1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5 6 /* 7 * This code implements the DMA subsystem. It provides a HW-neutral interface 8 * for other kernel code to use asynchronous memory copy capabilities, 9 * if present, and allows different HW DMA drivers to register as providing 10 * this capability. 11 * 12 * Due to the fact we are accelerating what is already a relatively fast 13 * operation, the code goes to great lengths to avoid additional overhead, 14 * such as locking. 15 * 16 * LOCKING: 17 * 18 * The subsystem keeps a global list of dma_device structs it is protected by a 19 * mutex, dma_list_mutex. 20 * 21 * A subsystem can get access to a channel by calling dmaengine_get() followed 22 * by dma_find_channel(), or if it has need for an exclusive channel it can call 23 * dma_request_channel(). Once a channel is allocated a reference is taken 24 * against its corresponding driver to disable removal. 25 * 26 * Each device has a channels list, which runs unlocked but is never modified 27 * once the device is registered, it's just setup by the driver. 28 * 29 * See Documentation/driver-api/dmaengine for more details 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/platform_device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/init.h> 37 #include <linux/module.h> 38 #include <linux/mm.h> 39 #include <linux/device.h> 40 #include <linux/dmaengine.h> 41 #include <linux/hardirq.h> 42 #include <linux/spinlock.h> 43 #include <linux/percpu.h> 44 #include <linux/rcupdate.h> 45 #include <linux/mutex.h> 46 #include <linux/jiffies.h> 47 #include <linux/rculist.h> 48 #include <linux/idr.h> 49 #include <linux/slab.h> 50 #include <linux/acpi.h> 51 #include <linux/acpi_dma.h> 52 #include <linux/of_dma.h> 53 #include <linux/mempool.h> 54 #include <linux/numa.h> 55 56 static DEFINE_MUTEX(dma_list_mutex); 57 static DEFINE_IDA(dma_ida); 58 static LIST_HEAD(dma_device_list); 59 static long dmaengine_ref_count; 60 61 /* --- debugfs implementation --- */ 62 #ifdef CONFIG_DEBUG_FS 63 #include <linux/debugfs.h> 64 65 static struct dentry *rootdir; 66 67 static void dmaengine_debug_register(struct dma_device *dma_dev) 68 { 69 dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev), 70 rootdir); 71 if (IS_ERR(dma_dev->dbg_dev_root)) 72 dma_dev->dbg_dev_root = NULL; 73 } 74 75 static void dmaengine_debug_unregister(struct dma_device *dma_dev) 76 { 77 debugfs_remove_recursive(dma_dev->dbg_dev_root); 78 dma_dev->dbg_dev_root = NULL; 79 } 80 81 static void dmaengine_dbg_summary_show(struct seq_file *s, 82 struct dma_device *dma_dev) 83 { 84 struct dma_chan *chan; 85 86 list_for_each_entry(chan, &dma_dev->channels, device_node) { 87 if (chan->client_count) { 88 seq_printf(s, " %-13s| %s", dma_chan_name(chan), 89 chan->dbg_client_name ?: "in-use"); 90 91 if (chan->router) 92 seq_printf(s, " (via router: %s)\n", 93 dev_name(chan->router->dev)); 94 else 95 seq_puts(s, "\n"); 96 } 97 } 98 } 99 100 static int dmaengine_summary_show(struct seq_file *s, void *data) 101 { 102 struct dma_device *dma_dev = NULL; 103 104 mutex_lock(&dma_list_mutex); 105 list_for_each_entry(dma_dev, &dma_device_list, global_node) { 106 seq_printf(s, "dma%d (%s): number of channels: %u\n", 107 dma_dev->dev_id, dev_name(dma_dev->dev), 108 dma_dev->chancnt); 109 110 if (dma_dev->dbg_summary_show) 111 dma_dev->dbg_summary_show(s, dma_dev); 112 else 113 dmaengine_dbg_summary_show(s, dma_dev); 114 115 if (!list_is_last(&dma_dev->global_node, &dma_device_list)) 116 seq_puts(s, "\n"); 117 } 118 mutex_unlock(&dma_list_mutex); 119 120 return 0; 121 } 122 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary); 123 124 static void __init dmaengine_debugfs_init(void) 125 { 126 rootdir = debugfs_create_dir("dmaengine", NULL); 127 128 /* /sys/kernel/debug/dmaengine/summary */ 129 debugfs_create_file("summary", 0444, rootdir, NULL, 130 &dmaengine_summary_fops); 131 } 132 #else 133 static inline void dmaengine_debugfs_init(void) { } 134 static inline int dmaengine_debug_register(struct dma_device *dma_dev) 135 { 136 return 0; 137 } 138 139 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { } 140 #endif /* DEBUG_FS */ 141 142 /* --- sysfs implementation --- */ 143 144 #define DMA_SLAVE_NAME "slave" 145 146 /** 147 * dev_to_dma_chan - convert a device pointer to its sysfs container object 148 * @dev - device node 149 * 150 * Must be called under dma_list_mutex 151 */ 152 static struct dma_chan *dev_to_dma_chan(struct device *dev) 153 { 154 struct dma_chan_dev *chan_dev; 155 156 chan_dev = container_of(dev, typeof(*chan_dev), device); 157 return chan_dev->chan; 158 } 159 160 static ssize_t memcpy_count_show(struct device *dev, 161 struct device_attribute *attr, char *buf) 162 { 163 struct dma_chan *chan; 164 unsigned long count = 0; 165 int i; 166 int err; 167 168 mutex_lock(&dma_list_mutex); 169 chan = dev_to_dma_chan(dev); 170 if (chan) { 171 for_each_possible_cpu(i) 172 count += per_cpu_ptr(chan->local, i)->memcpy_count; 173 err = sprintf(buf, "%lu\n", count); 174 } else 175 err = -ENODEV; 176 mutex_unlock(&dma_list_mutex); 177 178 return err; 179 } 180 static DEVICE_ATTR_RO(memcpy_count); 181 182 static ssize_t bytes_transferred_show(struct device *dev, 183 struct device_attribute *attr, char *buf) 184 { 185 struct dma_chan *chan; 186 unsigned long count = 0; 187 int i; 188 int err; 189 190 mutex_lock(&dma_list_mutex); 191 chan = dev_to_dma_chan(dev); 192 if (chan) { 193 for_each_possible_cpu(i) 194 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 195 err = sprintf(buf, "%lu\n", count); 196 } else 197 err = -ENODEV; 198 mutex_unlock(&dma_list_mutex); 199 200 return err; 201 } 202 static DEVICE_ATTR_RO(bytes_transferred); 203 204 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, 205 char *buf) 206 { 207 struct dma_chan *chan; 208 int err; 209 210 mutex_lock(&dma_list_mutex); 211 chan = dev_to_dma_chan(dev); 212 if (chan) 213 err = sprintf(buf, "%d\n", chan->client_count); 214 else 215 err = -ENODEV; 216 mutex_unlock(&dma_list_mutex); 217 218 return err; 219 } 220 static DEVICE_ATTR_RO(in_use); 221 222 static struct attribute *dma_dev_attrs[] = { 223 &dev_attr_memcpy_count.attr, 224 &dev_attr_bytes_transferred.attr, 225 &dev_attr_in_use.attr, 226 NULL, 227 }; 228 ATTRIBUTE_GROUPS(dma_dev); 229 230 static void chan_dev_release(struct device *dev) 231 { 232 struct dma_chan_dev *chan_dev; 233 234 chan_dev = container_of(dev, typeof(*chan_dev), device); 235 if (atomic_dec_and_test(chan_dev->idr_ref)) { 236 ida_free(&dma_ida, chan_dev->dev_id); 237 kfree(chan_dev->idr_ref); 238 } 239 kfree(chan_dev); 240 } 241 242 static struct class dma_devclass = { 243 .name = "dma", 244 .dev_groups = dma_dev_groups, 245 .dev_release = chan_dev_release, 246 }; 247 248 /* --- client and device registration --- */ 249 250 /** 251 * dma_cap_mask_all - enable iteration over all operation types 252 */ 253 static dma_cap_mask_t dma_cap_mask_all; 254 255 /** 256 * dma_chan_tbl_ent - tracks channel allocations per core/operation 257 * @chan - associated channel for this entry 258 */ 259 struct dma_chan_tbl_ent { 260 struct dma_chan *chan; 261 }; 262 263 /** 264 * channel_table - percpu lookup table for memory-to-memory offload providers 265 */ 266 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; 267 268 static int __init dma_channel_table_init(void) 269 { 270 enum dma_transaction_type cap; 271 int err = 0; 272 273 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); 274 275 /* 'interrupt', 'private', and 'slave' are channel capabilities, 276 * but are not associated with an operation so they do not need 277 * an entry in the channel_table 278 */ 279 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); 280 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); 281 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); 282 283 for_each_dma_cap_mask(cap, dma_cap_mask_all) { 284 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); 285 if (!channel_table[cap]) { 286 err = -ENOMEM; 287 break; 288 } 289 } 290 291 if (err) { 292 pr_err("dmaengine dma_channel_table_init failure: %d\n", err); 293 for_each_dma_cap_mask(cap, dma_cap_mask_all) 294 free_percpu(channel_table[cap]); 295 } 296 297 return err; 298 } 299 arch_initcall(dma_channel_table_init); 300 301 /** 302 * dma_chan_is_local - returns true if the channel is in the same numa-node as 303 * the cpu 304 */ 305 static bool dma_chan_is_local(struct dma_chan *chan, int cpu) 306 { 307 int node = dev_to_node(chan->device->dev); 308 return node == NUMA_NO_NODE || 309 cpumask_test_cpu(cpu, cpumask_of_node(node)); 310 } 311 312 /** 313 * min_chan - returns the channel with min count and in the same numa-node as 314 * the cpu 315 * @cap: capability to match 316 * @cpu: cpu index which the channel should be close to 317 * 318 * If some channels are close to the given cpu, the one with the lowest 319 * reference count is returned. Otherwise, cpu is ignored and only the 320 * reference count is taken into account. 321 * Must be called under dma_list_mutex. 322 */ 323 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) 324 { 325 struct dma_device *device; 326 struct dma_chan *chan; 327 struct dma_chan *min = NULL; 328 struct dma_chan *localmin = NULL; 329 330 list_for_each_entry(device, &dma_device_list, global_node) { 331 if (!dma_has_cap(cap, device->cap_mask) || 332 dma_has_cap(DMA_PRIVATE, device->cap_mask)) 333 continue; 334 list_for_each_entry(chan, &device->channels, device_node) { 335 if (!chan->client_count) 336 continue; 337 if (!min || chan->table_count < min->table_count) 338 min = chan; 339 340 if (dma_chan_is_local(chan, cpu)) 341 if (!localmin || 342 chan->table_count < localmin->table_count) 343 localmin = chan; 344 } 345 } 346 347 chan = localmin ? localmin : min; 348 349 if (chan) 350 chan->table_count++; 351 352 return chan; 353 } 354 355 /** 356 * dma_channel_rebalance - redistribute the available channels 357 * 358 * Optimize for cpu isolation (each cpu gets a dedicated channel for an 359 * operation type) in the SMP case, and operation isolation (avoid 360 * multi-tasking channels) in the non-SMP case. Must be called under 361 * dma_list_mutex. 362 */ 363 static void dma_channel_rebalance(void) 364 { 365 struct dma_chan *chan; 366 struct dma_device *device; 367 int cpu; 368 int cap; 369 370 /* undo the last distribution */ 371 for_each_dma_cap_mask(cap, dma_cap_mask_all) 372 for_each_possible_cpu(cpu) 373 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; 374 375 list_for_each_entry(device, &dma_device_list, global_node) { 376 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 377 continue; 378 list_for_each_entry(chan, &device->channels, device_node) 379 chan->table_count = 0; 380 } 381 382 /* don't populate the channel_table if no clients are available */ 383 if (!dmaengine_ref_count) 384 return; 385 386 /* redistribute available channels */ 387 for_each_dma_cap_mask(cap, dma_cap_mask_all) 388 for_each_online_cpu(cpu) { 389 chan = min_chan(cap, cpu); 390 per_cpu_ptr(channel_table[cap], cpu)->chan = chan; 391 } 392 } 393 394 static int dma_device_satisfies_mask(struct dma_device *device, 395 const dma_cap_mask_t *want) 396 { 397 dma_cap_mask_t has; 398 399 bitmap_and(has.bits, want->bits, device->cap_mask.bits, 400 DMA_TX_TYPE_END); 401 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 402 } 403 404 static struct module *dma_chan_to_owner(struct dma_chan *chan) 405 { 406 return chan->device->owner; 407 } 408 409 /** 410 * balance_ref_count - catch up the channel reference count 411 * @chan - channel to balance ->client_count versus dmaengine_ref_count 412 * 413 * balance_ref_count must be called under dma_list_mutex 414 */ 415 static void balance_ref_count(struct dma_chan *chan) 416 { 417 struct module *owner = dma_chan_to_owner(chan); 418 419 while (chan->client_count < dmaengine_ref_count) { 420 __module_get(owner); 421 chan->client_count++; 422 } 423 } 424 425 static void dma_device_release(struct kref *ref) 426 { 427 struct dma_device *device = container_of(ref, struct dma_device, ref); 428 429 list_del_rcu(&device->global_node); 430 dma_channel_rebalance(); 431 432 if (device->device_release) 433 device->device_release(device); 434 } 435 436 static void dma_device_put(struct dma_device *device) 437 { 438 lockdep_assert_held(&dma_list_mutex); 439 kref_put(&device->ref, dma_device_release); 440 } 441 442 /** 443 * dma_chan_get - try to grab a dma channel's parent driver module 444 * @chan - channel to grab 445 * 446 * Must be called under dma_list_mutex 447 */ 448 static int dma_chan_get(struct dma_chan *chan) 449 { 450 struct module *owner = dma_chan_to_owner(chan); 451 int ret; 452 453 /* The channel is already in use, update client count */ 454 if (chan->client_count) { 455 __module_get(owner); 456 goto out; 457 } 458 459 if (!try_module_get(owner)) 460 return -ENODEV; 461 462 ret = kref_get_unless_zero(&chan->device->ref); 463 if (!ret) { 464 ret = -ENODEV; 465 goto module_put_out; 466 } 467 468 /* allocate upon first client reference */ 469 if (chan->device->device_alloc_chan_resources) { 470 ret = chan->device->device_alloc_chan_resources(chan); 471 if (ret < 0) 472 goto err_out; 473 } 474 475 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) 476 balance_ref_count(chan); 477 478 out: 479 chan->client_count++; 480 return 0; 481 482 err_out: 483 dma_device_put(chan->device); 484 module_put_out: 485 module_put(owner); 486 return ret; 487 } 488 489 /** 490 * dma_chan_put - drop a reference to a dma channel's parent driver module 491 * @chan - channel to release 492 * 493 * Must be called under dma_list_mutex 494 */ 495 static void dma_chan_put(struct dma_chan *chan) 496 { 497 /* This channel is not in use, bail out */ 498 if (!chan->client_count) 499 return; 500 501 chan->client_count--; 502 503 /* This channel is not in use anymore, free it */ 504 if (!chan->client_count && chan->device->device_free_chan_resources) { 505 /* Make sure all operations have completed */ 506 dmaengine_synchronize(chan); 507 chan->device->device_free_chan_resources(chan); 508 } 509 510 /* If the channel is used via a DMA request router, free the mapping */ 511 if (chan->router && chan->router->route_free) { 512 chan->router->route_free(chan->router->dev, chan->route_data); 513 chan->router = NULL; 514 chan->route_data = NULL; 515 } 516 517 dma_device_put(chan->device); 518 module_put(dma_chan_to_owner(chan)); 519 } 520 521 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 522 { 523 enum dma_status status; 524 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 525 526 dma_async_issue_pending(chan); 527 do { 528 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 529 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 530 dev_err(chan->device->dev, "%s: timeout!\n", __func__); 531 return DMA_ERROR; 532 } 533 if (status != DMA_IN_PROGRESS) 534 break; 535 cpu_relax(); 536 } while (1); 537 538 return status; 539 } 540 EXPORT_SYMBOL(dma_sync_wait); 541 542 /** 543 * dma_find_channel - find a channel to carry out the operation 544 * @tx_type: transaction type 545 */ 546 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 547 { 548 return this_cpu_read(channel_table[tx_type]->chan); 549 } 550 EXPORT_SYMBOL(dma_find_channel); 551 552 /** 553 * dma_issue_pending_all - flush all pending operations across all channels 554 */ 555 void dma_issue_pending_all(void) 556 { 557 struct dma_device *device; 558 struct dma_chan *chan; 559 560 rcu_read_lock(); 561 list_for_each_entry_rcu(device, &dma_device_list, global_node) { 562 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 563 continue; 564 list_for_each_entry(chan, &device->channels, device_node) 565 if (chan->client_count) 566 device->device_issue_pending(chan); 567 } 568 rcu_read_unlock(); 569 } 570 EXPORT_SYMBOL(dma_issue_pending_all); 571 572 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 573 { 574 struct dma_device *device; 575 576 if (!chan || !caps) 577 return -EINVAL; 578 579 device = chan->device; 580 581 /* check if the channel supports slave transactions */ 582 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) || 583 test_bit(DMA_CYCLIC, device->cap_mask.bits))) 584 return -ENXIO; 585 586 /* 587 * Check whether it reports it uses the generic slave 588 * capabilities, if not, that means it doesn't support any 589 * kind of slave capabilities reporting. 590 */ 591 if (!device->directions) 592 return -ENXIO; 593 594 caps->src_addr_widths = device->src_addr_widths; 595 caps->dst_addr_widths = device->dst_addr_widths; 596 caps->directions = device->directions; 597 caps->max_burst = device->max_burst; 598 caps->residue_granularity = device->residue_granularity; 599 caps->descriptor_reuse = device->descriptor_reuse; 600 caps->cmd_pause = !!device->device_pause; 601 caps->cmd_resume = !!device->device_resume; 602 caps->cmd_terminate = !!device->device_terminate_all; 603 604 return 0; 605 } 606 EXPORT_SYMBOL_GPL(dma_get_slave_caps); 607 608 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, 609 struct dma_device *dev, 610 dma_filter_fn fn, void *fn_param) 611 { 612 struct dma_chan *chan; 613 614 if (mask && !dma_device_satisfies_mask(dev, mask)) { 615 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__); 616 return NULL; 617 } 618 /* devices with multiple channels need special handling as we need to 619 * ensure that all channels are either private or public. 620 */ 621 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) 622 list_for_each_entry(chan, &dev->channels, device_node) { 623 /* some channels are already publicly allocated */ 624 if (chan->client_count) 625 return NULL; 626 } 627 628 list_for_each_entry(chan, &dev->channels, device_node) { 629 if (chan->client_count) { 630 dev_dbg(dev->dev, "%s: %s busy\n", 631 __func__, dma_chan_name(chan)); 632 continue; 633 } 634 if (fn && !fn(chan, fn_param)) { 635 dev_dbg(dev->dev, "%s: %s filter said false\n", 636 __func__, dma_chan_name(chan)); 637 continue; 638 } 639 return chan; 640 } 641 642 return NULL; 643 } 644 645 static struct dma_chan *find_candidate(struct dma_device *device, 646 const dma_cap_mask_t *mask, 647 dma_filter_fn fn, void *fn_param) 648 { 649 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param); 650 int err; 651 652 if (chan) { 653 /* Found a suitable channel, try to grab, prep, and return it. 654 * We first set DMA_PRIVATE to disable balance_ref_count as this 655 * channel will not be published in the general-purpose 656 * allocator 657 */ 658 dma_cap_set(DMA_PRIVATE, device->cap_mask); 659 device->privatecnt++; 660 err = dma_chan_get(chan); 661 662 if (err) { 663 if (err == -ENODEV) { 664 dev_dbg(device->dev, "%s: %s module removed\n", 665 __func__, dma_chan_name(chan)); 666 list_del_rcu(&device->global_node); 667 } else 668 dev_dbg(device->dev, 669 "%s: failed to get %s: (%d)\n", 670 __func__, dma_chan_name(chan), err); 671 672 if (--device->privatecnt == 0) 673 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 674 675 chan = ERR_PTR(err); 676 } 677 } 678 679 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 680 } 681 682 /** 683 * dma_get_slave_channel - try to get specific channel exclusively 684 * @chan: target channel 685 */ 686 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) 687 { 688 int err = -EBUSY; 689 690 /* lock against __dma_request_channel */ 691 mutex_lock(&dma_list_mutex); 692 693 if (chan->client_count == 0) { 694 struct dma_device *device = chan->device; 695 696 dma_cap_set(DMA_PRIVATE, device->cap_mask); 697 device->privatecnt++; 698 err = dma_chan_get(chan); 699 if (err) { 700 dev_dbg(chan->device->dev, 701 "%s: failed to get %s: (%d)\n", 702 __func__, dma_chan_name(chan), err); 703 chan = NULL; 704 if (--device->privatecnt == 0) 705 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 706 } 707 } else 708 chan = NULL; 709 710 mutex_unlock(&dma_list_mutex); 711 712 713 return chan; 714 } 715 EXPORT_SYMBOL_GPL(dma_get_slave_channel); 716 717 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) 718 { 719 dma_cap_mask_t mask; 720 struct dma_chan *chan; 721 722 dma_cap_zero(mask); 723 dma_cap_set(DMA_SLAVE, mask); 724 725 /* lock against __dma_request_channel */ 726 mutex_lock(&dma_list_mutex); 727 728 chan = find_candidate(device, &mask, NULL, NULL); 729 730 mutex_unlock(&dma_list_mutex); 731 732 return IS_ERR(chan) ? NULL : chan; 733 } 734 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); 735 736 /** 737 * __dma_request_channel - try to allocate an exclusive channel 738 * @mask: capabilities that the channel must satisfy 739 * @fn: optional callback to disposition available channels 740 * @fn_param: opaque parameter to pass to dma_filter_fn 741 * @np: device node to look for DMA channels 742 * 743 * Returns pointer to appropriate DMA channel on success or NULL. 744 */ 745 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 746 dma_filter_fn fn, void *fn_param, 747 struct device_node *np) 748 { 749 struct dma_device *device, *_d; 750 struct dma_chan *chan = NULL; 751 752 /* Find a channel */ 753 mutex_lock(&dma_list_mutex); 754 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 755 /* Finds a DMA controller with matching device node */ 756 if (np && device->dev->of_node && np != device->dev->of_node) 757 continue; 758 759 chan = find_candidate(device, mask, fn, fn_param); 760 if (!IS_ERR(chan)) 761 break; 762 763 chan = NULL; 764 } 765 mutex_unlock(&dma_list_mutex); 766 767 pr_debug("%s: %s (%s)\n", 768 __func__, 769 chan ? "success" : "fail", 770 chan ? dma_chan_name(chan) : NULL); 771 772 return chan; 773 } 774 EXPORT_SYMBOL_GPL(__dma_request_channel); 775 776 static const struct dma_slave_map *dma_filter_match(struct dma_device *device, 777 const char *name, 778 struct device *dev) 779 { 780 int i; 781 782 if (!device->filter.mapcnt) 783 return NULL; 784 785 for (i = 0; i < device->filter.mapcnt; i++) { 786 const struct dma_slave_map *map = &device->filter.map[i]; 787 788 if (!strcmp(map->devname, dev_name(dev)) && 789 !strcmp(map->slave, name)) 790 return map; 791 } 792 793 return NULL; 794 } 795 796 /** 797 * dma_request_chan - try to allocate an exclusive slave channel 798 * @dev: pointer to client device structure 799 * @name: slave channel name 800 * 801 * Returns pointer to appropriate DMA channel on success or an error pointer. 802 */ 803 struct dma_chan *dma_request_chan(struct device *dev, const char *name) 804 { 805 struct dma_device *d, *_d; 806 struct dma_chan *chan = NULL; 807 808 /* If device-tree is present get slave info from here */ 809 if (dev->of_node) 810 chan = of_dma_request_slave_channel(dev->of_node, name); 811 812 /* If device was enumerated by ACPI get slave info from here */ 813 if (has_acpi_companion(dev) && !chan) 814 chan = acpi_dma_request_slave_chan_by_name(dev, name); 815 816 if (PTR_ERR(chan) == -EPROBE_DEFER) 817 return chan; 818 819 if (!IS_ERR_OR_NULL(chan)) 820 goto found; 821 822 /* Try to find the channel via the DMA filter map(s) */ 823 mutex_lock(&dma_list_mutex); 824 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) { 825 dma_cap_mask_t mask; 826 const struct dma_slave_map *map = dma_filter_match(d, name, dev); 827 828 if (!map) 829 continue; 830 831 dma_cap_zero(mask); 832 dma_cap_set(DMA_SLAVE, mask); 833 834 chan = find_candidate(d, &mask, d->filter.fn, map->param); 835 if (!IS_ERR(chan)) 836 break; 837 } 838 mutex_unlock(&dma_list_mutex); 839 840 if (IS_ERR_OR_NULL(chan)) 841 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 842 843 found: 844 #ifdef CONFIG_DEBUG_FS 845 chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev), 846 name); 847 #endif 848 849 chan->name = kasprintf(GFP_KERNEL, "dma:%s", name); 850 if (!chan->name) 851 return chan; 852 chan->slave = dev; 853 854 if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj, 855 DMA_SLAVE_NAME)) 856 dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME); 857 if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name)) 858 dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name); 859 860 return chan; 861 } 862 EXPORT_SYMBOL_GPL(dma_request_chan); 863 864 /** 865 * dma_request_slave_channel - try to allocate an exclusive slave channel 866 * @dev: pointer to client device structure 867 * @name: slave channel name 868 * 869 * Returns pointer to appropriate DMA channel on success or NULL. 870 */ 871 struct dma_chan *dma_request_slave_channel(struct device *dev, 872 const char *name) 873 { 874 struct dma_chan *ch = dma_request_chan(dev, name); 875 if (IS_ERR(ch)) 876 return NULL; 877 878 return ch; 879 } 880 EXPORT_SYMBOL_GPL(dma_request_slave_channel); 881 882 /** 883 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities 884 * @mask: capabilities that the channel must satisfy 885 * 886 * Returns pointer to appropriate DMA channel on success or an error pointer. 887 */ 888 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask) 889 { 890 struct dma_chan *chan; 891 892 if (!mask) 893 return ERR_PTR(-ENODEV); 894 895 chan = __dma_request_channel(mask, NULL, NULL, NULL); 896 if (!chan) { 897 mutex_lock(&dma_list_mutex); 898 if (list_empty(&dma_device_list)) 899 chan = ERR_PTR(-EPROBE_DEFER); 900 else 901 chan = ERR_PTR(-ENODEV); 902 mutex_unlock(&dma_list_mutex); 903 } 904 905 return chan; 906 } 907 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask); 908 909 void dma_release_channel(struct dma_chan *chan) 910 { 911 mutex_lock(&dma_list_mutex); 912 WARN_ONCE(chan->client_count != 1, 913 "chan reference count %d != 1\n", chan->client_count); 914 dma_chan_put(chan); 915 /* drop PRIVATE cap enabled by __dma_request_channel() */ 916 if (--chan->device->privatecnt == 0) 917 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); 918 919 if (chan->slave) { 920 sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME); 921 sysfs_remove_link(&chan->slave->kobj, chan->name); 922 kfree(chan->name); 923 chan->name = NULL; 924 chan->slave = NULL; 925 } 926 927 #ifdef CONFIG_DEBUG_FS 928 kfree(chan->dbg_client_name); 929 chan->dbg_client_name = NULL; 930 #endif 931 mutex_unlock(&dma_list_mutex); 932 } 933 EXPORT_SYMBOL_GPL(dma_release_channel); 934 935 /** 936 * dmaengine_get - register interest in dma_channels 937 */ 938 void dmaengine_get(void) 939 { 940 struct dma_device *device, *_d; 941 struct dma_chan *chan; 942 int err; 943 944 mutex_lock(&dma_list_mutex); 945 dmaengine_ref_count++; 946 947 /* try to grab channels */ 948 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 949 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 950 continue; 951 list_for_each_entry(chan, &device->channels, device_node) { 952 err = dma_chan_get(chan); 953 if (err == -ENODEV) { 954 /* module removed before we could use it */ 955 list_del_rcu(&device->global_node); 956 break; 957 } else if (err) 958 dev_dbg(chan->device->dev, 959 "%s: failed to get %s: (%d)\n", 960 __func__, dma_chan_name(chan), err); 961 } 962 } 963 964 /* if this is the first reference and there were channels 965 * waiting we need to rebalance to get those channels 966 * incorporated into the channel table 967 */ 968 if (dmaengine_ref_count == 1) 969 dma_channel_rebalance(); 970 mutex_unlock(&dma_list_mutex); 971 } 972 EXPORT_SYMBOL(dmaengine_get); 973 974 /** 975 * dmaengine_put - let dma drivers be removed when ref_count == 0 976 */ 977 void dmaengine_put(void) 978 { 979 struct dma_device *device, *_d; 980 struct dma_chan *chan; 981 982 mutex_lock(&dma_list_mutex); 983 dmaengine_ref_count--; 984 BUG_ON(dmaengine_ref_count < 0); 985 /* drop channel references */ 986 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 987 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 988 continue; 989 list_for_each_entry(chan, &device->channels, device_node) 990 dma_chan_put(chan); 991 } 992 mutex_unlock(&dma_list_mutex); 993 } 994 EXPORT_SYMBOL(dmaengine_put); 995 996 static bool device_has_all_tx_types(struct dma_device *device) 997 { 998 /* A device that satisfies this test has channels that will never cause 999 * an async_tx channel switch event as all possible operation types can 1000 * be handled. 1001 */ 1002 #ifdef CONFIG_ASYNC_TX_DMA 1003 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) 1004 return false; 1005 #endif 1006 1007 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY) 1008 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) 1009 return false; 1010 #endif 1011 1012 #if IS_ENABLED(CONFIG_ASYNC_XOR) 1013 if (!dma_has_cap(DMA_XOR, device->cap_mask)) 1014 return false; 1015 1016 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA 1017 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) 1018 return false; 1019 #endif 1020 #endif 1021 1022 #if IS_ENABLED(CONFIG_ASYNC_PQ) 1023 if (!dma_has_cap(DMA_PQ, device->cap_mask)) 1024 return false; 1025 1026 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA 1027 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) 1028 return false; 1029 #endif 1030 #endif 1031 1032 return true; 1033 } 1034 1035 static int get_dma_id(struct dma_device *device) 1036 { 1037 int rc = ida_alloc(&dma_ida, GFP_KERNEL); 1038 1039 if (rc < 0) 1040 return rc; 1041 device->dev_id = rc; 1042 return 0; 1043 } 1044 1045 static int __dma_async_device_channel_register(struct dma_device *device, 1046 struct dma_chan *chan, 1047 int chan_id) 1048 { 1049 int rc = 0; 1050 int chancnt = device->chancnt; 1051 atomic_t *idr_ref; 1052 struct dma_chan *tchan; 1053 1054 tchan = list_first_entry_or_null(&device->channels, 1055 struct dma_chan, device_node); 1056 if (!tchan) 1057 return -ENODEV; 1058 1059 if (tchan->dev) { 1060 idr_ref = tchan->dev->idr_ref; 1061 } else { 1062 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL); 1063 if (!idr_ref) 1064 return -ENOMEM; 1065 atomic_set(idr_ref, 0); 1066 } 1067 1068 chan->local = alloc_percpu(typeof(*chan->local)); 1069 if (!chan->local) 1070 goto err_out; 1071 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); 1072 if (!chan->dev) { 1073 free_percpu(chan->local); 1074 chan->local = NULL; 1075 goto err_out; 1076 } 1077 1078 /* 1079 * When the chan_id is a negative value, we are dynamically adding 1080 * the channel. Otherwise we are static enumerating. 1081 */ 1082 chan->chan_id = chan_id < 0 ? chancnt : chan_id; 1083 chan->dev->device.class = &dma_devclass; 1084 chan->dev->device.parent = device->dev; 1085 chan->dev->chan = chan; 1086 chan->dev->idr_ref = idr_ref; 1087 chan->dev->dev_id = device->dev_id; 1088 atomic_inc(idr_ref); 1089 dev_set_name(&chan->dev->device, "dma%dchan%d", 1090 device->dev_id, chan->chan_id); 1091 1092 rc = device_register(&chan->dev->device); 1093 if (rc) 1094 goto err_out; 1095 chan->client_count = 0; 1096 device->chancnt = chan->chan_id + 1; 1097 1098 return 0; 1099 1100 err_out: 1101 free_percpu(chan->local); 1102 kfree(chan->dev); 1103 if (atomic_dec_return(idr_ref) == 0) 1104 kfree(idr_ref); 1105 return rc; 1106 } 1107 1108 int dma_async_device_channel_register(struct dma_device *device, 1109 struct dma_chan *chan) 1110 { 1111 int rc; 1112 1113 rc = __dma_async_device_channel_register(device, chan, -1); 1114 if (rc < 0) 1115 return rc; 1116 1117 dma_channel_rebalance(); 1118 return 0; 1119 } 1120 EXPORT_SYMBOL_GPL(dma_async_device_channel_register); 1121 1122 static void __dma_async_device_channel_unregister(struct dma_device *device, 1123 struct dma_chan *chan) 1124 { 1125 WARN_ONCE(!device->device_release && chan->client_count, 1126 "%s called while %d clients hold a reference\n", 1127 __func__, chan->client_count); 1128 mutex_lock(&dma_list_mutex); 1129 list_del(&chan->device_node); 1130 device->chancnt--; 1131 chan->dev->chan = NULL; 1132 mutex_unlock(&dma_list_mutex); 1133 device_unregister(&chan->dev->device); 1134 free_percpu(chan->local); 1135 } 1136 1137 void dma_async_device_channel_unregister(struct dma_device *device, 1138 struct dma_chan *chan) 1139 { 1140 __dma_async_device_channel_unregister(device, chan); 1141 dma_channel_rebalance(); 1142 } 1143 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister); 1144 1145 /** 1146 * dma_async_device_register - registers DMA devices found 1147 * @device: &dma_device 1148 * 1149 * After calling this routine the structure should not be freed except in the 1150 * device_release() callback which will be called after 1151 * dma_async_device_unregister() is called and no further references are taken. 1152 */ 1153 int dma_async_device_register(struct dma_device *device) 1154 { 1155 int rc, i = 0; 1156 struct dma_chan* chan; 1157 1158 if (!device) 1159 return -ENODEV; 1160 1161 /* validate device routines */ 1162 if (!device->dev) { 1163 pr_err("DMAdevice must have dev\n"); 1164 return -EIO; 1165 } 1166 1167 device->owner = device->dev->driver->owner; 1168 1169 if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) { 1170 dev_err(device->dev, 1171 "Device claims capability %s, but op is not defined\n", 1172 "DMA_MEMCPY"); 1173 return -EIO; 1174 } 1175 1176 if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) { 1177 dev_err(device->dev, 1178 "Device claims capability %s, but op is not defined\n", 1179 "DMA_XOR"); 1180 return -EIO; 1181 } 1182 1183 if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) { 1184 dev_err(device->dev, 1185 "Device claims capability %s, but op is not defined\n", 1186 "DMA_XOR_VAL"); 1187 return -EIO; 1188 } 1189 1190 if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) { 1191 dev_err(device->dev, 1192 "Device claims capability %s, but op is not defined\n", 1193 "DMA_PQ"); 1194 return -EIO; 1195 } 1196 1197 if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) { 1198 dev_err(device->dev, 1199 "Device claims capability %s, but op is not defined\n", 1200 "DMA_PQ_VAL"); 1201 return -EIO; 1202 } 1203 1204 if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) { 1205 dev_err(device->dev, 1206 "Device claims capability %s, but op is not defined\n", 1207 "DMA_MEMSET"); 1208 return -EIO; 1209 } 1210 1211 if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) { 1212 dev_err(device->dev, 1213 "Device claims capability %s, but op is not defined\n", 1214 "DMA_INTERRUPT"); 1215 return -EIO; 1216 } 1217 1218 if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) { 1219 dev_err(device->dev, 1220 "Device claims capability %s, but op is not defined\n", 1221 "DMA_CYCLIC"); 1222 return -EIO; 1223 } 1224 1225 if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) { 1226 dev_err(device->dev, 1227 "Device claims capability %s, but op is not defined\n", 1228 "DMA_INTERLEAVE"); 1229 return -EIO; 1230 } 1231 1232 1233 if (!device->device_tx_status) { 1234 dev_err(device->dev, "Device tx_status is not defined\n"); 1235 return -EIO; 1236 } 1237 1238 1239 if (!device->device_issue_pending) { 1240 dev_err(device->dev, "Device issue_pending is not defined\n"); 1241 return -EIO; 1242 } 1243 1244 if (!device->device_release) 1245 dev_dbg(device->dev, 1246 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n"); 1247 1248 kref_init(&device->ref); 1249 1250 /* note: this only matters in the 1251 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case 1252 */ 1253 if (device_has_all_tx_types(device)) 1254 dma_cap_set(DMA_ASYNC_TX, device->cap_mask); 1255 1256 rc = get_dma_id(device); 1257 if (rc != 0) 1258 return rc; 1259 1260 /* represent channels in sysfs. Probably want devs too */ 1261 list_for_each_entry(chan, &device->channels, device_node) { 1262 rc = __dma_async_device_channel_register(device, chan, i++); 1263 if (rc < 0) 1264 goto err_out; 1265 } 1266 1267 mutex_lock(&dma_list_mutex); 1268 /* take references on public channels */ 1269 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1270 list_for_each_entry(chan, &device->channels, device_node) { 1271 /* if clients are already waiting for channels we need 1272 * to take references on their behalf 1273 */ 1274 if (dma_chan_get(chan) == -ENODEV) { 1275 /* note we can only get here for the first 1276 * channel as the remaining channels are 1277 * guaranteed to get a reference 1278 */ 1279 rc = -ENODEV; 1280 mutex_unlock(&dma_list_mutex); 1281 goto err_out; 1282 } 1283 } 1284 list_add_tail_rcu(&device->global_node, &dma_device_list); 1285 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1286 device->privatecnt++; /* Always private */ 1287 dma_channel_rebalance(); 1288 mutex_unlock(&dma_list_mutex); 1289 1290 dmaengine_debug_register(device); 1291 1292 return 0; 1293 1294 err_out: 1295 /* if we never registered a channel just release the idr */ 1296 if (!device->chancnt) { 1297 ida_free(&dma_ida, device->dev_id); 1298 return rc; 1299 } 1300 1301 list_for_each_entry(chan, &device->channels, device_node) { 1302 if (chan->local == NULL) 1303 continue; 1304 mutex_lock(&dma_list_mutex); 1305 chan->dev->chan = NULL; 1306 mutex_unlock(&dma_list_mutex); 1307 device_unregister(&chan->dev->device); 1308 free_percpu(chan->local); 1309 } 1310 return rc; 1311 } 1312 EXPORT_SYMBOL(dma_async_device_register); 1313 1314 /** 1315 * dma_async_device_unregister - unregister a DMA device 1316 * @device: &dma_device 1317 * 1318 * This routine is called by dma driver exit routines, dmaengine holds module 1319 * references to prevent it being called while channels are in use. 1320 */ 1321 void dma_async_device_unregister(struct dma_device *device) 1322 { 1323 struct dma_chan *chan, *n; 1324 1325 dmaengine_debug_unregister(device); 1326 1327 list_for_each_entry_safe(chan, n, &device->channels, device_node) 1328 __dma_async_device_channel_unregister(device, chan); 1329 1330 mutex_lock(&dma_list_mutex); 1331 /* 1332 * setting DMA_PRIVATE ensures the device being torn down will not 1333 * be used in the channel_table 1334 */ 1335 dma_cap_set(DMA_PRIVATE, device->cap_mask); 1336 dma_channel_rebalance(); 1337 dma_device_put(device); 1338 mutex_unlock(&dma_list_mutex); 1339 } 1340 EXPORT_SYMBOL(dma_async_device_unregister); 1341 1342 static void dmam_device_release(struct device *dev, void *res) 1343 { 1344 struct dma_device *device; 1345 1346 device = *(struct dma_device **)res; 1347 dma_async_device_unregister(device); 1348 } 1349 1350 /** 1351 * dmaenginem_async_device_register - registers DMA devices found 1352 * @device: &dma_device 1353 * 1354 * The operation is managed and will be undone on driver detach. 1355 */ 1356 int dmaenginem_async_device_register(struct dma_device *device) 1357 { 1358 void *p; 1359 int ret; 1360 1361 p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL); 1362 if (!p) 1363 return -ENOMEM; 1364 1365 ret = dma_async_device_register(device); 1366 if (!ret) { 1367 *(struct dma_device **)p = device; 1368 devres_add(device->dev, p); 1369 } else { 1370 devres_free(p); 1371 } 1372 1373 return ret; 1374 } 1375 EXPORT_SYMBOL(dmaenginem_async_device_register); 1376 1377 struct dmaengine_unmap_pool { 1378 struct kmem_cache *cache; 1379 const char *name; 1380 mempool_t *pool; 1381 size_t size; 1382 }; 1383 1384 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } 1385 static struct dmaengine_unmap_pool unmap_pool[] = { 1386 __UNMAP_POOL(2), 1387 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1388 __UNMAP_POOL(16), 1389 __UNMAP_POOL(128), 1390 __UNMAP_POOL(256), 1391 #endif 1392 }; 1393 1394 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) 1395 { 1396 int order = get_count_order(nr); 1397 1398 switch (order) { 1399 case 0 ... 1: 1400 return &unmap_pool[0]; 1401 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1402 case 2 ... 4: 1403 return &unmap_pool[1]; 1404 case 5 ... 7: 1405 return &unmap_pool[2]; 1406 case 8: 1407 return &unmap_pool[3]; 1408 #endif 1409 default: 1410 BUG(); 1411 return NULL; 1412 } 1413 } 1414 1415 static void dmaengine_unmap(struct kref *kref) 1416 { 1417 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); 1418 struct device *dev = unmap->dev; 1419 int cnt, i; 1420 1421 cnt = unmap->to_cnt; 1422 for (i = 0; i < cnt; i++) 1423 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1424 DMA_TO_DEVICE); 1425 cnt += unmap->from_cnt; 1426 for (; i < cnt; i++) 1427 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1428 DMA_FROM_DEVICE); 1429 cnt += unmap->bidi_cnt; 1430 for (; i < cnt; i++) { 1431 if (unmap->addr[i] == 0) 1432 continue; 1433 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1434 DMA_BIDIRECTIONAL); 1435 } 1436 cnt = unmap->map_cnt; 1437 mempool_free(unmap, __get_unmap_pool(cnt)->pool); 1438 } 1439 1440 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 1441 { 1442 if (unmap) 1443 kref_put(&unmap->kref, dmaengine_unmap); 1444 } 1445 EXPORT_SYMBOL_GPL(dmaengine_unmap_put); 1446 1447 static void dmaengine_destroy_unmap_pool(void) 1448 { 1449 int i; 1450 1451 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1452 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1453 1454 mempool_destroy(p->pool); 1455 p->pool = NULL; 1456 kmem_cache_destroy(p->cache); 1457 p->cache = NULL; 1458 } 1459 } 1460 1461 static int __init dmaengine_init_unmap_pool(void) 1462 { 1463 int i; 1464 1465 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1466 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1467 size_t size; 1468 1469 size = sizeof(struct dmaengine_unmap_data) + 1470 sizeof(dma_addr_t) * p->size; 1471 1472 p->cache = kmem_cache_create(p->name, size, 0, 1473 SLAB_HWCACHE_ALIGN, NULL); 1474 if (!p->cache) 1475 break; 1476 p->pool = mempool_create_slab_pool(1, p->cache); 1477 if (!p->pool) 1478 break; 1479 } 1480 1481 if (i == ARRAY_SIZE(unmap_pool)) 1482 return 0; 1483 1484 dmaengine_destroy_unmap_pool(); 1485 return -ENOMEM; 1486 } 1487 1488 struct dmaengine_unmap_data * 1489 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 1490 { 1491 struct dmaengine_unmap_data *unmap; 1492 1493 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); 1494 if (!unmap) 1495 return NULL; 1496 1497 memset(unmap, 0, sizeof(*unmap)); 1498 kref_init(&unmap->kref); 1499 unmap->dev = dev; 1500 unmap->map_cnt = nr; 1501 1502 return unmap; 1503 } 1504 EXPORT_SYMBOL(dmaengine_get_unmap_data); 1505 1506 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1507 struct dma_chan *chan) 1508 { 1509 tx->chan = chan; 1510 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1511 spin_lock_init(&tx->lock); 1512 #endif 1513 } 1514 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 1515 1516 static inline int desc_check_and_set_metadata_mode( 1517 struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode) 1518 { 1519 /* Make sure that the metadata mode is not mixed */ 1520 if (!desc->desc_metadata_mode) { 1521 if (dmaengine_is_metadata_mode_supported(desc->chan, mode)) 1522 desc->desc_metadata_mode = mode; 1523 else 1524 return -ENOTSUPP; 1525 } else if (desc->desc_metadata_mode != mode) { 1526 return -EINVAL; 1527 } 1528 1529 return 0; 1530 } 1531 1532 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1533 void *data, size_t len) 1534 { 1535 int ret; 1536 1537 if (!desc) 1538 return -EINVAL; 1539 1540 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT); 1541 if (ret) 1542 return ret; 1543 1544 if (!desc->metadata_ops || !desc->metadata_ops->attach) 1545 return -ENOTSUPP; 1546 1547 return desc->metadata_ops->attach(desc, data, len); 1548 } 1549 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata); 1550 1551 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1552 size_t *payload_len, size_t *max_len) 1553 { 1554 int ret; 1555 1556 if (!desc) 1557 return ERR_PTR(-EINVAL); 1558 1559 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); 1560 if (ret) 1561 return ERR_PTR(ret); 1562 1563 if (!desc->metadata_ops || !desc->metadata_ops->get_ptr) 1564 return ERR_PTR(-ENOTSUPP); 1565 1566 return desc->metadata_ops->get_ptr(desc, payload_len, max_len); 1567 } 1568 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr); 1569 1570 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1571 size_t payload_len) 1572 { 1573 int ret; 1574 1575 if (!desc) 1576 return -EINVAL; 1577 1578 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); 1579 if (ret) 1580 return ret; 1581 1582 if (!desc->metadata_ops || !desc->metadata_ops->set_len) 1583 return -ENOTSUPP; 1584 1585 return desc->metadata_ops->set_len(desc, payload_len); 1586 } 1587 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len); 1588 1589 /* dma_wait_for_async_tx - spin wait for a transaction to complete 1590 * @tx: in-flight transaction to wait on 1591 */ 1592 enum dma_status 1593 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1594 { 1595 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 1596 1597 if (!tx) 1598 return DMA_COMPLETE; 1599 1600 while (tx->cookie == -EBUSY) { 1601 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 1602 dev_err(tx->chan->device->dev, 1603 "%s timeout waiting for descriptor submission\n", 1604 __func__); 1605 return DMA_ERROR; 1606 } 1607 cpu_relax(); 1608 } 1609 return dma_sync_wait(tx->chan, tx->cookie); 1610 } 1611 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); 1612 1613 /* dma_run_dependencies - helper routine for dma drivers to process 1614 * (start) dependent operations on their target channel 1615 * @tx: transaction with dependencies 1616 */ 1617 void dma_run_dependencies(struct dma_async_tx_descriptor *tx) 1618 { 1619 struct dma_async_tx_descriptor *dep = txd_next(tx); 1620 struct dma_async_tx_descriptor *dep_next; 1621 struct dma_chan *chan; 1622 1623 if (!dep) 1624 return; 1625 1626 /* we'll submit tx->next now, so clear the link */ 1627 txd_clear_next(tx); 1628 chan = dep->chan; 1629 1630 /* keep submitting up until a channel switch is detected 1631 * in that case we will be called again as a result of 1632 * processing the interrupt from async_tx_channel_switch 1633 */ 1634 for (; dep; dep = dep_next) { 1635 txd_lock(dep); 1636 txd_clear_parent(dep); 1637 dep_next = txd_next(dep); 1638 if (dep_next && dep_next->chan == chan) 1639 txd_clear_next(dep); /* ->next will be submitted */ 1640 else 1641 dep_next = NULL; /* submit current dep and terminate */ 1642 txd_unlock(dep); 1643 1644 dep->tx_submit(dep); 1645 } 1646 1647 chan->device->device_issue_pending(chan); 1648 } 1649 EXPORT_SYMBOL_GPL(dma_run_dependencies); 1650 1651 static int __init dma_bus_init(void) 1652 { 1653 int err = dmaengine_init_unmap_pool(); 1654 1655 if (err) 1656 return err; 1657 1658 err = class_register(&dma_devclass); 1659 if (!err) 1660 dmaengine_debugfs_init(); 1661 1662 return err; 1663 } 1664 arch_initcall(dma_bus_init); 1665