xref: /openbmc/linux/drivers/dma/dmaengine.c (revision 132db935)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 
6 /*
7  * This code implements the DMA subsystem. It provides a HW-neutral interface
8  * for other kernel code to use asynchronous memory copy capabilities,
9  * if present, and allows different HW DMA drivers to register as providing
10  * this capability.
11  *
12  * Due to the fact we are accelerating what is already a relatively fast
13  * operation, the code goes to great lengths to avoid additional overhead,
14  * such as locking.
15  *
16  * LOCKING:
17  *
18  * The subsystem keeps a global list of dma_device structs it is protected by a
19  * mutex, dma_list_mutex.
20  *
21  * A subsystem can get access to a channel by calling dmaengine_get() followed
22  * by dma_find_channel(), or if it has need for an exclusive channel it can call
23  * dma_request_channel().  Once a channel is allocated a reference is taken
24  * against its corresponding driver to disable removal.
25  *
26  * Each device has a channels list, which runs unlocked but is never modified
27  * once the device is registered, it's just setup by the driver.
28  *
29  * See Documentation/driver-api/dmaengine for more details
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/platform_device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/device.h>
40 #include <linux/dmaengine.h>
41 #include <linux/hardirq.h>
42 #include <linux/spinlock.h>
43 #include <linux/percpu.h>
44 #include <linux/rcupdate.h>
45 #include <linux/mutex.h>
46 #include <linux/jiffies.h>
47 #include <linux/rculist.h>
48 #include <linux/idr.h>
49 #include <linux/slab.h>
50 #include <linux/acpi.h>
51 #include <linux/acpi_dma.h>
52 #include <linux/of_dma.h>
53 #include <linux/mempool.h>
54 #include <linux/numa.h>
55 
56 #include "dmaengine.h"
57 
58 static DEFINE_MUTEX(dma_list_mutex);
59 static DEFINE_IDA(dma_ida);
60 static LIST_HEAD(dma_device_list);
61 static long dmaengine_ref_count;
62 
63 /* --- debugfs implementation --- */
64 #ifdef CONFIG_DEBUG_FS
65 #include <linux/debugfs.h>
66 
67 static struct dentry *rootdir;
68 
69 static void dmaengine_debug_register(struct dma_device *dma_dev)
70 {
71 	dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev),
72 						   rootdir);
73 	if (IS_ERR(dma_dev->dbg_dev_root))
74 		dma_dev->dbg_dev_root = NULL;
75 }
76 
77 static void dmaengine_debug_unregister(struct dma_device *dma_dev)
78 {
79 	debugfs_remove_recursive(dma_dev->dbg_dev_root);
80 	dma_dev->dbg_dev_root = NULL;
81 }
82 
83 static void dmaengine_dbg_summary_show(struct seq_file *s,
84 				       struct dma_device *dma_dev)
85 {
86 	struct dma_chan *chan;
87 
88 	list_for_each_entry(chan, &dma_dev->channels, device_node) {
89 		if (chan->client_count) {
90 			seq_printf(s, " %-13s| %s", dma_chan_name(chan),
91 				   chan->dbg_client_name ?: "in-use");
92 
93 			if (chan->router)
94 				seq_printf(s, " (via router: %s)\n",
95 					dev_name(chan->router->dev));
96 			else
97 				seq_puts(s, "\n");
98 		}
99 	}
100 }
101 
102 static int dmaengine_summary_show(struct seq_file *s, void *data)
103 {
104 	struct dma_device *dma_dev = NULL;
105 
106 	mutex_lock(&dma_list_mutex);
107 	list_for_each_entry(dma_dev, &dma_device_list, global_node) {
108 		seq_printf(s, "dma%d (%s): number of channels: %u\n",
109 			   dma_dev->dev_id, dev_name(dma_dev->dev),
110 			   dma_dev->chancnt);
111 
112 		if (dma_dev->dbg_summary_show)
113 			dma_dev->dbg_summary_show(s, dma_dev);
114 		else
115 			dmaengine_dbg_summary_show(s, dma_dev);
116 
117 		if (!list_is_last(&dma_dev->global_node, &dma_device_list))
118 			seq_puts(s, "\n");
119 	}
120 	mutex_unlock(&dma_list_mutex);
121 
122 	return 0;
123 }
124 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary);
125 
126 static void __init dmaengine_debugfs_init(void)
127 {
128 	rootdir = debugfs_create_dir("dmaengine", NULL);
129 
130 	/* /sys/kernel/debug/dmaengine/summary */
131 	debugfs_create_file("summary", 0444, rootdir, NULL,
132 			    &dmaengine_summary_fops);
133 }
134 #else
135 static inline void dmaengine_debugfs_init(void) { }
136 static inline int dmaengine_debug_register(struct dma_device *dma_dev)
137 {
138 	return 0;
139 }
140 
141 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { }
142 #endif	/* DEBUG_FS */
143 
144 /* --- sysfs implementation --- */
145 
146 #define DMA_SLAVE_NAME	"slave"
147 
148 /**
149  * dev_to_dma_chan - convert a device pointer to its sysfs container object
150  * @dev:	device node
151  *
152  * Must be called under dma_list_mutex.
153  */
154 static struct dma_chan *dev_to_dma_chan(struct device *dev)
155 {
156 	struct dma_chan_dev *chan_dev;
157 
158 	chan_dev = container_of(dev, typeof(*chan_dev), device);
159 	return chan_dev->chan;
160 }
161 
162 static ssize_t memcpy_count_show(struct device *dev,
163 				 struct device_attribute *attr, char *buf)
164 {
165 	struct dma_chan *chan;
166 	unsigned long count = 0;
167 	int i;
168 	int err;
169 
170 	mutex_lock(&dma_list_mutex);
171 	chan = dev_to_dma_chan(dev);
172 	if (chan) {
173 		for_each_possible_cpu(i)
174 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
175 		err = sprintf(buf, "%lu\n", count);
176 	} else
177 		err = -ENODEV;
178 	mutex_unlock(&dma_list_mutex);
179 
180 	return err;
181 }
182 static DEVICE_ATTR_RO(memcpy_count);
183 
184 static ssize_t bytes_transferred_show(struct device *dev,
185 				      struct device_attribute *attr, char *buf)
186 {
187 	struct dma_chan *chan;
188 	unsigned long count = 0;
189 	int i;
190 	int err;
191 
192 	mutex_lock(&dma_list_mutex);
193 	chan = dev_to_dma_chan(dev);
194 	if (chan) {
195 		for_each_possible_cpu(i)
196 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
197 		err = sprintf(buf, "%lu\n", count);
198 	} else
199 		err = -ENODEV;
200 	mutex_unlock(&dma_list_mutex);
201 
202 	return err;
203 }
204 static DEVICE_ATTR_RO(bytes_transferred);
205 
206 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
207 			   char *buf)
208 {
209 	struct dma_chan *chan;
210 	int err;
211 
212 	mutex_lock(&dma_list_mutex);
213 	chan = dev_to_dma_chan(dev);
214 	if (chan)
215 		err = sprintf(buf, "%d\n", chan->client_count);
216 	else
217 		err = -ENODEV;
218 	mutex_unlock(&dma_list_mutex);
219 
220 	return err;
221 }
222 static DEVICE_ATTR_RO(in_use);
223 
224 static struct attribute *dma_dev_attrs[] = {
225 	&dev_attr_memcpy_count.attr,
226 	&dev_attr_bytes_transferred.attr,
227 	&dev_attr_in_use.attr,
228 	NULL,
229 };
230 ATTRIBUTE_GROUPS(dma_dev);
231 
232 static void chan_dev_release(struct device *dev)
233 {
234 	struct dma_chan_dev *chan_dev;
235 
236 	chan_dev = container_of(dev, typeof(*chan_dev), device);
237 	kfree(chan_dev);
238 }
239 
240 static struct class dma_devclass = {
241 	.name		= "dma",
242 	.dev_groups	= dma_dev_groups,
243 	.dev_release	= chan_dev_release,
244 };
245 
246 /* --- client and device registration --- */
247 
248 /* enable iteration over all operation types */
249 static dma_cap_mask_t dma_cap_mask_all;
250 
251 /**
252  * struct dma_chan_tbl_ent - tracks channel allocations per core/operation
253  * @chan:	associated channel for this entry
254  */
255 struct dma_chan_tbl_ent {
256 	struct dma_chan *chan;
257 };
258 
259 /* percpu lookup table for memory-to-memory offload providers */
260 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
261 
262 static int __init dma_channel_table_init(void)
263 {
264 	enum dma_transaction_type cap;
265 	int err = 0;
266 
267 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
268 
269 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
270 	 * but are not associated with an operation so they do not need
271 	 * an entry in the channel_table
272 	 */
273 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
274 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
275 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
276 
277 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
278 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
279 		if (!channel_table[cap]) {
280 			err = -ENOMEM;
281 			break;
282 		}
283 	}
284 
285 	if (err) {
286 		pr_err("dmaengine dma_channel_table_init failure: %d\n", err);
287 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
288 			free_percpu(channel_table[cap]);
289 	}
290 
291 	return err;
292 }
293 arch_initcall(dma_channel_table_init);
294 
295 /**
296  * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU
297  * @chan:	DMA channel to test
298  * @cpu:	CPU index which the channel should be close to
299  *
300  * Returns true if the channel is in the same NUMA-node as the CPU.
301  */
302 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
303 {
304 	int node = dev_to_node(chan->device->dev);
305 	return node == NUMA_NO_NODE ||
306 		cpumask_test_cpu(cpu, cpumask_of_node(node));
307 }
308 
309 /**
310  * min_chan - finds the channel with min count and in the same NUMA-node as the CPU
311  * @cap:	capability to match
312  * @cpu:	CPU index which the channel should be close to
313  *
314  * If some channels are close to the given CPU, the one with the lowest
315  * reference count is returned. Otherwise, CPU is ignored and only the
316  * reference count is taken into account.
317  *
318  * Must be called under dma_list_mutex.
319  */
320 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
321 {
322 	struct dma_device *device;
323 	struct dma_chan *chan;
324 	struct dma_chan *min = NULL;
325 	struct dma_chan *localmin = NULL;
326 
327 	list_for_each_entry(device, &dma_device_list, global_node) {
328 		if (!dma_has_cap(cap, device->cap_mask) ||
329 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
330 			continue;
331 		list_for_each_entry(chan, &device->channels, device_node) {
332 			if (!chan->client_count)
333 				continue;
334 			if (!min || chan->table_count < min->table_count)
335 				min = chan;
336 
337 			if (dma_chan_is_local(chan, cpu))
338 				if (!localmin ||
339 				    chan->table_count < localmin->table_count)
340 					localmin = chan;
341 		}
342 	}
343 
344 	chan = localmin ? localmin : min;
345 
346 	if (chan)
347 		chan->table_count++;
348 
349 	return chan;
350 }
351 
352 /**
353  * dma_channel_rebalance - redistribute the available channels
354  *
355  * Optimize for CPU isolation (each CPU gets a dedicated channel for an
356  * operation type) in the SMP case, and operation isolation (avoid
357  * multi-tasking channels) in the non-SMP case.
358  *
359  * Must be called under dma_list_mutex.
360  */
361 static void dma_channel_rebalance(void)
362 {
363 	struct dma_chan *chan;
364 	struct dma_device *device;
365 	int cpu;
366 	int cap;
367 
368 	/* undo the last distribution */
369 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
370 		for_each_possible_cpu(cpu)
371 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
372 
373 	list_for_each_entry(device, &dma_device_list, global_node) {
374 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
375 			continue;
376 		list_for_each_entry(chan, &device->channels, device_node)
377 			chan->table_count = 0;
378 	}
379 
380 	/* don't populate the channel_table if no clients are available */
381 	if (!dmaengine_ref_count)
382 		return;
383 
384 	/* redistribute available channels */
385 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
386 		for_each_online_cpu(cpu) {
387 			chan = min_chan(cap, cpu);
388 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
389 		}
390 }
391 
392 static int dma_device_satisfies_mask(struct dma_device *device,
393 				     const dma_cap_mask_t *want)
394 {
395 	dma_cap_mask_t has;
396 
397 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
398 		DMA_TX_TYPE_END);
399 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
400 }
401 
402 static struct module *dma_chan_to_owner(struct dma_chan *chan)
403 {
404 	return chan->device->owner;
405 }
406 
407 /**
408  * balance_ref_count - catch up the channel reference count
409  * @chan:	channel to balance ->client_count versus dmaengine_ref_count
410  *
411  * Must be called under dma_list_mutex.
412  */
413 static void balance_ref_count(struct dma_chan *chan)
414 {
415 	struct module *owner = dma_chan_to_owner(chan);
416 
417 	while (chan->client_count < dmaengine_ref_count) {
418 		__module_get(owner);
419 		chan->client_count++;
420 	}
421 }
422 
423 static void dma_device_release(struct kref *ref)
424 {
425 	struct dma_device *device = container_of(ref, struct dma_device, ref);
426 
427 	list_del_rcu(&device->global_node);
428 	dma_channel_rebalance();
429 
430 	if (device->device_release)
431 		device->device_release(device);
432 }
433 
434 static void dma_device_put(struct dma_device *device)
435 {
436 	lockdep_assert_held(&dma_list_mutex);
437 	kref_put(&device->ref, dma_device_release);
438 }
439 
440 /**
441  * dma_chan_get - try to grab a DMA channel's parent driver module
442  * @chan:	channel to grab
443  *
444  * Must be called under dma_list_mutex.
445  */
446 static int dma_chan_get(struct dma_chan *chan)
447 {
448 	struct module *owner = dma_chan_to_owner(chan);
449 	int ret;
450 
451 	/* The channel is already in use, update client count */
452 	if (chan->client_count) {
453 		__module_get(owner);
454 		goto out;
455 	}
456 
457 	if (!try_module_get(owner))
458 		return -ENODEV;
459 
460 	ret = kref_get_unless_zero(&chan->device->ref);
461 	if (!ret) {
462 		ret = -ENODEV;
463 		goto module_put_out;
464 	}
465 
466 	/* allocate upon first client reference */
467 	if (chan->device->device_alloc_chan_resources) {
468 		ret = chan->device->device_alloc_chan_resources(chan);
469 		if (ret < 0)
470 			goto err_out;
471 	}
472 
473 	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
474 		balance_ref_count(chan);
475 
476 out:
477 	chan->client_count++;
478 	return 0;
479 
480 err_out:
481 	dma_device_put(chan->device);
482 module_put_out:
483 	module_put(owner);
484 	return ret;
485 }
486 
487 /**
488  * dma_chan_put - drop a reference to a DMA channel's parent driver module
489  * @chan:	channel to release
490  *
491  * Must be called under dma_list_mutex.
492  */
493 static void dma_chan_put(struct dma_chan *chan)
494 {
495 	/* This channel is not in use, bail out */
496 	if (!chan->client_count)
497 		return;
498 
499 	chan->client_count--;
500 
501 	/* This channel is not in use anymore, free it */
502 	if (!chan->client_count && chan->device->device_free_chan_resources) {
503 		/* Make sure all operations have completed */
504 		dmaengine_synchronize(chan);
505 		chan->device->device_free_chan_resources(chan);
506 	}
507 
508 	/* If the channel is used via a DMA request router, free the mapping */
509 	if (chan->router && chan->router->route_free) {
510 		chan->router->route_free(chan->router->dev, chan->route_data);
511 		chan->router = NULL;
512 		chan->route_data = NULL;
513 	}
514 
515 	dma_device_put(chan->device);
516 	module_put(dma_chan_to_owner(chan));
517 }
518 
519 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
520 {
521 	enum dma_status status;
522 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
523 
524 	dma_async_issue_pending(chan);
525 	do {
526 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
527 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
528 			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
529 			return DMA_ERROR;
530 		}
531 		if (status != DMA_IN_PROGRESS)
532 			break;
533 		cpu_relax();
534 	} while (1);
535 
536 	return status;
537 }
538 EXPORT_SYMBOL(dma_sync_wait);
539 
540 /**
541  * dma_find_channel - find a channel to carry out the operation
542  * @tx_type:	transaction type
543  */
544 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
545 {
546 	return this_cpu_read(channel_table[tx_type]->chan);
547 }
548 EXPORT_SYMBOL(dma_find_channel);
549 
550 /**
551  * dma_issue_pending_all - flush all pending operations across all channels
552  */
553 void dma_issue_pending_all(void)
554 {
555 	struct dma_device *device;
556 	struct dma_chan *chan;
557 
558 	rcu_read_lock();
559 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
560 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
561 			continue;
562 		list_for_each_entry(chan, &device->channels, device_node)
563 			if (chan->client_count)
564 				device->device_issue_pending(chan);
565 	}
566 	rcu_read_unlock();
567 }
568 EXPORT_SYMBOL(dma_issue_pending_all);
569 
570 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
571 {
572 	struct dma_device *device;
573 
574 	if (!chan || !caps)
575 		return -EINVAL;
576 
577 	device = chan->device;
578 
579 	/* check if the channel supports slave transactions */
580 	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
581 	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
582 		return -ENXIO;
583 
584 	/*
585 	 * Check whether it reports it uses the generic slave
586 	 * capabilities, if not, that means it doesn't support any
587 	 * kind of slave capabilities reporting.
588 	 */
589 	if (!device->directions)
590 		return -ENXIO;
591 
592 	caps->src_addr_widths = device->src_addr_widths;
593 	caps->dst_addr_widths = device->dst_addr_widths;
594 	caps->directions = device->directions;
595 	caps->max_burst = device->max_burst;
596 	caps->residue_granularity = device->residue_granularity;
597 	caps->descriptor_reuse = device->descriptor_reuse;
598 	caps->cmd_pause = !!device->device_pause;
599 	caps->cmd_resume = !!device->device_resume;
600 	caps->cmd_terminate = !!device->device_terminate_all;
601 
602 	return 0;
603 }
604 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
605 
606 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
607 					  struct dma_device *dev,
608 					  dma_filter_fn fn, void *fn_param)
609 {
610 	struct dma_chan *chan;
611 
612 	if (mask && !dma_device_satisfies_mask(dev, mask)) {
613 		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
614 		return NULL;
615 	}
616 	/* devices with multiple channels need special handling as we need to
617 	 * ensure that all channels are either private or public.
618 	 */
619 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
620 		list_for_each_entry(chan, &dev->channels, device_node) {
621 			/* some channels are already publicly allocated */
622 			if (chan->client_count)
623 				return NULL;
624 		}
625 
626 	list_for_each_entry(chan, &dev->channels, device_node) {
627 		if (chan->client_count) {
628 			dev_dbg(dev->dev, "%s: %s busy\n",
629 				 __func__, dma_chan_name(chan));
630 			continue;
631 		}
632 		if (fn && !fn(chan, fn_param)) {
633 			dev_dbg(dev->dev, "%s: %s filter said false\n",
634 				 __func__, dma_chan_name(chan));
635 			continue;
636 		}
637 		return chan;
638 	}
639 
640 	return NULL;
641 }
642 
643 static struct dma_chan *find_candidate(struct dma_device *device,
644 				       const dma_cap_mask_t *mask,
645 				       dma_filter_fn fn, void *fn_param)
646 {
647 	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
648 	int err;
649 
650 	if (chan) {
651 		/* Found a suitable channel, try to grab, prep, and return it.
652 		 * We first set DMA_PRIVATE to disable balance_ref_count as this
653 		 * channel will not be published in the general-purpose
654 		 * allocator
655 		 */
656 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
657 		device->privatecnt++;
658 		err = dma_chan_get(chan);
659 
660 		if (err) {
661 			if (err == -ENODEV) {
662 				dev_dbg(device->dev, "%s: %s module removed\n",
663 					__func__, dma_chan_name(chan));
664 				list_del_rcu(&device->global_node);
665 			} else
666 				dev_dbg(device->dev,
667 					"%s: failed to get %s: (%d)\n",
668 					 __func__, dma_chan_name(chan), err);
669 
670 			if (--device->privatecnt == 0)
671 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
672 
673 			chan = ERR_PTR(err);
674 		}
675 	}
676 
677 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
678 }
679 
680 /**
681  * dma_get_slave_channel - try to get specific channel exclusively
682  * @chan:	target channel
683  */
684 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
685 {
686 	int err = -EBUSY;
687 
688 	/* lock against __dma_request_channel */
689 	mutex_lock(&dma_list_mutex);
690 
691 	if (chan->client_count == 0) {
692 		struct dma_device *device = chan->device;
693 
694 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
695 		device->privatecnt++;
696 		err = dma_chan_get(chan);
697 		if (err) {
698 			dev_dbg(chan->device->dev,
699 				"%s: failed to get %s: (%d)\n",
700 				__func__, dma_chan_name(chan), err);
701 			chan = NULL;
702 			if (--device->privatecnt == 0)
703 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
704 		}
705 	} else
706 		chan = NULL;
707 
708 	mutex_unlock(&dma_list_mutex);
709 
710 
711 	return chan;
712 }
713 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
714 
715 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
716 {
717 	dma_cap_mask_t mask;
718 	struct dma_chan *chan;
719 
720 	dma_cap_zero(mask);
721 	dma_cap_set(DMA_SLAVE, mask);
722 
723 	/* lock against __dma_request_channel */
724 	mutex_lock(&dma_list_mutex);
725 
726 	chan = find_candidate(device, &mask, NULL, NULL);
727 
728 	mutex_unlock(&dma_list_mutex);
729 
730 	return IS_ERR(chan) ? NULL : chan;
731 }
732 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
733 
734 /**
735  * __dma_request_channel - try to allocate an exclusive channel
736  * @mask:	capabilities that the channel must satisfy
737  * @fn:		optional callback to disposition available channels
738  * @fn_param:	opaque parameter to pass to dma_filter_fn()
739  * @np:		device node to look for DMA channels
740  *
741  * Returns pointer to appropriate DMA channel on success or NULL.
742  */
743 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
744 				       dma_filter_fn fn, void *fn_param,
745 				       struct device_node *np)
746 {
747 	struct dma_device *device, *_d;
748 	struct dma_chan *chan = NULL;
749 
750 	/* Find a channel */
751 	mutex_lock(&dma_list_mutex);
752 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
753 		/* Finds a DMA controller with matching device node */
754 		if (np && device->dev->of_node && np != device->dev->of_node)
755 			continue;
756 
757 		chan = find_candidate(device, mask, fn, fn_param);
758 		if (!IS_ERR(chan))
759 			break;
760 
761 		chan = NULL;
762 	}
763 	mutex_unlock(&dma_list_mutex);
764 
765 	pr_debug("%s: %s (%s)\n",
766 		 __func__,
767 		 chan ? "success" : "fail",
768 		 chan ? dma_chan_name(chan) : NULL);
769 
770 	return chan;
771 }
772 EXPORT_SYMBOL_GPL(__dma_request_channel);
773 
774 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
775 						    const char *name,
776 						    struct device *dev)
777 {
778 	int i;
779 
780 	if (!device->filter.mapcnt)
781 		return NULL;
782 
783 	for (i = 0; i < device->filter.mapcnt; i++) {
784 		const struct dma_slave_map *map = &device->filter.map[i];
785 
786 		if (!strcmp(map->devname, dev_name(dev)) &&
787 		    !strcmp(map->slave, name))
788 			return map;
789 	}
790 
791 	return NULL;
792 }
793 
794 /**
795  * dma_request_chan - try to allocate an exclusive slave channel
796  * @dev:	pointer to client device structure
797  * @name:	slave channel name
798  *
799  * Returns pointer to appropriate DMA channel on success or an error pointer.
800  */
801 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
802 {
803 	struct dma_device *d, *_d;
804 	struct dma_chan *chan = NULL;
805 
806 	/* If device-tree is present get slave info from here */
807 	if (dev->of_node)
808 		chan = of_dma_request_slave_channel(dev->of_node, name);
809 
810 	/* If device was enumerated by ACPI get slave info from here */
811 	if (has_acpi_companion(dev) && !chan)
812 		chan = acpi_dma_request_slave_chan_by_name(dev, name);
813 
814 	if (PTR_ERR(chan) == -EPROBE_DEFER)
815 		return chan;
816 
817 	if (!IS_ERR_OR_NULL(chan))
818 		goto found;
819 
820 	/* Try to find the channel via the DMA filter map(s) */
821 	mutex_lock(&dma_list_mutex);
822 	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
823 		dma_cap_mask_t mask;
824 		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
825 
826 		if (!map)
827 			continue;
828 
829 		dma_cap_zero(mask);
830 		dma_cap_set(DMA_SLAVE, mask);
831 
832 		chan = find_candidate(d, &mask, d->filter.fn, map->param);
833 		if (!IS_ERR(chan))
834 			break;
835 	}
836 	mutex_unlock(&dma_list_mutex);
837 
838 	if (IS_ERR_OR_NULL(chan))
839 		return chan ? chan : ERR_PTR(-EPROBE_DEFER);
840 
841 found:
842 #ifdef CONFIG_DEBUG_FS
843 	chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev),
844 					  name);
845 #endif
846 
847 	chan->name = kasprintf(GFP_KERNEL, "dma:%s", name);
848 	if (!chan->name)
849 		return chan;
850 	chan->slave = dev;
851 
852 	if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj,
853 			      DMA_SLAVE_NAME))
854 		dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME);
855 	if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name))
856 		dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name);
857 
858 	return chan;
859 }
860 EXPORT_SYMBOL_GPL(dma_request_chan);
861 
862 /**
863  * dma_request_slave_channel - try to allocate an exclusive slave channel
864  * @dev:	pointer to client device structure
865  * @name:	slave channel name
866  *
867  * Returns pointer to appropriate DMA channel on success or NULL.
868  */
869 struct dma_chan *dma_request_slave_channel(struct device *dev,
870 					   const char *name)
871 {
872 	struct dma_chan *ch = dma_request_chan(dev, name);
873 	if (IS_ERR(ch))
874 		return NULL;
875 
876 	return ch;
877 }
878 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
879 
880 /**
881  * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
882  * @mask:	capabilities that the channel must satisfy
883  *
884  * Returns pointer to appropriate DMA channel on success or an error pointer.
885  */
886 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
887 {
888 	struct dma_chan *chan;
889 
890 	if (!mask)
891 		return ERR_PTR(-ENODEV);
892 
893 	chan = __dma_request_channel(mask, NULL, NULL, NULL);
894 	if (!chan) {
895 		mutex_lock(&dma_list_mutex);
896 		if (list_empty(&dma_device_list))
897 			chan = ERR_PTR(-EPROBE_DEFER);
898 		else
899 			chan = ERR_PTR(-ENODEV);
900 		mutex_unlock(&dma_list_mutex);
901 	}
902 
903 	return chan;
904 }
905 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
906 
907 void dma_release_channel(struct dma_chan *chan)
908 {
909 	mutex_lock(&dma_list_mutex);
910 	WARN_ONCE(chan->client_count != 1,
911 		  "chan reference count %d != 1\n", chan->client_count);
912 	dma_chan_put(chan);
913 	/* drop PRIVATE cap enabled by __dma_request_channel() */
914 	if (--chan->device->privatecnt == 0)
915 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
916 
917 	if (chan->slave) {
918 		sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME);
919 		sysfs_remove_link(&chan->slave->kobj, chan->name);
920 		kfree(chan->name);
921 		chan->name = NULL;
922 		chan->slave = NULL;
923 	}
924 
925 #ifdef CONFIG_DEBUG_FS
926 	kfree(chan->dbg_client_name);
927 	chan->dbg_client_name = NULL;
928 #endif
929 	mutex_unlock(&dma_list_mutex);
930 }
931 EXPORT_SYMBOL_GPL(dma_release_channel);
932 
933 /**
934  * dmaengine_get - register interest in dma_channels
935  */
936 void dmaengine_get(void)
937 {
938 	struct dma_device *device, *_d;
939 	struct dma_chan *chan;
940 	int err;
941 
942 	mutex_lock(&dma_list_mutex);
943 	dmaengine_ref_count++;
944 
945 	/* try to grab channels */
946 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
947 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
948 			continue;
949 		list_for_each_entry(chan, &device->channels, device_node) {
950 			err = dma_chan_get(chan);
951 			if (err == -ENODEV) {
952 				/* module removed before we could use it */
953 				list_del_rcu(&device->global_node);
954 				break;
955 			} else if (err)
956 				dev_dbg(chan->device->dev,
957 					"%s: failed to get %s: (%d)\n",
958 					__func__, dma_chan_name(chan), err);
959 		}
960 	}
961 
962 	/* if this is the first reference and there were channels
963 	 * waiting we need to rebalance to get those channels
964 	 * incorporated into the channel table
965 	 */
966 	if (dmaengine_ref_count == 1)
967 		dma_channel_rebalance();
968 	mutex_unlock(&dma_list_mutex);
969 }
970 EXPORT_SYMBOL(dmaengine_get);
971 
972 /**
973  * dmaengine_put - let DMA drivers be removed when ref_count == 0
974  */
975 void dmaengine_put(void)
976 {
977 	struct dma_device *device, *_d;
978 	struct dma_chan *chan;
979 
980 	mutex_lock(&dma_list_mutex);
981 	dmaengine_ref_count--;
982 	BUG_ON(dmaengine_ref_count < 0);
983 	/* drop channel references */
984 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
985 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
986 			continue;
987 		list_for_each_entry(chan, &device->channels, device_node)
988 			dma_chan_put(chan);
989 	}
990 	mutex_unlock(&dma_list_mutex);
991 }
992 EXPORT_SYMBOL(dmaengine_put);
993 
994 static bool device_has_all_tx_types(struct dma_device *device)
995 {
996 	/* A device that satisfies this test has channels that will never cause
997 	 * an async_tx channel switch event as all possible operation types can
998 	 * be handled.
999 	 */
1000 	#ifdef CONFIG_ASYNC_TX_DMA
1001 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
1002 		return false;
1003 	#endif
1004 
1005 	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
1006 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
1007 		return false;
1008 	#endif
1009 
1010 	#if IS_ENABLED(CONFIG_ASYNC_XOR)
1011 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
1012 		return false;
1013 
1014 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1015 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
1016 		return false;
1017 	#endif
1018 	#endif
1019 
1020 	#if IS_ENABLED(CONFIG_ASYNC_PQ)
1021 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
1022 		return false;
1023 
1024 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1025 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
1026 		return false;
1027 	#endif
1028 	#endif
1029 
1030 	return true;
1031 }
1032 
1033 static int get_dma_id(struct dma_device *device)
1034 {
1035 	int rc = ida_alloc(&dma_ida, GFP_KERNEL);
1036 
1037 	if (rc < 0)
1038 		return rc;
1039 	device->dev_id = rc;
1040 	return 0;
1041 }
1042 
1043 static int __dma_async_device_channel_register(struct dma_device *device,
1044 					       struct dma_chan *chan)
1045 {
1046 	int rc = 0;
1047 
1048 	chan->local = alloc_percpu(typeof(*chan->local));
1049 	if (!chan->local)
1050 		goto err_out;
1051 	chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1052 	if (!chan->dev) {
1053 		free_percpu(chan->local);
1054 		chan->local = NULL;
1055 		goto err_out;
1056 	}
1057 
1058 	/*
1059 	 * When the chan_id is a negative value, we are dynamically adding
1060 	 * the channel. Otherwise we are static enumerating.
1061 	 */
1062 	mutex_lock(&device->chan_mutex);
1063 	chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL);
1064 	mutex_unlock(&device->chan_mutex);
1065 	if (chan->chan_id < 0) {
1066 		pr_err("%s: unable to alloc ida for chan: %d\n",
1067 		       __func__, chan->chan_id);
1068 		goto err_out;
1069 	}
1070 
1071 	chan->dev->device.class = &dma_devclass;
1072 	chan->dev->device.parent = device->dev;
1073 	chan->dev->chan = chan;
1074 	chan->dev->dev_id = device->dev_id;
1075 	dev_set_name(&chan->dev->device, "dma%dchan%d",
1076 		     device->dev_id, chan->chan_id);
1077 	rc = device_register(&chan->dev->device);
1078 	if (rc)
1079 		goto err_out_ida;
1080 	chan->client_count = 0;
1081 	device->chancnt++;
1082 
1083 	return 0;
1084 
1085  err_out_ida:
1086 	mutex_lock(&device->chan_mutex);
1087 	ida_free(&device->chan_ida, chan->chan_id);
1088 	mutex_unlock(&device->chan_mutex);
1089  err_out:
1090 	free_percpu(chan->local);
1091 	kfree(chan->dev);
1092 	return rc;
1093 }
1094 
1095 int dma_async_device_channel_register(struct dma_device *device,
1096 				      struct dma_chan *chan)
1097 {
1098 	int rc;
1099 
1100 	rc = __dma_async_device_channel_register(device, chan);
1101 	if (rc < 0)
1102 		return rc;
1103 
1104 	dma_channel_rebalance();
1105 	return 0;
1106 }
1107 EXPORT_SYMBOL_GPL(dma_async_device_channel_register);
1108 
1109 static void __dma_async_device_channel_unregister(struct dma_device *device,
1110 						  struct dma_chan *chan)
1111 {
1112 	WARN_ONCE(!device->device_release && chan->client_count,
1113 		  "%s called while %d clients hold a reference\n",
1114 		  __func__, chan->client_count);
1115 	mutex_lock(&dma_list_mutex);
1116 	list_del(&chan->device_node);
1117 	device->chancnt--;
1118 	chan->dev->chan = NULL;
1119 	mutex_unlock(&dma_list_mutex);
1120 	mutex_lock(&device->chan_mutex);
1121 	ida_free(&device->chan_ida, chan->chan_id);
1122 	mutex_unlock(&device->chan_mutex);
1123 	device_unregister(&chan->dev->device);
1124 	free_percpu(chan->local);
1125 }
1126 
1127 void dma_async_device_channel_unregister(struct dma_device *device,
1128 					 struct dma_chan *chan)
1129 {
1130 	__dma_async_device_channel_unregister(device, chan);
1131 	dma_channel_rebalance();
1132 }
1133 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister);
1134 
1135 /**
1136  * dma_async_device_register - registers DMA devices found
1137  * @device:	pointer to &struct dma_device
1138  *
1139  * After calling this routine the structure should not be freed except in the
1140  * device_release() callback which will be called after
1141  * dma_async_device_unregister() is called and no further references are taken.
1142  */
1143 int dma_async_device_register(struct dma_device *device)
1144 {
1145 	int rc;
1146 	struct dma_chan* chan;
1147 
1148 	if (!device)
1149 		return -ENODEV;
1150 
1151 	/* validate device routines */
1152 	if (!device->dev) {
1153 		pr_err("DMAdevice must have dev\n");
1154 		return -EIO;
1155 	}
1156 
1157 	device->owner = device->dev->driver->owner;
1158 
1159 	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
1160 		dev_err(device->dev,
1161 			"Device claims capability %s, but op is not defined\n",
1162 			"DMA_MEMCPY");
1163 		return -EIO;
1164 	}
1165 
1166 	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
1167 		dev_err(device->dev,
1168 			"Device claims capability %s, but op is not defined\n",
1169 			"DMA_XOR");
1170 		return -EIO;
1171 	}
1172 
1173 	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
1174 		dev_err(device->dev,
1175 			"Device claims capability %s, but op is not defined\n",
1176 			"DMA_XOR_VAL");
1177 		return -EIO;
1178 	}
1179 
1180 	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
1181 		dev_err(device->dev,
1182 			"Device claims capability %s, but op is not defined\n",
1183 			"DMA_PQ");
1184 		return -EIO;
1185 	}
1186 
1187 	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
1188 		dev_err(device->dev,
1189 			"Device claims capability %s, but op is not defined\n",
1190 			"DMA_PQ_VAL");
1191 		return -EIO;
1192 	}
1193 
1194 	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
1195 		dev_err(device->dev,
1196 			"Device claims capability %s, but op is not defined\n",
1197 			"DMA_MEMSET");
1198 		return -EIO;
1199 	}
1200 
1201 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
1202 		dev_err(device->dev,
1203 			"Device claims capability %s, but op is not defined\n",
1204 			"DMA_INTERRUPT");
1205 		return -EIO;
1206 	}
1207 
1208 	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
1209 		dev_err(device->dev,
1210 			"Device claims capability %s, but op is not defined\n",
1211 			"DMA_CYCLIC");
1212 		return -EIO;
1213 	}
1214 
1215 	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
1216 		dev_err(device->dev,
1217 			"Device claims capability %s, but op is not defined\n",
1218 			"DMA_INTERLEAVE");
1219 		return -EIO;
1220 	}
1221 
1222 
1223 	if (!device->device_tx_status) {
1224 		dev_err(device->dev, "Device tx_status is not defined\n");
1225 		return -EIO;
1226 	}
1227 
1228 
1229 	if (!device->device_issue_pending) {
1230 		dev_err(device->dev, "Device issue_pending is not defined\n");
1231 		return -EIO;
1232 	}
1233 
1234 	if (!device->device_release)
1235 		dev_dbg(device->dev,
1236 			 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1237 
1238 	kref_init(&device->ref);
1239 
1240 	/* note: this only matters in the
1241 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1242 	 */
1243 	if (device_has_all_tx_types(device))
1244 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1245 
1246 	rc = get_dma_id(device);
1247 	if (rc != 0)
1248 		return rc;
1249 
1250 	mutex_init(&device->chan_mutex);
1251 	ida_init(&device->chan_ida);
1252 
1253 	/* represent channels in sysfs. Probably want devs too */
1254 	list_for_each_entry(chan, &device->channels, device_node) {
1255 		rc = __dma_async_device_channel_register(device, chan);
1256 		if (rc < 0)
1257 			goto err_out;
1258 	}
1259 
1260 	mutex_lock(&dma_list_mutex);
1261 	/* take references on public channels */
1262 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1263 		list_for_each_entry(chan, &device->channels, device_node) {
1264 			/* if clients are already waiting for channels we need
1265 			 * to take references on their behalf
1266 			 */
1267 			if (dma_chan_get(chan) == -ENODEV) {
1268 				/* note we can only get here for the first
1269 				 * channel as the remaining channels are
1270 				 * guaranteed to get a reference
1271 				 */
1272 				rc = -ENODEV;
1273 				mutex_unlock(&dma_list_mutex);
1274 				goto err_out;
1275 			}
1276 		}
1277 	list_add_tail_rcu(&device->global_node, &dma_device_list);
1278 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1279 		device->privatecnt++;	/* Always private */
1280 	dma_channel_rebalance();
1281 	mutex_unlock(&dma_list_mutex);
1282 
1283 	dmaengine_debug_register(device);
1284 
1285 	return 0;
1286 
1287 err_out:
1288 	/* if we never registered a channel just release the idr */
1289 	if (!device->chancnt) {
1290 		ida_free(&dma_ida, device->dev_id);
1291 		return rc;
1292 	}
1293 
1294 	list_for_each_entry(chan, &device->channels, device_node) {
1295 		if (chan->local == NULL)
1296 			continue;
1297 		mutex_lock(&dma_list_mutex);
1298 		chan->dev->chan = NULL;
1299 		mutex_unlock(&dma_list_mutex);
1300 		device_unregister(&chan->dev->device);
1301 		free_percpu(chan->local);
1302 	}
1303 	return rc;
1304 }
1305 EXPORT_SYMBOL(dma_async_device_register);
1306 
1307 /**
1308  * dma_async_device_unregister - unregister a DMA device
1309  * @device:	pointer to &struct dma_device
1310  *
1311  * This routine is called by dma driver exit routines, dmaengine holds module
1312  * references to prevent it being called while channels are in use.
1313  */
1314 void dma_async_device_unregister(struct dma_device *device)
1315 {
1316 	struct dma_chan *chan, *n;
1317 
1318 	dmaengine_debug_unregister(device);
1319 
1320 	list_for_each_entry_safe(chan, n, &device->channels, device_node)
1321 		__dma_async_device_channel_unregister(device, chan);
1322 
1323 	mutex_lock(&dma_list_mutex);
1324 	/*
1325 	 * setting DMA_PRIVATE ensures the device being torn down will not
1326 	 * be used in the channel_table
1327 	 */
1328 	dma_cap_set(DMA_PRIVATE, device->cap_mask);
1329 	dma_channel_rebalance();
1330 	ida_free(&dma_ida, device->dev_id);
1331 	dma_device_put(device);
1332 	mutex_unlock(&dma_list_mutex);
1333 }
1334 EXPORT_SYMBOL(dma_async_device_unregister);
1335 
1336 static void dmam_device_release(struct device *dev, void *res)
1337 {
1338 	struct dma_device *device;
1339 
1340 	device = *(struct dma_device **)res;
1341 	dma_async_device_unregister(device);
1342 }
1343 
1344 /**
1345  * dmaenginem_async_device_register - registers DMA devices found
1346  * @device:	pointer to &struct dma_device
1347  *
1348  * The operation is managed and will be undone on driver detach.
1349  */
1350 int dmaenginem_async_device_register(struct dma_device *device)
1351 {
1352 	void *p;
1353 	int ret;
1354 
1355 	p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1356 	if (!p)
1357 		return -ENOMEM;
1358 
1359 	ret = dma_async_device_register(device);
1360 	if (!ret) {
1361 		*(struct dma_device **)p = device;
1362 		devres_add(device->dev, p);
1363 	} else {
1364 		devres_free(p);
1365 	}
1366 
1367 	return ret;
1368 }
1369 EXPORT_SYMBOL(dmaenginem_async_device_register);
1370 
1371 struct dmaengine_unmap_pool {
1372 	struct kmem_cache *cache;
1373 	const char *name;
1374 	mempool_t *pool;
1375 	size_t size;
1376 };
1377 
1378 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1379 static struct dmaengine_unmap_pool unmap_pool[] = {
1380 	__UNMAP_POOL(2),
1381 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1382 	__UNMAP_POOL(16),
1383 	__UNMAP_POOL(128),
1384 	__UNMAP_POOL(256),
1385 	#endif
1386 };
1387 
1388 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1389 {
1390 	int order = get_count_order(nr);
1391 
1392 	switch (order) {
1393 	case 0 ... 1:
1394 		return &unmap_pool[0];
1395 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1396 	case 2 ... 4:
1397 		return &unmap_pool[1];
1398 	case 5 ... 7:
1399 		return &unmap_pool[2];
1400 	case 8:
1401 		return &unmap_pool[3];
1402 #endif
1403 	default:
1404 		BUG();
1405 		return NULL;
1406 	}
1407 }
1408 
1409 static void dmaengine_unmap(struct kref *kref)
1410 {
1411 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1412 	struct device *dev = unmap->dev;
1413 	int cnt, i;
1414 
1415 	cnt = unmap->to_cnt;
1416 	for (i = 0; i < cnt; i++)
1417 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1418 			       DMA_TO_DEVICE);
1419 	cnt += unmap->from_cnt;
1420 	for (; i < cnt; i++)
1421 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1422 			       DMA_FROM_DEVICE);
1423 	cnt += unmap->bidi_cnt;
1424 	for (; i < cnt; i++) {
1425 		if (unmap->addr[i] == 0)
1426 			continue;
1427 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1428 			       DMA_BIDIRECTIONAL);
1429 	}
1430 	cnt = unmap->map_cnt;
1431 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1432 }
1433 
1434 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1435 {
1436 	if (unmap)
1437 		kref_put(&unmap->kref, dmaengine_unmap);
1438 }
1439 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1440 
1441 static void dmaengine_destroy_unmap_pool(void)
1442 {
1443 	int i;
1444 
1445 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1446 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1447 
1448 		mempool_destroy(p->pool);
1449 		p->pool = NULL;
1450 		kmem_cache_destroy(p->cache);
1451 		p->cache = NULL;
1452 	}
1453 }
1454 
1455 static int __init dmaengine_init_unmap_pool(void)
1456 {
1457 	int i;
1458 
1459 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1460 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1461 		size_t size;
1462 
1463 		size = sizeof(struct dmaengine_unmap_data) +
1464 		       sizeof(dma_addr_t) * p->size;
1465 
1466 		p->cache = kmem_cache_create(p->name, size, 0,
1467 					     SLAB_HWCACHE_ALIGN, NULL);
1468 		if (!p->cache)
1469 			break;
1470 		p->pool = mempool_create_slab_pool(1, p->cache);
1471 		if (!p->pool)
1472 			break;
1473 	}
1474 
1475 	if (i == ARRAY_SIZE(unmap_pool))
1476 		return 0;
1477 
1478 	dmaengine_destroy_unmap_pool();
1479 	return -ENOMEM;
1480 }
1481 
1482 struct dmaengine_unmap_data *
1483 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1484 {
1485 	struct dmaengine_unmap_data *unmap;
1486 
1487 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1488 	if (!unmap)
1489 		return NULL;
1490 
1491 	memset(unmap, 0, sizeof(*unmap));
1492 	kref_init(&unmap->kref);
1493 	unmap->dev = dev;
1494 	unmap->map_cnt = nr;
1495 
1496 	return unmap;
1497 }
1498 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1499 
1500 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1501 	struct dma_chan *chan)
1502 {
1503 	tx->chan = chan;
1504 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1505 	spin_lock_init(&tx->lock);
1506 	#endif
1507 }
1508 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1509 
1510 static inline int desc_check_and_set_metadata_mode(
1511 	struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode)
1512 {
1513 	/* Make sure that the metadata mode is not mixed */
1514 	if (!desc->desc_metadata_mode) {
1515 		if (dmaengine_is_metadata_mode_supported(desc->chan, mode))
1516 			desc->desc_metadata_mode = mode;
1517 		else
1518 			return -ENOTSUPP;
1519 	} else if (desc->desc_metadata_mode != mode) {
1520 		return -EINVAL;
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1527 				   void *data, size_t len)
1528 {
1529 	int ret;
1530 
1531 	if (!desc)
1532 		return -EINVAL;
1533 
1534 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT);
1535 	if (ret)
1536 		return ret;
1537 
1538 	if (!desc->metadata_ops || !desc->metadata_ops->attach)
1539 		return -ENOTSUPP;
1540 
1541 	return desc->metadata_ops->attach(desc, data, len);
1542 }
1543 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata);
1544 
1545 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1546 				      size_t *payload_len, size_t *max_len)
1547 {
1548 	int ret;
1549 
1550 	if (!desc)
1551 		return ERR_PTR(-EINVAL);
1552 
1553 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1554 	if (ret)
1555 		return ERR_PTR(ret);
1556 
1557 	if (!desc->metadata_ops || !desc->metadata_ops->get_ptr)
1558 		return ERR_PTR(-ENOTSUPP);
1559 
1560 	return desc->metadata_ops->get_ptr(desc, payload_len, max_len);
1561 }
1562 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr);
1563 
1564 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1565 				    size_t payload_len)
1566 {
1567 	int ret;
1568 
1569 	if (!desc)
1570 		return -EINVAL;
1571 
1572 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1573 	if (ret)
1574 		return ret;
1575 
1576 	if (!desc->metadata_ops || !desc->metadata_ops->set_len)
1577 		return -ENOTSUPP;
1578 
1579 	return desc->metadata_ops->set_len(desc, payload_len);
1580 }
1581 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len);
1582 
1583 /**
1584  * dma_wait_for_async_tx - spin wait for a transaction to complete
1585  * @tx:		in-flight transaction to wait on
1586  */
1587 enum dma_status
1588 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1589 {
1590 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1591 
1592 	if (!tx)
1593 		return DMA_COMPLETE;
1594 
1595 	while (tx->cookie == -EBUSY) {
1596 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1597 			dev_err(tx->chan->device->dev,
1598 				"%s timeout waiting for descriptor submission\n",
1599 				__func__);
1600 			return DMA_ERROR;
1601 		}
1602 		cpu_relax();
1603 	}
1604 	return dma_sync_wait(tx->chan, tx->cookie);
1605 }
1606 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1607 
1608 /**
1609  * dma_run_dependencies - process dependent operations on the target channel
1610  * @tx:		transaction with dependencies
1611  *
1612  * Helper routine for DMA drivers to process (start) dependent operations
1613  * on their target channel.
1614  */
1615 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1616 {
1617 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1618 	struct dma_async_tx_descriptor *dep_next;
1619 	struct dma_chan *chan;
1620 
1621 	if (!dep)
1622 		return;
1623 
1624 	/* we'll submit tx->next now, so clear the link */
1625 	txd_clear_next(tx);
1626 	chan = dep->chan;
1627 
1628 	/* keep submitting up until a channel switch is detected
1629 	 * in that case we will be called again as a result of
1630 	 * processing the interrupt from async_tx_channel_switch
1631 	 */
1632 	for (; dep; dep = dep_next) {
1633 		txd_lock(dep);
1634 		txd_clear_parent(dep);
1635 		dep_next = txd_next(dep);
1636 		if (dep_next && dep_next->chan == chan)
1637 			txd_clear_next(dep); /* ->next will be submitted */
1638 		else
1639 			dep_next = NULL; /* submit current dep and terminate */
1640 		txd_unlock(dep);
1641 
1642 		dep->tx_submit(dep);
1643 	}
1644 
1645 	chan->device->device_issue_pending(chan);
1646 }
1647 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1648 
1649 static int __init dma_bus_init(void)
1650 {
1651 	int err = dmaengine_init_unmap_pool();
1652 
1653 	if (err)
1654 		return err;
1655 
1656 	err = class_register(&dma_devclass);
1657 	if (!err)
1658 		dmaengine_debugfs_init();
1659 
1660 	return err;
1661 }
1662 arch_initcall(dma_bus_init);
1663