1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5 6 /* 7 * This code implements the DMA subsystem. It provides a HW-neutral interface 8 * for other kernel code to use asynchronous memory copy capabilities, 9 * if present, and allows different HW DMA drivers to register as providing 10 * this capability. 11 * 12 * Due to the fact we are accelerating what is already a relatively fast 13 * operation, the code goes to great lengths to avoid additional overhead, 14 * such as locking. 15 * 16 * LOCKING: 17 * 18 * The subsystem keeps a global list of dma_device structs it is protected by a 19 * mutex, dma_list_mutex. 20 * 21 * A subsystem can get access to a channel by calling dmaengine_get() followed 22 * by dma_find_channel(), or if it has need for an exclusive channel it can call 23 * dma_request_channel(). Once a channel is allocated a reference is taken 24 * against its corresponding driver to disable removal. 25 * 26 * Each device has a channels list, which runs unlocked but is never modified 27 * once the device is registered, it's just setup by the driver. 28 * 29 * See Documentation/driver-api/dmaengine for more details 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/platform_device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/init.h> 37 #include <linux/module.h> 38 #include <linux/mm.h> 39 #include <linux/device.h> 40 #include <linux/dmaengine.h> 41 #include <linux/hardirq.h> 42 #include <linux/spinlock.h> 43 #include <linux/percpu.h> 44 #include <linux/rcupdate.h> 45 #include <linux/mutex.h> 46 #include <linux/jiffies.h> 47 #include <linux/rculist.h> 48 #include <linux/idr.h> 49 #include <linux/slab.h> 50 #include <linux/acpi.h> 51 #include <linux/acpi_dma.h> 52 #include <linux/of_dma.h> 53 #include <linux/mempool.h> 54 #include <linux/numa.h> 55 56 #include "dmaengine.h" 57 58 static DEFINE_MUTEX(dma_list_mutex); 59 static DEFINE_IDA(dma_ida); 60 static LIST_HEAD(dma_device_list); 61 static long dmaengine_ref_count; 62 63 /* --- debugfs implementation --- */ 64 #ifdef CONFIG_DEBUG_FS 65 #include <linux/debugfs.h> 66 67 static struct dentry *rootdir; 68 69 static void dmaengine_debug_register(struct dma_device *dma_dev) 70 { 71 dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev), 72 rootdir); 73 if (IS_ERR(dma_dev->dbg_dev_root)) 74 dma_dev->dbg_dev_root = NULL; 75 } 76 77 static void dmaengine_debug_unregister(struct dma_device *dma_dev) 78 { 79 debugfs_remove_recursive(dma_dev->dbg_dev_root); 80 dma_dev->dbg_dev_root = NULL; 81 } 82 83 static void dmaengine_dbg_summary_show(struct seq_file *s, 84 struct dma_device *dma_dev) 85 { 86 struct dma_chan *chan; 87 88 list_for_each_entry(chan, &dma_dev->channels, device_node) { 89 if (chan->client_count) { 90 seq_printf(s, " %-13s| %s", dma_chan_name(chan), 91 chan->dbg_client_name ?: "in-use"); 92 93 if (chan->router) 94 seq_printf(s, " (via router: %s)\n", 95 dev_name(chan->router->dev)); 96 else 97 seq_puts(s, "\n"); 98 } 99 } 100 } 101 102 static int dmaengine_summary_show(struct seq_file *s, void *data) 103 { 104 struct dma_device *dma_dev = NULL; 105 106 mutex_lock(&dma_list_mutex); 107 list_for_each_entry(dma_dev, &dma_device_list, global_node) { 108 seq_printf(s, "dma%d (%s): number of channels: %u\n", 109 dma_dev->dev_id, dev_name(dma_dev->dev), 110 dma_dev->chancnt); 111 112 if (dma_dev->dbg_summary_show) 113 dma_dev->dbg_summary_show(s, dma_dev); 114 else 115 dmaengine_dbg_summary_show(s, dma_dev); 116 117 if (!list_is_last(&dma_dev->global_node, &dma_device_list)) 118 seq_puts(s, "\n"); 119 } 120 mutex_unlock(&dma_list_mutex); 121 122 return 0; 123 } 124 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary); 125 126 static void __init dmaengine_debugfs_init(void) 127 { 128 rootdir = debugfs_create_dir("dmaengine", NULL); 129 130 /* /sys/kernel/debug/dmaengine/summary */ 131 debugfs_create_file("summary", 0444, rootdir, NULL, 132 &dmaengine_summary_fops); 133 } 134 #else 135 static inline void dmaengine_debugfs_init(void) { } 136 static inline int dmaengine_debug_register(struct dma_device *dma_dev) 137 { 138 return 0; 139 } 140 141 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { } 142 #endif /* DEBUG_FS */ 143 144 /* --- sysfs implementation --- */ 145 146 #define DMA_SLAVE_NAME "slave" 147 148 /** 149 * dev_to_dma_chan - convert a device pointer to its sysfs container object 150 * @dev: device node 151 * 152 * Must be called under dma_list_mutex. 153 */ 154 static struct dma_chan *dev_to_dma_chan(struct device *dev) 155 { 156 struct dma_chan_dev *chan_dev; 157 158 chan_dev = container_of(dev, typeof(*chan_dev), device); 159 return chan_dev->chan; 160 } 161 162 static ssize_t memcpy_count_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct dma_chan *chan; 166 unsigned long count = 0; 167 int i; 168 int err; 169 170 mutex_lock(&dma_list_mutex); 171 chan = dev_to_dma_chan(dev); 172 if (chan) { 173 for_each_possible_cpu(i) 174 count += per_cpu_ptr(chan->local, i)->memcpy_count; 175 err = sysfs_emit(buf, "%lu\n", count); 176 } else 177 err = -ENODEV; 178 mutex_unlock(&dma_list_mutex); 179 180 return err; 181 } 182 static DEVICE_ATTR_RO(memcpy_count); 183 184 static ssize_t bytes_transferred_show(struct device *dev, 185 struct device_attribute *attr, char *buf) 186 { 187 struct dma_chan *chan; 188 unsigned long count = 0; 189 int i; 190 int err; 191 192 mutex_lock(&dma_list_mutex); 193 chan = dev_to_dma_chan(dev); 194 if (chan) { 195 for_each_possible_cpu(i) 196 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 197 err = sysfs_emit(buf, "%lu\n", count); 198 } else 199 err = -ENODEV; 200 mutex_unlock(&dma_list_mutex); 201 202 return err; 203 } 204 static DEVICE_ATTR_RO(bytes_transferred); 205 206 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, 207 char *buf) 208 { 209 struct dma_chan *chan; 210 int err; 211 212 mutex_lock(&dma_list_mutex); 213 chan = dev_to_dma_chan(dev); 214 if (chan) 215 err = sysfs_emit(buf, "%d\n", chan->client_count); 216 else 217 err = -ENODEV; 218 mutex_unlock(&dma_list_mutex); 219 220 return err; 221 } 222 static DEVICE_ATTR_RO(in_use); 223 224 static struct attribute *dma_dev_attrs[] = { 225 &dev_attr_memcpy_count.attr, 226 &dev_attr_bytes_transferred.attr, 227 &dev_attr_in_use.attr, 228 NULL, 229 }; 230 ATTRIBUTE_GROUPS(dma_dev); 231 232 static void chan_dev_release(struct device *dev) 233 { 234 struct dma_chan_dev *chan_dev; 235 236 chan_dev = container_of(dev, typeof(*chan_dev), device); 237 kfree(chan_dev); 238 } 239 240 static struct class dma_devclass = { 241 .name = "dma", 242 .dev_groups = dma_dev_groups, 243 .dev_release = chan_dev_release, 244 }; 245 246 /* --- client and device registration --- */ 247 248 /* enable iteration over all operation types */ 249 static dma_cap_mask_t dma_cap_mask_all; 250 251 /** 252 * struct dma_chan_tbl_ent - tracks channel allocations per core/operation 253 * @chan: associated channel for this entry 254 */ 255 struct dma_chan_tbl_ent { 256 struct dma_chan *chan; 257 }; 258 259 /* percpu lookup table for memory-to-memory offload providers */ 260 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; 261 262 static int __init dma_channel_table_init(void) 263 { 264 enum dma_transaction_type cap; 265 int err = 0; 266 267 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); 268 269 /* 'interrupt', 'private', and 'slave' are channel capabilities, 270 * but are not associated with an operation so they do not need 271 * an entry in the channel_table 272 */ 273 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); 274 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); 275 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); 276 277 for_each_dma_cap_mask(cap, dma_cap_mask_all) { 278 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); 279 if (!channel_table[cap]) { 280 err = -ENOMEM; 281 break; 282 } 283 } 284 285 if (err) { 286 pr_err("dmaengine dma_channel_table_init failure: %d\n", err); 287 for_each_dma_cap_mask(cap, dma_cap_mask_all) 288 free_percpu(channel_table[cap]); 289 } 290 291 return err; 292 } 293 arch_initcall(dma_channel_table_init); 294 295 /** 296 * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU 297 * @chan: DMA channel to test 298 * @cpu: CPU index which the channel should be close to 299 * 300 * Returns true if the channel is in the same NUMA-node as the CPU. 301 */ 302 static bool dma_chan_is_local(struct dma_chan *chan, int cpu) 303 { 304 int node = dev_to_node(chan->device->dev); 305 return node == NUMA_NO_NODE || 306 cpumask_test_cpu(cpu, cpumask_of_node(node)); 307 } 308 309 /** 310 * min_chan - finds the channel with min count and in the same NUMA-node as the CPU 311 * @cap: capability to match 312 * @cpu: CPU index which the channel should be close to 313 * 314 * If some channels are close to the given CPU, the one with the lowest 315 * reference count is returned. Otherwise, CPU is ignored and only the 316 * reference count is taken into account. 317 * 318 * Must be called under dma_list_mutex. 319 */ 320 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) 321 { 322 struct dma_device *device; 323 struct dma_chan *chan; 324 struct dma_chan *min = NULL; 325 struct dma_chan *localmin = NULL; 326 327 list_for_each_entry(device, &dma_device_list, global_node) { 328 if (!dma_has_cap(cap, device->cap_mask) || 329 dma_has_cap(DMA_PRIVATE, device->cap_mask)) 330 continue; 331 list_for_each_entry(chan, &device->channels, device_node) { 332 if (!chan->client_count) 333 continue; 334 if (!min || chan->table_count < min->table_count) 335 min = chan; 336 337 if (dma_chan_is_local(chan, cpu)) 338 if (!localmin || 339 chan->table_count < localmin->table_count) 340 localmin = chan; 341 } 342 } 343 344 chan = localmin ? localmin : min; 345 346 if (chan) 347 chan->table_count++; 348 349 return chan; 350 } 351 352 /** 353 * dma_channel_rebalance - redistribute the available channels 354 * 355 * Optimize for CPU isolation (each CPU gets a dedicated channel for an 356 * operation type) in the SMP case, and operation isolation (avoid 357 * multi-tasking channels) in the non-SMP case. 358 * 359 * Must be called under dma_list_mutex. 360 */ 361 static void dma_channel_rebalance(void) 362 { 363 struct dma_chan *chan; 364 struct dma_device *device; 365 int cpu; 366 int cap; 367 368 /* undo the last distribution */ 369 for_each_dma_cap_mask(cap, dma_cap_mask_all) 370 for_each_possible_cpu(cpu) 371 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; 372 373 list_for_each_entry(device, &dma_device_list, global_node) { 374 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 375 continue; 376 list_for_each_entry(chan, &device->channels, device_node) 377 chan->table_count = 0; 378 } 379 380 /* don't populate the channel_table if no clients are available */ 381 if (!dmaengine_ref_count) 382 return; 383 384 /* redistribute available channels */ 385 for_each_dma_cap_mask(cap, dma_cap_mask_all) 386 for_each_online_cpu(cpu) { 387 chan = min_chan(cap, cpu); 388 per_cpu_ptr(channel_table[cap], cpu)->chan = chan; 389 } 390 } 391 392 static int dma_device_satisfies_mask(struct dma_device *device, 393 const dma_cap_mask_t *want) 394 { 395 dma_cap_mask_t has; 396 397 bitmap_and(has.bits, want->bits, device->cap_mask.bits, 398 DMA_TX_TYPE_END); 399 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 400 } 401 402 static struct module *dma_chan_to_owner(struct dma_chan *chan) 403 { 404 return chan->device->owner; 405 } 406 407 /** 408 * balance_ref_count - catch up the channel reference count 409 * @chan: channel to balance ->client_count versus dmaengine_ref_count 410 * 411 * Must be called under dma_list_mutex. 412 */ 413 static void balance_ref_count(struct dma_chan *chan) 414 { 415 struct module *owner = dma_chan_to_owner(chan); 416 417 while (chan->client_count < dmaengine_ref_count) { 418 __module_get(owner); 419 chan->client_count++; 420 } 421 } 422 423 static void dma_device_release(struct kref *ref) 424 { 425 struct dma_device *device = container_of(ref, struct dma_device, ref); 426 427 list_del_rcu(&device->global_node); 428 dma_channel_rebalance(); 429 430 if (device->device_release) 431 device->device_release(device); 432 } 433 434 static void dma_device_put(struct dma_device *device) 435 { 436 lockdep_assert_held(&dma_list_mutex); 437 kref_put(&device->ref, dma_device_release); 438 } 439 440 /** 441 * dma_chan_get - try to grab a DMA channel's parent driver module 442 * @chan: channel to grab 443 * 444 * Must be called under dma_list_mutex. 445 */ 446 static int dma_chan_get(struct dma_chan *chan) 447 { 448 struct module *owner = dma_chan_to_owner(chan); 449 int ret; 450 451 /* The channel is already in use, update client count */ 452 if (chan->client_count) { 453 __module_get(owner); 454 chan->client_count++; 455 return 0; 456 } 457 458 if (!try_module_get(owner)) 459 return -ENODEV; 460 461 ret = kref_get_unless_zero(&chan->device->ref); 462 if (!ret) { 463 ret = -ENODEV; 464 goto module_put_out; 465 } 466 467 /* allocate upon first client reference */ 468 if (chan->device->device_alloc_chan_resources) { 469 ret = chan->device->device_alloc_chan_resources(chan); 470 if (ret < 0) 471 goto err_out; 472 } 473 474 chan->client_count++; 475 476 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) 477 balance_ref_count(chan); 478 479 return 0; 480 481 err_out: 482 dma_device_put(chan->device); 483 module_put_out: 484 module_put(owner); 485 return ret; 486 } 487 488 /** 489 * dma_chan_put - drop a reference to a DMA channel's parent driver module 490 * @chan: channel to release 491 * 492 * Must be called under dma_list_mutex. 493 */ 494 static void dma_chan_put(struct dma_chan *chan) 495 { 496 /* This channel is not in use, bail out */ 497 if (!chan->client_count) 498 return; 499 500 chan->client_count--; 501 502 /* This channel is not in use anymore, free it */ 503 if (!chan->client_count && chan->device->device_free_chan_resources) { 504 /* Make sure all operations have completed */ 505 dmaengine_synchronize(chan); 506 chan->device->device_free_chan_resources(chan); 507 } 508 509 /* If the channel is used via a DMA request router, free the mapping */ 510 if (chan->router && chan->router->route_free) { 511 chan->router->route_free(chan->router->dev, chan->route_data); 512 chan->router = NULL; 513 chan->route_data = NULL; 514 } 515 516 dma_device_put(chan->device); 517 module_put(dma_chan_to_owner(chan)); 518 } 519 520 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 521 { 522 enum dma_status status; 523 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 524 525 dma_async_issue_pending(chan); 526 do { 527 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 528 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 529 dev_err(chan->device->dev, "%s: timeout!\n", __func__); 530 return DMA_ERROR; 531 } 532 if (status != DMA_IN_PROGRESS) 533 break; 534 cpu_relax(); 535 } while (1); 536 537 return status; 538 } 539 EXPORT_SYMBOL(dma_sync_wait); 540 541 /** 542 * dma_find_channel - find a channel to carry out the operation 543 * @tx_type: transaction type 544 */ 545 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 546 { 547 return this_cpu_read(channel_table[tx_type]->chan); 548 } 549 EXPORT_SYMBOL(dma_find_channel); 550 551 /** 552 * dma_issue_pending_all - flush all pending operations across all channels 553 */ 554 void dma_issue_pending_all(void) 555 { 556 struct dma_device *device; 557 struct dma_chan *chan; 558 559 rcu_read_lock(); 560 list_for_each_entry_rcu(device, &dma_device_list, global_node) { 561 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 562 continue; 563 list_for_each_entry(chan, &device->channels, device_node) 564 if (chan->client_count) 565 device->device_issue_pending(chan); 566 } 567 rcu_read_unlock(); 568 } 569 EXPORT_SYMBOL(dma_issue_pending_all); 570 571 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 572 { 573 struct dma_device *device; 574 575 if (!chan || !caps) 576 return -EINVAL; 577 578 device = chan->device; 579 580 /* check if the channel supports slave transactions */ 581 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) || 582 test_bit(DMA_CYCLIC, device->cap_mask.bits))) 583 return -ENXIO; 584 585 /* 586 * Check whether it reports it uses the generic slave 587 * capabilities, if not, that means it doesn't support any 588 * kind of slave capabilities reporting. 589 */ 590 if (!device->directions) 591 return -ENXIO; 592 593 caps->src_addr_widths = device->src_addr_widths; 594 caps->dst_addr_widths = device->dst_addr_widths; 595 caps->directions = device->directions; 596 caps->min_burst = device->min_burst; 597 caps->max_burst = device->max_burst; 598 caps->max_sg_burst = device->max_sg_burst; 599 caps->residue_granularity = device->residue_granularity; 600 caps->descriptor_reuse = device->descriptor_reuse; 601 caps->cmd_pause = !!device->device_pause; 602 caps->cmd_resume = !!device->device_resume; 603 caps->cmd_terminate = !!device->device_terminate_all; 604 605 /* 606 * DMA engine device might be configured with non-uniformly 607 * distributed slave capabilities per device channels. In this 608 * case the corresponding driver may provide the device_caps 609 * callback to override the generic capabilities with 610 * channel-specific ones. 611 */ 612 if (device->device_caps) 613 device->device_caps(chan, caps); 614 615 return 0; 616 } 617 EXPORT_SYMBOL_GPL(dma_get_slave_caps); 618 619 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, 620 struct dma_device *dev, 621 dma_filter_fn fn, void *fn_param) 622 { 623 struct dma_chan *chan; 624 625 if (mask && !dma_device_satisfies_mask(dev, mask)) { 626 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__); 627 return NULL; 628 } 629 /* devices with multiple channels need special handling as we need to 630 * ensure that all channels are either private or public. 631 */ 632 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) 633 list_for_each_entry(chan, &dev->channels, device_node) { 634 /* some channels are already publicly allocated */ 635 if (chan->client_count) 636 return NULL; 637 } 638 639 list_for_each_entry(chan, &dev->channels, device_node) { 640 if (chan->client_count) { 641 dev_dbg(dev->dev, "%s: %s busy\n", 642 __func__, dma_chan_name(chan)); 643 continue; 644 } 645 if (fn && !fn(chan, fn_param)) { 646 dev_dbg(dev->dev, "%s: %s filter said false\n", 647 __func__, dma_chan_name(chan)); 648 continue; 649 } 650 return chan; 651 } 652 653 return NULL; 654 } 655 656 static struct dma_chan *find_candidate(struct dma_device *device, 657 const dma_cap_mask_t *mask, 658 dma_filter_fn fn, void *fn_param) 659 { 660 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param); 661 int err; 662 663 if (chan) { 664 /* Found a suitable channel, try to grab, prep, and return it. 665 * We first set DMA_PRIVATE to disable balance_ref_count as this 666 * channel will not be published in the general-purpose 667 * allocator 668 */ 669 dma_cap_set(DMA_PRIVATE, device->cap_mask); 670 device->privatecnt++; 671 err = dma_chan_get(chan); 672 673 if (err) { 674 if (err == -ENODEV) { 675 dev_dbg(device->dev, "%s: %s module removed\n", 676 __func__, dma_chan_name(chan)); 677 list_del_rcu(&device->global_node); 678 } else 679 dev_dbg(device->dev, 680 "%s: failed to get %s: (%d)\n", 681 __func__, dma_chan_name(chan), err); 682 683 if (--device->privatecnt == 0) 684 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 685 686 chan = ERR_PTR(err); 687 } 688 } 689 690 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 691 } 692 693 /** 694 * dma_get_slave_channel - try to get specific channel exclusively 695 * @chan: target channel 696 */ 697 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) 698 { 699 /* lock against __dma_request_channel */ 700 mutex_lock(&dma_list_mutex); 701 702 if (chan->client_count == 0) { 703 struct dma_device *device = chan->device; 704 int err; 705 706 dma_cap_set(DMA_PRIVATE, device->cap_mask); 707 device->privatecnt++; 708 err = dma_chan_get(chan); 709 if (err) { 710 dev_dbg(chan->device->dev, 711 "%s: failed to get %s: (%d)\n", 712 __func__, dma_chan_name(chan), err); 713 chan = NULL; 714 if (--device->privatecnt == 0) 715 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 716 } 717 } else 718 chan = NULL; 719 720 mutex_unlock(&dma_list_mutex); 721 722 723 return chan; 724 } 725 EXPORT_SYMBOL_GPL(dma_get_slave_channel); 726 727 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) 728 { 729 dma_cap_mask_t mask; 730 struct dma_chan *chan; 731 732 dma_cap_zero(mask); 733 dma_cap_set(DMA_SLAVE, mask); 734 735 /* lock against __dma_request_channel */ 736 mutex_lock(&dma_list_mutex); 737 738 chan = find_candidate(device, &mask, NULL, NULL); 739 740 mutex_unlock(&dma_list_mutex); 741 742 return IS_ERR(chan) ? NULL : chan; 743 } 744 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); 745 746 /** 747 * __dma_request_channel - try to allocate an exclusive channel 748 * @mask: capabilities that the channel must satisfy 749 * @fn: optional callback to disposition available channels 750 * @fn_param: opaque parameter to pass to dma_filter_fn() 751 * @np: device node to look for DMA channels 752 * 753 * Returns pointer to appropriate DMA channel on success or NULL. 754 */ 755 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 756 dma_filter_fn fn, void *fn_param, 757 struct device_node *np) 758 { 759 struct dma_device *device, *_d; 760 struct dma_chan *chan = NULL; 761 762 /* Find a channel */ 763 mutex_lock(&dma_list_mutex); 764 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 765 /* Finds a DMA controller with matching device node */ 766 if (np && device->dev->of_node && np != device->dev->of_node) 767 continue; 768 769 chan = find_candidate(device, mask, fn, fn_param); 770 if (!IS_ERR(chan)) 771 break; 772 773 chan = NULL; 774 } 775 mutex_unlock(&dma_list_mutex); 776 777 pr_debug("%s: %s (%s)\n", 778 __func__, 779 chan ? "success" : "fail", 780 chan ? dma_chan_name(chan) : NULL); 781 782 return chan; 783 } 784 EXPORT_SYMBOL_GPL(__dma_request_channel); 785 786 static const struct dma_slave_map *dma_filter_match(struct dma_device *device, 787 const char *name, 788 struct device *dev) 789 { 790 int i; 791 792 if (!device->filter.mapcnt) 793 return NULL; 794 795 for (i = 0; i < device->filter.mapcnt; i++) { 796 const struct dma_slave_map *map = &device->filter.map[i]; 797 798 if (!strcmp(map->devname, dev_name(dev)) && 799 !strcmp(map->slave, name)) 800 return map; 801 } 802 803 return NULL; 804 } 805 806 /** 807 * dma_request_chan - try to allocate an exclusive slave channel 808 * @dev: pointer to client device structure 809 * @name: slave channel name 810 * 811 * Returns pointer to appropriate DMA channel on success or an error pointer. 812 */ 813 struct dma_chan *dma_request_chan(struct device *dev, const char *name) 814 { 815 struct dma_device *d, *_d; 816 struct dma_chan *chan = NULL; 817 818 /* If device-tree is present get slave info from here */ 819 if (dev->of_node) 820 chan = of_dma_request_slave_channel(dev->of_node, name); 821 822 /* If device was enumerated by ACPI get slave info from here */ 823 if (has_acpi_companion(dev) && !chan) 824 chan = acpi_dma_request_slave_chan_by_name(dev, name); 825 826 if (PTR_ERR(chan) == -EPROBE_DEFER) 827 return chan; 828 829 if (!IS_ERR_OR_NULL(chan)) 830 goto found; 831 832 /* Try to find the channel via the DMA filter map(s) */ 833 mutex_lock(&dma_list_mutex); 834 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) { 835 dma_cap_mask_t mask; 836 const struct dma_slave_map *map = dma_filter_match(d, name, dev); 837 838 if (!map) 839 continue; 840 841 dma_cap_zero(mask); 842 dma_cap_set(DMA_SLAVE, mask); 843 844 chan = find_candidate(d, &mask, d->filter.fn, map->param); 845 if (!IS_ERR(chan)) 846 break; 847 } 848 mutex_unlock(&dma_list_mutex); 849 850 if (IS_ERR(chan)) 851 return chan; 852 if (!chan) 853 return ERR_PTR(-EPROBE_DEFER); 854 855 found: 856 #ifdef CONFIG_DEBUG_FS 857 chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev), 858 name); 859 #endif 860 861 chan->name = kasprintf(GFP_KERNEL, "dma:%s", name); 862 if (!chan->name) 863 return chan; 864 chan->slave = dev; 865 866 if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj, 867 DMA_SLAVE_NAME)) 868 dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME); 869 if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name)) 870 dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name); 871 872 return chan; 873 } 874 EXPORT_SYMBOL_GPL(dma_request_chan); 875 876 /** 877 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities 878 * @mask: capabilities that the channel must satisfy 879 * 880 * Returns pointer to appropriate DMA channel on success or an error pointer. 881 */ 882 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask) 883 { 884 struct dma_chan *chan; 885 886 if (!mask) 887 return ERR_PTR(-ENODEV); 888 889 chan = __dma_request_channel(mask, NULL, NULL, NULL); 890 if (!chan) { 891 mutex_lock(&dma_list_mutex); 892 if (list_empty(&dma_device_list)) 893 chan = ERR_PTR(-EPROBE_DEFER); 894 else 895 chan = ERR_PTR(-ENODEV); 896 mutex_unlock(&dma_list_mutex); 897 } 898 899 return chan; 900 } 901 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask); 902 903 void dma_release_channel(struct dma_chan *chan) 904 { 905 mutex_lock(&dma_list_mutex); 906 WARN_ONCE(chan->client_count != 1, 907 "chan reference count %d != 1\n", chan->client_count); 908 dma_chan_put(chan); 909 /* drop PRIVATE cap enabled by __dma_request_channel() */ 910 if (--chan->device->privatecnt == 0) 911 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); 912 913 if (chan->slave) { 914 sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME); 915 sysfs_remove_link(&chan->slave->kobj, chan->name); 916 kfree(chan->name); 917 chan->name = NULL; 918 chan->slave = NULL; 919 } 920 921 #ifdef CONFIG_DEBUG_FS 922 kfree(chan->dbg_client_name); 923 chan->dbg_client_name = NULL; 924 #endif 925 mutex_unlock(&dma_list_mutex); 926 } 927 EXPORT_SYMBOL_GPL(dma_release_channel); 928 929 /** 930 * dmaengine_get - register interest in dma_channels 931 */ 932 void dmaengine_get(void) 933 { 934 struct dma_device *device, *_d; 935 struct dma_chan *chan; 936 int err; 937 938 mutex_lock(&dma_list_mutex); 939 dmaengine_ref_count++; 940 941 /* try to grab channels */ 942 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 943 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 944 continue; 945 list_for_each_entry(chan, &device->channels, device_node) { 946 err = dma_chan_get(chan); 947 if (err == -ENODEV) { 948 /* module removed before we could use it */ 949 list_del_rcu(&device->global_node); 950 break; 951 } else if (err) 952 dev_dbg(chan->device->dev, 953 "%s: failed to get %s: (%d)\n", 954 __func__, dma_chan_name(chan), err); 955 } 956 } 957 958 /* if this is the first reference and there were channels 959 * waiting we need to rebalance to get those channels 960 * incorporated into the channel table 961 */ 962 if (dmaengine_ref_count == 1) 963 dma_channel_rebalance(); 964 mutex_unlock(&dma_list_mutex); 965 } 966 EXPORT_SYMBOL(dmaengine_get); 967 968 /** 969 * dmaengine_put - let DMA drivers be removed when ref_count == 0 970 */ 971 void dmaengine_put(void) 972 { 973 struct dma_device *device, *_d; 974 struct dma_chan *chan; 975 976 mutex_lock(&dma_list_mutex); 977 dmaengine_ref_count--; 978 BUG_ON(dmaengine_ref_count < 0); 979 /* drop channel references */ 980 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 981 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 982 continue; 983 list_for_each_entry(chan, &device->channels, device_node) 984 dma_chan_put(chan); 985 } 986 mutex_unlock(&dma_list_mutex); 987 } 988 EXPORT_SYMBOL(dmaengine_put); 989 990 static bool device_has_all_tx_types(struct dma_device *device) 991 { 992 /* A device that satisfies this test has channels that will never cause 993 * an async_tx channel switch event as all possible operation types can 994 * be handled. 995 */ 996 #ifdef CONFIG_ASYNC_TX_DMA 997 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) 998 return false; 999 #endif 1000 1001 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY) 1002 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) 1003 return false; 1004 #endif 1005 1006 #if IS_ENABLED(CONFIG_ASYNC_XOR) 1007 if (!dma_has_cap(DMA_XOR, device->cap_mask)) 1008 return false; 1009 1010 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA 1011 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) 1012 return false; 1013 #endif 1014 #endif 1015 1016 #if IS_ENABLED(CONFIG_ASYNC_PQ) 1017 if (!dma_has_cap(DMA_PQ, device->cap_mask)) 1018 return false; 1019 1020 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA 1021 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) 1022 return false; 1023 #endif 1024 #endif 1025 1026 return true; 1027 } 1028 1029 static int get_dma_id(struct dma_device *device) 1030 { 1031 int rc = ida_alloc(&dma_ida, GFP_KERNEL); 1032 1033 if (rc < 0) 1034 return rc; 1035 device->dev_id = rc; 1036 return 0; 1037 } 1038 1039 static int __dma_async_device_channel_register(struct dma_device *device, 1040 struct dma_chan *chan) 1041 { 1042 int rc; 1043 1044 chan->local = alloc_percpu(typeof(*chan->local)); 1045 if (!chan->local) 1046 return -ENOMEM; 1047 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); 1048 if (!chan->dev) { 1049 rc = -ENOMEM; 1050 goto err_free_local; 1051 } 1052 1053 /* 1054 * When the chan_id is a negative value, we are dynamically adding 1055 * the channel. Otherwise we are static enumerating. 1056 */ 1057 chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL); 1058 if (chan->chan_id < 0) { 1059 pr_err("%s: unable to alloc ida for chan: %d\n", 1060 __func__, chan->chan_id); 1061 rc = chan->chan_id; 1062 goto err_free_dev; 1063 } 1064 1065 chan->dev->device.class = &dma_devclass; 1066 chan->dev->device.parent = device->dev; 1067 chan->dev->chan = chan; 1068 chan->dev->dev_id = device->dev_id; 1069 dev_set_name(&chan->dev->device, "dma%dchan%d", 1070 device->dev_id, chan->chan_id); 1071 rc = device_register(&chan->dev->device); 1072 if (rc) 1073 goto err_out_ida; 1074 chan->client_count = 0; 1075 device->chancnt++; 1076 1077 return 0; 1078 1079 err_out_ida: 1080 ida_free(&device->chan_ida, chan->chan_id); 1081 err_free_dev: 1082 kfree(chan->dev); 1083 err_free_local: 1084 free_percpu(chan->local); 1085 chan->local = NULL; 1086 return rc; 1087 } 1088 1089 int dma_async_device_channel_register(struct dma_device *device, 1090 struct dma_chan *chan) 1091 { 1092 int rc; 1093 1094 rc = __dma_async_device_channel_register(device, chan); 1095 if (rc < 0) 1096 return rc; 1097 1098 dma_channel_rebalance(); 1099 return 0; 1100 } 1101 EXPORT_SYMBOL_GPL(dma_async_device_channel_register); 1102 1103 static void __dma_async_device_channel_unregister(struct dma_device *device, 1104 struct dma_chan *chan) 1105 { 1106 WARN_ONCE(!device->device_release && chan->client_count, 1107 "%s called while %d clients hold a reference\n", 1108 __func__, chan->client_count); 1109 mutex_lock(&dma_list_mutex); 1110 device->chancnt--; 1111 chan->dev->chan = NULL; 1112 mutex_unlock(&dma_list_mutex); 1113 ida_free(&device->chan_ida, chan->chan_id); 1114 device_unregister(&chan->dev->device); 1115 free_percpu(chan->local); 1116 } 1117 1118 void dma_async_device_channel_unregister(struct dma_device *device, 1119 struct dma_chan *chan) 1120 { 1121 __dma_async_device_channel_unregister(device, chan); 1122 dma_channel_rebalance(); 1123 } 1124 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister); 1125 1126 /** 1127 * dma_async_device_register - registers DMA devices found 1128 * @device: pointer to &struct dma_device 1129 * 1130 * After calling this routine the structure should not be freed except in the 1131 * device_release() callback which will be called after 1132 * dma_async_device_unregister() is called and no further references are taken. 1133 */ 1134 int dma_async_device_register(struct dma_device *device) 1135 { 1136 int rc; 1137 struct dma_chan* chan; 1138 1139 if (!device) 1140 return -ENODEV; 1141 1142 /* validate device routines */ 1143 if (!device->dev) { 1144 pr_err("DMAdevice must have dev\n"); 1145 return -EIO; 1146 } 1147 1148 device->owner = device->dev->driver->owner; 1149 1150 if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) { 1151 dev_err(device->dev, 1152 "Device claims capability %s, but op is not defined\n", 1153 "DMA_MEMCPY"); 1154 return -EIO; 1155 } 1156 1157 if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) { 1158 dev_err(device->dev, 1159 "Device claims capability %s, but op is not defined\n", 1160 "DMA_XOR"); 1161 return -EIO; 1162 } 1163 1164 if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) { 1165 dev_err(device->dev, 1166 "Device claims capability %s, but op is not defined\n", 1167 "DMA_XOR_VAL"); 1168 return -EIO; 1169 } 1170 1171 if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) { 1172 dev_err(device->dev, 1173 "Device claims capability %s, but op is not defined\n", 1174 "DMA_PQ"); 1175 return -EIO; 1176 } 1177 1178 if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) { 1179 dev_err(device->dev, 1180 "Device claims capability %s, but op is not defined\n", 1181 "DMA_PQ_VAL"); 1182 return -EIO; 1183 } 1184 1185 if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) { 1186 dev_err(device->dev, 1187 "Device claims capability %s, but op is not defined\n", 1188 "DMA_MEMSET"); 1189 return -EIO; 1190 } 1191 1192 if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) { 1193 dev_err(device->dev, 1194 "Device claims capability %s, but op is not defined\n", 1195 "DMA_INTERRUPT"); 1196 return -EIO; 1197 } 1198 1199 if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) { 1200 dev_err(device->dev, 1201 "Device claims capability %s, but op is not defined\n", 1202 "DMA_CYCLIC"); 1203 return -EIO; 1204 } 1205 1206 if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) { 1207 dev_err(device->dev, 1208 "Device claims capability %s, but op is not defined\n", 1209 "DMA_INTERLEAVE"); 1210 return -EIO; 1211 } 1212 1213 1214 if (!device->device_tx_status) { 1215 dev_err(device->dev, "Device tx_status is not defined\n"); 1216 return -EIO; 1217 } 1218 1219 1220 if (!device->device_issue_pending) { 1221 dev_err(device->dev, "Device issue_pending is not defined\n"); 1222 return -EIO; 1223 } 1224 1225 if (!device->device_release) 1226 dev_dbg(device->dev, 1227 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n"); 1228 1229 kref_init(&device->ref); 1230 1231 /* note: this only matters in the 1232 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case 1233 */ 1234 if (device_has_all_tx_types(device)) 1235 dma_cap_set(DMA_ASYNC_TX, device->cap_mask); 1236 1237 rc = get_dma_id(device); 1238 if (rc != 0) 1239 return rc; 1240 1241 ida_init(&device->chan_ida); 1242 1243 /* represent channels in sysfs. Probably want devs too */ 1244 list_for_each_entry(chan, &device->channels, device_node) { 1245 rc = __dma_async_device_channel_register(device, chan); 1246 if (rc < 0) 1247 goto err_out; 1248 } 1249 1250 mutex_lock(&dma_list_mutex); 1251 /* take references on public channels */ 1252 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1253 list_for_each_entry(chan, &device->channels, device_node) { 1254 /* if clients are already waiting for channels we need 1255 * to take references on their behalf 1256 */ 1257 if (dma_chan_get(chan) == -ENODEV) { 1258 /* note we can only get here for the first 1259 * channel as the remaining channels are 1260 * guaranteed to get a reference 1261 */ 1262 rc = -ENODEV; 1263 mutex_unlock(&dma_list_mutex); 1264 goto err_out; 1265 } 1266 } 1267 list_add_tail_rcu(&device->global_node, &dma_device_list); 1268 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1269 device->privatecnt++; /* Always private */ 1270 dma_channel_rebalance(); 1271 mutex_unlock(&dma_list_mutex); 1272 1273 dmaengine_debug_register(device); 1274 1275 return 0; 1276 1277 err_out: 1278 /* if we never registered a channel just release the idr */ 1279 if (!device->chancnt) { 1280 ida_free(&dma_ida, device->dev_id); 1281 return rc; 1282 } 1283 1284 list_for_each_entry(chan, &device->channels, device_node) { 1285 if (chan->local == NULL) 1286 continue; 1287 mutex_lock(&dma_list_mutex); 1288 chan->dev->chan = NULL; 1289 mutex_unlock(&dma_list_mutex); 1290 device_unregister(&chan->dev->device); 1291 free_percpu(chan->local); 1292 } 1293 return rc; 1294 } 1295 EXPORT_SYMBOL(dma_async_device_register); 1296 1297 /** 1298 * dma_async_device_unregister - unregister a DMA device 1299 * @device: pointer to &struct dma_device 1300 * 1301 * This routine is called by dma driver exit routines, dmaengine holds module 1302 * references to prevent it being called while channels are in use. 1303 */ 1304 void dma_async_device_unregister(struct dma_device *device) 1305 { 1306 struct dma_chan *chan, *n; 1307 1308 dmaengine_debug_unregister(device); 1309 1310 list_for_each_entry_safe(chan, n, &device->channels, device_node) 1311 __dma_async_device_channel_unregister(device, chan); 1312 1313 mutex_lock(&dma_list_mutex); 1314 /* 1315 * setting DMA_PRIVATE ensures the device being torn down will not 1316 * be used in the channel_table 1317 */ 1318 dma_cap_set(DMA_PRIVATE, device->cap_mask); 1319 dma_channel_rebalance(); 1320 ida_free(&dma_ida, device->dev_id); 1321 dma_device_put(device); 1322 mutex_unlock(&dma_list_mutex); 1323 } 1324 EXPORT_SYMBOL(dma_async_device_unregister); 1325 1326 static void dmaenginem_async_device_unregister(void *device) 1327 { 1328 dma_async_device_unregister(device); 1329 } 1330 1331 /** 1332 * dmaenginem_async_device_register - registers DMA devices found 1333 * @device: pointer to &struct dma_device 1334 * 1335 * The operation is managed and will be undone on driver detach. 1336 */ 1337 int dmaenginem_async_device_register(struct dma_device *device) 1338 { 1339 int ret; 1340 1341 ret = dma_async_device_register(device); 1342 if (ret) 1343 return ret; 1344 1345 return devm_add_action(device->dev, dmaenginem_async_device_unregister, device); 1346 } 1347 EXPORT_SYMBOL(dmaenginem_async_device_register); 1348 1349 struct dmaengine_unmap_pool { 1350 struct kmem_cache *cache; 1351 const char *name; 1352 mempool_t *pool; 1353 size_t size; 1354 }; 1355 1356 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } 1357 static struct dmaengine_unmap_pool unmap_pool[] = { 1358 __UNMAP_POOL(2), 1359 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1360 __UNMAP_POOL(16), 1361 __UNMAP_POOL(128), 1362 __UNMAP_POOL(256), 1363 #endif 1364 }; 1365 1366 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) 1367 { 1368 int order = get_count_order(nr); 1369 1370 switch (order) { 1371 case 0 ... 1: 1372 return &unmap_pool[0]; 1373 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1374 case 2 ... 4: 1375 return &unmap_pool[1]; 1376 case 5 ... 7: 1377 return &unmap_pool[2]; 1378 case 8: 1379 return &unmap_pool[3]; 1380 #endif 1381 default: 1382 BUG(); 1383 return NULL; 1384 } 1385 } 1386 1387 static void dmaengine_unmap(struct kref *kref) 1388 { 1389 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); 1390 struct device *dev = unmap->dev; 1391 int cnt, i; 1392 1393 cnt = unmap->to_cnt; 1394 for (i = 0; i < cnt; i++) 1395 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1396 DMA_TO_DEVICE); 1397 cnt += unmap->from_cnt; 1398 for (; i < cnt; i++) 1399 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1400 DMA_FROM_DEVICE); 1401 cnt += unmap->bidi_cnt; 1402 for (; i < cnt; i++) { 1403 if (unmap->addr[i] == 0) 1404 continue; 1405 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1406 DMA_BIDIRECTIONAL); 1407 } 1408 cnt = unmap->map_cnt; 1409 mempool_free(unmap, __get_unmap_pool(cnt)->pool); 1410 } 1411 1412 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 1413 { 1414 if (unmap) 1415 kref_put(&unmap->kref, dmaengine_unmap); 1416 } 1417 EXPORT_SYMBOL_GPL(dmaengine_unmap_put); 1418 1419 static void dmaengine_destroy_unmap_pool(void) 1420 { 1421 int i; 1422 1423 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1424 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1425 1426 mempool_destroy(p->pool); 1427 p->pool = NULL; 1428 kmem_cache_destroy(p->cache); 1429 p->cache = NULL; 1430 } 1431 } 1432 1433 static int __init dmaengine_init_unmap_pool(void) 1434 { 1435 int i; 1436 1437 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1438 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1439 size_t size; 1440 1441 size = sizeof(struct dmaengine_unmap_data) + 1442 sizeof(dma_addr_t) * p->size; 1443 1444 p->cache = kmem_cache_create(p->name, size, 0, 1445 SLAB_HWCACHE_ALIGN, NULL); 1446 if (!p->cache) 1447 break; 1448 p->pool = mempool_create_slab_pool(1, p->cache); 1449 if (!p->pool) 1450 break; 1451 } 1452 1453 if (i == ARRAY_SIZE(unmap_pool)) 1454 return 0; 1455 1456 dmaengine_destroy_unmap_pool(); 1457 return -ENOMEM; 1458 } 1459 1460 struct dmaengine_unmap_data * 1461 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 1462 { 1463 struct dmaengine_unmap_data *unmap; 1464 1465 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); 1466 if (!unmap) 1467 return NULL; 1468 1469 memset(unmap, 0, sizeof(*unmap)); 1470 kref_init(&unmap->kref); 1471 unmap->dev = dev; 1472 unmap->map_cnt = nr; 1473 1474 return unmap; 1475 } 1476 EXPORT_SYMBOL(dmaengine_get_unmap_data); 1477 1478 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1479 struct dma_chan *chan) 1480 { 1481 tx->chan = chan; 1482 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1483 spin_lock_init(&tx->lock); 1484 #endif 1485 } 1486 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 1487 1488 static inline int desc_check_and_set_metadata_mode( 1489 struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode) 1490 { 1491 /* Make sure that the metadata mode is not mixed */ 1492 if (!desc->desc_metadata_mode) { 1493 if (dmaengine_is_metadata_mode_supported(desc->chan, mode)) 1494 desc->desc_metadata_mode = mode; 1495 else 1496 return -ENOTSUPP; 1497 } else if (desc->desc_metadata_mode != mode) { 1498 return -EINVAL; 1499 } 1500 1501 return 0; 1502 } 1503 1504 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1505 void *data, size_t len) 1506 { 1507 int ret; 1508 1509 if (!desc) 1510 return -EINVAL; 1511 1512 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT); 1513 if (ret) 1514 return ret; 1515 1516 if (!desc->metadata_ops || !desc->metadata_ops->attach) 1517 return -ENOTSUPP; 1518 1519 return desc->metadata_ops->attach(desc, data, len); 1520 } 1521 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata); 1522 1523 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1524 size_t *payload_len, size_t *max_len) 1525 { 1526 int ret; 1527 1528 if (!desc) 1529 return ERR_PTR(-EINVAL); 1530 1531 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); 1532 if (ret) 1533 return ERR_PTR(ret); 1534 1535 if (!desc->metadata_ops || !desc->metadata_ops->get_ptr) 1536 return ERR_PTR(-ENOTSUPP); 1537 1538 return desc->metadata_ops->get_ptr(desc, payload_len, max_len); 1539 } 1540 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr); 1541 1542 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1543 size_t payload_len) 1544 { 1545 int ret; 1546 1547 if (!desc) 1548 return -EINVAL; 1549 1550 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); 1551 if (ret) 1552 return ret; 1553 1554 if (!desc->metadata_ops || !desc->metadata_ops->set_len) 1555 return -ENOTSUPP; 1556 1557 return desc->metadata_ops->set_len(desc, payload_len); 1558 } 1559 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len); 1560 1561 /** 1562 * dma_wait_for_async_tx - spin wait for a transaction to complete 1563 * @tx: in-flight transaction to wait on 1564 */ 1565 enum dma_status 1566 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1567 { 1568 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 1569 1570 if (!tx) 1571 return DMA_COMPLETE; 1572 1573 while (tx->cookie == -EBUSY) { 1574 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 1575 dev_err(tx->chan->device->dev, 1576 "%s timeout waiting for descriptor submission\n", 1577 __func__); 1578 return DMA_ERROR; 1579 } 1580 cpu_relax(); 1581 } 1582 return dma_sync_wait(tx->chan, tx->cookie); 1583 } 1584 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); 1585 1586 /** 1587 * dma_run_dependencies - process dependent operations on the target channel 1588 * @tx: transaction with dependencies 1589 * 1590 * Helper routine for DMA drivers to process (start) dependent operations 1591 * on their target channel. 1592 */ 1593 void dma_run_dependencies(struct dma_async_tx_descriptor *tx) 1594 { 1595 struct dma_async_tx_descriptor *dep = txd_next(tx); 1596 struct dma_async_tx_descriptor *dep_next; 1597 struct dma_chan *chan; 1598 1599 if (!dep) 1600 return; 1601 1602 /* we'll submit tx->next now, so clear the link */ 1603 txd_clear_next(tx); 1604 chan = dep->chan; 1605 1606 /* keep submitting up until a channel switch is detected 1607 * in that case we will be called again as a result of 1608 * processing the interrupt from async_tx_channel_switch 1609 */ 1610 for (; dep; dep = dep_next) { 1611 txd_lock(dep); 1612 txd_clear_parent(dep); 1613 dep_next = txd_next(dep); 1614 if (dep_next && dep_next->chan == chan) 1615 txd_clear_next(dep); /* ->next will be submitted */ 1616 else 1617 dep_next = NULL; /* submit current dep and terminate */ 1618 txd_unlock(dep); 1619 1620 dep->tx_submit(dep); 1621 } 1622 1623 chan->device->device_issue_pending(chan); 1624 } 1625 EXPORT_SYMBOL_GPL(dma_run_dependencies); 1626 1627 static int __init dma_bus_init(void) 1628 { 1629 int err = dmaengine_init_unmap_pool(); 1630 1631 if (err) 1632 return err; 1633 1634 err = class_register(&dma_devclass); 1635 if (!err) 1636 dmaengine_debugfs_init(); 1637 1638 return err; 1639 } 1640 arch_initcall(dma_bus_init); 1641