1 /* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in the 15 * file called COPYING. 16 */ 17 18 /* 19 * This code implements the DMA subsystem. It provides a HW-neutral interface 20 * for other kernel code to use asynchronous memory copy capabilities, 21 * if present, and allows different HW DMA drivers to register as providing 22 * this capability. 23 * 24 * Due to the fact we are accelerating what is already a relatively fast 25 * operation, the code goes to great lengths to avoid additional overhead, 26 * such as locking. 27 * 28 * LOCKING: 29 * 30 * The subsystem keeps a global list of dma_device structs it is protected by a 31 * mutex, dma_list_mutex. 32 * 33 * A subsystem can get access to a channel by calling dmaengine_get() followed 34 * by dma_find_channel(), or if it has need for an exclusive channel it can call 35 * dma_request_channel(). Once a channel is allocated a reference is taken 36 * against its corresponding driver to disable removal. 37 * 38 * Each device has a channels list, which runs unlocked but is never modified 39 * once the device is registered, it's just setup by the driver. 40 * 41 * See Documentation/driver-api/dmaengine for more details 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/platform_device.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/init.h> 49 #include <linux/module.h> 50 #include <linux/mm.h> 51 #include <linux/device.h> 52 #include <linux/dmaengine.h> 53 #include <linux/hardirq.h> 54 #include <linux/spinlock.h> 55 #include <linux/percpu.h> 56 #include <linux/rcupdate.h> 57 #include <linux/mutex.h> 58 #include <linux/jiffies.h> 59 #include <linux/rculist.h> 60 #include <linux/idr.h> 61 #include <linux/slab.h> 62 #include <linux/acpi.h> 63 #include <linux/acpi_dma.h> 64 #include <linux/of_dma.h> 65 #include <linux/mempool.h> 66 67 static DEFINE_MUTEX(dma_list_mutex); 68 static DEFINE_IDA(dma_ida); 69 static LIST_HEAD(dma_device_list); 70 static long dmaengine_ref_count; 71 72 /* --- sysfs implementation --- */ 73 74 /** 75 * dev_to_dma_chan - convert a device pointer to the its sysfs container object 76 * @dev - device node 77 * 78 * Must be called under dma_list_mutex 79 */ 80 static struct dma_chan *dev_to_dma_chan(struct device *dev) 81 { 82 struct dma_chan_dev *chan_dev; 83 84 chan_dev = container_of(dev, typeof(*chan_dev), device); 85 return chan_dev->chan; 86 } 87 88 static ssize_t memcpy_count_show(struct device *dev, 89 struct device_attribute *attr, char *buf) 90 { 91 struct dma_chan *chan; 92 unsigned long count = 0; 93 int i; 94 int err; 95 96 mutex_lock(&dma_list_mutex); 97 chan = dev_to_dma_chan(dev); 98 if (chan) { 99 for_each_possible_cpu(i) 100 count += per_cpu_ptr(chan->local, i)->memcpy_count; 101 err = sprintf(buf, "%lu\n", count); 102 } else 103 err = -ENODEV; 104 mutex_unlock(&dma_list_mutex); 105 106 return err; 107 } 108 static DEVICE_ATTR_RO(memcpy_count); 109 110 static ssize_t bytes_transferred_show(struct device *dev, 111 struct device_attribute *attr, char *buf) 112 { 113 struct dma_chan *chan; 114 unsigned long count = 0; 115 int i; 116 int err; 117 118 mutex_lock(&dma_list_mutex); 119 chan = dev_to_dma_chan(dev); 120 if (chan) { 121 for_each_possible_cpu(i) 122 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 123 err = sprintf(buf, "%lu\n", count); 124 } else 125 err = -ENODEV; 126 mutex_unlock(&dma_list_mutex); 127 128 return err; 129 } 130 static DEVICE_ATTR_RO(bytes_transferred); 131 132 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, 133 char *buf) 134 { 135 struct dma_chan *chan; 136 int err; 137 138 mutex_lock(&dma_list_mutex); 139 chan = dev_to_dma_chan(dev); 140 if (chan) 141 err = sprintf(buf, "%d\n", chan->client_count); 142 else 143 err = -ENODEV; 144 mutex_unlock(&dma_list_mutex); 145 146 return err; 147 } 148 static DEVICE_ATTR_RO(in_use); 149 150 static struct attribute *dma_dev_attrs[] = { 151 &dev_attr_memcpy_count.attr, 152 &dev_attr_bytes_transferred.attr, 153 &dev_attr_in_use.attr, 154 NULL, 155 }; 156 ATTRIBUTE_GROUPS(dma_dev); 157 158 static void chan_dev_release(struct device *dev) 159 { 160 struct dma_chan_dev *chan_dev; 161 162 chan_dev = container_of(dev, typeof(*chan_dev), device); 163 if (atomic_dec_and_test(chan_dev->idr_ref)) { 164 ida_free(&dma_ida, chan_dev->dev_id); 165 kfree(chan_dev->idr_ref); 166 } 167 kfree(chan_dev); 168 } 169 170 static struct class dma_devclass = { 171 .name = "dma", 172 .dev_groups = dma_dev_groups, 173 .dev_release = chan_dev_release, 174 }; 175 176 /* --- client and device registration --- */ 177 178 #define dma_device_satisfies_mask(device, mask) \ 179 __dma_device_satisfies_mask((device), &(mask)) 180 static int 181 __dma_device_satisfies_mask(struct dma_device *device, 182 const dma_cap_mask_t *want) 183 { 184 dma_cap_mask_t has; 185 186 bitmap_and(has.bits, want->bits, device->cap_mask.bits, 187 DMA_TX_TYPE_END); 188 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 189 } 190 191 static struct module *dma_chan_to_owner(struct dma_chan *chan) 192 { 193 return chan->device->dev->driver->owner; 194 } 195 196 /** 197 * balance_ref_count - catch up the channel reference count 198 * @chan - channel to balance ->client_count versus dmaengine_ref_count 199 * 200 * balance_ref_count must be called under dma_list_mutex 201 */ 202 static void balance_ref_count(struct dma_chan *chan) 203 { 204 struct module *owner = dma_chan_to_owner(chan); 205 206 while (chan->client_count < dmaengine_ref_count) { 207 __module_get(owner); 208 chan->client_count++; 209 } 210 } 211 212 /** 213 * dma_chan_get - try to grab a dma channel's parent driver module 214 * @chan - channel to grab 215 * 216 * Must be called under dma_list_mutex 217 */ 218 static int dma_chan_get(struct dma_chan *chan) 219 { 220 struct module *owner = dma_chan_to_owner(chan); 221 int ret; 222 223 /* The channel is already in use, update client count */ 224 if (chan->client_count) { 225 __module_get(owner); 226 goto out; 227 } 228 229 if (!try_module_get(owner)) 230 return -ENODEV; 231 232 /* allocate upon first client reference */ 233 if (chan->device->device_alloc_chan_resources) { 234 ret = chan->device->device_alloc_chan_resources(chan); 235 if (ret < 0) 236 goto err_out; 237 } 238 239 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) 240 balance_ref_count(chan); 241 242 out: 243 chan->client_count++; 244 return 0; 245 246 err_out: 247 module_put(owner); 248 return ret; 249 } 250 251 /** 252 * dma_chan_put - drop a reference to a dma channel's parent driver module 253 * @chan - channel to release 254 * 255 * Must be called under dma_list_mutex 256 */ 257 static void dma_chan_put(struct dma_chan *chan) 258 { 259 /* This channel is not in use, bail out */ 260 if (!chan->client_count) 261 return; 262 263 chan->client_count--; 264 module_put(dma_chan_to_owner(chan)); 265 266 /* This channel is not in use anymore, free it */ 267 if (!chan->client_count && chan->device->device_free_chan_resources) { 268 /* Make sure all operations have completed */ 269 dmaengine_synchronize(chan); 270 chan->device->device_free_chan_resources(chan); 271 } 272 273 /* If the channel is used via a DMA request router, free the mapping */ 274 if (chan->router && chan->router->route_free) { 275 chan->router->route_free(chan->router->dev, chan->route_data); 276 chan->router = NULL; 277 chan->route_data = NULL; 278 } 279 } 280 281 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 282 { 283 enum dma_status status; 284 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 285 286 dma_async_issue_pending(chan); 287 do { 288 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 289 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 290 dev_err(chan->device->dev, "%s: timeout!\n", __func__); 291 return DMA_ERROR; 292 } 293 if (status != DMA_IN_PROGRESS) 294 break; 295 cpu_relax(); 296 } while (1); 297 298 return status; 299 } 300 EXPORT_SYMBOL(dma_sync_wait); 301 302 /** 303 * dma_cap_mask_all - enable iteration over all operation types 304 */ 305 static dma_cap_mask_t dma_cap_mask_all; 306 307 /** 308 * dma_chan_tbl_ent - tracks channel allocations per core/operation 309 * @chan - associated channel for this entry 310 */ 311 struct dma_chan_tbl_ent { 312 struct dma_chan *chan; 313 }; 314 315 /** 316 * channel_table - percpu lookup table for memory-to-memory offload providers 317 */ 318 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; 319 320 static int __init dma_channel_table_init(void) 321 { 322 enum dma_transaction_type cap; 323 int err = 0; 324 325 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); 326 327 /* 'interrupt', 'private', and 'slave' are channel capabilities, 328 * but are not associated with an operation so they do not need 329 * an entry in the channel_table 330 */ 331 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); 332 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); 333 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); 334 335 for_each_dma_cap_mask(cap, dma_cap_mask_all) { 336 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); 337 if (!channel_table[cap]) { 338 err = -ENOMEM; 339 break; 340 } 341 } 342 343 if (err) { 344 pr_err("initialization failure\n"); 345 for_each_dma_cap_mask(cap, dma_cap_mask_all) 346 free_percpu(channel_table[cap]); 347 } 348 349 return err; 350 } 351 arch_initcall(dma_channel_table_init); 352 353 /** 354 * dma_find_channel - find a channel to carry out the operation 355 * @tx_type: transaction type 356 */ 357 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 358 { 359 return this_cpu_read(channel_table[tx_type]->chan); 360 } 361 EXPORT_SYMBOL(dma_find_channel); 362 363 /** 364 * dma_issue_pending_all - flush all pending operations across all channels 365 */ 366 void dma_issue_pending_all(void) 367 { 368 struct dma_device *device; 369 struct dma_chan *chan; 370 371 rcu_read_lock(); 372 list_for_each_entry_rcu(device, &dma_device_list, global_node) { 373 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 374 continue; 375 list_for_each_entry(chan, &device->channels, device_node) 376 if (chan->client_count) 377 device->device_issue_pending(chan); 378 } 379 rcu_read_unlock(); 380 } 381 EXPORT_SYMBOL(dma_issue_pending_all); 382 383 /** 384 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu 385 */ 386 static bool dma_chan_is_local(struct dma_chan *chan, int cpu) 387 { 388 int node = dev_to_node(chan->device->dev); 389 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node)); 390 } 391 392 /** 393 * min_chan - returns the channel with min count and in the same numa-node as the cpu 394 * @cap: capability to match 395 * @cpu: cpu index which the channel should be close to 396 * 397 * If some channels are close to the given cpu, the one with the lowest 398 * reference count is returned. Otherwise, cpu is ignored and only the 399 * reference count is taken into account. 400 * Must be called under dma_list_mutex. 401 */ 402 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) 403 { 404 struct dma_device *device; 405 struct dma_chan *chan; 406 struct dma_chan *min = NULL; 407 struct dma_chan *localmin = NULL; 408 409 list_for_each_entry(device, &dma_device_list, global_node) { 410 if (!dma_has_cap(cap, device->cap_mask) || 411 dma_has_cap(DMA_PRIVATE, device->cap_mask)) 412 continue; 413 list_for_each_entry(chan, &device->channels, device_node) { 414 if (!chan->client_count) 415 continue; 416 if (!min || chan->table_count < min->table_count) 417 min = chan; 418 419 if (dma_chan_is_local(chan, cpu)) 420 if (!localmin || 421 chan->table_count < localmin->table_count) 422 localmin = chan; 423 } 424 } 425 426 chan = localmin ? localmin : min; 427 428 if (chan) 429 chan->table_count++; 430 431 return chan; 432 } 433 434 /** 435 * dma_channel_rebalance - redistribute the available channels 436 * 437 * Optimize for cpu isolation (each cpu gets a dedicated channel for an 438 * operation type) in the SMP case, and operation isolation (avoid 439 * multi-tasking channels) in the non-SMP case. Must be called under 440 * dma_list_mutex. 441 */ 442 static void dma_channel_rebalance(void) 443 { 444 struct dma_chan *chan; 445 struct dma_device *device; 446 int cpu; 447 int cap; 448 449 /* undo the last distribution */ 450 for_each_dma_cap_mask(cap, dma_cap_mask_all) 451 for_each_possible_cpu(cpu) 452 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; 453 454 list_for_each_entry(device, &dma_device_list, global_node) { 455 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 456 continue; 457 list_for_each_entry(chan, &device->channels, device_node) 458 chan->table_count = 0; 459 } 460 461 /* don't populate the channel_table if no clients are available */ 462 if (!dmaengine_ref_count) 463 return; 464 465 /* redistribute available channels */ 466 for_each_dma_cap_mask(cap, dma_cap_mask_all) 467 for_each_online_cpu(cpu) { 468 chan = min_chan(cap, cpu); 469 per_cpu_ptr(channel_table[cap], cpu)->chan = chan; 470 } 471 } 472 473 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 474 { 475 struct dma_device *device; 476 477 if (!chan || !caps) 478 return -EINVAL; 479 480 device = chan->device; 481 482 /* check if the channel supports slave transactions */ 483 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) || 484 test_bit(DMA_CYCLIC, device->cap_mask.bits))) 485 return -ENXIO; 486 487 /* 488 * Check whether it reports it uses the generic slave 489 * capabilities, if not, that means it doesn't support any 490 * kind of slave capabilities reporting. 491 */ 492 if (!device->directions) 493 return -ENXIO; 494 495 caps->src_addr_widths = device->src_addr_widths; 496 caps->dst_addr_widths = device->dst_addr_widths; 497 caps->directions = device->directions; 498 caps->max_burst = device->max_burst; 499 caps->residue_granularity = device->residue_granularity; 500 caps->descriptor_reuse = device->descriptor_reuse; 501 caps->cmd_pause = !!device->device_pause; 502 caps->cmd_resume = !!device->device_resume; 503 caps->cmd_terminate = !!device->device_terminate_all; 504 505 return 0; 506 } 507 EXPORT_SYMBOL_GPL(dma_get_slave_caps); 508 509 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, 510 struct dma_device *dev, 511 dma_filter_fn fn, void *fn_param) 512 { 513 struct dma_chan *chan; 514 515 if (mask && !__dma_device_satisfies_mask(dev, mask)) { 516 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__); 517 return NULL; 518 } 519 /* devices with multiple channels need special handling as we need to 520 * ensure that all channels are either private or public. 521 */ 522 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) 523 list_for_each_entry(chan, &dev->channels, device_node) { 524 /* some channels are already publicly allocated */ 525 if (chan->client_count) 526 return NULL; 527 } 528 529 list_for_each_entry(chan, &dev->channels, device_node) { 530 if (chan->client_count) { 531 dev_dbg(dev->dev, "%s: %s busy\n", 532 __func__, dma_chan_name(chan)); 533 continue; 534 } 535 if (fn && !fn(chan, fn_param)) { 536 dev_dbg(dev->dev, "%s: %s filter said false\n", 537 __func__, dma_chan_name(chan)); 538 continue; 539 } 540 return chan; 541 } 542 543 return NULL; 544 } 545 546 static struct dma_chan *find_candidate(struct dma_device *device, 547 const dma_cap_mask_t *mask, 548 dma_filter_fn fn, void *fn_param) 549 { 550 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param); 551 int err; 552 553 if (chan) { 554 /* Found a suitable channel, try to grab, prep, and return it. 555 * We first set DMA_PRIVATE to disable balance_ref_count as this 556 * channel will not be published in the general-purpose 557 * allocator 558 */ 559 dma_cap_set(DMA_PRIVATE, device->cap_mask); 560 device->privatecnt++; 561 err = dma_chan_get(chan); 562 563 if (err) { 564 if (err == -ENODEV) { 565 dev_dbg(device->dev, "%s: %s module removed\n", 566 __func__, dma_chan_name(chan)); 567 list_del_rcu(&device->global_node); 568 } else 569 dev_dbg(device->dev, 570 "%s: failed to get %s: (%d)\n", 571 __func__, dma_chan_name(chan), err); 572 573 if (--device->privatecnt == 0) 574 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 575 576 chan = ERR_PTR(err); 577 } 578 } 579 580 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 581 } 582 583 /** 584 * dma_get_slave_channel - try to get specific channel exclusively 585 * @chan: target channel 586 */ 587 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) 588 { 589 int err = -EBUSY; 590 591 /* lock against __dma_request_channel */ 592 mutex_lock(&dma_list_mutex); 593 594 if (chan->client_count == 0) { 595 struct dma_device *device = chan->device; 596 597 dma_cap_set(DMA_PRIVATE, device->cap_mask); 598 device->privatecnt++; 599 err = dma_chan_get(chan); 600 if (err) { 601 dev_dbg(chan->device->dev, 602 "%s: failed to get %s: (%d)\n", 603 __func__, dma_chan_name(chan), err); 604 chan = NULL; 605 if (--device->privatecnt == 0) 606 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 607 } 608 } else 609 chan = NULL; 610 611 mutex_unlock(&dma_list_mutex); 612 613 614 return chan; 615 } 616 EXPORT_SYMBOL_GPL(dma_get_slave_channel); 617 618 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) 619 { 620 dma_cap_mask_t mask; 621 struct dma_chan *chan; 622 623 dma_cap_zero(mask); 624 dma_cap_set(DMA_SLAVE, mask); 625 626 /* lock against __dma_request_channel */ 627 mutex_lock(&dma_list_mutex); 628 629 chan = find_candidate(device, &mask, NULL, NULL); 630 631 mutex_unlock(&dma_list_mutex); 632 633 return IS_ERR(chan) ? NULL : chan; 634 } 635 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); 636 637 /** 638 * __dma_request_channel - try to allocate an exclusive channel 639 * @mask: capabilities that the channel must satisfy 640 * @fn: optional callback to disposition available channels 641 * @fn_param: opaque parameter to pass to dma_filter_fn 642 * 643 * Returns pointer to appropriate DMA channel on success or NULL. 644 */ 645 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 646 dma_filter_fn fn, void *fn_param) 647 { 648 struct dma_device *device, *_d; 649 struct dma_chan *chan = NULL; 650 651 /* Find a channel */ 652 mutex_lock(&dma_list_mutex); 653 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 654 chan = find_candidate(device, mask, fn, fn_param); 655 if (!IS_ERR(chan)) 656 break; 657 658 chan = NULL; 659 } 660 mutex_unlock(&dma_list_mutex); 661 662 pr_debug("%s: %s (%s)\n", 663 __func__, 664 chan ? "success" : "fail", 665 chan ? dma_chan_name(chan) : NULL); 666 667 return chan; 668 } 669 EXPORT_SYMBOL_GPL(__dma_request_channel); 670 671 static const struct dma_slave_map *dma_filter_match(struct dma_device *device, 672 const char *name, 673 struct device *dev) 674 { 675 int i; 676 677 if (!device->filter.mapcnt) 678 return NULL; 679 680 for (i = 0; i < device->filter.mapcnt; i++) { 681 const struct dma_slave_map *map = &device->filter.map[i]; 682 683 if (!strcmp(map->devname, dev_name(dev)) && 684 !strcmp(map->slave, name)) 685 return map; 686 } 687 688 return NULL; 689 } 690 691 /** 692 * dma_request_chan - try to allocate an exclusive slave channel 693 * @dev: pointer to client device structure 694 * @name: slave channel name 695 * 696 * Returns pointer to appropriate DMA channel on success or an error pointer. 697 */ 698 struct dma_chan *dma_request_chan(struct device *dev, const char *name) 699 { 700 struct dma_device *d, *_d; 701 struct dma_chan *chan = NULL; 702 703 /* If device-tree is present get slave info from here */ 704 if (dev->of_node) 705 chan = of_dma_request_slave_channel(dev->of_node, name); 706 707 /* If device was enumerated by ACPI get slave info from here */ 708 if (has_acpi_companion(dev) && !chan) 709 chan = acpi_dma_request_slave_chan_by_name(dev, name); 710 711 if (chan) { 712 /* Valid channel found or requester need to be deferred */ 713 if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER) 714 return chan; 715 } 716 717 /* Try to find the channel via the DMA filter map(s) */ 718 mutex_lock(&dma_list_mutex); 719 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) { 720 dma_cap_mask_t mask; 721 const struct dma_slave_map *map = dma_filter_match(d, name, dev); 722 723 if (!map) 724 continue; 725 726 dma_cap_zero(mask); 727 dma_cap_set(DMA_SLAVE, mask); 728 729 chan = find_candidate(d, &mask, d->filter.fn, map->param); 730 if (!IS_ERR(chan)) 731 break; 732 } 733 mutex_unlock(&dma_list_mutex); 734 735 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 736 } 737 EXPORT_SYMBOL_GPL(dma_request_chan); 738 739 /** 740 * dma_request_slave_channel - try to allocate an exclusive slave channel 741 * @dev: pointer to client device structure 742 * @name: slave channel name 743 * 744 * Returns pointer to appropriate DMA channel on success or NULL. 745 */ 746 struct dma_chan *dma_request_slave_channel(struct device *dev, 747 const char *name) 748 { 749 struct dma_chan *ch = dma_request_chan(dev, name); 750 if (IS_ERR(ch)) 751 return NULL; 752 753 return ch; 754 } 755 EXPORT_SYMBOL_GPL(dma_request_slave_channel); 756 757 /** 758 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities 759 * @mask: capabilities that the channel must satisfy 760 * 761 * Returns pointer to appropriate DMA channel on success or an error pointer. 762 */ 763 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask) 764 { 765 struct dma_chan *chan; 766 767 if (!mask) 768 return ERR_PTR(-ENODEV); 769 770 chan = __dma_request_channel(mask, NULL, NULL); 771 if (!chan) { 772 mutex_lock(&dma_list_mutex); 773 if (list_empty(&dma_device_list)) 774 chan = ERR_PTR(-EPROBE_DEFER); 775 else 776 chan = ERR_PTR(-ENODEV); 777 mutex_unlock(&dma_list_mutex); 778 } 779 780 return chan; 781 } 782 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask); 783 784 void dma_release_channel(struct dma_chan *chan) 785 { 786 mutex_lock(&dma_list_mutex); 787 WARN_ONCE(chan->client_count != 1, 788 "chan reference count %d != 1\n", chan->client_count); 789 dma_chan_put(chan); 790 /* drop PRIVATE cap enabled by __dma_request_channel() */ 791 if (--chan->device->privatecnt == 0) 792 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); 793 mutex_unlock(&dma_list_mutex); 794 } 795 EXPORT_SYMBOL_GPL(dma_release_channel); 796 797 /** 798 * dmaengine_get - register interest in dma_channels 799 */ 800 void dmaengine_get(void) 801 { 802 struct dma_device *device, *_d; 803 struct dma_chan *chan; 804 int err; 805 806 mutex_lock(&dma_list_mutex); 807 dmaengine_ref_count++; 808 809 /* try to grab channels */ 810 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 811 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 812 continue; 813 list_for_each_entry(chan, &device->channels, device_node) { 814 err = dma_chan_get(chan); 815 if (err == -ENODEV) { 816 /* module removed before we could use it */ 817 list_del_rcu(&device->global_node); 818 break; 819 } else if (err) 820 dev_dbg(chan->device->dev, 821 "%s: failed to get %s: (%d)\n", 822 __func__, dma_chan_name(chan), err); 823 } 824 } 825 826 /* if this is the first reference and there were channels 827 * waiting we need to rebalance to get those channels 828 * incorporated into the channel table 829 */ 830 if (dmaengine_ref_count == 1) 831 dma_channel_rebalance(); 832 mutex_unlock(&dma_list_mutex); 833 } 834 EXPORT_SYMBOL(dmaengine_get); 835 836 /** 837 * dmaengine_put - let dma drivers be removed when ref_count == 0 838 */ 839 void dmaengine_put(void) 840 { 841 struct dma_device *device; 842 struct dma_chan *chan; 843 844 mutex_lock(&dma_list_mutex); 845 dmaengine_ref_count--; 846 BUG_ON(dmaengine_ref_count < 0); 847 /* drop channel references */ 848 list_for_each_entry(device, &dma_device_list, global_node) { 849 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 850 continue; 851 list_for_each_entry(chan, &device->channels, device_node) 852 dma_chan_put(chan); 853 } 854 mutex_unlock(&dma_list_mutex); 855 } 856 EXPORT_SYMBOL(dmaengine_put); 857 858 static bool device_has_all_tx_types(struct dma_device *device) 859 { 860 /* A device that satisfies this test has channels that will never cause 861 * an async_tx channel switch event as all possible operation types can 862 * be handled. 863 */ 864 #ifdef CONFIG_ASYNC_TX_DMA 865 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) 866 return false; 867 #endif 868 869 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY) 870 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) 871 return false; 872 #endif 873 874 #if IS_ENABLED(CONFIG_ASYNC_XOR) 875 if (!dma_has_cap(DMA_XOR, device->cap_mask)) 876 return false; 877 878 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA 879 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) 880 return false; 881 #endif 882 #endif 883 884 #if IS_ENABLED(CONFIG_ASYNC_PQ) 885 if (!dma_has_cap(DMA_PQ, device->cap_mask)) 886 return false; 887 888 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA 889 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) 890 return false; 891 #endif 892 #endif 893 894 return true; 895 } 896 897 static int get_dma_id(struct dma_device *device) 898 { 899 int rc = ida_alloc(&dma_ida, GFP_KERNEL); 900 901 if (rc < 0) 902 return rc; 903 device->dev_id = rc; 904 return 0; 905 } 906 907 /** 908 * dma_async_device_register - registers DMA devices found 909 * @device: &dma_device 910 */ 911 int dma_async_device_register(struct dma_device *device) 912 { 913 int chancnt = 0, rc; 914 struct dma_chan* chan; 915 atomic_t *idr_ref; 916 917 if (!device) 918 return -ENODEV; 919 920 /* validate device routines */ 921 if (!device->dev) { 922 pr_err("DMAdevice must have dev\n"); 923 return -EIO; 924 } 925 926 if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) { 927 dev_err(device->dev, 928 "Device claims capability %s, but op is not defined\n", 929 "DMA_MEMCPY"); 930 return -EIO; 931 } 932 933 if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) { 934 dev_err(device->dev, 935 "Device claims capability %s, but op is not defined\n", 936 "DMA_XOR"); 937 return -EIO; 938 } 939 940 if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) { 941 dev_err(device->dev, 942 "Device claims capability %s, but op is not defined\n", 943 "DMA_XOR_VAL"); 944 return -EIO; 945 } 946 947 if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) { 948 dev_err(device->dev, 949 "Device claims capability %s, but op is not defined\n", 950 "DMA_PQ"); 951 return -EIO; 952 } 953 954 if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) { 955 dev_err(device->dev, 956 "Device claims capability %s, but op is not defined\n", 957 "DMA_PQ_VAL"); 958 return -EIO; 959 } 960 961 if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) { 962 dev_err(device->dev, 963 "Device claims capability %s, but op is not defined\n", 964 "DMA_MEMSET"); 965 return -EIO; 966 } 967 968 if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) { 969 dev_err(device->dev, 970 "Device claims capability %s, but op is not defined\n", 971 "DMA_INTERRUPT"); 972 return -EIO; 973 } 974 975 if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) { 976 dev_err(device->dev, 977 "Device claims capability %s, but op is not defined\n", 978 "DMA_CYCLIC"); 979 return -EIO; 980 } 981 982 if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) { 983 dev_err(device->dev, 984 "Device claims capability %s, but op is not defined\n", 985 "DMA_INTERLEAVE"); 986 return -EIO; 987 } 988 989 990 if (!device->device_tx_status) { 991 dev_err(device->dev, "Device tx_status is not defined\n"); 992 return -EIO; 993 } 994 995 996 if (!device->device_issue_pending) { 997 dev_err(device->dev, "Device issue_pending is not defined\n"); 998 return -EIO; 999 } 1000 1001 /* note: this only matters in the 1002 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case 1003 */ 1004 if (device_has_all_tx_types(device)) 1005 dma_cap_set(DMA_ASYNC_TX, device->cap_mask); 1006 1007 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL); 1008 if (!idr_ref) 1009 return -ENOMEM; 1010 rc = get_dma_id(device); 1011 if (rc != 0) { 1012 kfree(idr_ref); 1013 return rc; 1014 } 1015 1016 atomic_set(idr_ref, 0); 1017 1018 /* represent channels in sysfs. Probably want devs too */ 1019 list_for_each_entry(chan, &device->channels, device_node) { 1020 rc = -ENOMEM; 1021 chan->local = alloc_percpu(typeof(*chan->local)); 1022 if (chan->local == NULL) 1023 goto err_out; 1024 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); 1025 if (chan->dev == NULL) { 1026 free_percpu(chan->local); 1027 chan->local = NULL; 1028 goto err_out; 1029 } 1030 1031 chan->chan_id = chancnt++; 1032 chan->dev->device.class = &dma_devclass; 1033 chan->dev->device.parent = device->dev; 1034 chan->dev->chan = chan; 1035 chan->dev->idr_ref = idr_ref; 1036 chan->dev->dev_id = device->dev_id; 1037 atomic_inc(idr_ref); 1038 dev_set_name(&chan->dev->device, "dma%dchan%d", 1039 device->dev_id, chan->chan_id); 1040 1041 rc = device_register(&chan->dev->device); 1042 if (rc) { 1043 free_percpu(chan->local); 1044 chan->local = NULL; 1045 kfree(chan->dev); 1046 atomic_dec(idr_ref); 1047 goto err_out; 1048 } 1049 chan->client_count = 0; 1050 } 1051 1052 if (!chancnt) { 1053 dev_err(device->dev, "%s: device has no channels!\n", __func__); 1054 rc = -ENODEV; 1055 goto err_out; 1056 } 1057 1058 device->chancnt = chancnt; 1059 1060 mutex_lock(&dma_list_mutex); 1061 /* take references on public channels */ 1062 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1063 list_for_each_entry(chan, &device->channels, device_node) { 1064 /* if clients are already waiting for channels we need 1065 * to take references on their behalf 1066 */ 1067 if (dma_chan_get(chan) == -ENODEV) { 1068 /* note we can only get here for the first 1069 * channel as the remaining channels are 1070 * guaranteed to get a reference 1071 */ 1072 rc = -ENODEV; 1073 mutex_unlock(&dma_list_mutex); 1074 goto err_out; 1075 } 1076 } 1077 list_add_tail_rcu(&device->global_node, &dma_device_list); 1078 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1079 device->privatecnt++; /* Always private */ 1080 dma_channel_rebalance(); 1081 mutex_unlock(&dma_list_mutex); 1082 1083 return 0; 1084 1085 err_out: 1086 /* if we never registered a channel just release the idr */ 1087 if (atomic_read(idr_ref) == 0) { 1088 ida_free(&dma_ida, device->dev_id); 1089 kfree(idr_ref); 1090 return rc; 1091 } 1092 1093 list_for_each_entry(chan, &device->channels, device_node) { 1094 if (chan->local == NULL) 1095 continue; 1096 mutex_lock(&dma_list_mutex); 1097 chan->dev->chan = NULL; 1098 mutex_unlock(&dma_list_mutex); 1099 device_unregister(&chan->dev->device); 1100 free_percpu(chan->local); 1101 } 1102 return rc; 1103 } 1104 EXPORT_SYMBOL(dma_async_device_register); 1105 1106 /** 1107 * dma_async_device_unregister - unregister a DMA device 1108 * @device: &dma_device 1109 * 1110 * This routine is called by dma driver exit routines, dmaengine holds module 1111 * references to prevent it being called while channels are in use. 1112 */ 1113 void dma_async_device_unregister(struct dma_device *device) 1114 { 1115 struct dma_chan *chan; 1116 1117 mutex_lock(&dma_list_mutex); 1118 list_del_rcu(&device->global_node); 1119 dma_channel_rebalance(); 1120 mutex_unlock(&dma_list_mutex); 1121 1122 list_for_each_entry(chan, &device->channels, device_node) { 1123 WARN_ONCE(chan->client_count, 1124 "%s called while %d clients hold a reference\n", 1125 __func__, chan->client_count); 1126 mutex_lock(&dma_list_mutex); 1127 chan->dev->chan = NULL; 1128 mutex_unlock(&dma_list_mutex); 1129 device_unregister(&chan->dev->device); 1130 free_percpu(chan->local); 1131 } 1132 } 1133 EXPORT_SYMBOL(dma_async_device_unregister); 1134 1135 static void dmam_device_release(struct device *dev, void *res) 1136 { 1137 struct dma_device *device; 1138 1139 device = *(struct dma_device **)res; 1140 dma_async_device_unregister(device); 1141 } 1142 1143 /** 1144 * dmaenginem_async_device_register - registers DMA devices found 1145 * @device: &dma_device 1146 * 1147 * The operation is managed and will be undone on driver detach. 1148 */ 1149 int dmaenginem_async_device_register(struct dma_device *device) 1150 { 1151 void *p; 1152 int ret; 1153 1154 p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL); 1155 if (!p) 1156 return -ENOMEM; 1157 1158 ret = dma_async_device_register(device); 1159 if (!ret) { 1160 *(struct dma_device **)p = device; 1161 devres_add(device->dev, p); 1162 } else { 1163 devres_free(p); 1164 } 1165 1166 return ret; 1167 } 1168 EXPORT_SYMBOL(dmaenginem_async_device_register); 1169 1170 struct dmaengine_unmap_pool { 1171 struct kmem_cache *cache; 1172 const char *name; 1173 mempool_t *pool; 1174 size_t size; 1175 }; 1176 1177 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } 1178 static struct dmaengine_unmap_pool unmap_pool[] = { 1179 __UNMAP_POOL(2), 1180 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1181 __UNMAP_POOL(16), 1182 __UNMAP_POOL(128), 1183 __UNMAP_POOL(256), 1184 #endif 1185 }; 1186 1187 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) 1188 { 1189 int order = get_count_order(nr); 1190 1191 switch (order) { 1192 case 0 ... 1: 1193 return &unmap_pool[0]; 1194 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1195 case 2 ... 4: 1196 return &unmap_pool[1]; 1197 case 5 ... 7: 1198 return &unmap_pool[2]; 1199 case 8: 1200 return &unmap_pool[3]; 1201 #endif 1202 default: 1203 BUG(); 1204 return NULL; 1205 } 1206 } 1207 1208 static void dmaengine_unmap(struct kref *kref) 1209 { 1210 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); 1211 struct device *dev = unmap->dev; 1212 int cnt, i; 1213 1214 cnt = unmap->to_cnt; 1215 for (i = 0; i < cnt; i++) 1216 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1217 DMA_TO_DEVICE); 1218 cnt += unmap->from_cnt; 1219 for (; i < cnt; i++) 1220 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1221 DMA_FROM_DEVICE); 1222 cnt += unmap->bidi_cnt; 1223 for (; i < cnt; i++) { 1224 if (unmap->addr[i] == 0) 1225 continue; 1226 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1227 DMA_BIDIRECTIONAL); 1228 } 1229 cnt = unmap->map_cnt; 1230 mempool_free(unmap, __get_unmap_pool(cnt)->pool); 1231 } 1232 1233 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 1234 { 1235 if (unmap) 1236 kref_put(&unmap->kref, dmaengine_unmap); 1237 } 1238 EXPORT_SYMBOL_GPL(dmaengine_unmap_put); 1239 1240 static void dmaengine_destroy_unmap_pool(void) 1241 { 1242 int i; 1243 1244 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1245 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1246 1247 mempool_destroy(p->pool); 1248 p->pool = NULL; 1249 kmem_cache_destroy(p->cache); 1250 p->cache = NULL; 1251 } 1252 } 1253 1254 static int __init dmaengine_init_unmap_pool(void) 1255 { 1256 int i; 1257 1258 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1259 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1260 size_t size; 1261 1262 size = sizeof(struct dmaengine_unmap_data) + 1263 sizeof(dma_addr_t) * p->size; 1264 1265 p->cache = kmem_cache_create(p->name, size, 0, 1266 SLAB_HWCACHE_ALIGN, NULL); 1267 if (!p->cache) 1268 break; 1269 p->pool = mempool_create_slab_pool(1, p->cache); 1270 if (!p->pool) 1271 break; 1272 } 1273 1274 if (i == ARRAY_SIZE(unmap_pool)) 1275 return 0; 1276 1277 dmaengine_destroy_unmap_pool(); 1278 return -ENOMEM; 1279 } 1280 1281 struct dmaengine_unmap_data * 1282 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 1283 { 1284 struct dmaengine_unmap_data *unmap; 1285 1286 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); 1287 if (!unmap) 1288 return NULL; 1289 1290 memset(unmap, 0, sizeof(*unmap)); 1291 kref_init(&unmap->kref); 1292 unmap->dev = dev; 1293 unmap->map_cnt = nr; 1294 1295 return unmap; 1296 } 1297 EXPORT_SYMBOL(dmaengine_get_unmap_data); 1298 1299 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1300 struct dma_chan *chan) 1301 { 1302 tx->chan = chan; 1303 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1304 spin_lock_init(&tx->lock); 1305 #endif 1306 } 1307 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 1308 1309 /* dma_wait_for_async_tx - spin wait for a transaction to complete 1310 * @tx: in-flight transaction to wait on 1311 */ 1312 enum dma_status 1313 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1314 { 1315 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 1316 1317 if (!tx) 1318 return DMA_COMPLETE; 1319 1320 while (tx->cookie == -EBUSY) { 1321 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 1322 dev_err(tx->chan->device->dev, 1323 "%s timeout waiting for descriptor submission\n", 1324 __func__); 1325 return DMA_ERROR; 1326 } 1327 cpu_relax(); 1328 } 1329 return dma_sync_wait(tx->chan, tx->cookie); 1330 } 1331 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); 1332 1333 /* dma_run_dependencies - helper routine for dma drivers to process 1334 * (start) dependent operations on their target channel 1335 * @tx: transaction with dependencies 1336 */ 1337 void dma_run_dependencies(struct dma_async_tx_descriptor *tx) 1338 { 1339 struct dma_async_tx_descriptor *dep = txd_next(tx); 1340 struct dma_async_tx_descriptor *dep_next; 1341 struct dma_chan *chan; 1342 1343 if (!dep) 1344 return; 1345 1346 /* we'll submit tx->next now, so clear the link */ 1347 txd_clear_next(tx); 1348 chan = dep->chan; 1349 1350 /* keep submitting up until a channel switch is detected 1351 * in that case we will be called again as a result of 1352 * processing the interrupt from async_tx_channel_switch 1353 */ 1354 for (; dep; dep = dep_next) { 1355 txd_lock(dep); 1356 txd_clear_parent(dep); 1357 dep_next = txd_next(dep); 1358 if (dep_next && dep_next->chan == chan) 1359 txd_clear_next(dep); /* ->next will be submitted */ 1360 else 1361 dep_next = NULL; /* submit current dep and terminate */ 1362 txd_unlock(dep); 1363 1364 dep->tx_submit(dep); 1365 } 1366 1367 chan->device->device_issue_pending(chan); 1368 } 1369 EXPORT_SYMBOL_GPL(dma_run_dependencies); 1370 1371 static int __init dma_bus_init(void) 1372 { 1373 int err = dmaengine_init_unmap_pool(); 1374 1375 if (err) 1376 return err; 1377 return class_register(&dma_devclass); 1378 } 1379 arch_initcall(dma_bus_init); 1380 1381 1382