1 /* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21 22 /* 23 * This code implements the DMA subsystem. It provides a HW-neutral interface 24 * for other kernel code to use asynchronous memory copy capabilities, 25 * if present, and allows different HW DMA drivers to register as providing 26 * this capability. 27 * 28 * Due to the fact we are accelerating what is already a relatively fast 29 * operation, the code goes to great lengths to avoid additional overhead, 30 * such as locking. 31 * 32 * LOCKING: 33 * 34 * The subsystem keeps a global list of dma_device structs it is protected by a 35 * mutex, dma_list_mutex. 36 * 37 * A subsystem can get access to a channel by calling dmaengine_get() followed 38 * by dma_find_channel(), or if it has need for an exclusive channel it can call 39 * dma_request_channel(). Once a channel is allocated a reference is taken 40 * against its corresponding driver to disable removal. 41 * 42 * Each device has a channels list, which runs unlocked but is never modified 43 * once the device is registered, it's just setup by the driver. 44 * 45 * See Documentation/dmaengine.txt for more details 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/dma-mapping.h> 51 #include <linux/init.h> 52 #include <linux/module.h> 53 #include <linux/mm.h> 54 #include <linux/device.h> 55 #include <linux/dmaengine.h> 56 #include <linux/hardirq.h> 57 #include <linux/spinlock.h> 58 #include <linux/percpu.h> 59 #include <linux/rcupdate.h> 60 #include <linux/mutex.h> 61 #include <linux/jiffies.h> 62 #include <linux/rculist.h> 63 #include <linux/idr.h> 64 #include <linux/slab.h> 65 #include <linux/acpi.h> 66 #include <linux/acpi_dma.h> 67 #include <linux/of_dma.h> 68 #include <linux/mempool.h> 69 70 static DEFINE_MUTEX(dma_list_mutex); 71 static DEFINE_IDR(dma_idr); 72 static LIST_HEAD(dma_device_list); 73 static long dmaengine_ref_count; 74 75 /* --- sysfs implementation --- */ 76 77 /** 78 * dev_to_dma_chan - convert a device pointer to the its sysfs container object 79 * @dev - device node 80 * 81 * Must be called under dma_list_mutex 82 */ 83 static struct dma_chan *dev_to_dma_chan(struct device *dev) 84 { 85 struct dma_chan_dev *chan_dev; 86 87 chan_dev = container_of(dev, typeof(*chan_dev), device); 88 return chan_dev->chan; 89 } 90 91 static ssize_t memcpy_count_show(struct device *dev, 92 struct device_attribute *attr, char *buf) 93 { 94 struct dma_chan *chan; 95 unsigned long count = 0; 96 int i; 97 int err; 98 99 mutex_lock(&dma_list_mutex); 100 chan = dev_to_dma_chan(dev); 101 if (chan) { 102 for_each_possible_cpu(i) 103 count += per_cpu_ptr(chan->local, i)->memcpy_count; 104 err = sprintf(buf, "%lu\n", count); 105 } else 106 err = -ENODEV; 107 mutex_unlock(&dma_list_mutex); 108 109 return err; 110 } 111 static DEVICE_ATTR_RO(memcpy_count); 112 113 static ssize_t bytes_transferred_show(struct device *dev, 114 struct device_attribute *attr, char *buf) 115 { 116 struct dma_chan *chan; 117 unsigned long count = 0; 118 int i; 119 int err; 120 121 mutex_lock(&dma_list_mutex); 122 chan = dev_to_dma_chan(dev); 123 if (chan) { 124 for_each_possible_cpu(i) 125 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 126 err = sprintf(buf, "%lu\n", count); 127 } else 128 err = -ENODEV; 129 mutex_unlock(&dma_list_mutex); 130 131 return err; 132 } 133 static DEVICE_ATTR_RO(bytes_transferred); 134 135 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, 136 char *buf) 137 { 138 struct dma_chan *chan; 139 int err; 140 141 mutex_lock(&dma_list_mutex); 142 chan = dev_to_dma_chan(dev); 143 if (chan) 144 err = sprintf(buf, "%d\n", chan->client_count); 145 else 146 err = -ENODEV; 147 mutex_unlock(&dma_list_mutex); 148 149 return err; 150 } 151 static DEVICE_ATTR_RO(in_use); 152 153 static struct attribute *dma_dev_attrs[] = { 154 &dev_attr_memcpy_count.attr, 155 &dev_attr_bytes_transferred.attr, 156 &dev_attr_in_use.attr, 157 NULL, 158 }; 159 ATTRIBUTE_GROUPS(dma_dev); 160 161 static void chan_dev_release(struct device *dev) 162 { 163 struct dma_chan_dev *chan_dev; 164 165 chan_dev = container_of(dev, typeof(*chan_dev), device); 166 if (atomic_dec_and_test(chan_dev->idr_ref)) { 167 mutex_lock(&dma_list_mutex); 168 idr_remove(&dma_idr, chan_dev->dev_id); 169 mutex_unlock(&dma_list_mutex); 170 kfree(chan_dev->idr_ref); 171 } 172 kfree(chan_dev); 173 } 174 175 static struct class dma_devclass = { 176 .name = "dma", 177 .dev_groups = dma_dev_groups, 178 .dev_release = chan_dev_release, 179 }; 180 181 /* --- client and device registration --- */ 182 183 #define dma_device_satisfies_mask(device, mask) \ 184 __dma_device_satisfies_mask((device), &(mask)) 185 static int 186 __dma_device_satisfies_mask(struct dma_device *device, 187 const dma_cap_mask_t *want) 188 { 189 dma_cap_mask_t has; 190 191 bitmap_and(has.bits, want->bits, device->cap_mask.bits, 192 DMA_TX_TYPE_END); 193 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 194 } 195 196 static struct module *dma_chan_to_owner(struct dma_chan *chan) 197 { 198 return chan->device->dev->driver->owner; 199 } 200 201 /** 202 * balance_ref_count - catch up the channel reference count 203 * @chan - channel to balance ->client_count versus dmaengine_ref_count 204 * 205 * balance_ref_count must be called under dma_list_mutex 206 */ 207 static void balance_ref_count(struct dma_chan *chan) 208 { 209 struct module *owner = dma_chan_to_owner(chan); 210 211 while (chan->client_count < dmaengine_ref_count) { 212 __module_get(owner); 213 chan->client_count++; 214 } 215 } 216 217 /** 218 * dma_chan_get - try to grab a dma channel's parent driver module 219 * @chan - channel to grab 220 * 221 * Must be called under dma_list_mutex 222 */ 223 static int dma_chan_get(struct dma_chan *chan) 224 { 225 int err = -ENODEV; 226 struct module *owner = dma_chan_to_owner(chan); 227 228 if (chan->client_count) { 229 __module_get(owner); 230 err = 0; 231 } else if (try_module_get(owner)) 232 err = 0; 233 234 if (err == 0) 235 chan->client_count++; 236 237 /* allocate upon first client reference */ 238 if (chan->client_count == 1 && err == 0) { 239 int desc_cnt = chan->device->device_alloc_chan_resources(chan); 240 241 if (desc_cnt < 0) { 242 err = desc_cnt; 243 chan->client_count = 0; 244 module_put(owner); 245 } else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) 246 balance_ref_count(chan); 247 } 248 249 return err; 250 } 251 252 /** 253 * dma_chan_put - drop a reference to a dma channel's parent driver module 254 * @chan - channel to release 255 * 256 * Must be called under dma_list_mutex 257 */ 258 static void dma_chan_put(struct dma_chan *chan) 259 { 260 if (!chan->client_count) 261 return; /* this channel failed alloc_chan_resources */ 262 chan->client_count--; 263 module_put(dma_chan_to_owner(chan)); 264 if (chan->client_count == 0) 265 chan->device->device_free_chan_resources(chan); 266 } 267 268 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 269 { 270 enum dma_status status; 271 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 272 273 dma_async_issue_pending(chan); 274 do { 275 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 276 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 277 pr_err("%s: timeout!\n", __func__); 278 return DMA_ERROR; 279 } 280 if (status != DMA_IN_PROGRESS) 281 break; 282 cpu_relax(); 283 } while (1); 284 285 return status; 286 } 287 EXPORT_SYMBOL(dma_sync_wait); 288 289 /** 290 * dma_cap_mask_all - enable iteration over all operation types 291 */ 292 static dma_cap_mask_t dma_cap_mask_all; 293 294 /** 295 * dma_chan_tbl_ent - tracks channel allocations per core/operation 296 * @chan - associated channel for this entry 297 */ 298 struct dma_chan_tbl_ent { 299 struct dma_chan *chan; 300 }; 301 302 /** 303 * channel_table - percpu lookup table for memory-to-memory offload providers 304 */ 305 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; 306 307 static int __init dma_channel_table_init(void) 308 { 309 enum dma_transaction_type cap; 310 int err = 0; 311 312 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); 313 314 /* 'interrupt', 'private', and 'slave' are channel capabilities, 315 * but are not associated with an operation so they do not need 316 * an entry in the channel_table 317 */ 318 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); 319 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); 320 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); 321 322 for_each_dma_cap_mask(cap, dma_cap_mask_all) { 323 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); 324 if (!channel_table[cap]) { 325 err = -ENOMEM; 326 break; 327 } 328 } 329 330 if (err) { 331 pr_err("initialization failure\n"); 332 for_each_dma_cap_mask(cap, dma_cap_mask_all) 333 if (channel_table[cap]) 334 free_percpu(channel_table[cap]); 335 } 336 337 return err; 338 } 339 arch_initcall(dma_channel_table_init); 340 341 /** 342 * dma_find_channel - find a channel to carry out the operation 343 * @tx_type: transaction type 344 */ 345 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 346 { 347 return this_cpu_read(channel_table[tx_type]->chan); 348 } 349 EXPORT_SYMBOL(dma_find_channel); 350 351 /* 352 * net_dma_find_channel - find a channel for net_dma 353 * net_dma has alignment requirements 354 */ 355 struct dma_chan *net_dma_find_channel(void) 356 { 357 struct dma_chan *chan = dma_find_channel(DMA_MEMCPY); 358 if (chan && !is_dma_copy_aligned(chan->device, 1, 1, 1)) 359 return NULL; 360 361 return chan; 362 } 363 EXPORT_SYMBOL(net_dma_find_channel); 364 365 /** 366 * dma_issue_pending_all - flush all pending operations across all channels 367 */ 368 void dma_issue_pending_all(void) 369 { 370 struct dma_device *device; 371 struct dma_chan *chan; 372 373 rcu_read_lock(); 374 list_for_each_entry_rcu(device, &dma_device_list, global_node) { 375 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 376 continue; 377 list_for_each_entry(chan, &device->channels, device_node) 378 if (chan->client_count) 379 device->device_issue_pending(chan); 380 } 381 rcu_read_unlock(); 382 } 383 EXPORT_SYMBOL(dma_issue_pending_all); 384 385 /** 386 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu 387 */ 388 static bool dma_chan_is_local(struct dma_chan *chan, int cpu) 389 { 390 int node = dev_to_node(chan->device->dev); 391 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node)); 392 } 393 394 /** 395 * min_chan - returns the channel with min count and in the same numa-node as the cpu 396 * @cap: capability to match 397 * @cpu: cpu index which the channel should be close to 398 * 399 * If some channels are close to the given cpu, the one with the lowest 400 * reference count is returned. Otherwise, cpu is ignored and only the 401 * reference count is taken into account. 402 * Must be called under dma_list_mutex. 403 */ 404 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) 405 { 406 struct dma_device *device; 407 struct dma_chan *chan; 408 struct dma_chan *min = NULL; 409 struct dma_chan *localmin = NULL; 410 411 list_for_each_entry(device, &dma_device_list, global_node) { 412 if (!dma_has_cap(cap, device->cap_mask) || 413 dma_has_cap(DMA_PRIVATE, device->cap_mask)) 414 continue; 415 list_for_each_entry(chan, &device->channels, device_node) { 416 if (!chan->client_count) 417 continue; 418 if (!min || chan->table_count < min->table_count) 419 min = chan; 420 421 if (dma_chan_is_local(chan, cpu)) 422 if (!localmin || 423 chan->table_count < localmin->table_count) 424 localmin = chan; 425 } 426 } 427 428 chan = localmin ? localmin : min; 429 430 if (chan) 431 chan->table_count++; 432 433 return chan; 434 } 435 436 /** 437 * dma_channel_rebalance - redistribute the available channels 438 * 439 * Optimize for cpu isolation (each cpu gets a dedicated channel for an 440 * operation type) in the SMP case, and operation isolation (avoid 441 * multi-tasking channels) in the non-SMP case. Must be called under 442 * dma_list_mutex. 443 */ 444 static void dma_channel_rebalance(void) 445 { 446 struct dma_chan *chan; 447 struct dma_device *device; 448 int cpu; 449 int cap; 450 451 /* undo the last distribution */ 452 for_each_dma_cap_mask(cap, dma_cap_mask_all) 453 for_each_possible_cpu(cpu) 454 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; 455 456 list_for_each_entry(device, &dma_device_list, global_node) { 457 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 458 continue; 459 list_for_each_entry(chan, &device->channels, device_node) 460 chan->table_count = 0; 461 } 462 463 /* don't populate the channel_table if no clients are available */ 464 if (!dmaengine_ref_count) 465 return; 466 467 /* redistribute available channels */ 468 for_each_dma_cap_mask(cap, dma_cap_mask_all) 469 for_each_online_cpu(cpu) { 470 chan = min_chan(cap, cpu); 471 per_cpu_ptr(channel_table[cap], cpu)->chan = chan; 472 } 473 } 474 475 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, 476 struct dma_device *dev, 477 dma_filter_fn fn, void *fn_param) 478 { 479 struct dma_chan *chan; 480 481 if (!__dma_device_satisfies_mask(dev, mask)) { 482 pr_debug("%s: wrong capabilities\n", __func__); 483 return NULL; 484 } 485 /* devices with multiple channels need special handling as we need to 486 * ensure that all channels are either private or public. 487 */ 488 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) 489 list_for_each_entry(chan, &dev->channels, device_node) { 490 /* some channels are already publicly allocated */ 491 if (chan->client_count) 492 return NULL; 493 } 494 495 list_for_each_entry(chan, &dev->channels, device_node) { 496 if (chan->client_count) { 497 pr_debug("%s: %s busy\n", 498 __func__, dma_chan_name(chan)); 499 continue; 500 } 501 if (fn && !fn(chan, fn_param)) { 502 pr_debug("%s: %s filter said false\n", 503 __func__, dma_chan_name(chan)); 504 continue; 505 } 506 return chan; 507 } 508 509 return NULL; 510 } 511 512 /** 513 * dma_request_slave_channel - try to get specific channel exclusively 514 * @chan: target channel 515 */ 516 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) 517 { 518 int err = -EBUSY; 519 520 /* lock against __dma_request_channel */ 521 mutex_lock(&dma_list_mutex); 522 523 if (chan->client_count == 0) { 524 err = dma_chan_get(chan); 525 if (err) 526 pr_debug("%s: failed to get %s: (%d)\n", 527 __func__, dma_chan_name(chan), err); 528 } else 529 chan = NULL; 530 531 mutex_unlock(&dma_list_mutex); 532 533 534 return chan; 535 } 536 EXPORT_SYMBOL_GPL(dma_get_slave_channel); 537 538 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) 539 { 540 dma_cap_mask_t mask; 541 struct dma_chan *chan; 542 int err; 543 544 dma_cap_zero(mask); 545 dma_cap_set(DMA_SLAVE, mask); 546 547 /* lock against __dma_request_channel */ 548 mutex_lock(&dma_list_mutex); 549 550 chan = private_candidate(&mask, device, NULL, NULL); 551 if (chan) { 552 err = dma_chan_get(chan); 553 if (err) { 554 pr_debug("%s: failed to get %s: (%d)\n", 555 __func__, dma_chan_name(chan), err); 556 chan = NULL; 557 } 558 } 559 560 mutex_unlock(&dma_list_mutex); 561 562 return chan; 563 } 564 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); 565 566 /** 567 * __dma_request_channel - try to allocate an exclusive channel 568 * @mask: capabilities that the channel must satisfy 569 * @fn: optional callback to disposition available channels 570 * @fn_param: opaque parameter to pass to dma_filter_fn 571 * 572 * Returns pointer to appropriate DMA channel on success or NULL. 573 */ 574 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 575 dma_filter_fn fn, void *fn_param) 576 { 577 struct dma_device *device, *_d; 578 struct dma_chan *chan = NULL; 579 int err; 580 581 /* Find a channel */ 582 mutex_lock(&dma_list_mutex); 583 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 584 chan = private_candidate(mask, device, fn, fn_param); 585 if (chan) { 586 /* Found a suitable channel, try to grab, prep, and 587 * return it. We first set DMA_PRIVATE to disable 588 * balance_ref_count as this channel will not be 589 * published in the general-purpose allocator 590 */ 591 dma_cap_set(DMA_PRIVATE, device->cap_mask); 592 device->privatecnt++; 593 err = dma_chan_get(chan); 594 595 if (err == -ENODEV) { 596 pr_debug("%s: %s module removed\n", 597 __func__, dma_chan_name(chan)); 598 list_del_rcu(&device->global_node); 599 } else if (err) 600 pr_debug("%s: failed to get %s: (%d)\n", 601 __func__, dma_chan_name(chan), err); 602 else 603 break; 604 if (--device->privatecnt == 0) 605 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 606 chan = NULL; 607 } 608 } 609 mutex_unlock(&dma_list_mutex); 610 611 pr_debug("%s: %s (%s)\n", 612 __func__, 613 chan ? "success" : "fail", 614 chan ? dma_chan_name(chan) : NULL); 615 616 return chan; 617 } 618 EXPORT_SYMBOL_GPL(__dma_request_channel); 619 620 /** 621 * dma_request_slave_channel - try to allocate an exclusive slave channel 622 * @dev: pointer to client device structure 623 * @name: slave channel name 624 * 625 * Returns pointer to appropriate DMA channel on success or an error pointer. 626 */ 627 struct dma_chan *dma_request_slave_channel_reason(struct device *dev, 628 const char *name) 629 { 630 /* If device-tree is present get slave info from here */ 631 if (dev->of_node) 632 return of_dma_request_slave_channel(dev->of_node, name); 633 634 /* If device was enumerated by ACPI get slave info from here */ 635 if (ACPI_HANDLE(dev)) 636 return acpi_dma_request_slave_chan_by_name(dev, name); 637 638 return ERR_PTR(-ENODEV); 639 } 640 EXPORT_SYMBOL_GPL(dma_request_slave_channel_reason); 641 642 /** 643 * dma_request_slave_channel - try to allocate an exclusive slave channel 644 * @dev: pointer to client device structure 645 * @name: slave channel name 646 * 647 * Returns pointer to appropriate DMA channel on success or NULL. 648 */ 649 struct dma_chan *dma_request_slave_channel(struct device *dev, 650 const char *name) 651 { 652 struct dma_chan *ch = dma_request_slave_channel_reason(dev, name); 653 if (IS_ERR(ch)) 654 return NULL; 655 return ch; 656 } 657 EXPORT_SYMBOL_GPL(dma_request_slave_channel); 658 659 void dma_release_channel(struct dma_chan *chan) 660 { 661 mutex_lock(&dma_list_mutex); 662 WARN_ONCE(chan->client_count != 1, 663 "chan reference count %d != 1\n", chan->client_count); 664 dma_chan_put(chan); 665 /* drop PRIVATE cap enabled by __dma_request_channel() */ 666 if (--chan->device->privatecnt == 0) 667 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); 668 mutex_unlock(&dma_list_mutex); 669 } 670 EXPORT_SYMBOL_GPL(dma_release_channel); 671 672 /** 673 * dmaengine_get - register interest in dma_channels 674 */ 675 void dmaengine_get(void) 676 { 677 struct dma_device *device, *_d; 678 struct dma_chan *chan; 679 int err; 680 681 mutex_lock(&dma_list_mutex); 682 dmaengine_ref_count++; 683 684 /* try to grab channels */ 685 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 686 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 687 continue; 688 list_for_each_entry(chan, &device->channels, device_node) { 689 err = dma_chan_get(chan); 690 if (err == -ENODEV) { 691 /* module removed before we could use it */ 692 list_del_rcu(&device->global_node); 693 break; 694 } else if (err) 695 pr_debug("%s: failed to get %s: (%d)\n", 696 __func__, dma_chan_name(chan), err); 697 } 698 } 699 700 /* if this is the first reference and there were channels 701 * waiting we need to rebalance to get those channels 702 * incorporated into the channel table 703 */ 704 if (dmaengine_ref_count == 1) 705 dma_channel_rebalance(); 706 mutex_unlock(&dma_list_mutex); 707 } 708 EXPORT_SYMBOL(dmaengine_get); 709 710 /** 711 * dmaengine_put - let dma drivers be removed when ref_count == 0 712 */ 713 void dmaengine_put(void) 714 { 715 struct dma_device *device; 716 struct dma_chan *chan; 717 718 mutex_lock(&dma_list_mutex); 719 dmaengine_ref_count--; 720 BUG_ON(dmaengine_ref_count < 0); 721 /* drop channel references */ 722 list_for_each_entry(device, &dma_device_list, global_node) { 723 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 724 continue; 725 list_for_each_entry(chan, &device->channels, device_node) 726 dma_chan_put(chan); 727 } 728 mutex_unlock(&dma_list_mutex); 729 } 730 EXPORT_SYMBOL(dmaengine_put); 731 732 static bool device_has_all_tx_types(struct dma_device *device) 733 { 734 /* A device that satisfies this test has channels that will never cause 735 * an async_tx channel switch event as all possible operation types can 736 * be handled. 737 */ 738 #ifdef CONFIG_ASYNC_TX_DMA 739 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) 740 return false; 741 #endif 742 743 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE) 744 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) 745 return false; 746 #endif 747 748 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE) 749 if (!dma_has_cap(DMA_XOR, device->cap_mask)) 750 return false; 751 752 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA 753 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) 754 return false; 755 #endif 756 #endif 757 758 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE) 759 if (!dma_has_cap(DMA_PQ, device->cap_mask)) 760 return false; 761 762 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA 763 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) 764 return false; 765 #endif 766 #endif 767 768 return true; 769 } 770 771 static int get_dma_id(struct dma_device *device) 772 { 773 int rc; 774 775 mutex_lock(&dma_list_mutex); 776 777 rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL); 778 if (rc >= 0) 779 device->dev_id = rc; 780 781 mutex_unlock(&dma_list_mutex); 782 return rc < 0 ? rc : 0; 783 } 784 785 /** 786 * dma_async_device_register - registers DMA devices found 787 * @device: &dma_device 788 */ 789 int dma_async_device_register(struct dma_device *device) 790 { 791 int chancnt = 0, rc; 792 struct dma_chan* chan; 793 atomic_t *idr_ref; 794 795 if (!device) 796 return -ENODEV; 797 798 /* validate device routines */ 799 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) && 800 !device->device_prep_dma_memcpy); 801 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) && 802 !device->device_prep_dma_xor); 803 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) && 804 !device->device_prep_dma_xor_val); 805 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) && 806 !device->device_prep_dma_pq); 807 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) && 808 !device->device_prep_dma_pq_val); 809 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) && 810 !device->device_prep_dma_interrupt); 811 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) && 812 !device->device_prep_dma_sg); 813 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) && 814 !device->device_prep_dma_cyclic); 815 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) && 816 !device->device_control); 817 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && 818 !device->device_prep_interleaved_dma); 819 820 BUG_ON(!device->device_alloc_chan_resources); 821 BUG_ON(!device->device_free_chan_resources); 822 BUG_ON(!device->device_tx_status); 823 BUG_ON(!device->device_issue_pending); 824 BUG_ON(!device->dev); 825 826 /* note: this only matters in the 827 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case 828 */ 829 if (device_has_all_tx_types(device)) 830 dma_cap_set(DMA_ASYNC_TX, device->cap_mask); 831 832 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL); 833 if (!idr_ref) 834 return -ENOMEM; 835 rc = get_dma_id(device); 836 if (rc != 0) { 837 kfree(idr_ref); 838 return rc; 839 } 840 841 atomic_set(idr_ref, 0); 842 843 /* represent channels in sysfs. Probably want devs too */ 844 list_for_each_entry(chan, &device->channels, device_node) { 845 rc = -ENOMEM; 846 chan->local = alloc_percpu(typeof(*chan->local)); 847 if (chan->local == NULL) 848 goto err_out; 849 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); 850 if (chan->dev == NULL) { 851 free_percpu(chan->local); 852 chan->local = NULL; 853 goto err_out; 854 } 855 856 chan->chan_id = chancnt++; 857 chan->dev->device.class = &dma_devclass; 858 chan->dev->device.parent = device->dev; 859 chan->dev->chan = chan; 860 chan->dev->idr_ref = idr_ref; 861 chan->dev->dev_id = device->dev_id; 862 atomic_inc(idr_ref); 863 dev_set_name(&chan->dev->device, "dma%dchan%d", 864 device->dev_id, chan->chan_id); 865 866 rc = device_register(&chan->dev->device); 867 if (rc) { 868 free_percpu(chan->local); 869 chan->local = NULL; 870 kfree(chan->dev); 871 atomic_dec(idr_ref); 872 goto err_out; 873 } 874 chan->client_count = 0; 875 } 876 device->chancnt = chancnt; 877 878 mutex_lock(&dma_list_mutex); 879 /* take references on public channels */ 880 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) 881 list_for_each_entry(chan, &device->channels, device_node) { 882 /* if clients are already waiting for channels we need 883 * to take references on their behalf 884 */ 885 if (dma_chan_get(chan) == -ENODEV) { 886 /* note we can only get here for the first 887 * channel as the remaining channels are 888 * guaranteed to get a reference 889 */ 890 rc = -ENODEV; 891 mutex_unlock(&dma_list_mutex); 892 goto err_out; 893 } 894 } 895 list_add_tail_rcu(&device->global_node, &dma_device_list); 896 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 897 device->privatecnt++; /* Always private */ 898 dma_channel_rebalance(); 899 mutex_unlock(&dma_list_mutex); 900 901 return 0; 902 903 err_out: 904 /* if we never registered a channel just release the idr */ 905 if (atomic_read(idr_ref) == 0) { 906 mutex_lock(&dma_list_mutex); 907 idr_remove(&dma_idr, device->dev_id); 908 mutex_unlock(&dma_list_mutex); 909 kfree(idr_ref); 910 return rc; 911 } 912 913 list_for_each_entry(chan, &device->channels, device_node) { 914 if (chan->local == NULL) 915 continue; 916 mutex_lock(&dma_list_mutex); 917 chan->dev->chan = NULL; 918 mutex_unlock(&dma_list_mutex); 919 device_unregister(&chan->dev->device); 920 free_percpu(chan->local); 921 } 922 return rc; 923 } 924 EXPORT_SYMBOL(dma_async_device_register); 925 926 /** 927 * dma_async_device_unregister - unregister a DMA device 928 * @device: &dma_device 929 * 930 * This routine is called by dma driver exit routines, dmaengine holds module 931 * references to prevent it being called while channels are in use. 932 */ 933 void dma_async_device_unregister(struct dma_device *device) 934 { 935 struct dma_chan *chan; 936 937 mutex_lock(&dma_list_mutex); 938 list_del_rcu(&device->global_node); 939 dma_channel_rebalance(); 940 mutex_unlock(&dma_list_mutex); 941 942 list_for_each_entry(chan, &device->channels, device_node) { 943 WARN_ONCE(chan->client_count, 944 "%s called while %d clients hold a reference\n", 945 __func__, chan->client_count); 946 mutex_lock(&dma_list_mutex); 947 chan->dev->chan = NULL; 948 mutex_unlock(&dma_list_mutex); 949 device_unregister(&chan->dev->device); 950 free_percpu(chan->local); 951 } 952 } 953 EXPORT_SYMBOL(dma_async_device_unregister); 954 955 struct dmaengine_unmap_pool { 956 struct kmem_cache *cache; 957 const char *name; 958 mempool_t *pool; 959 size_t size; 960 }; 961 962 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } 963 static struct dmaengine_unmap_pool unmap_pool[] = { 964 __UNMAP_POOL(2), 965 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 966 __UNMAP_POOL(16), 967 __UNMAP_POOL(128), 968 __UNMAP_POOL(256), 969 #endif 970 }; 971 972 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) 973 { 974 int order = get_count_order(nr); 975 976 switch (order) { 977 case 0 ... 1: 978 return &unmap_pool[0]; 979 case 2 ... 4: 980 return &unmap_pool[1]; 981 case 5 ... 7: 982 return &unmap_pool[2]; 983 case 8: 984 return &unmap_pool[3]; 985 default: 986 BUG(); 987 return NULL; 988 } 989 } 990 991 static void dmaengine_unmap(struct kref *kref) 992 { 993 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); 994 struct device *dev = unmap->dev; 995 int cnt, i; 996 997 cnt = unmap->to_cnt; 998 for (i = 0; i < cnt; i++) 999 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1000 DMA_TO_DEVICE); 1001 cnt += unmap->from_cnt; 1002 for (; i < cnt; i++) 1003 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1004 DMA_FROM_DEVICE); 1005 cnt += unmap->bidi_cnt; 1006 for (; i < cnt; i++) { 1007 if (unmap->addr[i] == 0) 1008 continue; 1009 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1010 DMA_BIDIRECTIONAL); 1011 } 1012 cnt = unmap->map_cnt; 1013 mempool_free(unmap, __get_unmap_pool(cnt)->pool); 1014 } 1015 1016 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 1017 { 1018 if (unmap) 1019 kref_put(&unmap->kref, dmaengine_unmap); 1020 } 1021 EXPORT_SYMBOL_GPL(dmaengine_unmap_put); 1022 1023 static void dmaengine_destroy_unmap_pool(void) 1024 { 1025 int i; 1026 1027 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1028 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1029 1030 if (p->pool) 1031 mempool_destroy(p->pool); 1032 p->pool = NULL; 1033 if (p->cache) 1034 kmem_cache_destroy(p->cache); 1035 p->cache = NULL; 1036 } 1037 } 1038 1039 static int __init dmaengine_init_unmap_pool(void) 1040 { 1041 int i; 1042 1043 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1044 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1045 size_t size; 1046 1047 size = sizeof(struct dmaengine_unmap_data) + 1048 sizeof(dma_addr_t) * p->size; 1049 1050 p->cache = kmem_cache_create(p->name, size, 0, 1051 SLAB_HWCACHE_ALIGN, NULL); 1052 if (!p->cache) 1053 break; 1054 p->pool = mempool_create_slab_pool(1, p->cache); 1055 if (!p->pool) 1056 break; 1057 } 1058 1059 if (i == ARRAY_SIZE(unmap_pool)) 1060 return 0; 1061 1062 dmaengine_destroy_unmap_pool(); 1063 return -ENOMEM; 1064 } 1065 1066 struct dmaengine_unmap_data * 1067 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 1068 { 1069 struct dmaengine_unmap_data *unmap; 1070 1071 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); 1072 if (!unmap) 1073 return NULL; 1074 1075 memset(unmap, 0, sizeof(*unmap)); 1076 kref_init(&unmap->kref); 1077 unmap->dev = dev; 1078 unmap->map_cnt = nr; 1079 1080 return unmap; 1081 } 1082 EXPORT_SYMBOL(dmaengine_get_unmap_data); 1083 1084 /** 1085 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page 1086 * @chan: DMA channel to offload copy to 1087 * @dest_pg: destination page 1088 * @dest_off: offset in page to copy to 1089 * @src_pg: source page 1090 * @src_off: offset in page to copy from 1091 * @len: length 1092 * 1093 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus 1094 * address according to the DMA mapping API rules for streaming mappings. 1095 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident 1096 * (kernel memory or locked user space pages). 1097 */ 1098 dma_cookie_t 1099 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg, 1100 unsigned int dest_off, struct page *src_pg, unsigned int src_off, 1101 size_t len) 1102 { 1103 struct dma_device *dev = chan->device; 1104 struct dma_async_tx_descriptor *tx; 1105 struct dmaengine_unmap_data *unmap; 1106 dma_cookie_t cookie; 1107 unsigned long flags; 1108 1109 unmap = dmaengine_get_unmap_data(dev->dev, 2, GFP_NOWAIT); 1110 if (!unmap) 1111 return -ENOMEM; 1112 1113 unmap->to_cnt = 1; 1114 unmap->from_cnt = 1; 1115 unmap->addr[0] = dma_map_page(dev->dev, src_pg, src_off, len, 1116 DMA_TO_DEVICE); 1117 unmap->addr[1] = dma_map_page(dev->dev, dest_pg, dest_off, len, 1118 DMA_FROM_DEVICE); 1119 unmap->len = len; 1120 flags = DMA_CTRL_ACK; 1121 tx = dev->device_prep_dma_memcpy(chan, unmap->addr[1], unmap->addr[0], 1122 len, flags); 1123 1124 if (!tx) { 1125 dmaengine_unmap_put(unmap); 1126 return -ENOMEM; 1127 } 1128 1129 dma_set_unmap(tx, unmap); 1130 cookie = tx->tx_submit(tx); 1131 dmaengine_unmap_put(unmap); 1132 1133 preempt_disable(); 1134 __this_cpu_add(chan->local->bytes_transferred, len); 1135 __this_cpu_inc(chan->local->memcpy_count); 1136 preempt_enable(); 1137 1138 return cookie; 1139 } 1140 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg); 1141 1142 /** 1143 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses 1144 * @chan: DMA channel to offload copy to 1145 * @dest: destination address (virtual) 1146 * @src: source address (virtual) 1147 * @len: length 1148 * 1149 * Both @dest and @src must be mappable to a bus address according to the 1150 * DMA mapping API rules for streaming mappings. 1151 * Both @dest and @src must stay memory resident (kernel memory or locked 1152 * user space pages). 1153 */ 1154 dma_cookie_t 1155 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest, 1156 void *src, size_t len) 1157 { 1158 return dma_async_memcpy_pg_to_pg(chan, virt_to_page(dest), 1159 (unsigned long) dest & ~PAGE_MASK, 1160 virt_to_page(src), 1161 (unsigned long) src & ~PAGE_MASK, len); 1162 } 1163 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf); 1164 1165 /** 1166 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page 1167 * @chan: DMA channel to offload copy to 1168 * @page: destination page 1169 * @offset: offset in page to copy to 1170 * @kdata: source address (virtual) 1171 * @len: length 1172 * 1173 * Both @page/@offset and @kdata must be mappable to a bus address according 1174 * to the DMA mapping API rules for streaming mappings. 1175 * Both @page/@offset and @kdata must stay memory resident (kernel memory or 1176 * locked user space pages) 1177 */ 1178 dma_cookie_t 1179 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page, 1180 unsigned int offset, void *kdata, size_t len) 1181 { 1182 return dma_async_memcpy_pg_to_pg(chan, page, offset, 1183 virt_to_page(kdata), 1184 (unsigned long) kdata & ~PAGE_MASK, len); 1185 } 1186 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg); 1187 1188 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1189 struct dma_chan *chan) 1190 { 1191 tx->chan = chan; 1192 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1193 spin_lock_init(&tx->lock); 1194 #endif 1195 } 1196 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 1197 1198 /* dma_wait_for_async_tx - spin wait for a transaction to complete 1199 * @tx: in-flight transaction to wait on 1200 */ 1201 enum dma_status 1202 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1203 { 1204 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 1205 1206 if (!tx) 1207 return DMA_COMPLETE; 1208 1209 while (tx->cookie == -EBUSY) { 1210 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 1211 pr_err("%s timeout waiting for descriptor submission\n", 1212 __func__); 1213 return DMA_ERROR; 1214 } 1215 cpu_relax(); 1216 } 1217 return dma_sync_wait(tx->chan, tx->cookie); 1218 } 1219 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); 1220 1221 /* dma_run_dependencies - helper routine for dma drivers to process 1222 * (start) dependent operations on their target channel 1223 * @tx: transaction with dependencies 1224 */ 1225 void dma_run_dependencies(struct dma_async_tx_descriptor *tx) 1226 { 1227 struct dma_async_tx_descriptor *dep = txd_next(tx); 1228 struct dma_async_tx_descriptor *dep_next; 1229 struct dma_chan *chan; 1230 1231 if (!dep) 1232 return; 1233 1234 /* we'll submit tx->next now, so clear the link */ 1235 txd_clear_next(tx); 1236 chan = dep->chan; 1237 1238 /* keep submitting up until a channel switch is detected 1239 * in that case we will be called again as a result of 1240 * processing the interrupt from async_tx_channel_switch 1241 */ 1242 for (; dep; dep = dep_next) { 1243 txd_lock(dep); 1244 txd_clear_parent(dep); 1245 dep_next = txd_next(dep); 1246 if (dep_next && dep_next->chan == chan) 1247 txd_clear_next(dep); /* ->next will be submitted */ 1248 else 1249 dep_next = NULL; /* submit current dep and terminate */ 1250 txd_unlock(dep); 1251 1252 dep->tx_submit(dep); 1253 } 1254 1255 chan->device->device_issue_pending(chan); 1256 } 1257 EXPORT_SYMBOL_GPL(dma_run_dependencies); 1258 1259 static int __init dma_bus_init(void) 1260 { 1261 int err = dmaengine_init_unmap_pool(); 1262 1263 if (err) 1264 return err; 1265 return class_register(&dma_devclass); 1266 } 1267 arch_initcall(dma_bus_init); 1268 1269 1270