1 /* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21 22 /* 23 * This code implements the DMA subsystem. It provides a HW-neutral interface 24 * for other kernel code to use asynchronous memory copy capabilities, 25 * if present, and allows different HW DMA drivers to register as providing 26 * this capability. 27 * 28 * Due to the fact we are accelerating what is already a relatively fast 29 * operation, the code goes to great lengths to avoid additional overhead, 30 * such as locking. 31 * 32 * LOCKING: 33 * 34 * The subsystem keeps a global list of dma_device structs it is protected by a 35 * mutex, dma_list_mutex. 36 * 37 * A subsystem can get access to a channel by calling dmaengine_get() followed 38 * by dma_find_channel(), or if it has need for an exclusive channel it can call 39 * dma_request_channel(). Once a channel is allocated a reference is taken 40 * against its corresponding driver to disable removal. 41 * 42 * Each device has a channels list, which runs unlocked but is never modified 43 * once the device is registered, it's just setup by the driver. 44 * 45 * See Documentation/dmaengine.txt for more details 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/dma-mapping.h> 51 #include <linux/init.h> 52 #include <linux/module.h> 53 #include <linux/mm.h> 54 #include <linux/device.h> 55 #include <linux/dmaengine.h> 56 #include <linux/hardirq.h> 57 #include <linux/spinlock.h> 58 #include <linux/percpu.h> 59 #include <linux/rcupdate.h> 60 #include <linux/mutex.h> 61 #include <linux/jiffies.h> 62 #include <linux/rculist.h> 63 #include <linux/idr.h> 64 #include <linux/slab.h> 65 #include <linux/acpi.h> 66 #include <linux/acpi_dma.h> 67 #include <linux/of_dma.h> 68 #include <linux/mempool.h> 69 70 static DEFINE_MUTEX(dma_list_mutex); 71 static DEFINE_IDR(dma_idr); 72 static LIST_HEAD(dma_device_list); 73 static long dmaengine_ref_count; 74 75 /* --- sysfs implementation --- */ 76 77 /** 78 * dev_to_dma_chan - convert a device pointer to the its sysfs container object 79 * @dev - device node 80 * 81 * Must be called under dma_list_mutex 82 */ 83 static struct dma_chan *dev_to_dma_chan(struct device *dev) 84 { 85 struct dma_chan_dev *chan_dev; 86 87 chan_dev = container_of(dev, typeof(*chan_dev), device); 88 return chan_dev->chan; 89 } 90 91 static ssize_t memcpy_count_show(struct device *dev, 92 struct device_attribute *attr, char *buf) 93 { 94 struct dma_chan *chan; 95 unsigned long count = 0; 96 int i; 97 int err; 98 99 mutex_lock(&dma_list_mutex); 100 chan = dev_to_dma_chan(dev); 101 if (chan) { 102 for_each_possible_cpu(i) 103 count += per_cpu_ptr(chan->local, i)->memcpy_count; 104 err = sprintf(buf, "%lu\n", count); 105 } else 106 err = -ENODEV; 107 mutex_unlock(&dma_list_mutex); 108 109 return err; 110 } 111 static DEVICE_ATTR_RO(memcpy_count); 112 113 static ssize_t bytes_transferred_show(struct device *dev, 114 struct device_attribute *attr, char *buf) 115 { 116 struct dma_chan *chan; 117 unsigned long count = 0; 118 int i; 119 int err; 120 121 mutex_lock(&dma_list_mutex); 122 chan = dev_to_dma_chan(dev); 123 if (chan) { 124 for_each_possible_cpu(i) 125 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 126 err = sprintf(buf, "%lu\n", count); 127 } else 128 err = -ENODEV; 129 mutex_unlock(&dma_list_mutex); 130 131 return err; 132 } 133 static DEVICE_ATTR_RO(bytes_transferred); 134 135 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, 136 char *buf) 137 { 138 struct dma_chan *chan; 139 int err; 140 141 mutex_lock(&dma_list_mutex); 142 chan = dev_to_dma_chan(dev); 143 if (chan) 144 err = sprintf(buf, "%d\n", chan->client_count); 145 else 146 err = -ENODEV; 147 mutex_unlock(&dma_list_mutex); 148 149 return err; 150 } 151 static DEVICE_ATTR_RO(in_use); 152 153 static struct attribute *dma_dev_attrs[] = { 154 &dev_attr_memcpy_count.attr, 155 &dev_attr_bytes_transferred.attr, 156 &dev_attr_in_use.attr, 157 NULL, 158 }; 159 ATTRIBUTE_GROUPS(dma_dev); 160 161 static void chan_dev_release(struct device *dev) 162 { 163 struct dma_chan_dev *chan_dev; 164 165 chan_dev = container_of(dev, typeof(*chan_dev), device); 166 if (atomic_dec_and_test(chan_dev->idr_ref)) { 167 mutex_lock(&dma_list_mutex); 168 idr_remove(&dma_idr, chan_dev->dev_id); 169 mutex_unlock(&dma_list_mutex); 170 kfree(chan_dev->idr_ref); 171 } 172 kfree(chan_dev); 173 } 174 175 static struct class dma_devclass = { 176 .name = "dma", 177 .dev_groups = dma_dev_groups, 178 .dev_release = chan_dev_release, 179 }; 180 181 /* --- client and device registration --- */ 182 183 #define dma_device_satisfies_mask(device, mask) \ 184 __dma_device_satisfies_mask((device), &(mask)) 185 static int 186 __dma_device_satisfies_mask(struct dma_device *device, 187 const dma_cap_mask_t *want) 188 { 189 dma_cap_mask_t has; 190 191 bitmap_and(has.bits, want->bits, device->cap_mask.bits, 192 DMA_TX_TYPE_END); 193 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 194 } 195 196 static struct module *dma_chan_to_owner(struct dma_chan *chan) 197 { 198 return chan->device->dev->driver->owner; 199 } 200 201 /** 202 * balance_ref_count - catch up the channel reference count 203 * @chan - channel to balance ->client_count versus dmaengine_ref_count 204 * 205 * balance_ref_count must be called under dma_list_mutex 206 */ 207 static void balance_ref_count(struct dma_chan *chan) 208 { 209 struct module *owner = dma_chan_to_owner(chan); 210 211 while (chan->client_count < dmaengine_ref_count) { 212 __module_get(owner); 213 chan->client_count++; 214 } 215 } 216 217 /** 218 * dma_chan_get - try to grab a dma channel's parent driver module 219 * @chan - channel to grab 220 * 221 * Must be called under dma_list_mutex 222 */ 223 static int dma_chan_get(struct dma_chan *chan) 224 { 225 struct module *owner = dma_chan_to_owner(chan); 226 int ret; 227 228 /* The channel is already in use, update client count */ 229 if (chan->client_count) { 230 __module_get(owner); 231 goto out; 232 } 233 234 if (!try_module_get(owner)) 235 return -ENODEV; 236 237 /* allocate upon first client reference */ 238 if (chan->device->device_alloc_chan_resources) { 239 ret = chan->device->device_alloc_chan_resources(chan); 240 if (ret < 0) 241 goto err_out; 242 } 243 244 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) 245 balance_ref_count(chan); 246 247 out: 248 chan->client_count++; 249 return 0; 250 251 err_out: 252 module_put(owner); 253 return ret; 254 } 255 256 /** 257 * dma_chan_put - drop a reference to a dma channel's parent driver module 258 * @chan - channel to release 259 * 260 * Must be called under dma_list_mutex 261 */ 262 static void dma_chan_put(struct dma_chan *chan) 263 { 264 /* This channel is not in use, bail out */ 265 if (!chan->client_count) 266 return; 267 268 chan->client_count--; 269 module_put(dma_chan_to_owner(chan)); 270 271 /* This channel is not in use anymore, free it */ 272 if (!chan->client_count && chan->device->device_free_chan_resources) 273 chan->device->device_free_chan_resources(chan); 274 } 275 276 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 277 { 278 enum dma_status status; 279 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 280 281 dma_async_issue_pending(chan); 282 do { 283 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 284 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 285 pr_err("%s: timeout!\n", __func__); 286 return DMA_ERROR; 287 } 288 if (status != DMA_IN_PROGRESS) 289 break; 290 cpu_relax(); 291 } while (1); 292 293 return status; 294 } 295 EXPORT_SYMBOL(dma_sync_wait); 296 297 /** 298 * dma_cap_mask_all - enable iteration over all operation types 299 */ 300 static dma_cap_mask_t dma_cap_mask_all; 301 302 /** 303 * dma_chan_tbl_ent - tracks channel allocations per core/operation 304 * @chan - associated channel for this entry 305 */ 306 struct dma_chan_tbl_ent { 307 struct dma_chan *chan; 308 }; 309 310 /** 311 * channel_table - percpu lookup table for memory-to-memory offload providers 312 */ 313 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; 314 315 static int __init dma_channel_table_init(void) 316 { 317 enum dma_transaction_type cap; 318 int err = 0; 319 320 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); 321 322 /* 'interrupt', 'private', and 'slave' are channel capabilities, 323 * but are not associated with an operation so they do not need 324 * an entry in the channel_table 325 */ 326 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); 327 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); 328 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); 329 330 for_each_dma_cap_mask(cap, dma_cap_mask_all) { 331 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); 332 if (!channel_table[cap]) { 333 err = -ENOMEM; 334 break; 335 } 336 } 337 338 if (err) { 339 pr_err("initialization failure\n"); 340 for_each_dma_cap_mask(cap, dma_cap_mask_all) 341 free_percpu(channel_table[cap]); 342 } 343 344 return err; 345 } 346 arch_initcall(dma_channel_table_init); 347 348 /** 349 * dma_find_channel - find a channel to carry out the operation 350 * @tx_type: transaction type 351 */ 352 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 353 { 354 return this_cpu_read(channel_table[tx_type]->chan); 355 } 356 EXPORT_SYMBOL(dma_find_channel); 357 358 /* 359 * net_dma_find_channel - find a channel for net_dma 360 * net_dma has alignment requirements 361 */ 362 struct dma_chan *net_dma_find_channel(void) 363 { 364 struct dma_chan *chan = dma_find_channel(DMA_MEMCPY); 365 if (chan && !is_dma_copy_aligned(chan->device, 1, 1, 1)) 366 return NULL; 367 368 return chan; 369 } 370 EXPORT_SYMBOL(net_dma_find_channel); 371 372 /** 373 * dma_issue_pending_all - flush all pending operations across all channels 374 */ 375 void dma_issue_pending_all(void) 376 { 377 struct dma_device *device; 378 struct dma_chan *chan; 379 380 rcu_read_lock(); 381 list_for_each_entry_rcu(device, &dma_device_list, global_node) { 382 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 383 continue; 384 list_for_each_entry(chan, &device->channels, device_node) 385 if (chan->client_count) 386 device->device_issue_pending(chan); 387 } 388 rcu_read_unlock(); 389 } 390 EXPORT_SYMBOL(dma_issue_pending_all); 391 392 /** 393 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu 394 */ 395 static bool dma_chan_is_local(struct dma_chan *chan, int cpu) 396 { 397 int node = dev_to_node(chan->device->dev); 398 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node)); 399 } 400 401 /** 402 * min_chan - returns the channel with min count and in the same numa-node as the cpu 403 * @cap: capability to match 404 * @cpu: cpu index which the channel should be close to 405 * 406 * If some channels are close to the given cpu, the one with the lowest 407 * reference count is returned. Otherwise, cpu is ignored and only the 408 * reference count is taken into account. 409 * Must be called under dma_list_mutex. 410 */ 411 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) 412 { 413 struct dma_device *device; 414 struct dma_chan *chan; 415 struct dma_chan *min = NULL; 416 struct dma_chan *localmin = NULL; 417 418 list_for_each_entry(device, &dma_device_list, global_node) { 419 if (!dma_has_cap(cap, device->cap_mask) || 420 dma_has_cap(DMA_PRIVATE, device->cap_mask)) 421 continue; 422 list_for_each_entry(chan, &device->channels, device_node) { 423 if (!chan->client_count) 424 continue; 425 if (!min || chan->table_count < min->table_count) 426 min = chan; 427 428 if (dma_chan_is_local(chan, cpu)) 429 if (!localmin || 430 chan->table_count < localmin->table_count) 431 localmin = chan; 432 } 433 } 434 435 chan = localmin ? localmin : min; 436 437 if (chan) 438 chan->table_count++; 439 440 return chan; 441 } 442 443 /** 444 * dma_channel_rebalance - redistribute the available channels 445 * 446 * Optimize for cpu isolation (each cpu gets a dedicated channel for an 447 * operation type) in the SMP case, and operation isolation (avoid 448 * multi-tasking channels) in the non-SMP case. Must be called under 449 * dma_list_mutex. 450 */ 451 static void dma_channel_rebalance(void) 452 { 453 struct dma_chan *chan; 454 struct dma_device *device; 455 int cpu; 456 int cap; 457 458 /* undo the last distribution */ 459 for_each_dma_cap_mask(cap, dma_cap_mask_all) 460 for_each_possible_cpu(cpu) 461 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; 462 463 list_for_each_entry(device, &dma_device_list, global_node) { 464 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 465 continue; 466 list_for_each_entry(chan, &device->channels, device_node) 467 chan->table_count = 0; 468 } 469 470 /* don't populate the channel_table if no clients are available */ 471 if (!dmaengine_ref_count) 472 return; 473 474 /* redistribute available channels */ 475 for_each_dma_cap_mask(cap, dma_cap_mask_all) 476 for_each_online_cpu(cpu) { 477 chan = min_chan(cap, cpu); 478 per_cpu_ptr(channel_table[cap], cpu)->chan = chan; 479 } 480 } 481 482 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 483 { 484 struct dma_device *device; 485 486 if (!chan || !caps) 487 return -EINVAL; 488 489 device = chan->device; 490 491 /* check if the channel supports slave transactions */ 492 if (!test_bit(DMA_SLAVE, device->cap_mask.bits)) 493 return -ENXIO; 494 495 /* 496 * Check whether it reports it uses the generic slave 497 * capabilities, if not, that means it doesn't support any 498 * kind of slave capabilities reporting. 499 */ 500 if (!device->directions) 501 return -ENXIO; 502 503 caps->src_addr_widths = device->src_addr_widths; 504 caps->dst_addr_widths = device->dst_addr_widths; 505 caps->directions = device->directions; 506 caps->residue_granularity = device->residue_granularity; 507 508 caps->cmd_pause = !!device->device_pause; 509 caps->cmd_terminate = !!device->device_terminate_all; 510 511 return 0; 512 } 513 EXPORT_SYMBOL_GPL(dma_get_slave_caps); 514 515 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, 516 struct dma_device *dev, 517 dma_filter_fn fn, void *fn_param) 518 { 519 struct dma_chan *chan; 520 521 if (!__dma_device_satisfies_mask(dev, mask)) { 522 pr_debug("%s: wrong capabilities\n", __func__); 523 return NULL; 524 } 525 /* devices with multiple channels need special handling as we need to 526 * ensure that all channels are either private or public. 527 */ 528 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) 529 list_for_each_entry(chan, &dev->channels, device_node) { 530 /* some channels are already publicly allocated */ 531 if (chan->client_count) 532 return NULL; 533 } 534 535 list_for_each_entry(chan, &dev->channels, device_node) { 536 if (chan->client_count) { 537 pr_debug("%s: %s busy\n", 538 __func__, dma_chan_name(chan)); 539 continue; 540 } 541 if (fn && !fn(chan, fn_param)) { 542 pr_debug("%s: %s filter said false\n", 543 __func__, dma_chan_name(chan)); 544 continue; 545 } 546 return chan; 547 } 548 549 return NULL; 550 } 551 552 /** 553 * dma_request_slave_channel - try to get specific channel exclusively 554 * @chan: target channel 555 */ 556 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) 557 { 558 int err = -EBUSY; 559 560 /* lock against __dma_request_channel */ 561 mutex_lock(&dma_list_mutex); 562 563 if (chan->client_count == 0) { 564 err = dma_chan_get(chan); 565 if (err) 566 pr_debug("%s: failed to get %s: (%d)\n", 567 __func__, dma_chan_name(chan), err); 568 } else 569 chan = NULL; 570 571 mutex_unlock(&dma_list_mutex); 572 573 574 return chan; 575 } 576 EXPORT_SYMBOL_GPL(dma_get_slave_channel); 577 578 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) 579 { 580 dma_cap_mask_t mask; 581 struct dma_chan *chan; 582 int err; 583 584 dma_cap_zero(mask); 585 dma_cap_set(DMA_SLAVE, mask); 586 587 /* lock against __dma_request_channel */ 588 mutex_lock(&dma_list_mutex); 589 590 chan = private_candidate(&mask, device, NULL, NULL); 591 if (chan) { 592 err = dma_chan_get(chan); 593 if (err) { 594 pr_debug("%s: failed to get %s: (%d)\n", 595 __func__, dma_chan_name(chan), err); 596 chan = NULL; 597 } 598 } 599 600 mutex_unlock(&dma_list_mutex); 601 602 return chan; 603 } 604 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); 605 606 /** 607 * __dma_request_channel - try to allocate an exclusive channel 608 * @mask: capabilities that the channel must satisfy 609 * @fn: optional callback to disposition available channels 610 * @fn_param: opaque parameter to pass to dma_filter_fn 611 * 612 * Returns pointer to appropriate DMA channel on success or NULL. 613 */ 614 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 615 dma_filter_fn fn, void *fn_param) 616 { 617 struct dma_device *device, *_d; 618 struct dma_chan *chan = NULL; 619 int err; 620 621 /* Find a channel */ 622 mutex_lock(&dma_list_mutex); 623 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 624 chan = private_candidate(mask, device, fn, fn_param); 625 if (chan) { 626 /* Found a suitable channel, try to grab, prep, and 627 * return it. We first set DMA_PRIVATE to disable 628 * balance_ref_count as this channel will not be 629 * published in the general-purpose allocator 630 */ 631 dma_cap_set(DMA_PRIVATE, device->cap_mask); 632 device->privatecnt++; 633 err = dma_chan_get(chan); 634 635 if (err == -ENODEV) { 636 pr_debug("%s: %s module removed\n", 637 __func__, dma_chan_name(chan)); 638 list_del_rcu(&device->global_node); 639 } else if (err) 640 pr_debug("%s: failed to get %s: (%d)\n", 641 __func__, dma_chan_name(chan), err); 642 else 643 break; 644 if (--device->privatecnt == 0) 645 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 646 chan = NULL; 647 } 648 } 649 mutex_unlock(&dma_list_mutex); 650 651 pr_debug("%s: %s (%s)\n", 652 __func__, 653 chan ? "success" : "fail", 654 chan ? dma_chan_name(chan) : NULL); 655 656 return chan; 657 } 658 EXPORT_SYMBOL_GPL(__dma_request_channel); 659 660 /** 661 * dma_request_slave_channel - try to allocate an exclusive slave channel 662 * @dev: pointer to client device structure 663 * @name: slave channel name 664 * 665 * Returns pointer to appropriate DMA channel on success or an error pointer. 666 */ 667 struct dma_chan *dma_request_slave_channel_reason(struct device *dev, 668 const char *name) 669 { 670 /* If device-tree is present get slave info from here */ 671 if (dev->of_node) 672 return of_dma_request_slave_channel(dev->of_node, name); 673 674 /* If device was enumerated by ACPI get slave info from here */ 675 if (ACPI_HANDLE(dev)) 676 return acpi_dma_request_slave_chan_by_name(dev, name); 677 678 return ERR_PTR(-ENODEV); 679 } 680 EXPORT_SYMBOL_GPL(dma_request_slave_channel_reason); 681 682 /** 683 * dma_request_slave_channel - try to allocate an exclusive slave channel 684 * @dev: pointer to client device structure 685 * @name: slave channel name 686 * 687 * Returns pointer to appropriate DMA channel on success or NULL. 688 */ 689 struct dma_chan *dma_request_slave_channel(struct device *dev, 690 const char *name) 691 { 692 struct dma_chan *ch = dma_request_slave_channel_reason(dev, name); 693 if (IS_ERR(ch)) 694 return NULL; 695 return ch; 696 } 697 EXPORT_SYMBOL_GPL(dma_request_slave_channel); 698 699 void dma_release_channel(struct dma_chan *chan) 700 { 701 mutex_lock(&dma_list_mutex); 702 WARN_ONCE(chan->client_count != 1, 703 "chan reference count %d != 1\n", chan->client_count); 704 dma_chan_put(chan); 705 /* drop PRIVATE cap enabled by __dma_request_channel() */ 706 if (--chan->device->privatecnt == 0) 707 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); 708 mutex_unlock(&dma_list_mutex); 709 } 710 EXPORT_SYMBOL_GPL(dma_release_channel); 711 712 /** 713 * dmaengine_get - register interest in dma_channels 714 */ 715 void dmaengine_get(void) 716 { 717 struct dma_device *device, *_d; 718 struct dma_chan *chan; 719 int err; 720 721 mutex_lock(&dma_list_mutex); 722 dmaengine_ref_count++; 723 724 /* try to grab channels */ 725 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 726 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 727 continue; 728 list_for_each_entry(chan, &device->channels, device_node) { 729 err = dma_chan_get(chan); 730 if (err == -ENODEV) { 731 /* module removed before we could use it */ 732 list_del_rcu(&device->global_node); 733 break; 734 } else if (err) 735 pr_debug("%s: failed to get %s: (%d)\n", 736 __func__, dma_chan_name(chan), err); 737 } 738 } 739 740 /* if this is the first reference and there were channels 741 * waiting we need to rebalance to get those channels 742 * incorporated into the channel table 743 */ 744 if (dmaengine_ref_count == 1) 745 dma_channel_rebalance(); 746 mutex_unlock(&dma_list_mutex); 747 } 748 EXPORT_SYMBOL(dmaengine_get); 749 750 /** 751 * dmaengine_put - let dma drivers be removed when ref_count == 0 752 */ 753 void dmaengine_put(void) 754 { 755 struct dma_device *device; 756 struct dma_chan *chan; 757 758 mutex_lock(&dma_list_mutex); 759 dmaengine_ref_count--; 760 BUG_ON(dmaengine_ref_count < 0); 761 /* drop channel references */ 762 list_for_each_entry(device, &dma_device_list, global_node) { 763 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 764 continue; 765 list_for_each_entry(chan, &device->channels, device_node) 766 dma_chan_put(chan); 767 } 768 mutex_unlock(&dma_list_mutex); 769 } 770 EXPORT_SYMBOL(dmaengine_put); 771 772 static bool device_has_all_tx_types(struct dma_device *device) 773 { 774 /* A device that satisfies this test has channels that will never cause 775 * an async_tx channel switch event as all possible operation types can 776 * be handled. 777 */ 778 #ifdef CONFIG_ASYNC_TX_DMA 779 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) 780 return false; 781 #endif 782 783 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE) 784 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) 785 return false; 786 #endif 787 788 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE) 789 if (!dma_has_cap(DMA_XOR, device->cap_mask)) 790 return false; 791 792 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA 793 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) 794 return false; 795 #endif 796 #endif 797 798 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE) 799 if (!dma_has_cap(DMA_PQ, device->cap_mask)) 800 return false; 801 802 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA 803 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) 804 return false; 805 #endif 806 #endif 807 808 return true; 809 } 810 811 static int get_dma_id(struct dma_device *device) 812 { 813 int rc; 814 815 mutex_lock(&dma_list_mutex); 816 817 rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL); 818 if (rc >= 0) 819 device->dev_id = rc; 820 821 mutex_unlock(&dma_list_mutex); 822 return rc < 0 ? rc : 0; 823 } 824 825 /** 826 * dma_async_device_register - registers DMA devices found 827 * @device: &dma_device 828 */ 829 int dma_async_device_register(struct dma_device *device) 830 { 831 int chancnt = 0, rc; 832 struct dma_chan* chan; 833 atomic_t *idr_ref; 834 835 if (!device) 836 return -ENODEV; 837 838 /* validate device routines */ 839 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) && 840 !device->device_prep_dma_memcpy); 841 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) && 842 !device->device_prep_dma_xor); 843 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) && 844 !device->device_prep_dma_xor_val); 845 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) && 846 !device->device_prep_dma_pq); 847 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) && 848 !device->device_prep_dma_pq_val); 849 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) && 850 !device->device_prep_dma_interrupt); 851 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) && 852 !device->device_prep_dma_sg); 853 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) && 854 !device->device_prep_dma_cyclic); 855 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && 856 !device->device_prep_interleaved_dma); 857 858 BUG_ON(!device->device_tx_status); 859 BUG_ON(!device->device_issue_pending); 860 BUG_ON(!device->dev); 861 862 /* note: this only matters in the 863 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case 864 */ 865 if (device_has_all_tx_types(device)) 866 dma_cap_set(DMA_ASYNC_TX, device->cap_mask); 867 868 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL); 869 if (!idr_ref) 870 return -ENOMEM; 871 rc = get_dma_id(device); 872 if (rc != 0) { 873 kfree(idr_ref); 874 return rc; 875 } 876 877 atomic_set(idr_ref, 0); 878 879 /* represent channels in sysfs. Probably want devs too */ 880 list_for_each_entry(chan, &device->channels, device_node) { 881 rc = -ENOMEM; 882 chan->local = alloc_percpu(typeof(*chan->local)); 883 if (chan->local == NULL) 884 goto err_out; 885 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); 886 if (chan->dev == NULL) { 887 free_percpu(chan->local); 888 chan->local = NULL; 889 goto err_out; 890 } 891 892 chan->chan_id = chancnt++; 893 chan->dev->device.class = &dma_devclass; 894 chan->dev->device.parent = device->dev; 895 chan->dev->chan = chan; 896 chan->dev->idr_ref = idr_ref; 897 chan->dev->dev_id = device->dev_id; 898 atomic_inc(idr_ref); 899 dev_set_name(&chan->dev->device, "dma%dchan%d", 900 device->dev_id, chan->chan_id); 901 902 rc = device_register(&chan->dev->device); 903 if (rc) { 904 free_percpu(chan->local); 905 chan->local = NULL; 906 kfree(chan->dev); 907 atomic_dec(idr_ref); 908 goto err_out; 909 } 910 chan->client_count = 0; 911 } 912 device->chancnt = chancnt; 913 914 mutex_lock(&dma_list_mutex); 915 /* take references on public channels */ 916 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) 917 list_for_each_entry(chan, &device->channels, device_node) { 918 /* if clients are already waiting for channels we need 919 * to take references on their behalf 920 */ 921 if (dma_chan_get(chan) == -ENODEV) { 922 /* note we can only get here for the first 923 * channel as the remaining channels are 924 * guaranteed to get a reference 925 */ 926 rc = -ENODEV; 927 mutex_unlock(&dma_list_mutex); 928 goto err_out; 929 } 930 } 931 list_add_tail_rcu(&device->global_node, &dma_device_list); 932 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 933 device->privatecnt++; /* Always private */ 934 dma_channel_rebalance(); 935 mutex_unlock(&dma_list_mutex); 936 937 return 0; 938 939 err_out: 940 /* if we never registered a channel just release the idr */ 941 if (atomic_read(idr_ref) == 0) { 942 mutex_lock(&dma_list_mutex); 943 idr_remove(&dma_idr, device->dev_id); 944 mutex_unlock(&dma_list_mutex); 945 kfree(idr_ref); 946 return rc; 947 } 948 949 list_for_each_entry(chan, &device->channels, device_node) { 950 if (chan->local == NULL) 951 continue; 952 mutex_lock(&dma_list_mutex); 953 chan->dev->chan = NULL; 954 mutex_unlock(&dma_list_mutex); 955 device_unregister(&chan->dev->device); 956 free_percpu(chan->local); 957 } 958 return rc; 959 } 960 EXPORT_SYMBOL(dma_async_device_register); 961 962 /** 963 * dma_async_device_unregister - unregister a DMA device 964 * @device: &dma_device 965 * 966 * This routine is called by dma driver exit routines, dmaengine holds module 967 * references to prevent it being called while channels are in use. 968 */ 969 void dma_async_device_unregister(struct dma_device *device) 970 { 971 struct dma_chan *chan; 972 973 mutex_lock(&dma_list_mutex); 974 list_del_rcu(&device->global_node); 975 dma_channel_rebalance(); 976 mutex_unlock(&dma_list_mutex); 977 978 list_for_each_entry(chan, &device->channels, device_node) { 979 WARN_ONCE(chan->client_count, 980 "%s called while %d clients hold a reference\n", 981 __func__, chan->client_count); 982 mutex_lock(&dma_list_mutex); 983 chan->dev->chan = NULL; 984 mutex_unlock(&dma_list_mutex); 985 device_unregister(&chan->dev->device); 986 free_percpu(chan->local); 987 } 988 } 989 EXPORT_SYMBOL(dma_async_device_unregister); 990 991 struct dmaengine_unmap_pool { 992 struct kmem_cache *cache; 993 const char *name; 994 mempool_t *pool; 995 size_t size; 996 }; 997 998 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } 999 static struct dmaengine_unmap_pool unmap_pool[] = { 1000 __UNMAP_POOL(2), 1001 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1002 __UNMAP_POOL(16), 1003 __UNMAP_POOL(128), 1004 __UNMAP_POOL(256), 1005 #endif 1006 }; 1007 1008 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) 1009 { 1010 int order = get_count_order(nr); 1011 1012 switch (order) { 1013 case 0 ... 1: 1014 return &unmap_pool[0]; 1015 case 2 ... 4: 1016 return &unmap_pool[1]; 1017 case 5 ... 7: 1018 return &unmap_pool[2]; 1019 case 8: 1020 return &unmap_pool[3]; 1021 default: 1022 BUG(); 1023 return NULL; 1024 } 1025 } 1026 1027 static void dmaengine_unmap(struct kref *kref) 1028 { 1029 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); 1030 struct device *dev = unmap->dev; 1031 int cnt, i; 1032 1033 cnt = unmap->to_cnt; 1034 for (i = 0; i < cnt; i++) 1035 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1036 DMA_TO_DEVICE); 1037 cnt += unmap->from_cnt; 1038 for (; i < cnt; i++) 1039 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1040 DMA_FROM_DEVICE); 1041 cnt += unmap->bidi_cnt; 1042 for (; i < cnt; i++) { 1043 if (unmap->addr[i] == 0) 1044 continue; 1045 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1046 DMA_BIDIRECTIONAL); 1047 } 1048 cnt = unmap->map_cnt; 1049 mempool_free(unmap, __get_unmap_pool(cnt)->pool); 1050 } 1051 1052 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 1053 { 1054 if (unmap) 1055 kref_put(&unmap->kref, dmaengine_unmap); 1056 } 1057 EXPORT_SYMBOL_GPL(dmaengine_unmap_put); 1058 1059 static void dmaengine_destroy_unmap_pool(void) 1060 { 1061 int i; 1062 1063 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1064 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1065 1066 if (p->pool) 1067 mempool_destroy(p->pool); 1068 p->pool = NULL; 1069 if (p->cache) 1070 kmem_cache_destroy(p->cache); 1071 p->cache = NULL; 1072 } 1073 } 1074 1075 static int __init dmaengine_init_unmap_pool(void) 1076 { 1077 int i; 1078 1079 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1080 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1081 size_t size; 1082 1083 size = sizeof(struct dmaengine_unmap_data) + 1084 sizeof(dma_addr_t) * p->size; 1085 1086 p->cache = kmem_cache_create(p->name, size, 0, 1087 SLAB_HWCACHE_ALIGN, NULL); 1088 if (!p->cache) 1089 break; 1090 p->pool = mempool_create_slab_pool(1, p->cache); 1091 if (!p->pool) 1092 break; 1093 } 1094 1095 if (i == ARRAY_SIZE(unmap_pool)) 1096 return 0; 1097 1098 dmaengine_destroy_unmap_pool(); 1099 return -ENOMEM; 1100 } 1101 1102 struct dmaengine_unmap_data * 1103 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 1104 { 1105 struct dmaengine_unmap_data *unmap; 1106 1107 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); 1108 if (!unmap) 1109 return NULL; 1110 1111 memset(unmap, 0, sizeof(*unmap)); 1112 kref_init(&unmap->kref); 1113 unmap->dev = dev; 1114 unmap->map_cnt = nr; 1115 1116 return unmap; 1117 } 1118 EXPORT_SYMBOL(dmaengine_get_unmap_data); 1119 1120 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1121 struct dma_chan *chan) 1122 { 1123 tx->chan = chan; 1124 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1125 spin_lock_init(&tx->lock); 1126 #endif 1127 } 1128 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 1129 1130 /* dma_wait_for_async_tx - spin wait for a transaction to complete 1131 * @tx: in-flight transaction to wait on 1132 */ 1133 enum dma_status 1134 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1135 { 1136 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 1137 1138 if (!tx) 1139 return DMA_COMPLETE; 1140 1141 while (tx->cookie == -EBUSY) { 1142 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 1143 pr_err("%s timeout waiting for descriptor submission\n", 1144 __func__); 1145 return DMA_ERROR; 1146 } 1147 cpu_relax(); 1148 } 1149 return dma_sync_wait(tx->chan, tx->cookie); 1150 } 1151 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); 1152 1153 /* dma_run_dependencies - helper routine for dma drivers to process 1154 * (start) dependent operations on their target channel 1155 * @tx: transaction with dependencies 1156 */ 1157 void dma_run_dependencies(struct dma_async_tx_descriptor *tx) 1158 { 1159 struct dma_async_tx_descriptor *dep = txd_next(tx); 1160 struct dma_async_tx_descriptor *dep_next; 1161 struct dma_chan *chan; 1162 1163 if (!dep) 1164 return; 1165 1166 /* we'll submit tx->next now, so clear the link */ 1167 txd_clear_next(tx); 1168 chan = dep->chan; 1169 1170 /* keep submitting up until a channel switch is detected 1171 * in that case we will be called again as a result of 1172 * processing the interrupt from async_tx_channel_switch 1173 */ 1174 for (; dep; dep = dep_next) { 1175 txd_lock(dep); 1176 txd_clear_parent(dep); 1177 dep_next = txd_next(dep); 1178 if (dep_next && dep_next->chan == chan) 1179 txd_clear_next(dep); /* ->next will be submitted */ 1180 else 1181 dep_next = NULL; /* submit current dep and terminate */ 1182 txd_unlock(dep); 1183 1184 dep->tx_submit(dep); 1185 } 1186 1187 chan->device->device_issue_pending(chan); 1188 } 1189 EXPORT_SYMBOL_GPL(dma_run_dependencies); 1190 1191 static int __init dma_bus_init(void) 1192 { 1193 int err = dmaengine_init_unmap_pool(); 1194 1195 if (err) 1196 return err; 1197 return class_register(&dma_devclass); 1198 } 1199 arch_initcall(dma_bus_init); 1200 1201 1202