1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5 6 /* 7 * This code implements the DMA subsystem. It provides a HW-neutral interface 8 * for other kernel code to use asynchronous memory copy capabilities, 9 * if present, and allows different HW DMA drivers to register as providing 10 * this capability. 11 * 12 * Due to the fact we are accelerating what is already a relatively fast 13 * operation, the code goes to great lengths to avoid additional overhead, 14 * such as locking. 15 * 16 * LOCKING: 17 * 18 * The subsystem keeps a global list of dma_device structs it is protected by a 19 * mutex, dma_list_mutex. 20 * 21 * A subsystem can get access to a channel by calling dmaengine_get() followed 22 * by dma_find_channel(), or if it has need for an exclusive channel it can call 23 * dma_request_channel(). Once a channel is allocated a reference is taken 24 * against its corresponding driver to disable removal. 25 * 26 * Each device has a channels list, which runs unlocked but is never modified 27 * once the device is registered, it's just setup by the driver. 28 * 29 * See Documentation/driver-api/dmaengine for more details 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/platform_device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/init.h> 37 #include <linux/module.h> 38 #include <linux/mm.h> 39 #include <linux/device.h> 40 #include <linux/dmaengine.h> 41 #include <linux/hardirq.h> 42 #include <linux/spinlock.h> 43 #include <linux/percpu.h> 44 #include <linux/rcupdate.h> 45 #include <linux/mutex.h> 46 #include <linux/jiffies.h> 47 #include <linux/rculist.h> 48 #include <linux/idr.h> 49 #include <linux/slab.h> 50 #include <linux/acpi.h> 51 #include <linux/acpi_dma.h> 52 #include <linux/of_dma.h> 53 #include <linux/mempool.h> 54 #include <linux/numa.h> 55 56 #include "dmaengine.h" 57 58 static DEFINE_MUTEX(dma_list_mutex); 59 static DEFINE_IDA(dma_ida); 60 static LIST_HEAD(dma_device_list); 61 static long dmaengine_ref_count; 62 63 /* --- debugfs implementation --- */ 64 #ifdef CONFIG_DEBUG_FS 65 #include <linux/debugfs.h> 66 67 static struct dentry *rootdir; 68 69 static void dmaengine_debug_register(struct dma_device *dma_dev) 70 { 71 dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev), 72 rootdir); 73 if (IS_ERR(dma_dev->dbg_dev_root)) 74 dma_dev->dbg_dev_root = NULL; 75 } 76 77 static void dmaengine_debug_unregister(struct dma_device *dma_dev) 78 { 79 debugfs_remove_recursive(dma_dev->dbg_dev_root); 80 dma_dev->dbg_dev_root = NULL; 81 } 82 83 static void dmaengine_dbg_summary_show(struct seq_file *s, 84 struct dma_device *dma_dev) 85 { 86 struct dma_chan *chan; 87 88 list_for_each_entry(chan, &dma_dev->channels, device_node) { 89 if (chan->client_count) { 90 seq_printf(s, " %-13s| %s", dma_chan_name(chan), 91 chan->dbg_client_name ?: "in-use"); 92 93 if (chan->router) 94 seq_printf(s, " (via router: %s)\n", 95 dev_name(chan->router->dev)); 96 else 97 seq_puts(s, "\n"); 98 } 99 } 100 } 101 102 static int dmaengine_summary_show(struct seq_file *s, void *data) 103 { 104 struct dma_device *dma_dev = NULL; 105 106 mutex_lock(&dma_list_mutex); 107 list_for_each_entry(dma_dev, &dma_device_list, global_node) { 108 seq_printf(s, "dma%d (%s): number of channels: %u\n", 109 dma_dev->dev_id, dev_name(dma_dev->dev), 110 dma_dev->chancnt); 111 112 if (dma_dev->dbg_summary_show) 113 dma_dev->dbg_summary_show(s, dma_dev); 114 else 115 dmaengine_dbg_summary_show(s, dma_dev); 116 117 if (!list_is_last(&dma_dev->global_node, &dma_device_list)) 118 seq_puts(s, "\n"); 119 } 120 mutex_unlock(&dma_list_mutex); 121 122 return 0; 123 } 124 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary); 125 126 static void __init dmaengine_debugfs_init(void) 127 { 128 rootdir = debugfs_create_dir("dmaengine", NULL); 129 130 /* /sys/kernel/debug/dmaengine/summary */ 131 debugfs_create_file("summary", 0444, rootdir, NULL, 132 &dmaengine_summary_fops); 133 } 134 #else 135 static inline void dmaengine_debugfs_init(void) { } 136 static inline int dmaengine_debug_register(struct dma_device *dma_dev) 137 { 138 return 0; 139 } 140 141 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { } 142 #endif /* DEBUG_FS */ 143 144 /* --- sysfs implementation --- */ 145 146 #define DMA_SLAVE_NAME "slave" 147 148 /** 149 * dev_to_dma_chan - convert a device pointer to its sysfs container object 150 * @dev: device node 151 * 152 * Must be called under dma_list_mutex. 153 */ 154 static struct dma_chan *dev_to_dma_chan(struct device *dev) 155 { 156 struct dma_chan_dev *chan_dev; 157 158 chan_dev = container_of(dev, typeof(*chan_dev), device); 159 return chan_dev->chan; 160 } 161 162 static ssize_t memcpy_count_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct dma_chan *chan; 166 unsigned long count = 0; 167 int i; 168 int err; 169 170 mutex_lock(&dma_list_mutex); 171 chan = dev_to_dma_chan(dev); 172 if (chan) { 173 for_each_possible_cpu(i) 174 count += per_cpu_ptr(chan->local, i)->memcpy_count; 175 err = sprintf(buf, "%lu\n", count); 176 } else 177 err = -ENODEV; 178 mutex_unlock(&dma_list_mutex); 179 180 return err; 181 } 182 static DEVICE_ATTR_RO(memcpy_count); 183 184 static ssize_t bytes_transferred_show(struct device *dev, 185 struct device_attribute *attr, char *buf) 186 { 187 struct dma_chan *chan; 188 unsigned long count = 0; 189 int i; 190 int err; 191 192 mutex_lock(&dma_list_mutex); 193 chan = dev_to_dma_chan(dev); 194 if (chan) { 195 for_each_possible_cpu(i) 196 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 197 err = sprintf(buf, "%lu\n", count); 198 } else 199 err = -ENODEV; 200 mutex_unlock(&dma_list_mutex); 201 202 return err; 203 } 204 static DEVICE_ATTR_RO(bytes_transferred); 205 206 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, 207 char *buf) 208 { 209 struct dma_chan *chan; 210 int err; 211 212 mutex_lock(&dma_list_mutex); 213 chan = dev_to_dma_chan(dev); 214 if (chan) 215 err = sprintf(buf, "%d\n", chan->client_count); 216 else 217 err = -ENODEV; 218 mutex_unlock(&dma_list_mutex); 219 220 return err; 221 } 222 static DEVICE_ATTR_RO(in_use); 223 224 static struct attribute *dma_dev_attrs[] = { 225 &dev_attr_memcpy_count.attr, 226 &dev_attr_bytes_transferred.attr, 227 &dev_attr_in_use.attr, 228 NULL, 229 }; 230 ATTRIBUTE_GROUPS(dma_dev); 231 232 static void chan_dev_release(struct device *dev) 233 { 234 struct dma_chan_dev *chan_dev; 235 236 chan_dev = container_of(dev, typeof(*chan_dev), device); 237 kfree(chan_dev); 238 } 239 240 static struct class dma_devclass = { 241 .name = "dma", 242 .dev_groups = dma_dev_groups, 243 .dev_release = chan_dev_release, 244 }; 245 246 /* --- client and device registration --- */ 247 248 /* enable iteration over all operation types */ 249 static dma_cap_mask_t dma_cap_mask_all; 250 251 /** 252 * struct dma_chan_tbl_ent - tracks channel allocations per core/operation 253 * @chan: associated channel for this entry 254 */ 255 struct dma_chan_tbl_ent { 256 struct dma_chan *chan; 257 }; 258 259 /* percpu lookup table for memory-to-memory offload providers */ 260 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; 261 262 static int __init dma_channel_table_init(void) 263 { 264 enum dma_transaction_type cap; 265 int err = 0; 266 267 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); 268 269 /* 'interrupt', 'private', and 'slave' are channel capabilities, 270 * but are not associated with an operation so they do not need 271 * an entry in the channel_table 272 */ 273 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); 274 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); 275 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); 276 277 for_each_dma_cap_mask(cap, dma_cap_mask_all) { 278 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); 279 if (!channel_table[cap]) { 280 err = -ENOMEM; 281 break; 282 } 283 } 284 285 if (err) { 286 pr_err("dmaengine dma_channel_table_init failure: %d\n", err); 287 for_each_dma_cap_mask(cap, dma_cap_mask_all) 288 free_percpu(channel_table[cap]); 289 } 290 291 return err; 292 } 293 arch_initcall(dma_channel_table_init); 294 295 /** 296 * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU 297 * @chan: DMA channel to test 298 * @cpu: CPU index which the channel should be close to 299 * 300 * Returns true if the channel is in the same NUMA-node as the CPU. 301 */ 302 static bool dma_chan_is_local(struct dma_chan *chan, int cpu) 303 { 304 int node = dev_to_node(chan->device->dev); 305 return node == NUMA_NO_NODE || 306 cpumask_test_cpu(cpu, cpumask_of_node(node)); 307 } 308 309 /** 310 * min_chan - finds the channel with min count and in the same NUMA-node as the CPU 311 * @cap: capability to match 312 * @cpu: CPU index which the channel should be close to 313 * 314 * If some channels are close to the given CPU, the one with the lowest 315 * reference count is returned. Otherwise, CPU is ignored and only the 316 * reference count is taken into account. 317 * 318 * Must be called under dma_list_mutex. 319 */ 320 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) 321 { 322 struct dma_device *device; 323 struct dma_chan *chan; 324 struct dma_chan *min = NULL; 325 struct dma_chan *localmin = NULL; 326 327 list_for_each_entry(device, &dma_device_list, global_node) { 328 if (!dma_has_cap(cap, device->cap_mask) || 329 dma_has_cap(DMA_PRIVATE, device->cap_mask)) 330 continue; 331 list_for_each_entry(chan, &device->channels, device_node) { 332 if (!chan->client_count) 333 continue; 334 if (!min || chan->table_count < min->table_count) 335 min = chan; 336 337 if (dma_chan_is_local(chan, cpu)) 338 if (!localmin || 339 chan->table_count < localmin->table_count) 340 localmin = chan; 341 } 342 } 343 344 chan = localmin ? localmin : min; 345 346 if (chan) 347 chan->table_count++; 348 349 return chan; 350 } 351 352 /** 353 * dma_channel_rebalance - redistribute the available channels 354 * 355 * Optimize for CPU isolation (each CPU gets a dedicated channel for an 356 * operation type) in the SMP case, and operation isolation (avoid 357 * multi-tasking channels) in the non-SMP case. 358 * 359 * Must be called under dma_list_mutex. 360 */ 361 static void dma_channel_rebalance(void) 362 { 363 struct dma_chan *chan; 364 struct dma_device *device; 365 int cpu; 366 int cap; 367 368 /* undo the last distribution */ 369 for_each_dma_cap_mask(cap, dma_cap_mask_all) 370 for_each_possible_cpu(cpu) 371 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; 372 373 list_for_each_entry(device, &dma_device_list, global_node) { 374 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 375 continue; 376 list_for_each_entry(chan, &device->channels, device_node) 377 chan->table_count = 0; 378 } 379 380 /* don't populate the channel_table if no clients are available */ 381 if (!dmaengine_ref_count) 382 return; 383 384 /* redistribute available channels */ 385 for_each_dma_cap_mask(cap, dma_cap_mask_all) 386 for_each_online_cpu(cpu) { 387 chan = min_chan(cap, cpu); 388 per_cpu_ptr(channel_table[cap], cpu)->chan = chan; 389 } 390 } 391 392 static int dma_device_satisfies_mask(struct dma_device *device, 393 const dma_cap_mask_t *want) 394 { 395 dma_cap_mask_t has; 396 397 bitmap_and(has.bits, want->bits, device->cap_mask.bits, 398 DMA_TX_TYPE_END); 399 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 400 } 401 402 static struct module *dma_chan_to_owner(struct dma_chan *chan) 403 { 404 return chan->device->owner; 405 } 406 407 /** 408 * balance_ref_count - catch up the channel reference count 409 * @chan: channel to balance ->client_count versus dmaengine_ref_count 410 * 411 * Must be called under dma_list_mutex. 412 */ 413 static void balance_ref_count(struct dma_chan *chan) 414 { 415 struct module *owner = dma_chan_to_owner(chan); 416 417 while (chan->client_count < dmaengine_ref_count) { 418 __module_get(owner); 419 chan->client_count++; 420 } 421 } 422 423 static void dma_device_release(struct kref *ref) 424 { 425 struct dma_device *device = container_of(ref, struct dma_device, ref); 426 427 list_del_rcu(&device->global_node); 428 dma_channel_rebalance(); 429 430 if (device->device_release) 431 device->device_release(device); 432 } 433 434 static void dma_device_put(struct dma_device *device) 435 { 436 lockdep_assert_held(&dma_list_mutex); 437 kref_put(&device->ref, dma_device_release); 438 } 439 440 /** 441 * dma_chan_get - try to grab a DMA channel's parent driver module 442 * @chan: channel to grab 443 * 444 * Must be called under dma_list_mutex. 445 */ 446 static int dma_chan_get(struct dma_chan *chan) 447 { 448 struct module *owner = dma_chan_to_owner(chan); 449 int ret; 450 451 /* The channel is already in use, update client count */ 452 if (chan->client_count) { 453 __module_get(owner); 454 goto out; 455 } 456 457 if (!try_module_get(owner)) 458 return -ENODEV; 459 460 ret = kref_get_unless_zero(&chan->device->ref); 461 if (!ret) { 462 ret = -ENODEV; 463 goto module_put_out; 464 } 465 466 /* allocate upon first client reference */ 467 if (chan->device->device_alloc_chan_resources) { 468 ret = chan->device->device_alloc_chan_resources(chan); 469 if (ret < 0) 470 goto err_out; 471 } 472 473 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) 474 balance_ref_count(chan); 475 476 out: 477 chan->client_count++; 478 return 0; 479 480 err_out: 481 dma_device_put(chan->device); 482 module_put_out: 483 module_put(owner); 484 return ret; 485 } 486 487 /** 488 * dma_chan_put - drop a reference to a DMA channel's parent driver module 489 * @chan: channel to release 490 * 491 * Must be called under dma_list_mutex. 492 */ 493 static void dma_chan_put(struct dma_chan *chan) 494 { 495 /* This channel is not in use, bail out */ 496 if (!chan->client_count) 497 return; 498 499 chan->client_count--; 500 501 /* This channel is not in use anymore, free it */ 502 if (!chan->client_count && chan->device->device_free_chan_resources) { 503 /* Make sure all operations have completed */ 504 dmaengine_synchronize(chan); 505 chan->device->device_free_chan_resources(chan); 506 } 507 508 /* If the channel is used via a DMA request router, free the mapping */ 509 if (chan->router && chan->router->route_free) { 510 chan->router->route_free(chan->router->dev, chan->route_data); 511 chan->router = NULL; 512 chan->route_data = NULL; 513 } 514 515 dma_device_put(chan->device); 516 module_put(dma_chan_to_owner(chan)); 517 } 518 519 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 520 { 521 enum dma_status status; 522 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 523 524 dma_async_issue_pending(chan); 525 do { 526 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 527 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 528 dev_err(chan->device->dev, "%s: timeout!\n", __func__); 529 return DMA_ERROR; 530 } 531 if (status != DMA_IN_PROGRESS) 532 break; 533 cpu_relax(); 534 } while (1); 535 536 return status; 537 } 538 EXPORT_SYMBOL(dma_sync_wait); 539 540 /** 541 * dma_find_channel - find a channel to carry out the operation 542 * @tx_type: transaction type 543 */ 544 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 545 { 546 return this_cpu_read(channel_table[tx_type]->chan); 547 } 548 EXPORT_SYMBOL(dma_find_channel); 549 550 /** 551 * dma_issue_pending_all - flush all pending operations across all channels 552 */ 553 void dma_issue_pending_all(void) 554 { 555 struct dma_device *device; 556 struct dma_chan *chan; 557 558 rcu_read_lock(); 559 list_for_each_entry_rcu(device, &dma_device_list, global_node) { 560 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 561 continue; 562 list_for_each_entry(chan, &device->channels, device_node) 563 if (chan->client_count) 564 device->device_issue_pending(chan); 565 } 566 rcu_read_unlock(); 567 } 568 EXPORT_SYMBOL(dma_issue_pending_all); 569 570 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 571 { 572 struct dma_device *device; 573 574 if (!chan || !caps) 575 return -EINVAL; 576 577 device = chan->device; 578 579 /* check if the channel supports slave transactions */ 580 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) || 581 test_bit(DMA_CYCLIC, device->cap_mask.bits))) 582 return -ENXIO; 583 584 /* 585 * Check whether it reports it uses the generic slave 586 * capabilities, if not, that means it doesn't support any 587 * kind of slave capabilities reporting. 588 */ 589 if (!device->directions) 590 return -ENXIO; 591 592 caps->src_addr_widths = device->src_addr_widths; 593 caps->dst_addr_widths = device->dst_addr_widths; 594 caps->directions = device->directions; 595 caps->min_burst = device->min_burst; 596 caps->max_burst = device->max_burst; 597 caps->max_sg_burst = device->max_sg_burst; 598 caps->residue_granularity = device->residue_granularity; 599 caps->descriptor_reuse = device->descriptor_reuse; 600 caps->cmd_pause = !!device->device_pause; 601 caps->cmd_resume = !!device->device_resume; 602 caps->cmd_terminate = !!device->device_terminate_all; 603 604 /* 605 * DMA engine device might be configured with non-uniformly 606 * distributed slave capabilities per device channels. In this 607 * case the corresponding driver may provide the device_caps 608 * callback to override the generic capabilities with 609 * channel-specific ones. 610 */ 611 if (device->device_caps) 612 device->device_caps(chan, caps); 613 614 return 0; 615 } 616 EXPORT_SYMBOL_GPL(dma_get_slave_caps); 617 618 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, 619 struct dma_device *dev, 620 dma_filter_fn fn, void *fn_param) 621 { 622 struct dma_chan *chan; 623 624 if (mask && !dma_device_satisfies_mask(dev, mask)) { 625 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__); 626 return NULL; 627 } 628 /* devices with multiple channels need special handling as we need to 629 * ensure that all channels are either private or public. 630 */ 631 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) 632 list_for_each_entry(chan, &dev->channels, device_node) { 633 /* some channels are already publicly allocated */ 634 if (chan->client_count) 635 return NULL; 636 } 637 638 list_for_each_entry(chan, &dev->channels, device_node) { 639 if (chan->client_count) { 640 dev_dbg(dev->dev, "%s: %s busy\n", 641 __func__, dma_chan_name(chan)); 642 continue; 643 } 644 if (fn && !fn(chan, fn_param)) { 645 dev_dbg(dev->dev, "%s: %s filter said false\n", 646 __func__, dma_chan_name(chan)); 647 continue; 648 } 649 return chan; 650 } 651 652 return NULL; 653 } 654 655 static struct dma_chan *find_candidate(struct dma_device *device, 656 const dma_cap_mask_t *mask, 657 dma_filter_fn fn, void *fn_param) 658 { 659 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param); 660 int err; 661 662 if (chan) { 663 /* Found a suitable channel, try to grab, prep, and return it. 664 * We first set DMA_PRIVATE to disable balance_ref_count as this 665 * channel will not be published in the general-purpose 666 * allocator 667 */ 668 dma_cap_set(DMA_PRIVATE, device->cap_mask); 669 device->privatecnt++; 670 err = dma_chan_get(chan); 671 672 if (err) { 673 if (err == -ENODEV) { 674 dev_dbg(device->dev, "%s: %s module removed\n", 675 __func__, dma_chan_name(chan)); 676 list_del_rcu(&device->global_node); 677 } else 678 dev_dbg(device->dev, 679 "%s: failed to get %s: (%d)\n", 680 __func__, dma_chan_name(chan), err); 681 682 if (--device->privatecnt == 0) 683 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 684 685 chan = ERR_PTR(err); 686 } 687 } 688 689 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 690 } 691 692 /** 693 * dma_get_slave_channel - try to get specific channel exclusively 694 * @chan: target channel 695 */ 696 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) 697 { 698 int err = -EBUSY; 699 700 /* lock against __dma_request_channel */ 701 mutex_lock(&dma_list_mutex); 702 703 if (chan->client_count == 0) { 704 struct dma_device *device = chan->device; 705 706 dma_cap_set(DMA_PRIVATE, device->cap_mask); 707 device->privatecnt++; 708 err = dma_chan_get(chan); 709 if (err) { 710 dev_dbg(chan->device->dev, 711 "%s: failed to get %s: (%d)\n", 712 __func__, dma_chan_name(chan), err); 713 chan = NULL; 714 if (--device->privatecnt == 0) 715 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 716 } 717 } else 718 chan = NULL; 719 720 mutex_unlock(&dma_list_mutex); 721 722 723 return chan; 724 } 725 EXPORT_SYMBOL_GPL(dma_get_slave_channel); 726 727 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) 728 { 729 dma_cap_mask_t mask; 730 struct dma_chan *chan; 731 732 dma_cap_zero(mask); 733 dma_cap_set(DMA_SLAVE, mask); 734 735 /* lock against __dma_request_channel */ 736 mutex_lock(&dma_list_mutex); 737 738 chan = find_candidate(device, &mask, NULL, NULL); 739 740 mutex_unlock(&dma_list_mutex); 741 742 return IS_ERR(chan) ? NULL : chan; 743 } 744 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); 745 746 /** 747 * __dma_request_channel - try to allocate an exclusive channel 748 * @mask: capabilities that the channel must satisfy 749 * @fn: optional callback to disposition available channels 750 * @fn_param: opaque parameter to pass to dma_filter_fn() 751 * @np: device node to look for DMA channels 752 * 753 * Returns pointer to appropriate DMA channel on success or NULL. 754 */ 755 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 756 dma_filter_fn fn, void *fn_param, 757 struct device_node *np) 758 { 759 struct dma_device *device, *_d; 760 struct dma_chan *chan = NULL; 761 762 /* Find a channel */ 763 mutex_lock(&dma_list_mutex); 764 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 765 /* Finds a DMA controller with matching device node */ 766 if (np && device->dev->of_node && np != device->dev->of_node) 767 continue; 768 769 chan = find_candidate(device, mask, fn, fn_param); 770 if (!IS_ERR(chan)) 771 break; 772 773 chan = NULL; 774 } 775 mutex_unlock(&dma_list_mutex); 776 777 pr_debug("%s: %s (%s)\n", 778 __func__, 779 chan ? "success" : "fail", 780 chan ? dma_chan_name(chan) : NULL); 781 782 return chan; 783 } 784 EXPORT_SYMBOL_GPL(__dma_request_channel); 785 786 static const struct dma_slave_map *dma_filter_match(struct dma_device *device, 787 const char *name, 788 struct device *dev) 789 { 790 int i; 791 792 if (!device->filter.mapcnt) 793 return NULL; 794 795 for (i = 0; i < device->filter.mapcnt; i++) { 796 const struct dma_slave_map *map = &device->filter.map[i]; 797 798 if (!strcmp(map->devname, dev_name(dev)) && 799 !strcmp(map->slave, name)) 800 return map; 801 } 802 803 return NULL; 804 } 805 806 /** 807 * dma_request_chan - try to allocate an exclusive slave channel 808 * @dev: pointer to client device structure 809 * @name: slave channel name 810 * 811 * Returns pointer to appropriate DMA channel on success or an error pointer. 812 */ 813 struct dma_chan *dma_request_chan(struct device *dev, const char *name) 814 { 815 struct dma_device *d, *_d; 816 struct dma_chan *chan = NULL; 817 818 /* If device-tree is present get slave info from here */ 819 if (dev->of_node) 820 chan = of_dma_request_slave_channel(dev->of_node, name); 821 822 /* If device was enumerated by ACPI get slave info from here */ 823 if (has_acpi_companion(dev) && !chan) 824 chan = acpi_dma_request_slave_chan_by_name(dev, name); 825 826 if (PTR_ERR(chan) == -EPROBE_DEFER) 827 return chan; 828 829 if (!IS_ERR_OR_NULL(chan)) 830 goto found; 831 832 /* Try to find the channel via the DMA filter map(s) */ 833 mutex_lock(&dma_list_mutex); 834 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) { 835 dma_cap_mask_t mask; 836 const struct dma_slave_map *map = dma_filter_match(d, name, dev); 837 838 if (!map) 839 continue; 840 841 dma_cap_zero(mask); 842 dma_cap_set(DMA_SLAVE, mask); 843 844 chan = find_candidate(d, &mask, d->filter.fn, map->param); 845 if (!IS_ERR(chan)) 846 break; 847 } 848 mutex_unlock(&dma_list_mutex); 849 850 if (IS_ERR(chan)) 851 return chan; 852 if (!chan) 853 return ERR_PTR(-EPROBE_DEFER); 854 855 found: 856 #ifdef CONFIG_DEBUG_FS 857 chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev), 858 name); 859 #endif 860 861 chan->name = kasprintf(GFP_KERNEL, "dma:%s", name); 862 if (!chan->name) 863 return chan; 864 chan->slave = dev; 865 866 if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj, 867 DMA_SLAVE_NAME)) 868 dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME); 869 if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name)) 870 dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name); 871 872 return chan; 873 } 874 EXPORT_SYMBOL_GPL(dma_request_chan); 875 876 /** 877 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities 878 * @mask: capabilities that the channel must satisfy 879 * 880 * Returns pointer to appropriate DMA channel on success or an error pointer. 881 */ 882 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask) 883 { 884 struct dma_chan *chan; 885 886 if (!mask) 887 return ERR_PTR(-ENODEV); 888 889 chan = __dma_request_channel(mask, NULL, NULL, NULL); 890 if (!chan) { 891 mutex_lock(&dma_list_mutex); 892 if (list_empty(&dma_device_list)) 893 chan = ERR_PTR(-EPROBE_DEFER); 894 else 895 chan = ERR_PTR(-ENODEV); 896 mutex_unlock(&dma_list_mutex); 897 } 898 899 return chan; 900 } 901 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask); 902 903 void dma_release_channel(struct dma_chan *chan) 904 { 905 mutex_lock(&dma_list_mutex); 906 WARN_ONCE(chan->client_count != 1, 907 "chan reference count %d != 1\n", chan->client_count); 908 dma_chan_put(chan); 909 /* drop PRIVATE cap enabled by __dma_request_channel() */ 910 if (--chan->device->privatecnt == 0) 911 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); 912 913 if (chan->slave) { 914 sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME); 915 sysfs_remove_link(&chan->slave->kobj, chan->name); 916 kfree(chan->name); 917 chan->name = NULL; 918 chan->slave = NULL; 919 } 920 921 #ifdef CONFIG_DEBUG_FS 922 kfree(chan->dbg_client_name); 923 chan->dbg_client_name = NULL; 924 #endif 925 mutex_unlock(&dma_list_mutex); 926 } 927 EXPORT_SYMBOL_GPL(dma_release_channel); 928 929 /** 930 * dmaengine_get - register interest in dma_channels 931 */ 932 void dmaengine_get(void) 933 { 934 struct dma_device *device, *_d; 935 struct dma_chan *chan; 936 int err; 937 938 mutex_lock(&dma_list_mutex); 939 dmaengine_ref_count++; 940 941 /* try to grab channels */ 942 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 943 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 944 continue; 945 list_for_each_entry(chan, &device->channels, device_node) { 946 err = dma_chan_get(chan); 947 if (err == -ENODEV) { 948 /* module removed before we could use it */ 949 list_del_rcu(&device->global_node); 950 break; 951 } else if (err) 952 dev_dbg(chan->device->dev, 953 "%s: failed to get %s: (%d)\n", 954 __func__, dma_chan_name(chan), err); 955 } 956 } 957 958 /* if this is the first reference and there were channels 959 * waiting we need to rebalance to get those channels 960 * incorporated into the channel table 961 */ 962 if (dmaengine_ref_count == 1) 963 dma_channel_rebalance(); 964 mutex_unlock(&dma_list_mutex); 965 } 966 EXPORT_SYMBOL(dmaengine_get); 967 968 /** 969 * dmaengine_put - let DMA drivers be removed when ref_count == 0 970 */ 971 void dmaengine_put(void) 972 { 973 struct dma_device *device, *_d; 974 struct dma_chan *chan; 975 976 mutex_lock(&dma_list_mutex); 977 dmaengine_ref_count--; 978 BUG_ON(dmaengine_ref_count < 0); 979 /* drop channel references */ 980 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 981 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 982 continue; 983 list_for_each_entry(chan, &device->channels, device_node) 984 dma_chan_put(chan); 985 } 986 mutex_unlock(&dma_list_mutex); 987 } 988 EXPORT_SYMBOL(dmaengine_put); 989 990 static bool device_has_all_tx_types(struct dma_device *device) 991 { 992 /* A device that satisfies this test has channels that will never cause 993 * an async_tx channel switch event as all possible operation types can 994 * be handled. 995 */ 996 #ifdef CONFIG_ASYNC_TX_DMA 997 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) 998 return false; 999 #endif 1000 1001 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY) 1002 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) 1003 return false; 1004 #endif 1005 1006 #if IS_ENABLED(CONFIG_ASYNC_XOR) 1007 if (!dma_has_cap(DMA_XOR, device->cap_mask)) 1008 return false; 1009 1010 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA 1011 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) 1012 return false; 1013 #endif 1014 #endif 1015 1016 #if IS_ENABLED(CONFIG_ASYNC_PQ) 1017 if (!dma_has_cap(DMA_PQ, device->cap_mask)) 1018 return false; 1019 1020 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA 1021 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) 1022 return false; 1023 #endif 1024 #endif 1025 1026 return true; 1027 } 1028 1029 static int get_dma_id(struct dma_device *device) 1030 { 1031 int rc = ida_alloc(&dma_ida, GFP_KERNEL); 1032 1033 if (rc < 0) 1034 return rc; 1035 device->dev_id = rc; 1036 return 0; 1037 } 1038 1039 static int __dma_async_device_channel_register(struct dma_device *device, 1040 struct dma_chan *chan) 1041 { 1042 int rc = 0; 1043 1044 chan->local = alloc_percpu(typeof(*chan->local)); 1045 if (!chan->local) 1046 goto err_out; 1047 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); 1048 if (!chan->dev) { 1049 free_percpu(chan->local); 1050 chan->local = NULL; 1051 goto err_out; 1052 } 1053 1054 /* 1055 * When the chan_id is a negative value, we are dynamically adding 1056 * the channel. Otherwise we are static enumerating. 1057 */ 1058 mutex_lock(&device->chan_mutex); 1059 chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL); 1060 mutex_unlock(&device->chan_mutex); 1061 if (chan->chan_id < 0) { 1062 pr_err("%s: unable to alloc ida for chan: %d\n", 1063 __func__, chan->chan_id); 1064 goto err_out; 1065 } 1066 1067 chan->dev->device.class = &dma_devclass; 1068 chan->dev->device.parent = device->dev; 1069 chan->dev->chan = chan; 1070 chan->dev->dev_id = device->dev_id; 1071 dev_set_name(&chan->dev->device, "dma%dchan%d", 1072 device->dev_id, chan->chan_id); 1073 rc = device_register(&chan->dev->device); 1074 if (rc) 1075 goto err_out_ida; 1076 chan->client_count = 0; 1077 device->chancnt++; 1078 1079 return 0; 1080 1081 err_out_ida: 1082 mutex_lock(&device->chan_mutex); 1083 ida_free(&device->chan_ida, chan->chan_id); 1084 mutex_unlock(&device->chan_mutex); 1085 err_out: 1086 free_percpu(chan->local); 1087 kfree(chan->dev); 1088 return rc; 1089 } 1090 1091 int dma_async_device_channel_register(struct dma_device *device, 1092 struct dma_chan *chan) 1093 { 1094 int rc; 1095 1096 rc = __dma_async_device_channel_register(device, chan); 1097 if (rc < 0) 1098 return rc; 1099 1100 dma_channel_rebalance(); 1101 return 0; 1102 } 1103 EXPORT_SYMBOL_GPL(dma_async_device_channel_register); 1104 1105 static void __dma_async_device_channel_unregister(struct dma_device *device, 1106 struct dma_chan *chan) 1107 { 1108 WARN_ONCE(!device->device_release && chan->client_count, 1109 "%s called while %d clients hold a reference\n", 1110 __func__, chan->client_count); 1111 mutex_lock(&dma_list_mutex); 1112 list_del(&chan->device_node); 1113 device->chancnt--; 1114 chan->dev->chan = NULL; 1115 mutex_unlock(&dma_list_mutex); 1116 mutex_lock(&device->chan_mutex); 1117 ida_free(&device->chan_ida, chan->chan_id); 1118 mutex_unlock(&device->chan_mutex); 1119 device_unregister(&chan->dev->device); 1120 free_percpu(chan->local); 1121 } 1122 1123 void dma_async_device_channel_unregister(struct dma_device *device, 1124 struct dma_chan *chan) 1125 { 1126 __dma_async_device_channel_unregister(device, chan); 1127 dma_channel_rebalance(); 1128 } 1129 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister); 1130 1131 /** 1132 * dma_async_device_register - registers DMA devices found 1133 * @device: pointer to &struct dma_device 1134 * 1135 * After calling this routine the structure should not be freed except in the 1136 * device_release() callback which will be called after 1137 * dma_async_device_unregister() is called and no further references are taken. 1138 */ 1139 int dma_async_device_register(struct dma_device *device) 1140 { 1141 int rc; 1142 struct dma_chan* chan; 1143 1144 if (!device) 1145 return -ENODEV; 1146 1147 /* validate device routines */ 1148 if (!device->dev) { 1149 pr_err("DMAdevice must have dev\n"); 1150 return -EIO; 1151 } 1152 1153 device->owner = device->dev->driver->owner; 1154 1155 if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) { 1156 dev_err(device->dev, 1157 "Device claims capability %s, but op is not defined\n", 1158 "DMA_MEMCPY"); 1159 return -EIO; 1160 } 1161 1162 if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) { 1163 dev_err(device->dev, 1164 "Device claims capability %s, but op is not defined\n", 1165 "DMA_XOR"); 1166 return -EIO; 1167 } 1168 1169 if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) { 1170 dev_err(device->dev, 1171 "Device claims capability %s, but op is not defined\n", 1172 "DMA_XOR_VAL"); 1173 return -EIO; 1174 } 1175 1176 if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) { 1177 dev_err(device->dev, 1178 "Device claims capability %s, but op is not defined\n", 1179 "DMA_PQ"); 1180 return -EIO; 1181 } 1182 1183 if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) { 1184 dev_err(device->dev, 1185 "Device claims capability %s, but op is not defined\n", 1186 "DMA_PQ_VAL"); 1187 return -EIO; 1188 } 1189 1190 if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) { 1191 dev_err(device->dev, 1192 "Device claims capability %s, but op is not defined\n", 1193 "DMA_MEMSET"); 1194 return -EIO; 1195 } 1196 1197 if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) { 1198 dev_err(device->dev, 1199 "Device claims capability %s, but op is not defined\n", 1200 "DMA_INTERRUPT"); 1201 return -EIO; 1202 } 1203 1204 if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) { 1205 dev_err(device->dev, 1206 "Device claims capability %s, but op is not defined\n", 1207 "DMA_CYCLIC"); 1208 return -EIO; 1209 } 1210 1211 if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) { 1212 dev_err(device->dev, 1213 "Device claims capability %s, but op is not defined\n", 1214 "DMA_INTERLEAVE"); 1215 return -EIO; 1216 } 1217 1218 1219 if (!device->device_tx_status) { 1220 dev_err(device->dev, "Device tx_status is not defined\n"); 1221 return -EIO; 1222 } 1223 1224 1225 if (!device->device_issue_pending) { 1226 dev_err(device->dev, "Device issue_pending is not defined\n"); 1227 return -EIO; 1228 } 1229 1230 if (!device->device_release) 1231 dev_dbg(device->dev, 1232 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n"); 1233 1234 kref_init(&device->ref); 1235 1236 /* note: this only matters in the 1237 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case 1238 */ 1239 if (device_has_all_tx_types(device)) 1240 dma_cap_set(DMA_ASYNC_TX, device->cap_mask); 1241 1242 rc = get_dma_id(device); 1243 if (rc != 0) 1244 return rc; 1245 1246 mutex_init(&device->chan_mutex); 1247 ida_init(&device->chan_ida); 1248 1249 /* represent channels in sysfs. Probably want devs too */ 1250 list_for_each_entry(chan, &device->channels, device_node) { 1251 rc = __dma_async_device_channel_register(device, chan); 1252 if (rc < 0) 1253 goto err_out; 1254 } 1255 1256 mutex_lock(&dma_list_mutex); 1257 /* take references on public channels */ 1258 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1259 list_for_each_entry(chan, &device->channels, device_node) { 1260 /* if clients are already waiting for channels we need 1261 * to take references on their behalf 1262 */ 1263 if (dma_chan_get(chan) == -ENODEV) { 1264 /* note we can only get here for the first 1265 * channel as the remaining channels are 1266 * guaranteed to get a reference 1267 */ 1268 rc = -ENODEV; 1269 mutex_unlock(&dma_list_mutex); 1270 goto err_out; 1271 } 1272 } 1273 list_add_tail_rcu(&device->global_node, &dma_device_list); 1274 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1275 device->privatecnt++; /* Always private */ 1276 dma_channel_rebalance(); 1277 mutex_unlock(&dma_list_mutex); 1278 1279 dmaengine_debug_register(device); 1280 1281 return 0; 1282 1283 err_out: 1284 /* if we never registered a channel just release the idr */ 1285 if (!device->chancnt) { 1286 ida_free(&dma_ida, device->dev_id); 1287 return rc; 1288 } 1289 1290 list_for_each_entry(chan, &device->channels, device_node) { 1291 if (chan->local == NULL) 1292 continue; 1293 mutex_lock(&dma_list_mutex); 1294 chan->dev->chan = NULL; 1295 mutex_unlock(&dma_list_mutex); 1296 device_unregister(&chan->dev->device); 1297 free_percpu(chan->local); 1298 } 1299 return rc; 1300 } 1301 EXPORT_SYMBOL(dma_async_device_register); 1302 1303 /** 1304 * dma_async_device_unregister - unregister a DMA device 1305 * @device: pointer to &struct dma_device 1306 * 1307 * This routine is called by dma driver exit routines, dmaengine holds module 1308 * references to prevent it being called while channels are in use. 1309 */ 1310 void dma_async_device_unregister(struct dma_device *device) 1311 { 1312 struct dma_chan *chan, *n; 1313 1314 dmaengine_debug_unregister(device); 1315 1316 list_for_each_entry_safe(chan, n, &device->channels, device_node) 1317 __dma_async_device_channel_unregister(device, chan); 1318 1319 mutex_lock(&dma_list_mutex); 1320 /* 1321 * setting DMA_PRIVATE ensures the device being torn down will not 1322 * be used in the channel_table 1323 */ 1324 dma_cap_set(DMA_PRIVATE, device->cap_mask); 1325 dma_channel_rebalance(); 1326 ida_free(&dma_ida, device->dev_id); 1327 dma_device_put(device); 1328 mutex_unlock(&dma_list_mutex); 1329 } 1330 EXPORT_SYMBOL(dma_async_device_unregister); 1331 1332 static void dmam_device_release(struct device *dev, void *res) 1333 { 1334 struct dma_device *device; 1335 1336 device = *(struct dma_device **)res; 1337 dma_async_device_unregister(device); 1338 } 1339 1340 /** 1341 * dmaenginem_async_device_register - registers DMA devices found 1342 * @device: pointer to &struct dma_device 1343 * 1344 * The operation is managed and will be undone on driver detach. 1345 */ 1346 int dmaenginem_async_device_register(struct dma_device *device) 1347 { 1348 void *p; 1349 int ret; 1350 1351 p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL); 1352 if (!p) 1353 return -ENOMEM; 1354 1355 ret = dma_async_device_register(device); 1356 if (!ret) { 1357 *(struct dma_device **)p = device; 1358 devres_add(device->dev, p); 1359 } else { 1360 devres_free(p); 1361 } 1362 1363 return ret; 1364 } 1365 EXPORT_SYMBOL(dmaenginem_async_device_register); 1366 1367 struct dmaengine_unmap_pool { 1368 struct kmem_cache *cache; 1369 const char *name; 1370 mempool_t *pool; 1371 size_t size; 1372 }; 1373 1374 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } 1375 static struct dmaengine_unmap_pool unmap_pool[] = { 1376 __UNMAP_POOL(2), 1377 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1378 __UNMAP_POOL(16), 1379 __UNMAP_POOL(128), 1380 __UNMAP_POOL(256), 1381 #endif 1382 }; 1383 1384 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) 1385 { 1386 int order = get_count_order(nr); 1387 1388 switch (order) { 1389 case 0 ... 1: 1390 return &unmap_pool[0]; 1391 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1392 case 2 ... 4: 1393 return &unmap_pool[1]; 1394 case 5 ... 7: 1395 return &unmap_pool[2]; 1396 case 8: 1397 return &unmap_pool[3]; 1398 #endif 1399 default: 1400 BUG(); 1401 return NULL; 1402 } 1403 } 1404 1405 static void dmaengine_unmap(struct kref *kref) 1406 { 1407 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); 1408 struct device *dev = unmap->dev; 1409 int cnt, i; 1410 1411 cnt = unmap->to_cnt; 1412 for (i = 0; i < cnt; i++) 1413 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1414 DMA_TO_DEVICE); 1415 cnt += unmap->from_cnt; 1416 for (; i < cnt; i++) 1417 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1418 DMA_FROM_DEVICE); 1419 cnt += unmap->bidi_cnt; 1420 for (; i < cnt; i++) { 1421 if (unmap->addr[i] == 0) 1422 continue; 1423 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1424 DMA_BIDIRECTIONAL); 1425 } 1426 cnt = unmap->map_cnt; 1427 mempool_free(unmap, __get_unmap_pool(cnt)->pool); 1428 } 1429 1430 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 1431 { 1432 if (unmap) 1433 kref_put(&unmap->kref, dmaengine_unmap); 1434 } 1435 EXPORT_SYMBOL_GPL(dmaengine_unmap_put); 1436 1437 static void dmaengine_destroy_unmap_pool(void) 1438 { 1439 int i; 1440 1441 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1442 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1443 1444 mempool_destroy(p->pool); 1445 p->pool = NULL; 1446 kmem_cache_destroy(p->cache); 1447 p->cache = NULL; 1448 } 1449 } 1450 1451 static int __init dmaengine_init_unmap_pool(void) 1452 { 1453 int i; 1454 1455 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1456 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1457 size_t size; 1458 1459 size = sizeof(struct dmaengine_unmap_data) + 1460 sizeof(dma_addr_t) * p->size; 1461 1462 p->cache = kmem_cache_create(p->name, size, 0, 1463 SLAB_HWCACHE_ALIGN, NULL); 1464 if (!p->cache) 1465 break; 1466 p->pool = mempool_create_slab_pool(1, p->cache); 1467 if (!p->pool) 1468 break; 1469 } 1470 1471 if (i == ARRAY_SIZE(unmap_pool)) 1472 return 0; 1473 1474 dmaengine_destroy_unmap_pool(); 1475 return -ENOMEM; 1476 } 1477 1478 struct dmaengine_unmap_data * 1479 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 1480 { 1481 struct dmaengine_unmap_data *unmap; 1482 1483 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); 1484 if (!unmap) 1485 return NULL; 1486 1487 memset(unmap, 0, sizeof(*unmap)); 1488 kref_init(&unmap->kref); 1489 unmap->dev = dev; 1490 unmap->map_cnt = nr; 1491 1492 return unmap; 1493 } 1494 EXPORT_SYMBOL(dmaengine_get_unmap_data); 1495 1496 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1497 struct dma_chan *chan) 1498 { 1499 tx->chan = chan; 1500 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1501 spin_lock_init(&tx->lock); 1502 #endif 1503 } 1504 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 1505 1506 static inline int desc_check_and_set_metadata_mode( 1507 struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode) 1508 { 1509 /* Make sure that the metadata mode is not mixed */ 1510 if (!desc->desc_metadata_mode) { 1511 if (dmaengine_is_metadata_mode_supported(desc->chan, mode)) 1512 desc->desc_metadata_mode = mode; 1513 else 1514 return -ENOTSUPP; 1515 } else if (desc->desc_metadata_mode != mode) { 1516 return -EINVAL; 1517 } 1518 1519 return 0; 1520 } 1521 1522 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1523 void *data, size_t len) 1524 { 1525 int ret; 1526 1527 if (!desc) 1528 return -EINVAL; 1529 1530 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT); 1531 if (ret) 1532 return ret; 1533 1534 if (!desc->metadata_ops || !desc->metadata_ops->attach) 1535 return -ENOTSUPP; 1536 1537 return desc->metadata_ops->attach(desc, data, len); 1538 } 1539 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata); 1540 1541 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1542 size_t *payload_len, size_t *max_len) 1543 { 1544 int ret; 1545 1546 if (!desc) 1547 return ERR_PTR(-EINVAL); 1548 1549 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); 1550 if (ret) 1551 return ERR_PTR(ret); 1552 1553 if (!desc->metadata_ops || !desc->metadata_ops->get_ptr) 1554 return ERR_PTR(-ENOTSUPP); 1555 1556 return desc->metadata_ops->get_ptr(desc, payload_len, max_len); 1557 } 1558 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr); 1559 1560 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1561 size_t payload_len) 1562 { 1563 int ret; 1564 1565 if (!desc) 1566 return -EINVAL; 1567 1568 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); 1569 if (ret) 1570 return ret; 1571 1572 if (!desc->metadata_ops || !desc->metadata_ops->set_len) 1573 return -ENOTSUPP; 1574 1575 return desc->metadata_ops->set_len(desc, payload_len); 1576 } 1577 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len); 1578 1579 /** 1580 * dma_wait_for_async_tx - spin wait for a transaction to complete 1581 * @tx: in-flight transaction to wait on 1582 */ 1583 enum dma_status 1584 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1585 { 1586 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 1587 1588 if (!tx) 1589 return DMA_COMPLETE; 1590 1591 while (tx->cookie == -EBUSY) { 1592 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 1593 dev_err(tx->chan->device->dev, 1594 "%s timeout waiting for descriptor submission\n", 1595 __func__); 1596 return DMA_ERROR; 1597 } 1598 cpu_relax(); 1599 } 1600 return dma_sync_wait(tx->chan, tx->cookie); 1601 } 1602 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); 1603 1604 /** 1605 * dma_run_dependencies - process dependent operations on the target channel 1606 * @tx: transaction with dependencies 1607 * 1608 * Helper routine for DMA drivers to process (start) dependent operations 1609 * on their target channel. 1610 */ 1611 void dma_run_dependencies(struct dma_async_tx_descriptor *tx) 1612 { 1613 struct dma_async_tx_descriptor *dep = txd_next(tx); 1614 struct dma_async_tx_descriptor *dep_next; 1615 struct dma_chan *chan; 1616 1617 if (!dep) 1618 return; 1619 1620 /* we'll submit tx->next now, so clear the link */ 1621 txd_clear_next(tx); 1622 chan = dep->chan; 1623 1624 /* keep submitting up until a channel switch is detected 1625 * in that case we will be called again as a result of 1626 * processing the interrupt from async_tx_channel_switch 1627 */ 1628 for (; dep; dep = dep_next) { 1629 txd_lock(dep); 1630 txd_clear_parent(dep); 1631 dep_next = txd_next(dep); 1632 if (dep_next && dep_next->chan == chan) 1633 txd_clear_next(dep); /* ->next will be submitted */ 1634 else 1635 dep_next = NULL; /* submit current dep and terminate */ 1636 txd_unlock(dep); 1637 1638 dep->tx_submit(dep); 1639 } 1640 1641 chan->device->device_issue_pending(chan); 1642 } 1643 EXPORT_SYMBOL_GPL(dma_run_dependencies); 1644 1645 static int __init dma_bus_init(void) 1646 { 1647 int err = dmaengine_init_unmap_pool(); 1648 1649 if (err) 1650 return err; 1651 1652 err = class_register(&dma_devclass); 1653 if (!err) 1654 dmaengine_debugfs_init(); 1655 1656 return err; 1657 } 1658 arch_initcall(dma_bus_init); 1659