xref: /openbmc/linux/drivers/dma/dmaengine.c (revision 64c70b1c)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 
22 /*
23  * This code implements the DMA subsystem. It provides a HW-neutral interface
24  * for other kernel code to use asynchronous memory copy capabilities,
25  * if present, and allows different HW DMA drivers to register as providing
26  * this capability.
27  *
28  * Due to the fact we are accelerating what is already a relatively fast
29  * operation, the code goes to great lengths to avoid additional overhead,
30  * such as locking.
31  *
32  * LOCKING:
33  *
34  * The subsystem keeps two global lists, dma_device_list and dma_client_list.
35  * Both of these are protected by a mutex, dma_list_mutex.
36  *
37  * Each device has a channels list, which runs unlocked but is never modified
38  * once the device is registered, it's just setup by the driver.
39  *
40  * Each client has a channels list, it's only modified under the client->lock
41  * and in an RCU callback, so it's safe to read under rcu_read_lock().
42  *
43  * Each device has a kref, which is initialized to 1 when the device is
44  * registered. A kref_put is done for each class_device registered.  When the
45  * class_device is released, the coresponding kref_put is done in the release
46  * method. Every time one of the device's channels is allocated to a client,
47  * a kref_get occurs.  When the channel is freed, the coresponding kref_put
48  * happens. The device's release function does a completion, so
49  * unregister_device does a remove event, class_device_unregister, a kref_put
50  * for the first reference, then waits on the completion for all other
51  * references to finish.
52  *
53  * Each channel has an open-coded implementation of Rusty Russell's "bigref,"
54  * with a kref and a per_cpu local_t.  A single reference is set when on an
55  * ADDED event, and removed with a REMOVE event.  Net DMA client takes an
56  * extra reference per outstanding transaction.  The relase function does a
57  * kref_put on the device. -ChrisL
58  */
59 
60 #include <linux/init.h>
61 #include <linux/module.h>
62 #include <linux/device.h>
63 #include <linux/dmaengine.h>
64 #include <linux/hardirq.h>
65 #include <linux/spinlock.h>
66 #include <linux/percpu.h>
67 #include <linux/rcupdate.h>
68 #include <linux/mutex.h>
69 
70 static DEFINE_MUTEX(dma_list_mutex);
71 static LIST_HEAD(dma_device_list);
72 static LIST_HEAD(dma_client_list);
73 
74 /* --- sysfs implementation --- */
75 
76 static ssize_t show_memcpy_count(struct class_device *cd, char *buf)
77 {
78 	struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev);
79 	unsigned long count = 0;
80 	int i;
81 
82 	for_each_possible_cpu(i)
83 		count += per_cpu_ptr(chan->local, i)->memcpy_count;
84 
85 	return sprintf(buf, "%lu\n", count);
86 }
87 
88 static ssize_t show_bytes_transferred(struct class_device *cd, char *buf)
89 {
90 	struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev);
91 	unsigned long count = 0;
92 	int i;
93 
94 	for_each_possible_cpu(i)
95 		count += per_cpu_ptr(chan->local, i)->bytes_transferred;
96 
97 	return sprintf(buf, "%lu\n", count);
98 }
99 
100 static ssize_t show_in_use(struct class_device *cd, char *buf)
101 {
102 	struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev);
103 
104 	return sprintf(buf, "%d\n", (chan->client ? 1 : 0));
105 }
106 
107 static struct class_device_attribute dma_class_attrs[] = {
108 	__ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
109 	__ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
110 	__ATTR(in_use, S_IRUGO, show_in_use, NULL),
111 	__ATTR_NULL
112 };
113 
114 static void dma_async_device_cleanup(struct kref *kref);
115 
116 static void dma_class_dev_release(struct class_device *cd)
117 {
118 	struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev);
119 	kref_put(&chan->device->refcount, dma_async_device_cleanup);
120 }
121 
122 static struct class dma_devclass = {
123 	.name            = "dma",
124 	.class_dev_attrs = dma_class_attrs,
125 	.release = dma_class_dev_release,
126 };
127 
128 /* --- client and device registration --- */
129 
130 /**
131  * dma_client_chan_alloc - try to allocate a channel to a client
132  * @client: &dma_client
133  *
134  * Called with dma_list_mutex held.
135  */
136 static struct dma_chan *dma_client_chan_alloc(struct dma_client *client)
137 {
138 	struct dma_device *device;
139 	struct dma_chan *chan;
140 	unsigned long flags;
141 	int desc;	/* allocated descriptor count */
142 
143 	/* Find a channel, any DMA engine will do */
144 	list_for_each_entry(device, &dma_device_list, global_node) {
145 		list_for_each_entry(chan, &device->channels, device_node) {
146 			if (chan->client)
147 				continue;
148 
149 			desc = chan->device->device_alloc_chan_resources(chan);
150 			if (desc >= 0) {
151 				kref_get(&device->refcount);
152 				kref_init(&chan->refcount);
153 				chan->slow_ref = 0;
154 				INIT_RCU_HEAD(&chan->rcu);
155 				chan->client = client;
156 				spin_lock_irqsave(&client->lock, flags);
157 				list_add_tail_rcu(&chan->client_node,
158 				                  &client->channels);
159 				spin_unlock_irqrestore(&client->lock, flags);
160 				return chan;
161 			}
162 		}
163 	}
164 
165 	return NULL;
166 }
167 
168 /**
169  * dma_chan_cleanup - release a DMA channel's resources
170  * @kref: kernel reference structure that contains the DMA channel device
171  */
172 void dma_chan_cleanup(struct kref *kref)
173 {
174 	struct dma_chan *chan = container_of(kref, struct dma_chan, refcount);
175 	chan->device->device_free_chan_resources(chan);
176 	chan->client = NULL;
177 	kref_put(&chan->device->refcount, dma_async_device_cleanup);
178 }
179 EXPORT_SYMBOL(dma_chan_cleanup);
180 
181 static void dma_chan_free_rcu(struct rcu_head *rcu)
182 {
183 	struct dma_chan *chan = container_of(rcu, struct dma_chan, rcu);
184 	int bias = 0x7FFFFFFF;
185 	int i;
186 	for_each_possible_cpu(i)
187 		bias -= local_read(&per_cpu_ptr(chan->local, i)->refcount);
188 	atomic_sub(bias, &chan->refcount.refcount);
189 	kref_put(&chan->refcount, dma_chan_cleanup);
190 }
191 
192 static void dma_client_chan_free(struct dma_chan *chan)
193 {
194 	atomic_add(0x7FFFFFFF, &chan->refcount.refcount);
195 	chan->slow_ref = 1;
196 	call_rcu(&chan->rcu, dma_chan_free_rcu);
197 }
198 
199 /**
200  * dma_chans_rebalance - reallocate channels to clients
201  *
202  * When the number of DMA channel in the system changes,
203  * channels need to be rebalanced among clients.
204  */
205 static void dma_chans_rebalance(void)
206 {
207 	struct dma_client *client;
208 	struct dma_chan *chan;
209 	unsigned long flags;
210 
211 	mutex_lock(&dma_list_mutex);
212 
213 	list_for_each_entry(client, &dma_client_list, global_node) {
214 		while (client->chans_desired > client->chan_count) {
215 			chan = dma_client_chan_alloc(client);
216 			if (!chan)
217 				break;
218 			client->chan_count++;
219 			client->event_callback(client,
220 	                                       chan,
221 	                                       DMA_RESOURCE_ADDED);
222 		}
223 		while (client->chans_desired < client->chan_count) {
224 			spin_lock_irqsave(&client->lock, flags);
225 			chan = list_entry(client->channels.next,
226 			                  struct dma_chan,
227 			                  client_node);
228 			list_del_rcu(&chan->client_node);
229 			spin_unlock_irqrestore(&client->lock, flags);
230 			client->chan_count--;
231 			client->event_callback(client,
232 			                       chan,
233 			                       DMA_RESOURCE_REMOVED);
234 			dma_client_chan_free(chan);
235 		}
236 	}
237 
238 	mutex_unlock(&dma_list_mutex);
239 }
240 
241 /**
242  * dma_async_client_register - allocate and register a &dma_client
243  * @event_callback: callback for notification of channel addition/removal
244  */
245 struct dma_client *dma_async_client_register(dma_event_callback event_callback)
246 {
247 	struct dma_client *client;
248 
249 	client = kzalloc(sizeof(*client), GFP_KERNEL);
250 	if (!client)
251 		return NULL;
252 
253 	INIT_LIST_HEAD(&client->channels);
254 	spin_lock_init(&client->lock);
255 	client->chans_desired = 0;
256 	client->chan_count = 0;
257 	client->event_callback = event_callback;
258 
259 	mutex_lock(&dma_list_mutex);
260 	list_add_tail(&client->global_node, &dma_client_list);
261 	mutex_unlock(&dma_list_mutex);
262 
263 	return client;
264 }
265 EXPORT_SYMBOL(dma_async_client_register);
266 
267 /**
268  * dma_async_client_unregister - unregister a client and free the &dma_client
269  * @client: &dma_client to free
270  *
271  * Force frees any allocated DMA channels, frees the &dma_client memory
272  */
273 void dma_async_client_unregister(struct dma_client *client)
274 {
275 	struct dma_chan *chan;
276 
277 	if (!client)
278 		return;
279 
280 	rcu_read_lock();
281 	list_for_each_entry_rcu(chan, &client->channels, client_node)
282 		dma_client_chan_free(chan);
283 	rcu_read_unlock();
284 
285 	mutex_lock(&dma_list_mutex);
286 	list_del(&client->global_node);
287 	mutex_unlock(&dma_list_mutex);
288 
289 	kfree(client);
290 	dma_chans_rebalance();
291 }
292 EXPORT_SYMBOL(dma_async_client_unregister);
293 
294 /**
295  * dma_async_client_chan_request - request DMA channels
296  * @client: &dma_client
297  * @number: count of DMA channels requested
298  *
299  * Clients call dma_async_client_chan_request() to specify how many
300  * DMA channels they need, 0 to free all currently allocated.
301  * The resulting allocations/frees are indicated to the client via the
302  * event callback.
303  */
304 void dma_async_client_chan_request(struct dma_client *client,
305 			unsigned int number)
306 {
307 	client->chans_desired = number;
308 	dma_chans_rebalance();
309 }
310 EXPORT_SYMBOL(dma_async_client_chan_request);
311 
312 /**
313  * dma_async_device_register - registers DMA devices found
314  * @device: &dma_device
315  */
316 int dma_async_device_register(struct dma_device *device)
317 {
318 	static int id;
319 	int chancnt = 0;
320 	struct dma_chan* chan;
321 
322 	if (!device)
323 		return -ENODEV;
324 
325 	init_completion(&device->done);
326 	kref_init(&device->refcount);
327 	device->dev_id = id++;
328 
329 	/* represent channels in sysfs. Probably want devs too */
330 	list_for_each_entry(chan, &device->channels, device_node) {
331 		chan->local = alloc_percpu(typeof(*chan->local));
332 		if (chan->local == NULL)
333 			continue;
334 
335 		chan->chan_id = chancnt++;
336 		chan->class_dev.class = &dma_devclass;
337 		chan->class_dev.dev = NULL;
338 		snprintf(chan->class_dev.class_id, BUS_ID_SIZE, "dma%dchan%d",
339 		         device->dev_id, chan->chan_id);
340 
341 		kref_get(&device->refcount);
342 		class_device_register(&chan->class_dev);
343 	}
344 
345 	mutex_lock(&dma_list_mutex);
346 	list_add_tail(&device->global_node, &dma_device_list);
347 	mutex_unlock(&dma_list_mutex);
348 
349 	dma_chans_rebalance();
350 
351 	return 0;
352 }
353 EXPORT_SYMBOL(dma_async_device_register);
354 
355 /**
356  * dma_async_device_cleanup - function called when all references are released
357  * @kref: kernel reference object
358  */
359 static void dma_async_device_cleanup(struct kref *kref)
360 {
361 	struct dma_device *device;
362 
363 	device = container_of(kref, struct dma_device, refcount);
364 	complete(&device->done);
365 }
366 
367 /**
368  * dma_async_device_unregister - unregisters DMA devices
369  * @device: &dma_device
370  */
371 void dma_async_device_unregister(struct dma_device *device)
372 {
373 	struct dma_chan *chan;
374 	unsigned long flags;
375 
376 	mutex_lock(&dma_list_mutex);
377 	list_del(&device->global_node);
378 	mutex_unlock(&dma_list_mutex);
379 
380 	list_for_each_entry(chan, &device->channels, device_node) {
381 		if (chan->client) {
382 			spin_lock_irqsave(&chan->client->lock, flags);
383 			list_del(&chan->client_node);
384 			chan->client->chan_count--;
385 			spin_unlock_irqrestore(&chan->client->lock, flags);
386 			chan->client->event_callback(chan->client,
387 			                             chan,
388 			                             DMA_RESOURCE_REMOVED);
389 			dma_client_chan_free(chan);
390 		}
391 		class_device_unregister(&chan->class_dev);
392 	}
393 	dma_chans_rebalance();
394 
395 	kref_put(&device->refcount, dma_async_device_cleanup);
396 	wait_for_completion(&device->done);
397 }
398 EXPORT_SYMBOL(dma_async_device_unregister);
399 
400 static int __init dma_bus_init(void)
401 {
402 	mutex_init(&dma_list_mutex);
403 	return class_register(&dma_devclass);
404 }
405 subsys_initcall(dma_bus_init);
406 
407