dbg(device->dev, "%s: %s module removed\n",
566 					__func__, dma_chan_name(chan));
567 				list_del_rcu(&device->global_node);
568 			} else
569 				dev_dbg(device->dev,
570 					"%s: failed to get %s: (%d)\n",
571 					 __func__, dma_chan_name(chan), err);
572 
573 			if (--device->privatecnt == 0)
574 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
575 
576 			chan = ERR_PTR(err);
577 		}
578 	}
579 
580 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
581 }
582 
583 /**
584  * dma_get_slave_channel - try to get specific channel exclusively
585  * @chan: target channel
586  */
587 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
588 {
589 	int err = -EBUSY;
590 
591 	/* lock against __dma_request_channel */
592 	mutex_lock(&dma_list_mutex);
593 
594 	if (chan->client_count == 0) {
595 		struct dma_device *device = chan->device;
596 
597 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
598 		device->privatecnt++;
599 		err = dma_chan_get(chan);
600 		if (err) {
601 			dev_dbg(chan->device->dev,
602 				"%s: failed to get %s: (%d)\n",
603 				__func__, dma_chan_name(chan), err);
604 			chan = NULL;
605 			if (--device->privatecnt == 0)
606 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
607 		}
608 	} else
609 		chan = NULL;
610 
611 	mutex_unlock(&dma_list_mutex);
612 
613 
614 	return chan;
615 }
616 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
617 
618 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
619 {
620 	dma_cap_mask_t mask;
621 	struct dma_chan *chan;
622 
623 	dma_cap_zero(mask);
624 	dma_cap_set(DMA_SLAVE, mask);
625 
626 	/* lock against __dma_request_channel */
627 	mutex_lock(&dma_list_mutex);
628 
629 	chan = find_candidate(device, &mask, NULL, NULL);
630 
631 	mutex_unlock(&dma_list_mutex);
632 
633 	return IS_ERR(chan) ? NULL : chan;
634 }
635 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
636 
637 /**
638  * __dma_request_channel - try to allocate an exclusive channel
639  * @mask: capabilities that the channel must satisfy
640  * @fn: optional callback to disposition available channels
641  * @fn_param: opaque parameter to pass to dma_filter_fn
642  *
643  * Returns pointer to appropriate DMA channel on success or NULL.
644  */
645 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
646 				       dma_filter_fn fn, void *fn_param)
647 {
648 	struct dma_device *device, *_d;
649 	struct dma_chan *chan = NULL;
650 
651 	/* Find a channel */
652 	mutex_lock(&dma_list_mutex);
653 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
654 		chan = find_candidate(device, mask, fn, fn_param);
655 		if (!IS_ERR(chan))
656 			break;
657 
658 		chan = NULL;
659 	}
660 	mutex_unlock(&dma_list_mutex);
661 
662 	pr_debug("%s: %s (%s)\n",
663 		 __func__,
664 		 chan ? "success" : "fail",
665 		 chan ? dma_chan_name(chan) : NULL);
666 
667 	return chan;
668 }
669 EXPORT_SYMBOL_GPL(__dma_request_channel);
670 
671 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
672 						    const char *name,
673 						    struct device *dev)
674 {
675 	int i;
676 
677 	if (!device->filter.mapcnt)
678 		return NULL;
679 
680 	for (i = 0; i < device->filter.mapcnt; i++) {
681 		const struct dma_slave_map *map = &device->filter.map[i];
682 
683 		if (!strcmp(map->devname, dev_name(dev)) &&
684 		    !strcmp(map->slave, name))
685 			return map;
686 	}
687 
688 	return NULL;
689 }
690 
691 /**
692  * dma_request_chan - try to allocate an exclusive slave channel
693  * @dev:	pointer to client device structure
694  * @name:	slave channel name
695  *
696  * Returns pointer to appropriate DMA channel on success or an error pointer.
697  */
698 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
699 {
700 	struct dma_device *d, *_d;
701 	struct dma_chan *chan = NULL;
702 
703 	/* If device-tree is present get slave info from here */
704 	if (dev->of_node)
705 		chan = of_dma_request_slave_channel(dev->of_node, name);
706 
707 	/* If device was enumerated by ACPI get slave info from here */
708 	if (has_acpi_companion(dev) && !chan)
709 		chan = acpi_dma_request_slave_chan_by_name(dev, name);
710 
711 	if (chan) {
712 		/* Valid channel found or requester need to be deferred */
713 		if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
714 			return chan;
715 	}
716 
717 	/* Try to find the channel via the DMA filter map(s) */
718 	mutex_lock(&dma_list_mutex);
719 	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
720 		dma_cap_mask_t mask;
721 		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
722 
723 		if (!map)
724 			continue;
725 
726 		dma_cap_zero(mask);
727 		dma_cap_set(DMA_SLAVE, mask);
728 
729 		chan = find_candidate(d, &mask, d->filter.fn, map->param);
730 		if (!IS_ERR(chan))
731 			break;
732 	}
733 	mutex_unlock(&dma_list_mutex);
734 
735 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
736 }
737 EXPORT_SYMBOL_GPL(dma_request_chan);
738 
739 /**
740  * dma_request_slave_channel - try to allocate an exclusive slave channel
741  * @dev:	pointer to client device structure
742  * @name:	slave channel name
743  *
744  * Returns pointer to appropriate DMA channel on success or NULL.
745  */
746 struct dma_chan *dma_request_slave_channel(struct device *dev,
747 					   const char *name)
748 {
749 	struct dma_chan *ch = dma_request_chan(dev, name);
750 	if (IS_ERR(ch))
751 		return NULL;
752 
753 	return ch;
754 }
755 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
756 
757 /**
758  * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
759  * @mask: capabilities that the channel must satisfy
760  *
761  * Returns pointer to appropriate DMA channel on success or an error pointer.
762  */
763 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
764 {
765 	struct dma_chan *chan;
766 
767 	if (!mask)
768 		return ERR_PTR(-ENODEV);
769 
770 	chan = __dma_request_channel(mask, NULL, NULL);
771 	if (!chan) {
772 		mutex_lock(&dma_list_mutex);
773 		if (list_empty(&dma_device_list))
774 			chan = ERR_PTR(-EPROBE_DEFER);
775 		else
776 			chan = ERR_PTR(-ENODEV);
777 		mutex_unlock(&dma_list_mutex);
778 	}
779 
780 	return chan;
781 }
782 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
783 
784 void dma_release_channel(struct dma_chan *chan)
785 {
786 	mutex_lock(&dma_list_mutex);
787 	WARN_ONCE(chan->client_count != 1,
788 		  "chan reference count %d != 1\n", chan->client_count);
789 	dma_chan_put(chan);
790 	/* drop PRIVATE cap enabled by __dma_request_channel() */
791 	if (--chan->device->privatecnt == 0)
792 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
793 	mutex_unlock(&dma_list_mutex);
794 }
795 EXPORT_SYMBOL_GPL(dma_release_channel);
796 
797 /**
798  * dmaengine_get - register interest in dma_channels
799  */
800 void dmaengine_get(void)
801 {
802 	struct dma_device *device, *_d;
803 	struct dma_chan *chan;
804 	int err;
805 
806 	mutex_lock(&dma_list_mutex);
807 	dmaengine_ref_count++;
808 
809 	/* try to grab channels */
810 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
811 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
812 			continue;
813 		list_for_each_entry(chan, &device->channels, device_node) {
814 			err = dma_chan_get(chan);
815 			if (err == -ENODEV) {
816 				/* module removed before we could use it */
817 				list_del_rcu(&device->global_node);
818 				break;
819 			} else if (err)
820 				dev_dbg(chan->device->dev,
821 					"%s: failed to get %s: (%d)\n",
822 					__func__, dma_chan_name(chan), err);
823 		}
824 	}
825 
826 	/* if this is the first reference and there were channels
827 	 * waiting we need to rebalance to get those channels
828 	 * incorporated into the channel table
829 	 */
830 	if (dmaengine_ref_count == 1)
831 		dma_channel_rebalance();
832 	mutex_unlock(&dma_list_mutex);
833 }
834 EXPORT_SYMBOL(dmaengine_get);
835 
836 /**
837  * dmaengine_put - let dma drivers be removed when ref_count == 0
838  */
839 void dmaengine_put(void)
840 {
841 	struct dma_device *device;
842 	struct dma_chan *chan;
843 
844 	mutex_lock(&dma_list_mutex);
845 	dmaengine_ref_count--;
846 	BUG_ON(dmaengine_ref_count < 0);
847 	/* drop channel references */
848 	list_for_each_entry(device, &dma_device_list, global_node) {
849 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
850 			continue;
851 		list_for_each_entry(chan, &device->channels, device_node)
852 			dma_chan_put(chan);
853 	}
854 	mutex_unlock(&dma_list_mutex);
855 }
856 EXPORT_SYMBOL(dmaengine_put);
857 
858 static bool device_has_all_tx_types(struct dma_device *device)
859 {
860 	/* A device that satisfies this test has channels that will never cause
861 	 * an async_tx channel switch event as all possible operation types can
862 	 * be handled.
863 	 */
864 	#ifdef CONFIG_ASYNC_TX_DMA
865 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
866 		return false;
867 	#endif
868 
869 	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
870 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
871 		return false;
872 	#endif
873 
874 	#if IS_ENABLED(CONFIG_ASYNC_XOR)
875 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
876 		return false;
877 
878 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
879 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
880 		return false;
881 	#endif
882 	#endif
883 
884 	#if IS_ENABLED(CONFIG_ASYNC_PQ)
885 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
886 		return false;
887 
888 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
889 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
890 		return false;
891 	#endif
892 	#endif
893 
894 	return true;
895 }
896 
897 static int get_dma_id(struct dma_device *device)
898 {
899 	int rc = ida_alloc(&dma_ida, GFP_KERNEL);
900 
901 	if (rc < 0)
902 		return rc;
903 	device->dev_id = rc;
904 	return 0;
905 }
906 
907 /**
908  * dma_async_device_register - registers DMA devices found
909  * @device: &dma_device
910  */
911 int dma_async_device_register(struct dma_device *device)
912 {
913 	int chancnt = 0, rc;
914 	struct dma_chan* chan;
915 	atomic_t *idr_ref;
916 
917 	if (!device)
918 		return -ENODEV;
919 
920 	/* validate device routines */
921 	if (!device->dev) {
922 		pr_err("DMAdevice must have dev\n");
923 		return -EIO;
924 	}
925 
926 	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
927 		dev_err(device->dev,
928 			"Device claims capability %s, but op is not defined\n",
929 			"DMA_MEMCPY");
930 		return -EIO;
931 	}
932 
933 	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
934 		dev_err(device->dev,
935 			"Device claims capability %s, but op is not defined\n",
936 			"DMA_XOR");
937 		return -EIO;
938 	}
939 
940 	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
941 		dev_err(device->dev,
942 			"Device claims capability %s, but op is not defined\n",
943 			"DMA_XOR_VAL");
944 		return -EIO;
945 	}
946 
947 	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
948 		dev_err(device->dev,
949 			"Device claims capability %s, but op is not defined\n",
950 			"DMA_PQ");
951 		return -EIO;
952 	}
953 
954 	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
955 		dev_err(device->dev,
956 			"Device claims capability %s, but op is not defined\n",
957 			"DMA_PQ_VAL");
958 		return -EIO;
959 	}
960 
961 	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
962 		dev_err(device->dev,
963 			"Device claims capability %s, but op is not defined\n",
964 			"DMA_MEMSET");
965 		return -EIO;
966 	}
967 
968 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
969 		dev_err(device->dev,
970 			"Device claims capability %s, but op is not defined\n",
971 			"DMA_INTERRUPT");
972 		return -EIO;
973 	}
974 
975 	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
976 		dev_err(device->dev,
977 			"Device claims capability %s, but op is not defined\n",
978 			"DMA_CYCLIC");
979 		return -EIO;
980 	}
981 
982 	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
983 		dev_err(device->dev,
984 			"Device claims capability %s, but op is not defined\n",
985 			"DMA_INTERLEAVE");
986 		return -EIO;
987 	}
988 
989 
990 	if (!device->device_tx_status) {
991 		dev_err(device->dev, "Device tx_status is not defined\n");
992 		return -EIO;
993 	}
994 
995 
996 	if (!device->device_issue_pending) {
997 		dev_err(device->dev, "Device issue_pending is not defined\n");
998 		return -EIO;
999 	}
1000 
1001 	/* note: this only matters in the
1002 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1003 	 */
1004 	if (device_has_all_tx_types(device))
1005 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1006 
1007 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
1008 	if (!idr_ref)
1009 		return -ENOMEM;
1010 	rc = get_dma_id(device);
1011 	if (rc != 0) {
1012 		kfree(idr_ref);
1013 		return rc;
1014 	}
1015 
1016 	atomic_set(idr_ref, 0);
1017 
1018 	/* represent channels in sysfs. Probably want devs too */
1019 	list_for_each_entry(chan, &device->channels, device_node) {
1020 		rc = -ENOMEM;
1021 		chan->local = alloc_percpu(typeof(*chan->local));
1022 		if (chan->local == NULL)
1023 			goto err_out;
1024 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1025 		if (chan->dev == NULL) {
1026 			free_percpu(chan->local);
1027 			chan->local = NULL;
1028 			goto err_out;
1029 		}
1030 
1031 		chan->chan_id = chancnt++;
1032 		chan->dev->device.class = &dma_devclass;
1033 		chan->dev->device.parent = device->dev;
1034 		chan->dev->chan = chan;
1035 		chan->dev->idr_ref = idr_ref;
1036 		chan->dev->dev_id = device->dev_id;
1037 		atomic_inc(idr_ref);
1038 		dev_set_name(&chan->dev->device, "dma%dchan%d",
1039 			     device->dev_id, chan->chan_id);
1040 
1041 		rc = device_register(&chan->dev->device);
1042 		if (rc) {
1043 			free_percpu(chan->local);
1044 			chan->local = NULL;
1045 			kfree(chan->dev);
1046 			atomic_dec(idr_ref);
1047 			goto err_out;
1048 		}
1049 		chan->client_count = 0;
1050 	}
1051 
1052 	if (!chancnt) {
1053 		dev_err(device->dev, "%s: device has no channels!\n", __func__);
1054 		rc = -ENODEV;
1055 		goto err_out;
1056 	}
1057 
1058 	device->chancnt = chancnt;
1059 
1060 	mutex_lock(&dma_list_mutex);
1061 	/* take references on public channels */
1062 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1063 		list_for_each_entry(chan, &device->channels, device_node) {
1064 			/* if clients are already waiting for channels we need
1065 			 * to take references on their behalf
1066 			 */
1067 			if (dma_chan_get(chan) == -ENODEV) {
1068 				/* note we can only get here for the first
1069 				 * channel as the remaining channels are
1070 				 * guaranteed to get a reference
1071 				 */
1072 				rc = -ENODEV;
1073 				mutex_unlock(&dma_list_mutex);
1074 				goto err_out;
1075 			}
1076 		}
1077 	list_add_tail_rcu(&device->global_node, &dma_device_list);
1078 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1079 		device->privatecnt++;	/* Always private */
1080 	dma_channel_rebalance();
1081 	mutex_unlock(&dma_list_mutex);
1082 
1083 	return 0;
1084 
1085 err_out:
1086 	/* if we never registered a channel just release the idr */
1087 	if (atomic_read(idr_ref) == 0) {
1088 		ida_free(&dma_ida, device->dev_id);
1089 		kfree(idr_ref);
1090 		return rc;
1091 	}
1092 
1093 	list_for_each_entry(chan, &device->channels, device_node) {
1094 		if (chan->local == NULL)
1095 			continue;
1096 		mutex_lock(&dma_list_mutex);
1097 		chan->dev->chan = NULL;
1098 		mutex_unlock(&dma_list_mutex);
1099 		device_unregister(&chan->dev->device);
1100 		free_percpu(chan->local);
1101 	}
1102 	return rc;
1103 }
1104 EXPORT_SYMBOL(dma_async_device_register);
1105 
1106 /**
1107  * dma_async_device_unregister - unregister a DMA device
1108  * @device: &dma_device
1109  *
1110  * This routine is called by dma driver exit routines, dmaengine holds module
1111  * references to prevent it being called while channels are in use.
1112  */
1113 void dma_async_device_unregister(struct dma_device *device)
1114 {
1115 	struct dma_chan *chan;
1116 
1117 	mutex_lock(&dma_list_mutex);
1118 	list_del_rcu(&device->global_node);
1119 	dma_channel_rebalance();
1120 	mutex_unlock(&dma_list_mutex);
1121 
1122 	list_for_each_entry(chan, &device->channels, device_node) {
1123 		WARN_ONCE(chan->client_count,
1124 			  "%s called while %d clients hold a reference\n",
1125 			  __func__, chan->client_count);
1126 		mutex_lock(&dma_list_mutex);
1127 		chan->dev->chan = NULL;
1128 		mutex_unlock(&dma_list_mutex);
1129 		device_unregister(&chan->dev->device);
1130 		free_percpu(chan->local);
1131 	}
1132 }
1133 EXPORT_SYMBOL(dma_async_device_unregister);
1134 
1135 static void dmam_device_release(struct device *dev, void *res)
1136 {
1137 	struct dma_device *device;
1138 
1139 	device = *(struct dma_device **)res;
1140 	dma_async_device_unregister(device);
1141 }
1142 
1143 /**
1144  * dmaenginem_async_device_register - registers DMA devices found
1145  * @device: &dma_device
1146  *
1147  * The operation is managed and will be undone on driver detach.
1148  */
1149 int dmaenginem_async_device_register(struct dma_device *device)
1150 {
1151 	void *p;
1152 	int ret;
1153 
1154 	p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1155 	if (!p)
1156 		return -ENOMEM;
1157 
1158 	ret = dma_async_device_register(device);
1159 	if (!ret) {
1160 		*(struct dma_device **)p = device;
1161 		devres_add(device->dev, p);
1162 	} else {
1163 		devres_free(p);
1164 	}
1165 
1166 	return ret;
1167 }
1168 EXPORT_SYMBOL(dmaenginem_async_device_register);
1169 
1170 struct dmaengine_unmap_pool {
1171 	struct kmem_cache *cache;
1172 	const char *name;
1173 	mempool_t *pool;
1174 	size_t size;
1175 };
1176 
1177 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1178 static struct dmaengine_unmap_pool unmap_pool[] = {
1179 	__UNMAP_POOL(2),
1180 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1181 	__UNMAP_POOL(16),
1182 	__UNMAP_POOL(128),
1183 	__UNMAP_POOL(256),
1184 	#endif
1185 };
1186 
1187 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1188 {
1189 	int order = get_count_order(nr);
1190 
1191 	switch (order) {
1192 	case 0 ... 1:
1193 		return &unmap_pool[0];
1194 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1195 	case 2 ... 4:
1196 		return &unmap_pool[1];
1197 	case 5 ... 7:
1198 		return &unmap_pool[2];
1199 	case 8:
1200 		return &unmap_pool[3];
1201 #endif
1202 	default:
1203 		BUG();
1204 		return NULL;
1205 	}
1206 }
1207 
1208 static void dmaengine_unmap(struct kref *kref)
1209 {
1210 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1211 	struct device *dev = unmap->dev;
1212 	int cnt, i;
1213 
1214 	cnt = unmap->to_cnt;
1215 	for (i = 0; i < cnt; i++)
1216 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1217 			       DMA_TO_DEVICE);
1218 	cnt += unmap->from_cnt;
1219 	for (; i < cnt; i++)
1220 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1221 			       DMA_FROM_DEVICE);
1222 	cnt += unmap->bidi_cnt;
1223 	for (; i < cnt; i++) {
1224 		if (unmap->addr[i] == 0)
1225 			continue;
1226 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1227 			       DMA_BIDIRECTIONAL);
1228 	}
1229 	cnt = unmap->map_cnt;
1230 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1231 }
1232 
1233 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1234 {
1235 	if (unmap)
1236 		kref_put(&unmap->kref, dmaengine_unmap);
1237 }
1238 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1239 
1240 static void dmaengine_destroy_unmap_pool(void)
1241 {
1242 	int i;
1243 
1244 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1245 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1246 
1247 		mempool_destroy(p->pool);
1248 		p->pool = NULL;
1249 		kmem_cache_destroy(p->cache);
1250 		p->cache = NULL;
1251 	}
1252 }
1253 
1254 static int __init dmaengine_init_unmap_pool(void)
1255 {
1256 	int i;
1257 
1258 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1259 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1260 		size_t size;
1261 
1262 		size = sizeof(struct dmaengine_unmap_data) +
1263 		       sizeof(dma_addr_t) * p->size;
1264 
1265 		p->cache = kmem_cache_create(p->name, size, 0,
1266 					     SLAB_HWCACHE_ALIGN, NULL);
1267 		if (!p->cache)
1268 			break;
1269 		p->pool = mempool_create_slab_pool(1, p->cache);
1270 		if (!p->pool)
1271 			break;
1272 	}
1273 
1274 	if (i == ARRAY_SIZE(unmap_pool))
1275 		return 0;
1276 
1277 	dmaengine_destroy_unmap_pool();
1278 	return -ENOMEM;
1279 }
1280 
1281 struct dmaengine_unmap_data *
1282 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1283 {
1284 	struct dmaengine_unmap_data *unmap;
1285 
1286 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1287 	if (!unmap)
1288 		return NULL;
1289 
1290 	memset(unmap, 0, sizeof(*unmap));
1291 	kref_init(&unmap->kref);
1292 	unmap->dev = dev;
1293 	unmap->map_cnt = nr;
1294 
1295 	return unmap;
1296 }
1297 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1298 
1299 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1300 	struct dma_chan *chan)
1301 {
1302 	tx->chan = chan;
1303 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1304 	spin_lock_init(&tx->lock);
1305 	#endif
1306 }
1307 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1308 
1309 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1310  * @tx: in-flight transaction to wait on
1311  */
1312 enum dma_status
1313 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1314 {
1315 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1316 
1317 	if (!tx)
1318 		return DMA_COMPLETE;
1319 
1320 	while (tx->cookie == -EBUSY) {
1321 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1322 			dev_err(tx->chan->device->dev,
1323 				"%s timeout waiting for descriptor submission\n",
1324 				__func__);
1325 			return DMA_ERROR;
1326 		}
1327 		cpu_relax();
1328 	}
1329 	return dma_sync_wait(tx->chan, tx->cookie);
1330 }
1331 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1332 
1333 /* dma_run_dependencies - helper routine for dma drivers to process
1334  *	(start) dependent operations on their target channel
1335  * @tx: transaction with dependencies
1336  */
1337 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1338 {
1339 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1340 	struct dma_async_tx_descriptor *dep_next;
1341 	struct dma_chan *chan;
1342 
1343 	if (!dep)
1344 		return;
1345 
1346 	/* we'll submit tx->next now, so clear the link */
1347 	txd_clear_next(tx);
1348 	chan = dep->chan;
1349 
1350 	/* keep submitting up until a channel switch is detected
1351 	 * in that case we will be called again as a result of
1352 	 * processing the interrupt from async_tx_channel_switch
1353 	 */
1354 	for (; dep; dep = dep_next) {
1355 		txd_lock(dep);
1356 		txd_clear_parent(dep);
1357 		dep_next = txd_next(dep);
1358 		if (dep_next && dep_next->chan == chan)
1359 			txd_clear_next(dep); /* ->next will be submitted */
1360 		else
1361 			dep_next = NULL; /* submit current dep and terminate */
1362 		txd_unlock(dep);
1363 
1364 		dep->tx_submit(dep);
1365 	}
1366 
1367 	chan->device->device_issue_pending(chan);
1368 }
1369 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1370 
1371 static int __init dma_bus_init(void)
1372 {
1373 	int err = dmaengine_init_unmap_pool();
1374 
1375 	if (err)
1376 		return err;
1377 	return class_register(&dma_devclass);
1378 }
1379 arch_initcall(dma_bus_init);
1380 
1381 
1382