1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5 6 /* 7 * This code implements the DMA subsystem. It provides a HW-neutral interface 8 * for other kernel code to use asynchronous memory copy capabilities, 9 * if present, and allows different HW DMA drivers to register as providing 10 * this capability. 11 * 12 * Due to the fact we are accelerating what is already a relatively fast 13 * operation, the code goes to great lengths to avoid additional overhead, 14 * such as locking. 15 * 16 * LOCKING: 17 * 18 * The subsystem keeps a global list of dma_device structs it is protected by a 19 * mutex, dma_list_mutex. 20 * 21 * A subsystem can get access to a channel by calling dmaengine_get() followed 22 * by dma_find_channel(), or if it has need for an exclusive channel it can call 23 * dma_request_channel(). Once a channel is allocated a reference is taken 24 * against its corresponding driver to disable removal. 25 * 26 * Each device has a channels list, which runs unlocked but is never modified 27 * once the device is registered, it's just setup by the driver. 28 * 29 * See Documentation/driver-api/dmaengine for more details 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/platform_device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/init.h> 37 #include <linux/module.h> 38 #include <linux/mm.h> 39 #include <linux/device.h> 40 #include <linux/dmaengine.h> 41 #include <linux/hardirq.h> 42 #include <linux/spinlock.h> 43 #include <linux/percpu.h> 44 #include <linux/rcupdate.h> 45 #include <linux/mutex.h> 46 #include <linux/jiffies.h> 47 #include <linux/rculist.h> 48 #include <linux/idr.h> 49 #include <linux/slab.h> 50 #include <linux/acpi.h> 51 #include <linux/acpi_dma.h> 52 #include <linux/of_dma.h> 53 #include <linux/mempool.h> 54 #include <linux/numa.h> 55 56 #include "dmaengine.h" 57 58 static DEFINE_MUTEX(dma_list_mutex); 59 static DEFINE_IDA(dma_ida); 60 static LIST_HEAD(dma_device_list); 61 static long dmaengine_ref_count; 62 63 /* --- debugfs implementation --- */ 64 #ifdef CONFIG_DEBUG_FS 65 #include <linux/debugfs.h> 66 67 static struct dentry *rootdir; 68 69 static void dmaengine_debug_register(struct dma_device *dma_dev) 70 { 71 dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev), 72 rootdir); 73 if (IS_ERR(dma_dev->dbg_dev_root)) 74 dma_dev->dbg_dev_root = NULL; 75 } 76 77 static void dmaengine_debug_unregister(struct dma_device *dma_dev) 78 { 79 debugfs_remove_recursive(dma_dev->dbg_dev_root); 80 dma_dev->dbg_dev_root = NULL; 81 } 82 83 static void dmaengine_dbg_summary_show(struct seq_file *s, 84 struct dma_device *dma_dev) 85 { 86 struct dma_chan *chan; 87 88 list_for_each_entry(chan, &dma_dev->channels, device_node) { 89 if (chan->client_count) { 90 seq_printf(s, " %-13s| %s", dma_chan_name(chan), 91 chan->dbg_client_name ?: "in-use"); 92 93 if (chan->router) 94 seq_printf(s, " (via router: %s)\n", 95 dev_name(chan->router->dev)); 96 else 97 seq_puts(s, "\n"); 98 } 99 } 100 } 101 102 static int dmaengine_summary_show(struct seq_file *s, void *data) 103 { 104 struct dma_device *dma_dev = NULL; 105 106 mutex_lock(&dma_list_mutex); 107 list_for_each_entry(dma_dev, &dma_device_list, global_node) { 108 seq_printf(s, "dma%d (%s): number of channels: %u\n", 109 dma_dev->dev_id, dev_name(dma_dev->dev), 110 dma_dev->chancnt); 111 112 if (dma_dev->dbg_summary_show) 113 dma_dev->dbg_summary_show(s, dma_dev); 114 else 115 dmaengine_dbg_summary_show(s, dma_dev); 116 117 if (!list_is_last(&dma_dev->global_node, &dma_device_list)) 118 seq_puts(s, "\n"); 119 } 120 mutex_unlock(&dma_list_mutex); 121 122 return 0; 123 } 124 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary); 125 126 static void __init dmaengine_debugfs_init(void) 127 { 128 rootdir = debugfs_create_dir("dmaengine", NULL); 129 130 /* /sys/kernel/debug/dmaengine/summary */ 131 debugfs_create_file("summary", 0444, rootdir, NULL, 132 &dmaengine_summary_fops); 133 } 134 #else 135 static inline void dmaengine_debugfs_init(void) { } 136 static inline int dmaengine_debug_register(struct dma_device *dma_dev) 137 { 138 return 0; 139 } 140 141 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { } 142 #endif /* DEBUG_FS */ 143 144 /* --- sysfs implementation --- */ 145 146 #define DMA_SLAVE_NAME "slave" 147 148 /** 149 * dev_to_dma_chan - convert a device pointer to its sysfs container object 150 * @dev: device node 151 * 152 * Must be called under dma_list_mutex. 153 */ 154 static struct dma_chan *dev_to_dma_chan(struct device *dev) 155 { 156 struct dma_chan_dev *chan_dev; 157 158 chan_dev = container_of(dev, typeof(*chan_dev), device); 159 return chan_dev->chan; 160 } 161 162 static ssize_t memcpy_count_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct dma_chan *chan; 166 unsigned long count = 0; 167 int i; 168 int err; 169 170 mutex_lock(&dma_list_mutex); 171 chan = dev_to_dma_chan(dev); 172 if (chan) { 173 for_each_possible_cpu(i) 174 count += per_cpu_ptr(chan->local, i)->memcpy_count; 175 err = sprintf(buf, "%lu\n", count); 176 } else 177 err = -ENODEV; 178 mutex_unlock(&dma_list_mutex); 179 180 return err; 181 } 182 static DEVICE_ATTR_RO(memcpy_count); 183 184 static ssize_t bytes_transferred_show(struct device *dev, 185 struct device_attribute *attr, char *buf) 186 { 187 struct dma_chan *chan; 188 unsigned long count = 0; 189 int i; 190 int err; 191 192 mutex_lock(&dma_list_mutex); 193 chan = dev_to_dma_chan(dev); 194 if (chan) { 195 for_each_possible_cpu(i) 196 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 197 err = sprintf(buf, "%lu\n", count); 198 } else 199 err = -ENODEV; 200 mutex_unlock(&dma_list_mutex); 201 202 return err; 203 } 204 static DEVICE_ATTR_RO(bytes_transferred); 205 206 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, 207 char *buf) 208 { 209 struct dma_chan *chan; 210 int err; 211 212 mutex_lock(&dma_list_mutex); 213 chan = dev_to_dma_chan(dev); 214 if (chan) 215 err = sprintf(buf, "%d\n", chan->client_count); 216 else 217 err = -ENODEV; 218 mutex_unlock(&dma_list_mutex); 219 220 return err; 221 } 222 static DEVICE_ATTR_RO(in_use); 223 224 static struct attribute *dma_dev_attrs[] = { 225 &dev_attr_memcpy_count.attr, 226 &dev_attr_bytes_transferred.attr, 227 &dev_attr_in_use.attr, 228 NULL, 229 }; 230 ATTRIBUTE_GROUPS(dma_dev); 231 232 static void chan_dev_release(struct device *dev) 233 { 234 struct dma_chan_dev *chan_dev; 235 236 chan_dev = container_of(dev, typeof(*chan_dev), device); 237 kfree(chan_dev); 238 } 239 240 static struct class dma_devclass = { 241 .name = "dma", 242 .dev_groups = dma_dev_groups, 243 .dev_release = chan_dev_release, 244 }; 245 246 /* --- client and device registration --- */ 247 248 /* enable iteration over all operation types */ 249 static dma_cap_mask_t dma_cap_mask_all; 250 251 /** 252 * struct dma_chan_tbl_ent - tracks channel allocations per core/operation 253 * @chan: associated channel for this entry 254 */ 255 struct dma_chan_tbl_ent { 256 struct dma_chan *chan; 257 }; 258 259 /* percpu lookup table for memory-to-memory offload providers */ 260 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; 261 262 static int __init dma_channel_table_init(void) 263 { 264 enum dma_transaction_type cap; 265 int err = 0; 266 267 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); 268 269 /* 'interrupt', 'private', and 'slave' are channel capabilities, 270 * but are not associated with an operation so they do not need 271 * an entry in the channel_table 272 */ 273 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); 274 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); 275 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); 276 277 for_each_dma_cap_mask(cap, dma_cap_mask_all) { 278 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); 279 if (!channel_table[cap]) { 280 err = -ENOMEM; 281 break; 282 } 283 } 284 285 if (err) { 286 pr_err("dmaengine dma_channel_table_init failure: %d\n", err); 287 for_each_dma_cap_mask(cap, dma_cap_mask_all) 288 free_percpu(channel_table[cap]); 289 } 290 291 return err; 292 } 293 arch_initcall(dma_channel_table_init); 294 295 /** 296 * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU 297 * @chan: DMA channel to test 298 * @cpu: CPU index which the channel should be close to 299 * 300 * Returns true if the channel is in the same NUMA-node as the CPU. 301 */ 302 static bool dma_chan_is_local(struct dma_chan *chan, int cpu) 303 { 304 int node = dev_to_node(chan->device->dev); 305 return node == NUMA_NO_NODE || 306 cpumask_test_cpu(cpu, cpumask_of_node(node)); 307 } 308 309 /** 310 * min_chan - finds the channel with min count and in the same NUMA-node as the CPU 311 * @cap: capability to match 312 * @cpu: CPU index which the channel should be close to 313 * 314 * If some channels are close to the given CPU, the one with the lowest 315 * reference count is returned. Otherwise, CPU is ignored and only the 316 * reference count is taken into account. 317 * 318 * Must be called under dma_list_mutex. 319 */ 320 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) 321 { 322 struct dma_device *device; 323 struct dma_chan *chan; 324 struct dma_chan *min = NULL; 325 struct dma_chan *localmin = NULL; 326 327 list_for_each_entry(device, &dma_device_list, global_node) { 328 if (!dma_has_cap(cap, device->cap_mask) || 329 dma_has_cap(DMA_PRIVATE, device->cap_mask)) 330 continue; 331 list_for_each_entry(chan, &device->channels, device_node) { 332 if (!chan->client_count) 333 continue; 334 if (!min || chan->table_count < min->table_count) 335 min = chan; 336 337 if (dma_chan_is_local(chan, cpu)) 338 if (!localmin || 339 chan->table_count < localmin->table_count) 340 localmin = chan; 341 } 342 } 343 344 chan = localmin ? localmin : min; 345 346 if (chan) 347 chan->table_count++; 348 349 return chan; 350 } 351 352 /** 353 * dma_channel_rebalance - redistribute the available channels 354 * 355 * Optimize for CPU isolation (each CPU gets a dedicated channel for an 356 * operation type) in the SMP case, and operation isolation (avoid 357 * multi-tasking channels) in the non-SMP case. 358 * 359 * Must be called under dma_list_mutex. 360 */ 361 static void dma_channel_rebalance(void) 362 { 363 struct dma_chan *chan; 364 struct dma_device *device; 365 int cpu; 366 int cap; 367 368 /* undo the last distribution */ 369 for_each_dma_cap_mask(cap, dma_cap_mask_all) 370 for_each_possible_cpu(cpu) 371 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; 372 373 list_for_each_entry(device, &dma_device_list, global_node) { 374 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 375 continue; 376 list_for_each_entry(chan, &device->channels, device_node) 377 chan->table_count = 0; 378 } 379 380 /* don't populate the channel_table if no clients are available */ 381 if (!dmaengine_ref_count) 382 return; 383 384 /* redistribute available channels */ 385 for_each_dma_cap_mask(cap, dma_cap_mask_all) 386 for_each_online_cpu(cpu) { 387 chan = min_chan(cap, cpu); 388 per_cpu_ptr(channel_table[cap], cpu)->chan = chan; 389 } 390 } 391 392 static int dma_device_satisfies_mask(struct dma_device *device, 393 const dma_cap_mask_t *want) 394 { 395 dma_cap_mask_t has; 396 397 bitmap_and(has.bits, want->bits, device->cap_mask.bits, 398 DMA_TX_TYPE_END); 399 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 400 } 401 402 static struct module *dma_chan_to_owner(struct dma_chan *chan) 403 { 404 return chan->device->owner; 405 } 406 407 /** 408 * balance_ref_count - catch up the channel reference count 409 * @chan: channel to balance ->client_count versus dmaengine_ref_count 410 * 411 * Must be called under dma_list_mutex. 412 */ 413 static void balance_ref_count(struct dma_chan *chan) 414 { 415 struct module *owner = dma_chan_to_owner(chan); 416 417 while (chan->client_count < dmaengine_ref_count) { 418 __module_get(owner); 419 chan->client_count++; 420 } 421 } 422 423 static void dma_device_release(struct kref *ref) 424 { 425 struct dma_device *device = container_of(ref, struct dma_device, ref); 426 427 list_del_rcu(&device->global_node); 428 dma_channel_rebalance(); 429 430 if (device->device_release) 431 device->device_release(device); 432 } 433 434 static void dma_device_put(struct dma_device *device) 435 { 436 lockdep_assert_held(&dma_list_mutex); 437 kref_put(&device->ref, dma_device_release); 438 } 439 440 /** 441 * dma_chan_get - try to grab a DMA channel's parent driver module 442 * @chan: channel to grab 443 * 444 * Must be called under dma_list_mutex. 445 */ 446 static int dma_chan_get(struct dma_chan *chan) 447 { 448 struct module *owner = dma_chan_to_owner(chan); 449 int ret; 450 451 /* The channel is already in use, update client count */ 452 if (chan->client_count) { 453 __module_get(owner); 454 goto out; 455 } 456 457 if (!try_module_get(owner)) 458 return -ENODEV; 459 460 ret = kref_get_unless_zero(&chan->device->ref); 461 if (!ret) { 462 ret = -ENODEV; 463 goto module_put_out; 464 } 465 466 /* allocate upon first client reference */ 467 if (chan->device->device_alloc_chan_resources) { 468 ret = chan->device->device_alloc_chan_resources(chan); 469 if (ret < 0) 470 goto err_out; 471 } 472 473 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) 474 balance_ref_count(chan); 475 476 out: 477 chan->client_count++; 478 return 0; 479 480 err_out: 481 dma_device_put(chan->device); 482 module_put_out: 483 module_put(owner); 484 return ret; 485 } 486 487 /** 488 * dma_chan_put - drop a reference to a DMA channel's parent driver module 489 * @chan: channel to release 490 * 491 * Must be called under dma_list_mutex. 492 */ 493 static void dma_chan_put(struct dma_chan *chan) 494 { 495 /* This channel is not in use, bail out */ 496 if (!chan->client_count) 497 return; 498 499 chan->client_count--; 500 501 /* This channel is not in use anymore, free it */ 502 if (!chan->client_count && chan->device->device_free_chan_resources) { 503 /* Make sure all operations have completed */ 504 dmaengine_synchronize(chan); 505 chan->device->device_free_chan_resources(chan); 506 } 507 508 /* If the channel is used via a DMA request router, free the mapping */ 509 if (chan->router && chan->router->route_free) { 510 chan->router->route_free(chan->router->dev, chan->route_data); 511 chan->router = NULL; 512 chan->route_data = NULL; 513 } 514 515 dma_device_put(chan->device); 516 module_put(dma_chan_to_owner(chan)); 517 } 518 519 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 520 { 521 enum dma_status status; 522 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 523 524 dma_async_issue_pending(chan); 525 do { 526 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 527 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 528 dev_err(chan->device->dev, "%s: timeout!\n", __func__); 529 return DMA_ERROR; 530 } 531 if (status != DMA_IN_PROGRESS) 532 break; 533 cpu_relax(); 534 } while (1); 535 536 return status; 537 } 538 EXPORT_SYMBOL(dma_sync_wait); 539 540 /** 541 * dma_find_channel - find a channel to carry out the operation 542 * @tx_type: transaction type 543 */ 544 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 545 { 546 return this_cpu_read(channel_table[tx_type]->chan); 547 } 548 EXPORT_SYMBOL(dma_find_channel); 549 550 /** 551 * dma_issue_pending_all - flush all pending operations across all channels 552 */ 553 void dma_issue_pending_all(void) 554 { 555 struct dma_device *device; 556 struct dma_chan *chan; 557 558 rcu_read_lock(); 559 list_for_each_entry_rcu(device, &dma_device_list, global_node) { 560 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 561 continue; 562 list_for_each_entry(chan, &device->channels, device_node) 563 if (chan->client_count) 564 device->device_issue_pending(chan); 565 } 566 rcu_read_unlock(); 567 } 568 EXPORT_SYMBOL(dma_issue_pending_all); 569 570 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 571 { 572 struct dma_device *device; 573 574 if (!chan || !caps) 575 return -EINVAL; 576 577 device = chan->device; 578 579 /* check if the channel supports slave transactions */ 580 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) || 581 test_bit(DMA_CYCLIC, device->cap_mask.bits))) 582 return -ENXIO; 583 584 /* 585 * Check whether it reports it uses the generic slave 586 * capabilities, if not, that means it doesn't support any 587 * kind of slave capabilities reporting. 588 */ 589 if (!device->directions) 590 return -ENXIO; 591 592 caps->src_addr_widths = device->src_addr_widths; 593 caps->dst_addr_widths = device->dst_addr_widths; 594 caps->directions = device->directions; 595 caps->max_burst = device->max_burst; 596 caps->residue_granularity = device->residue_granularity; 597 caps->descriptor_reuse = device->descriptor_reuse; 598 caps->cmd_pause = !!device->device_pause; 599 caps->cmd_resume = !!device->device_resume; 600 caps->cmd_terminate = !!device->device_terminate_all; 601 602 return 0; 603 } 604 EXPORT_SYMBOL_GPL(dma_get_slave_caps); 605 606 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, 607 struct dma_device *dev, 608 dma_filter_fn fn, void *fn_param) 609 { 610 struct dma_chan *chan; 611 612 if (mask && !dma_device_satisfies_mask(dev, mask)) { 613 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__); 614 return NULL; 615 } 616 /* devices with multiple channels need special handling as we need to 617 * ensure that all channels are either private or public. 618 */ 619 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) 620 list_for_each_entry(chan, &dev->channels, device_node) { 621 /* some channels are already publicly allocated */ 622 if (chan->client_count) 623 return NULL; 624 } 625 626 list_for_each_entry(chan, &dev->channels, device_node) { 627 if (chan->client_count) { 628 dev_dbg(dev->dev, "%s: %s busy\n", 629 __func__, dma_chan_name(chan)); 630 continue; 631 } 632 if (fn && !fn(chan, fn_param)) { 633 dev_dbg(dev->dev, "%s: %s filter said false\n", 634 __func__, dma_chan_name(chan)); 635 continue; 636 } 637 return chan; 638 } 639 640 return NULL; 641 } 642 643 static struct dma_chan *find_candidate(struct dma_device *device, 644 const dma_cap_mask_t *mask, 645 dma_filter_fn fn, void *fn_param) 646 { 647 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param); 648 int err; 649 650 if (chan) { 651 /* Found a suitable channel, try to grab, prep, and return it. 652 * We first set DMA_PRIVATE to disable balance_ref_count as this 653 * channel will not be published in the general-purpose 654 * allocator 655 */ 656 dma_cap_set(DMA_PRIVATE, device->cap_mask); 657 device->privatecnt++; 658 err = dma_chan_get(chan); 659 660 if (err) { 661 if (err == -ENODEV) { 662 dev_dbg(device->dev, "%s: %s module removed\n", 663 __func__, dma_chan_name(chan)); 664 list_del_rcu(&device->global_node); 665 } else 666 dev_dbg(device->dev, 667 "%s: failed to get %s: (%d)\n", 668 __func__, dma_chan_name(chan), err); 669 670 if (--device->privatecnt == 0) 671 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 672 673 chan = ERR_PTR(err); 674 } 675 } 676 677 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 678 } 679 680 /** 681 * dma_get_slave_channel - try to get specific channel exclusively 682 * @chan: target channel 683 */ 684 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) 685 { 686 int err = -EBUSY; 687 688 /* lock against __dma_request_channel */ 689 mutex_lock(&dma_list_mutex); 690 691 if (chan->client_count == 0) { 692 struct dma_device *device = chan->device; 693 694 dma_cap_set(DMA_PRIVATE, device->cap_mask); 695 device->privatecnt++; 696 err = dma_chan_get(chan); 697 if (err) { 698 dev_dbg(chan->device->dev, 699 "%s: failed to get %s: (%d)\n", 700 __func__, dma_chan_name(chan), err); 701 chan = NULL; 702 if (--device->privatecnt == 0) 703 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 704 } 705 } else 706 chan = NULL; 707 708 mutex_unlock(&dma_list_mutex); 709 710 711 return chan; 712 } 713 EXPORT_SYMBOL_GPL(dma_get_slave_channel); 714 715 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) 716 { 717 dma_cap_mask_t mask; 718 struct dma_chan *chan; 719 720 dma_cap_zero(mask); 721 dma_cap_set(DMA_SLAVE, mask); 722 723 /* lock against __dma_request_channel */ 724 mutex_lock(&dma_list_mutex); 725 726 chan = find_candidate(device, &mask, NULL, NULL); 727 728 mutex_unlock(&dma_list_mutex); 729 730 return IS_ERR(chan) ? NULL : chan; 731 } 732 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); 733 734 /** 735 * __dma_request_channel - try to allocate an exclusive channel 736 * @mask: capabilities that the channel must satisfy 737 * @fn: optional callback to disposition available channels 738 * @fn_param: opaque parameter to pass to dma_filter_fn() 739 * @np: device node to look for DMA channels 740 * 741 * Returns pointer to appropriate DMA channel on success or NULL. 742 */ 743 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 744 dma_filter_fn fn, void *fn_param, 745 struct device_node *np) 746 { 747 struct dma_device *device, *_d; 748 struct dma_chan *chan = NULL; 749 750 /* Find a channel */ 751 mutex_lock(&dma_list_mutex); 752 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 753 /* Finds a DMA controller with matching device node */ 754 if (np && device->dev->of_node && np != device->dev->of_node) 755 continue; 756 757 chan = find_candidate(device, mask, fn, fn_param); 758 if (!IS_ERR(chan)) 759 break; 760 761 chan = NULL; 762 } 763 mutex_unlock(&dma_list_mutex); 764 765 pr_debug("%s: %s (%s)\n", 766 __func__, 767 chan ? "success" : "fail", 768 chan ? dma_chan_name(chan) : NULL); 769 770 return chan; 771 } 772 EXPORT_SYMBOL_GPL(__dma_request_channel); 773 774 static const struct dma_slave_map *dma_filter_match(struct dma_device *device, 775 const char *name, 776 struct device *dev) 777 { 778 int i; 779 780 if (!device->filter.mapcnt) 781 return NULL; 782 783 for (i = 0; i < device->filter.mapcnt; i++) { 784 const struct dma_slave_map *map = &device->filter.map[i]; 785 786 if (!strcmp(map->devname, dev_name(dev)) && 787 !strcmp(map->slave, name)) 788 return map; 789 } 790 791 return NULL; 792 } 793 794 /** 795 * dma_request_chan - try to allocate an exclusive slave channel 796 * @dev: pointer to client device structure 797 * @name: slave channel name 798 * 799 * Returns pointer to appropriate DMA channel on success or an error pointer. 800 */ 801 struct dma_chan *dma_request_chan(struct device *dev, const char *name) 802 { 803 struct dma_device *d, *_d; 804 struct dma_chan *chan = NULL; 805 806 /* If device-tree is present get slave info from here */ 807 if (dev->of_node) 808 chan = of_dma_request_slave_channel(dev->of_node, name); 809 810 /* If device was enumerated by ACPI get slave info from here */ 811 if (has_acpi_companion(dev) && !chan) 812 chan = acpi_dma_request_slave_chan_by_name(dev, name); 813 814 if (PTR_ERR(chan) == -EPROBE_DEFER) 815 return chan; 816 817 if (!IS_ERR_OR_NULL(chan)) 818 goto found; 819 820 /* Try to find the channel via the DMA filter map(s) */ 821 mutex_lock(&dma_list_mutex); 822 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) { 823 dma_cap_mask_t mask; 824 const struct dma_slave_map *map = dma_filter_match(d, name, dev); 825 826 if (!map) 827 continue; 828 829 dma_cap_zero(mask); 830 dma_cap_set(DMA_SLAVE, mask); 831 832 chan = find_candidate(d, &mask, d->filter.fn, map->param); 833 if (!IS_ERR(chan)) 834 break; 835 } 836 mutex_unlock(&dma_list_mutex); 837 838 if (IS_ERR_OR_NULL(chan)) 839 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 840 841 found: 842 #ifdef CONFIG_DEBUG_FS 843 chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev), 844 name); 845 #endif 846 847 chan->name = kasprintf(GFP_KERNEL, "dma:%s", name); 848 if (!chan->name) 849 return chan; 850 chan->slave = dev; 851 852 if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj, 853 DMA_SLAVE_NAME)) 854 dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME); 855 if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name)) 856 dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name); 857 858 return chan; 859 } 860 EXPORT_SYMBOL_GPL(dma_request_chan); 861 862 /** 863 * dma_request_slave_channel - try to allocate an exclusive slave channel 864 * @dev: pointer to client device structure 865 * @name: slave channel name 866 * 867 * Returns pointer to appropriate DMA channel on success or NULL. 868 */ 869 struct dma_chan *dma_request_slave_channel(struct device *dev, 870 const char *name) 871 { 872 struct dma_chan *ch = dma_request_chan(dev, name); 873 if (IS_ERR(ch)) 874 return NULL; 875 876 return ch; 877 } 878 EXPORT_SYMBOL_GPL(dma_request_slave_channel); 879 880 /** 881 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities 882 * @mask: capabilities that the channel must satisfy 883 * 884 * Returns pointer to appropriate DMA channel on success or an error pointer. 885 */ 886 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask) 887 { 888 struct dma_chan *chan; 889 890 if (!mask) 891 return ERR_PTR(-ENODEV); 892 893 chan = __dma_request_channel(mask, NULL, NULL, NULL); 894 if (!chan) { 895 mutex_lock(&dma_list_mutex); 896 if (list_empty(&dma_device_list)) 897 chan = ERR_PTR(-EPROBE_DEFER); 898 else 899 chan = ERR_PTR(-ENODEV); 900 mutex_unlock(&dma_list_mutex); 901 } 902 903 return chan; 904 } 905 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask); 906 907 void dma_release_channel(struct dma_chan *chan) 908 { 909 mutex_lock(&dma_list_mutex); 910 WARN_ONCE(chan->client_count != 1, 911 "chan reference count %d != 1\n", chan->client_count); 912 dma_chan_put(chan); 913 /* drop PRIVATE cap enabled by __dma_request_channel() */ 914 if (--chan->device->privatecnt == 0) 915 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); 916 917 if (chan->slave) { 918 sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME); 919 sysfs_remove_link(&chan->slave->kobj, chan->name); 920 kfree(chan->name); 921 chan->name = NULL; 922 chan->slave = NULL; 923 } 924 925 #ifdef CONFIG_DEBUG_FS 926 kfree(chan->dbg_client_name); 927 chan->dbg_client_name = NULL; 928 #endif 929 mutex_unlock(&dma_list_mutex); 930 } 931 EXPORT_SYMBOL_GPL(dma_release_channel); 932 933 /** 934 * dmaengine_get - register interest in dma_channels 935 */ 936 void dmaengine_get(void) 937 { 938 struct dma_device *device, *_d; 939 struct dma_chan *chan; 940 int err; 941 942 mutex_lock(&dma_list_mutex); 943 dmaengine_ref_count++; 944 945 /* try to grab channels */ 946 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 947 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 948 continue; 949 list_for_each_entry(chan, &device->channels, device_node) { 950 err = dma_chan_get(chan); 951 if (err == -ENODEV) { 952 /* module removed before we could use it */ 953 list_del_rcu(&device->global_node); 954 break; 955 } else if (err) 956 dev_dbg(chan->device->dev, 957 "%s: failed to get %s: (%d)\n", 958 __func__, dma_chan_name(chan), err); 959 } 960 } 961 962 /* if this is the first reference and there were channels 963 * waiting we need to rebalance to get those channels 964 * incorporated into the channel table 965 */ 966 if (dmaengine_ref_count == 1) 967 dma_channel_rebalance(); 968 mutex_unlock(&dma_list_mutex); 969 } 970 EXPORT_SYMBOL(dmaengine_get); 971 972 /** 973 * dmaengine_put - let DMA drivers be removed when ref_count == 0 974 */ 975 void dmaengine_put(void) 976 { 977 struct dma_device *device, *_d; 978 struct dma_chan *chan; 979 980 mutex_lock(&dma_list_mutex); 981 dmaengine_ref_count--; 982 BUG_ON(dmaengine_ref_count < 0); 983 /* drop channel references */ 984 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 985 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 986 continue; 987 list_for_each_entry(chan, &device->channels, device_node) 988 dma_chan_put(chan); 989 } 990 mutex_unlock(&dma_list_mutex); 991 } 992 EXPORT_SYMBOL(dmaengine_put); 993 994 static bool device_has_all_tx_types(struct dma_device *device) 995 { 996 /* A device that satisfies this test has channels that will never cause 997 * an async_tx channel switch event as all possible operation types can 998 * be handled. 999 */ 1000 #ifdef CONFIG_ASYNC_TX_DMA 1001 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) 1002 return false; 1003 #endif 1004 1005 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY) 1006 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) 1007 return false; 1008 #endif 1009 1010 #if IS_ENABLED(CONFIG_ASYNC_XOR) 1011 if (!dma_has_cap(DMA_XOR, device->cap_mask)) 1012 return false; 1013 1014 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA 1015 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) 1016 return false; 1017 #endif 1018 #endif 1019 1020 #if IS_ENABLED(CONFIG_ASYNC_PQ) 1021 if (!dma_has_cap(DMA_PQ, device->cap_mask)) 1022 return false; 1023 1024 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA 1025 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) 1026 return false; 1027 #endif 1028 #endif 1029 1030 return true; 1031 } 1032 1033 static int get_dma_id(struct dma_device *device) 1034 { 1035 int rc = ida_alloc(&dma_ida, GFP_KERNEL); 1036 1037 if (rc < 0) 1038 return rc; 1039 device->dev_id = rc; 1040 return 0; 1041 } 1042 1043 static int __dma_async_device_channel_register(struct dma_device *device, 1044 struct dma_chan *chan) 1045 { 1046 int rc = 0; 1047 1048 chan->local = alloc_percpu(typeof(*chan->local)); 1049 if (!chan->local) 1050 goto err_out; 1051 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); 1052 if (!chan->dev) { 1053 free_percpu(chan->local); 1054 chan->local = NULL; 1055 goto err_out; 1056 } 1057 1058 /* 1059 * When the chan_id is a negative value, we are dynamically adding 1060 * the channel. Otherwise we are static enumerating. 1061 */ 1062 mutex_lock(&device->chan_mutex); 1063 chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL); 1064 mutex_unlock(&device->chan_mutex); 1065 if (chan->chan_id < 0) { 1066 pr_err("%s: unable to alloc ida for chan: %d\n", 1067 __func__, chan->chan_id); 1068 goto err_out; 1069 } 1070 1071 chan->dev->device.class = &dma_devclass; 1072 chan->dev->device.parent = device->dev; 1073 chan->dev->chan = chan; 1074 chan->dev->dev_id = device->dev_id; 1075 dev_set_name(&chan->dev->device, "dma%dchan%d", 1076 device->dev_id, chan->chan_id); 1077 rc = device_register(&chan->dev->device); 1078 if (rc) 1079 goto err_out_ida; 1080 chan->client_count = 0; 1081 device->chancnt++; 1082 1083 return 0; 1084 1085 err_out_ida: 1086 mutex_lock(&device->chan_mutex); 1087 ida_free(&device->chan_ida, chan->chan_id); 1088 mutex_unlock(&device->chan_mutex); 1089 err_out: 1090 free_percpu(chan->local); 1091 kfree(chan->dev); 1092 return rc; 1093 } 1094 1095 int dma_async_device_channel_register(struct dma_device *device, 1096 struct dma_chan *chan) 1097 { 1098 int rc; 1099 1100 rc = __dma_async_device_channel_register(device, chan); 1101 if (rc < 0) 1102 return rc; 1103 1104 dma_channel_rebalance(); 1105 return 0; 1106 } 1107 EXPORT_SYMBOL_GPL(dma_async_device_channel_register); 1108 1109 static void __dma_async_device_channel_unregister(struct dma_device *device, 1110 struct dma_chan *chan) 1111 { 1112 WARN_ONCE(!device->device_release && chan->client_count, 1113 "%s called while %d clients hold a reference\n", 1114 __func__, chan->client_count); 1115 mutex_lock(&dma_list_mutex); 1116 list_del(&chan->device_node); 1117 device->chancnt--; 1118 chan->dev->chan = NULL; 1119 mutex_unlock(&dma_list_mutex); 1120 mutex_lock(&device->chan_mutex); 1121 ida_free(&device->chan_ida, chan->chan_id); 1122 mutex_unlock(&device->chan_mutex); 1123 device_unregister(&chan->dev->device); 1124 free_percpu(chan->local); 1125 } 1126 1127 void dma_async_device_channel_unregister(struct dma_device *device, 1128 struct dma_chan *chan) 1129 { 1130 __dma_async_device_channel_unregister(device, chan); 1131 dma_channel_rebalance(); 1132 } 1133 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister); 1134 1135 /** 1136 * dma_async_device_register - registers DMA devices found 1137 * @device: pointer to &struct dma_device 1138 * 1139 * After calling this routine the structure should not be freed except in the 1140 * device_release() callback which will be called after 1141 * dma_async_device_unregister() is called and no further references are taken. 1142 */ 1143 int dma_async_device_register(struct dma_device *device) 1144 { 1145 int rc; 1146 struct dma_chan* chan; 1147 1148 if (!device) 1149 return -ENODEV; 1150 1151 /* validate device routines */ 1152 if (!device->dev) { 1153 pr_err("DMAdevice must have dev\n"); 1154 return -EIO; 1155 } 1156 1157 device->owner = device->dev->driver->owner; 1158 1159 if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) { 1160 dev_err(device->dev, 1161 "Device claims capability %s, but op is not defined\n", 1162 "DMA_MEMCPY"); 1163 return -EIO; 1164 } 1165 1166 if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) { 1167 dev_err(device->dev, 1168 "Device claims capability %s, but op is not defined\n", 1169 "DMA_XOR"); 1170 return -EIO; 1171 } 1172 1173 if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) { 1174 dev_err(device->dev, 1175 "Device claims capability %s, but op is not defined\n", 1176 "DMA_XOR_VAL"); 1177 return -EIO; 1178 } 1179 1180 if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) { 1181 dev_err(device->dev, 1182 "Device claims capability %s, but op is not defined\n", 1183 "DMA_PQ"); 1184 return -EIO; 1185 } 1186 1187 if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) { 1188 dev_err(device->dev, 1189 "Device claims capability %s, but op is not defined\n", 1190 "DMA_PQ_VAL"); 1191 return -EIO; 1192 } 1193 1194 if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) { 1195 dev_err(device->dev, 1196 "Device claims capability %s, but op is not defined\n", 1197 "DMA_MEMSET"); 1198 return -EIO; 1199 } 1200 1201 if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) { 1202 dev_err(device->dev, 1203 "Device claims capability %s, but op is not defined\n", 1204 "DMA_INTERRUPT"); 1205 return -EIO; 1206 } 1207 1208 if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) { 1209 dev_err(device->dev, 1210 "Device claims capability %s, but op is not defined\n", 1211 "DMA_CYCLIC"); 1212 return -EIO; 1213 } 1214 1215 if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) { 1216 dev_err(device->dev, 1217 "Device claims capability %s, but op is not defined\n", 1218 "DMA_INTERLEAVE"); 1219 return -EIO; 1220 } 1221 1222 1223 if (!device->device_tx_status) { 1224 dev_err(device->dev, "Device tx_status is not defined\n"); 1225 return -EIO; 1226 } 1227 1228 1229 if (!device->device_issue_pending) { 1230 dev_err(device->dev, "Device issue_pending is not defined\n"); 1231 return -EIO; 1232 } 1233 1234 if (!device->device_release) 1235 dev_dbg(device->dev, 1236 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n"); 1237 1238 kref_init(&device->ref); 1239 1240 /* note: this only matters in the 1241 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case 1242 */ 1243 if (device_has_all_tx_types(device)) 1244 dma_cap_set(DMA_ASYNC_TX, device->cap_mask); 1245 1246 rc = get_dma_id(device); 1247 if (rc != 0) 1248 return rc; 1249 1250 mutex_init(&device->chan_mutex); 1251 ida_init(&device->chan_ida); 1252 1253 /* represent channels in sysfs. Probably want devs too */ 1254 list_for_each_entry(chan, &device->channels, device_node) { 1255 rc = __dma_async_device_channel_register(device, chan); 1256 if (rc < 0) 1257 goto err_out; 1258 } 1259 1260 mutex_lock(&dma_list_mutex); 1261 /* take references on public channels */ 1262 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1263 list_for_each_entry(chan, &device->channels, device_node) { 1264 /* if clients are already waiting for channels we need 1265 * to take references on their behalf 1266 */ 1267 if (dma_chan_get(chan) == -ENODEV) { 1268 /* note we can only get here for the first 1269 * channel as the remaining channels are 1270 * guaranteed to get a reference 1271 */ 1272 rc = -ENODEV; 1273 mutex_unlock(&dma_list_mutex); 1274 goto err_out; 1275 } 1276 } 1277 list_add_tail_rcu(&device->global_node, &dma_device_list); 1278 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1279 device->privatecnt++; /* Always private */ 1280 dma_channel_rebalance(); 1281 mutex_unlock(&dma_list_mutex); 1282 1283 dmaengine_debug_register(device); 1284 1285 return 0; 1286 1287 err_out: 1288 /* if we never registered a channel just release the idr */ 1289 if (!device->chancnt) { 1290 ida_free(&dma_ida, device->dev_id); 1291 return rc; 1292 } 1293 1294 list_for_each_entry(chan, &device->channels, device_node) { 1295 if (chan->local == NULL) 1296 continue; 1297 mutex_lock(&dma_list_mutex); 1298 chan->dev->chan = NULL; 1299 mutex_unlock(&dma_list_mutex); 1300 device_unregister(&chan->dev->device); 1301 free_percpu(chan->local); 1302 } 1303 return rc; 1304 } 1305 EXPORT_SYMBOL(dma_async_device_register); 1306 1307 /** 1308 * dma_async_device_unregister - unregister a DMA device 1309 * @device: pointer to &struct dma_device 1310 * 1311 * This routine is called by dma driver exit routines, dmaengine holds module 1312 * references to prevent it being called while channels are in use. 1313 */ 1314 void dma_async_device_unregister(struct dma_device *device) 1315 { 1316 struct dma_chan *chan, *n; 1317 1318 dmaengine_debug_unregister(device); 1319 1320 list_for_each_entry_safe(chan, n, &device->channels, device_node) 1321 __dma_async_device_channel_unregister(device, chan); 1322 1323 mutex_lock(&dma_list_mutex); 1324 /* 1325 * setting DMA_PRIVATE ensures the device being torn down will not 1326 * be used in the channel_table 1327 */ 1328 dma_cap_set(DMA_PRIVATE, device->cap_mask); 1329 dma_channel_rebalance(); 1330 ida_free(&dma_ida, device->dev_id); 1331 dma_device_put(device); 1332 mutex_unlock(&dma_list_mutex); 1333 } 1334 EXPORT_SYMBOL(dma_async_device_unregister); 1335 1336 static void dmam_device_release(struct device *dev, void *res) 1337 { 1338 struct dma_device *device; 1339 1340 device = *(struct dma_device **)res; 1341 dma_async_device_unregister(device); 1342 } 1343 1344 /** 1345 * dmaenginem_async_device_register - registers DMA devices found 1346 * @device: pointer to &struct dma_device 1347 * 1348 * The operation is managed and will be undone on driver detach. 1349 */ 1350 int dmaenginem_async_device_register(struct dma_device *device) 1351 { 1352 void *p; 1353 int ret; 1354 1355 p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL); 1356 if (!p) 1357 return -ENOMEM; 1358 1359 ret = dma_async_device_register(device); 1360 if (!ret) { 1361 *(struct dma_device **)p = device; 1362 devres_add(device->dev, p); 1363 } else { 1364 devres_free(p); 1365 } 1366 1367 return ret; 1368 } 1369 EXPORT_SYMBOL(dmaenginem_async_device_register); 1370 1371 struct dmaengine_unmap_pool { 1372 struct kmem_cache *cache; 1373 const char *name; 1374 mempool_t *pool; 1375 size_t size; 1376 }; 1377 1378 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } 1379 static struct dmaengine_unmap_pool unmap_pool[] = { 1380 __UNMAP_POOL(2), 1381 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1382 __UNMAP_POOL(16), 1383 __UNMAP_POOL(128), 1384 __UNMAP_POOL(256), 1385 #endif 1386 }; 1387 1388 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) 1389 { 1390 int order = get_count_order(nr); 1391 1392 switch (order) { 1393 case 0 ... 1: 1394 return &unmap_pool[0]; 1395 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1396 case 2 ... 4: 1397 return &unmap_pool[1]; 1398 case 5 ... 7: 1399 return &unmap_pool[2]; 1400 case 8: 1401 return &unmap_pool[3]; 1402 #endif 1403 default: 1404 BUG(); 1405 return NULL; 1406 } 1407 } 1408 1409 static void dmaengine_unmap(struct kref *kref) 1410 { 1411 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); 1412 struct device *dev = unmap->dev; 1413 int cnt, i; 1414 1415 cnt = unmap->to_cnt; 1416 for (i = 0; i < cnt; i++) 1417 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1418 DMA_TO_DEVICE); 1419 cnt += unmap->from_cnt; 1420 for (; i < cnt; i++) 1421 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1422 DMA_FROM_DEVICE); 1423 cnt += unmap->bidi_cnt; 1424 for (; i < cnt; i++) { 1425 if (unmap->addr[i] == 0) 1426 continue; 1427 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1428 DMA_BIDIRECTIONAL); 1429 } 1430 cnt = unmap->map_cnt; 1431 mempool_free(unmap, __get_unmap_pool(cnt)->pool); 1432 } 1433 1434 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 1435 { 1436 if (unmap) 1437 kref_put(&unmap->kref, dmaengine_unmap); 1438 } 1439 EXPORT_SYMBOL_GPL(dmaengine_unmap_put); 1440 1441 static void dmaengine_destroy_unmap_pool(void) 1442 { 1443 int i; 1444 1445 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1446 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1447 1448 mempool_destroy(p->pool); 1449 p->pool = NULL; 1450 kmem_cache_destroy(p->cache); 1451 p->cache = NULL; 1452 } 1453 } 1454 1455 static int __init dmaengine_init_unmap_pool(void) 1456 { 1457 int i; 1458 1459 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1460 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1461 size_t size; 1462 1463 size = sizeof(struct dmaengine_unmap_data) + 1464 sizeof(dma_addr_t) * p->size; 1465 1466 p->cache = kmem_cache_create(p->name, size, 0, 1467 SLAB_HWCACHE_ALIGN, NULL); 1468 if (!p->cache) 1469 break; 1470 p->pool = mempool_create_slab_pool(1, p->cache); 1471 if (!p->pool) 1472 break; 1473 } 1474 1475 if (i == ARRAY_SIZE(unmap_pool)) 1476 return 0; 1477 1478 dmaengine_destroy_unmap_pool(); 1479 return -ENOMEM; 1480 } 1481 1482 struct dmaengine_unmap_data * 1483 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 1484 { 1485 struct dmaengine_unmap_data *unmap; 1486 1487 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); 1488 if (!unmap) 1489 return NULL; 1490 1491 memset(unmap, 0, sizeof(*unmap)); 1492 kref_init(&unmap->kref); 1493 unmap->dev = dev; 1494 unmap->map_cnt = nr; 1495 1496 return unmap; 1497 } 1498 EXPORT_SYMBOL(dmaengine_get_unmap_data); 1499 1500 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1501 struct dma_chan *chan) 1502 { 1503 tx->chan = chan; 1504 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1505 spin_lock_init(&tx->lock); 1506 #endif 1507 } 1508 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 1509 1510 static inline int desc_check_and_set_metadata_mode( 1511 struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode) 1512 { 1513 /* Make sure that the metadata mode is not mixed */ 1514 if (!desc->desc_metadata_mode) { 1515 if (dmaengine_is_metadata_mode_supported(desc->chan, mode)) 1516 desc->desc_metadata_mode = mode; 1517 else 1518 return -ENOTSUPP; 1519 } else if (desc->desc_metadata_mode != mode) { 1520 return -EINVAL; 1521 } 1522 1523 return 0; 1524 } 1525 1526 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1527 void *data, size_t len) 1528 { 1529 int ret; 1530 1531 if (!desc) 1532 return -EINVAL; 1533 1534 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT); 1535 if (ret) 1536 return ret; 1537 1538 if (!desc->metadata_ops || !desc->metadata_ops->attach) 1539 return -ENOTSUPP; 1540 1541 return desc->metadata_ops->attach(desc, data, len); 1542 } 1543 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata); 1544 1545 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1546 size_t *payload_len, size_t *max_len) 1547 { 1548 int ret; 1549 1550 if (!desc) 1551 return ERR_PTR(-EINVAL); 1552 1553 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); 1554 if (ret) 1555 return ERR_PTR(ret); 1556 1557 if (!desc->metadata_ops || !desc->metadata_ops->get_ptr) 1558 return ERR_PTR(-ENOTSUPP); 1559 1560 return desc->metadata_ops->get_ptr(desc, payload_len, max_len); 1561 } 1562 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr); 1563 1564 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1565 size_t payload_len) 1566 { 1567 int ret; 1568 1569 if (!desc) 1570 return -EINVAL; 1571 1572 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); 1573 if (ret) 1574 return ret; 1575 1576 if (!desc->metadata_ops || !desc->metadata_ops->set_len) 1577 return -ENOTSUPP; 1578 1579 return desc->metadata_ops->set_len(desc, payload_len); 1580 } 1581 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len); 1582 1583 /** 1584 * dma_wait_for_async_tx - spin wait for a transaction to complete 1585 * @tx: in-flight transaction to wait on 1586 */ 1587 enum dma_status 1588 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1589 { 1590 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 1591 1592 if (!tx) 1593 return DMA_COMPLETE; 1594 1595 while (tx->cookie == -EBUSY) { 1596 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 1597 dev_err(tx->chan->device->dev, 1598 "%s timeout waiting for descriptor submission\n", 1599 __func__); 1600 return DMA_ERROR; 1601 } 1602 cpu_relax(); 1603 } 1604 return dma_sync_wait(tx->chan, tx->cookie); 1605 } 1606 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); 1607 1608 /** 1609 * dma_run_dependencies - process dependent operations on the target channel 1610 * @tx: transaction with dependencies 1611 * 1612 * Helper routine for DMA drivers to process (start) dependent operations 1613 * on their target channel. 1614 */ 1615 void dma_run_dependencies(struct dma_async_tx_descriptor *tx) 1616 { 1617 struct dma_async_tx_descriptor *dep = txd_next(tx); 1618 struct dma_async_tx_descriptor *dep_next; 1619 struct dma_chan *chan; 1620 1621 if (!dep) 1622 return; 1623 1624 /* we'll submit tx->next now, so clear the link */ 1625 txd_clear_next(tx); 1626 chan = dep->chan; 1627 1628 /* keep submitting up until a channel switch is detected 1629 * in that case we will be called again as a result of 1630 * processing the interrupt from async_tx_channel_switch 1631 */ 1632 for (; dep; dep = dep_next) { 1633 txd_lock(dep); 1634 txd_clear_parent(dep); 1635 dep_next = txd_next(dep); 1636 if (dep_next && dep_next->chan == chan) 1637 txd_clear_next(dep); /* ->next will be submitted */ 1638 else 1639 dep_next = NULL; /* submit current dep and terminate */ 1640 txd_unlock(dep); 1641 1642 dep->tx_submit(dep); 1643 } 1644 1645 chan->device->device_issue_pending(chan); 1646 } 1647 EXPORT_SYMBOL_GPL(dma_run_dependencies); 1648 1649 static int __init dma_bus_init(void) 1650 { 1651 int err = dmaengine_init_unmap_pool(); 1652 1653 if (err) 1654 return err; 1655 1656 err = class_register(&dma_devclass); 1657 if (!err) 1658 dmaengine_debugfs_init(); 1659 1660 return err; 1661 } 1662 arch_initcall(dma_bus_init); 1663