xref: /openbmc/linux/drivers/dma/dma-axi-dmac.c (revision f5fb5ac7cee29cea9156e734fd652a66417d32fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Analog Devices AXI-DMAC core
4  *
5  * Copyright 2013-2019 Analog Devices Inc.
6  *  Author: Lars-Peter Clausen <lars@metafoo.de>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/clk.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_address.h>
22 #include <linux/platform_device.h>
23 #include <linux/regmap.h>
24 #include <linux/slab.h>
25 #include <linux/fpga/adi-axi-common.h>
26 
27 #include <dt-bindings/dma/axi-dmac.h>
28 
29 #include "dmaengine.h"
30 #include "virt-dma.h"
31 
32 /*
33  * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
34  * various instantiation parameters which decided the exact feature set support
35  * by the core.
36  *
37  * Each channel of the core has a source interface and a destination interface.
38  * The number of channels and the type of the channel interfaces is selected at
39  * configuration time. A interface can either be a connected to a central memory
40  * interconnect, which allows access to system memory, or it can be connected to
41  * a dedicated bus which is directly connected to a data port on a peripheral.
42  * Given that those are configuration options of the core that are selected when
43  * it is instantiated this means that they can not be changed by software at
44  * runtime. By extension this means that each channel is uni-directional. It can
45  * either be device to memory or memory to device, but not both. Also since the
46  * device side is a dedicated data bus only connected to a single peripheral
47  * there is no address than can or needs to be configured for the device side.
48  */
49 
50 #define AXI_DMAC_REG_INTERFACE_DESC	0x10
51 #define   AXI_DMAC_DMA_SRC_TYPE_MSK	GENMASK(13, 12)
52 #define   AXI_DMAC_DMA_SRC_TYPE_GET(x)	FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x)
53 #define   AXI_DMAC_DMA_SRC_WIDTH_MSK	GENMASK(11, 8)
54 #define   AXI_DMAC_DMA_SRC_WIDTH_GET(x)	FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x)
55 #define   AXI_DMAC_DMA_DST_TYPE_MSK	GENMASK(5, 4)
56 #define   AXI_DMAC_DMA_DST_TYPE_GET(x)	FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x)
57 #define   AXI_DMAC_DMA_DST_WIDTH_MSK	GENMASK(3, 0)
58 #define   AXI_DMAC_DMA_DST_WIDTH_GET(x)	FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x)
59 #define AXI_DMAC_REG_COHERENCY_DESC	0x14
60 #define   AXI_DMAC_DST_COHERENT_MSK	BIT(0)
61 #define   AXI_DMAC_DST_COHERENT_GET(x)	FIELD_GET(AXI_DMAC_DST_COHERENT_MSK, x)
62 
63 #define AXI_DMAC_REG_IRQ_MASK		0x80
64 #define AXI_DMAC_REG_IRQ_PENDING	0x84
65 #define AXI_DMAC_REG_IRQ_SOURCE		0x88
66 
67 #define AXI_DMAC_REG_CTRL		0x400
68 #define AXI_DMAC_REG_TRANSFER_ID	0x404
69 #define AXI_DMAC_REG_START_TRANSFER	0x408
70 #define AXI_DMAC_REG_FLAGS		0x40c
71 #define AXI_DMAC_REG_DEST_ADDRESS	0x410
72 #define AXI_DMAC_REG_SRC_ADDRESS	0x414
73 #define AXI_DMAC_REG_X_LENGTH		0x418
74 #define AXI_DMAC_REG_Y_LENGTH		0x41c
75 #define AXI_DMAC_REG_DEST_STRIDE	0x420
76 #define AXI_DMAC_REG_SRC_STRIDE		0x424
77 #define AXI_DMAC_REG_TRANSFER_DONE	0x428
78 #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
79 #define AXI_DMAC_REG_STATUS		0x430
80 #define AXI_DMAC_REG_CURRENT_SRC_ADDR	0x434
81 #define AXI_DMAC_REG_CURRENT_DEST_ADDR	0x438
82 #define AXI_DMAC_REG_PARTIAL_XFER_LEN	0x44c
83 #define AXI_DMAC_REG_PARTIAL_XFER_ID	0x450
84 
85 #define AXI_DMAC_CTRL_ENABLE		BIT(0)
86 #define AXI_DMAC_CTRL_PAUSE		BIT(1)
87 
88 #define AXI_DMAC_IRQ_SOT		BIT(0)
89 #define AXI_DMAC_IRQ_EOT		BIT(1)
90 
91 #define AXI_DMAC_FLAG_CYCLIC		BIT(0)
92 #define AXI_DMAC_FLAG_LAST		BIT(1)
93 #define AXI_DMAC_FLAG_PARTIAL_REPORT	BIT(2)
94 
95 #define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31)
96 
97 /* The maximum ID allocated by the hardware is 31 */
98 #define AXI_DMAC_SG_UNUSED 32U
99 
100 struct axi_dmac_sg {
101 	dma_addr_t src_addr;
102 	dma_addr_t dest_addr;
103 	unsigned int x_len;
104 	unsigned int y_len;
105 	unsigned int dest_stride;
106 	unsigned int src_stride;
107 	unsigned int id;
108 	unsigned int partial_len;
109 	bool schedule_when_free;
110 };
111 
112 struct axi_dmac_desc {
113 	struct virt_dma_desc vdesc;
114 	bool cyclic;
115 	bool have_partial_xfer;
116 
117 	unsigned int num_submitted;
118 	unsigned int num_completed;
119 	unsigned int num_sgs;
120 	struct axi_dmac_sg sg[];
121 };
122 
123 struct axi_dmac_chan {
124 	struct virt_dma_chan vchan;
125 
126 	struct axi_dmac_desc *next_desc;
127 	struct list_head active_descs;
128 	enum dma_transfer_direction direction;
129 
130 	unsigned int src_width;
131 	unsigned int dest_width;
132 	unsigned int src_type;
133 	unsigned int dest_type;
134 
135 	unsigned int max_length;
136 	unsigned int address_align_mask;
137 	unsigned int length_align_mask;
138 
139 	bool hw_partial_xfer;
140 	bool hw_cyclic;
141 	bool hw_2d;
142 };
143 
144 struct axi_dmac {
145 	void __iomem *base;
146 	int irq;
147 
148 	struct clk *clk;
149 
150 	struct dma_device dma_dev;
151 	struct axi_dmac_chan chan;
152 };
153 
154 static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
155 {
156 	return container_of(chan->vchan.chan.device, struct axi_dmac,
157 		dma_dev);
158 }
159 
160 static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
161 {
162 	return container_of(c, struct axi_dmac_chan, vchan.chan);
163 }
164 
165 static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
166 {
167 	return container_of(vdesc, struct axi_dmac_desc, vdesc);
168 }
169 
170 static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
171 	unsigned int val)
172 {
173 	writel(val, axi_dmac->base + reg);
174 }
175 
176 static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
177 {
178 	return readl(axi_dmac->base + reg);
179 }
180 
181 static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
182 {
183 	return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
184 }
185 
186 static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
187 {
188 	return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
189 }
190 
191 static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
192 {
193 	if (len == 0)
194 		return false;
195 	if ((len & chan->length_align_mask) != 0) /* Not aligned */
196 		return false;
197 	return true;
198 }
199 
200 static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
201 {
202 	if ((addr & chan->address_align_mask) != 0) /* Not aligned */
203 		return false;
204 	return true;
205 }
206 
207 static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
208 {
209 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
210 	struct virt_dma_desc *vdesc;
211 	struct axi_dmac_desc *desc;
212 	struct axi_dmac_sg *sg;
213 	unsigned int flags = 0;
214 	unsigned int val;
215 
216 	val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
217 	if (val) /* Queue is full, wait for the next SOT IRQ */
218 		return;
219 
220 	desc = chan->next_desc;
221 
222 	if (!desc) {
223 		vdesc = vchan_next_desc(&chan->vchan);
224 		if (!vdesc)
225 			return;
226 		list_move_tail(&vdesc->node, &chan->active_descs);
227 		desc = to_axi_dmac_desc(vdesc);
228 	}
229 	sg = &desc->sg[desc->num_submitted];
230 
231 	/* Already queued in cyclic mode. Wait for it to finish */
232 	if (sg->id != AXI_DMAC_SG_UNUSED) {
233 		sg->schedule_when_free = true;
234 		return;
235 	}
236 
237 	desc->num_submitted++;
238 	if (desc->num_submitted == desc->num_sgs ||
239 	    desc->have_partial_xfer) {
240 		if (desc->cyclic)
241 			desc->num_submitted = 0; /* Start again */
242 		else
243 			chan->next_desc = NULL;
244 		flags |= AXI_DMAC_FLAG_LAST;
245 	} else {
246 		chan->next_desc = desc;
247 	}
248 
249 	sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
250 
251 	if (axi_dmac_dest_is_mem(chan)) {
252 		axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->dest_addr);
253 		axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->dest_stride);
254 	}
255 
256 	if (axi_dmac_src_is_mem(chan)) {
257 		axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->src_addr);
258 		axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->src_stride);
259 	}
260 
261 	/*
262 	 * If the hardware supports cyclic transfers and there is no callback to
263 	 * call and only a single segment, enable hw cyclic mode to avoid
264 	 * unnecessary interrupts.
265 	 */
266 	if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback &&
267 		desc->num_sgs == 1)
268 		flags |= AXI_DMAC_FLAG_CYCLIC;
269 
270 	if (chan->hw_partial_xfer)
271 		flags |= AXI_DMAC_FLAG_PARTIAL_REPORT;
272 
273 	axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1);
274 	axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->y_len - 1);
275 	axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
276 	axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
277 }
278 
279 static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
280 {
281 	return list_first_entry_or_null(&chan->active_descs,
282 		struct axi_dmac_desc, vdesc.node);
283 }
284 
285 static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan,
286 	struct axi_dmac_sg *sg)
287 {
288 	if (chan->hw_2d)
289 		return sg->x_len * sg->y_len;
290 	else
291 		return sg->x_len;
292 }
293 
294 static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan)
295 {
296 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
297 	struct axi_dmac_desc *desc;
298 	struct axi_dmac_sg *sg;
299 	u32 xfer_done, len, id, i;
300 	bool found_sg;
301 
302 	do {
303 		len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN);
304 		id  = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID);
305 
306 		found_sg = false;
307 		list_for_each_entry(desc, &chan->active_descs, vdesc.node) {
308 			for (i = 0; i < desc->num_sgs; i++) {
309 				sg = &desc->sg[i];
310 				if (sg->id == AXI_DMAC_SG_UNUSED)
311 					continue;
312 				if (sg->id == id) {
313 					desc->have_partial_xfer = true;
314 					sg->partial_len = len;
315 					found_sg = true;
316 					break;
317 				}
318 			}
319 			if (found_sg)
320 				break;
321 		}
322 
323 		if (found_sg) {
324 			dev_dbg(dmac->dma_dev.dev,
325 				"Found partial segment id=%u, len=%u\n",
326 				id, len);
327 		} else {
328 			dev_warn(dmac->dma_dev.dev,
329 				 "Not found partial segment id=%u, len=%u\n",
330 				 id, len);
331 		}
332 
333 		/* Check if we have any more partial transfers */
334 		xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
335 		xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE);
336 
337 	} while (!xfer_done);
338 }
339 
340 static void axi_dmac_compute_residue(struct axi_dmac_chan *chan,
341 	struct axi_dmac_desc *active)
342 {
343 	struct dmaengine_result *rslt = &active->vdesc.tx_result;
344 	unsigned int start = active->num_completed - 1;
345 	struct axi_dmac_sg *sg;
346 	unsigned int i, total;
347 
348 	rslt->result = DMA_TRANS_NOERROR;
349 	rslt->residue = 0;
350 
351 	/*
352 	 * We get here if the last completed segment is partial, which
353 	 * means we can compute the residue from that segment onwards
354 	 */
355 	for (i = start; i < active->num_sgs; i++) {
356 		sg = &active->sg[i];
357 		total = axi_dmac_total_sg_bytes(chan, sg);
358 		rslt->residue += (total - sg->partial_len);
359 	}
360 }
361 
362 static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
363 	unsigned int completed_transfers)
364 {
365 	struct axi_dmac_desc *active;
366 	struct axi_dmac_sg *sg;
367 	bool start_next = false;
368 
369 	active = axi_dmac_active_desc(chan);
370 	if (!active)
371 		return false;
372 
373 	if (chan->hw_partial_xfer &&
374 	    (completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE))
375 		axi_dmac_dequeue_partial_xfers(chan);
376 
377 	do {
378 		sg = &active->sg[active->num_completed];
379 		if (sg->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
380 			break;
381 		if (!(BIT(sg->id) & completed_transfers))
382 			break;
383 		active->num_completed++;
384 		sg->id = AXI_DMAC_SG_UNUSED;
385 		if (sg->schedule_when_free) {
386 			sg->schedule_when_free = false;
387 			start_next = true;
388 		}
389 
390 		if (sg->partial_len)
391 			axi_dmac_compute_residue(chan, active);
392 
393 		if (active->cyclic)
394 			vchan_cyclic_callback(&active->vdesc);
395 
396 		if (active->num_completed == active->num_sgs ||
397 		    sg->partial_len) {
398 			if (active->cyclic) {
399 				active->num_completed = 0; /* wrap around */
400 			} else {
401 				list_del(&active->vdesc.node);
402 				vchan_cookie_complete(&active->vdesc);
403 				active = axi_dmac_active_desc(chan);
404 			}
405 		}
406 	} while (active);
407 
408 	return start_next;
409 }
410 
411 static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
412 {
413 	struct axi_dmac *dmac = devid;
414 	unsigned int pending;
415 	bool start_next = false;
416 
417 	pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
418 	if (!pending)
419 		return IRQ_NONE;
420 
421 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
422 
423 	spin_lock(&dmac->chan.vchan.lock);
424 	/* One or more transfers have finished */
425 	if (pending & AXI_DMAC_IRQ_EOT) {
426 		unsigned int completed;
427 
428 		completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
429 		start_next = axi_dmac_transfer_done(&dmac->chan, completed);
430 	}
431 	/* Space has become available in the descriptor queue */
432 	if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
433 		axi_dmac_start_transfer(&dmac->chan);
434 	spin_unlock(&dmac->chan.vchan.lock);
435 
436 	return IRQ_HANDLED;
437 }
438 
439 static int axi_dmac_terminate_all(struct dma_chan *c)
440 {
441 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
442 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
443 	unsigned long flags;
444 	LIST_HEAD(head);
445 
446 	spin_lock_irqsave(&chan->vchan.lock, flags);
447 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
448 	chan->next_desc = NULL;
449 	vchan_get_all_descriptors(&chan->vchan, &head);
450 	list_splice_tail_init(&chan->active_descs, &head);
451 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
452 
453 	vchan_dma_desc_free_list(&chan->vchan, &head);
454 
455 	return 0;
456 }
457 
458 static void axi_dmac_synchronize(struct dma_chan *c)
459 {
460 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
461 
462 	vchan_synchronize(&chan->vchan);
463 }
464 
465 static void axi_dmac_issue_pending(struct dma_chan *c)
466 {
467 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
468 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
469 	unsigned long flags;
470 
471 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, AXI_DMAC_CTRL_ENABLE);
472 
473 	spin_lock_irqsave(&chan->vchan.lock, flags);
474 	if (vchan_issue_pending(&chan->vchan))
475 		axi_dmac_start_transfer(chan);
476 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
477 }
478 
479 static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs)
480 {
481 	struct axi_dmac_desc *desc;
482 	unsigned int i;
483 
484 	desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
485 	if (!desc)
486 		return NULL;
487 
488 	for (i = 0; i < num_sgs; i++)
489 		desc->sg[i].id = AXI_DMAC_SG_UNUSED;
490 
491 	desc->num_sgs = num_sgs;
492 
493 	return desc;
494 }
495 
496 static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan,
497 	enum dma_transfer_direction direction, dma_addr_t addr,
498 	unsigned int num_periods, unsigned int period_len,
499 	struct axi_dmac_sg *sg)
500 {
501 	unsigned int num_segments, i;
502 	unsigned int segment_size;
503 	unsigned int len;
504 
505 	/* Split into multiple equally sized segments if necessary */
506 	num_segments = DIV_ROUND_UP(period_len, chan->max_length);
507 	segment_size = DIV_ROUND_UP(period_len, num_segments);
508 	/* Take care of alignment */
509 	segment_size = ((segment_size - 1) | chan->length_align_mask) + 1;
510 
511 	for (i = 0; i < num_periods; i++) {
512 		len = period_len;
513 
514 		while (len > segment_size) {
515 			if (direction == DMA_DEV_TO_MEM)
516 				sg->dest_addr = addr;
517 			else
518 				sg->src_addr = addr;
519 			sg->x_len = segment_size;
520 			sg->y_len = 1;
521 			sg++;
522 			addr += segment_size;
523 			len -= segment_size;
524 		}
525 
526 		if (direction == DMA_DEV_TO_MEM)
527 			sg->dest_addr = addr;
528 		else
529 			sg->src_addr = addr;
530 		sg->x_len = len;
531 		sg->y_len = 1;
532 		sg++;
533 		addr += len;
534 	}
535 
536 	return sg;
537 }
538 
539 static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
540 	struct dma_chan *c, struct scatterlist *sgl,
541 	unsigned int sg_len, enum dma_transfer_direction direction,
542 	unsigned long flags, void *context)
543 {
544 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
545 	struct axi_dmac_desc *desc;
546 	struct axi_dmac_sg *dsg;
547 	struct scatterlist *sg;
548 	unsigned int num_sgs;
549 	unsigned int i;
550 
551 	if (direction != chan->direction)
552 		return NULL;
553 
554 	num_sgs = 0;
555 	for_each_sg(sgl, sg, sg_len, i)
556 		num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length);
557 
558 	desc = axi_dmac_alloc_desc(num_sgs);
559 	if (!desc)
560 		return NULL;
561 
562 	dsg = desc->sg;
563 
564 	for_each_sg(sgl, sg, sg_len, i) {
565 		if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
566 		    !axi_dmac_check_len(chan, sg_dma_len(sg))) {
567 			kfree(desc);
568 			return NULL;
569 		}
570 
571 		dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1,
572 			sg_dma_len(sg), dsg);
573 	}
574 
575 	desc->cyclic = false;
576 
577 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
578 }
579 
580 static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
581 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
582 	size_t period_len, enum dma_transfer_direction direction,
583 	unsigned long flags)
584 {
585 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
586 	struct axi_dmac_desc *desc;
587 	unsigned int num_periods, num_segments;
588 
589 	if (direction != chan->direction)
590 		return NULL;
591 
592 	if (!axi_dmac_check_len(chan, buf_len) ||
593 	    !axi_dmac_check_addr(chan, buf_addr))
594 		return NULL;
595 
596 	if (period_len == 0 || buf_len % period_len)
597 		return NULL;
598 
599 	num_periods = buf_len / period_len;
600 	num_segments = DIV_ROUND_UP(period_len, chan->max_length);
601 
602 	desc = axi_dmac_alloc_desc(num_periods * num_segments);
603 	if (!desc)
604 		return NULL;
605 
606 	axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods,
607 		period_len, desc->sg);
608 
609 	desc->cyclic = true;
610 
611 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
612 }
613 
614 static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
615 	struct dma_chan *c, struct dma_interleaved_template *xt,
616 	unsigned long flags)
617 {
618 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
619 	struct axi_dmac_desc *desc;
620 	size_t dst_icg, src_icg;
621 
622 	if (xt->frame_size != 1)
623 		return NULL;
624 
625 	if (xt->dir != chan->direction)
626 		return NULL;
627 
628 	if (axi_dmac_src_is_mem(chan)) {
629 		if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
630 			return NULL;
631 	}
632 
633 	if (axi_dmac_dest_is_mem(chan)) {
634 		if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
635 			return NULL;
636 	}
637 
638 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
639 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
640 
641 	if (chan->hw_2d) {
642 		if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
643 		    xt->numf == 0)
644 			return NULL;
645 		if (xt->sgl[0].size + dst_icg > chan->max_length ||
646 		    xt->sgl[0].size + src_icg > chan->max_length)
647 			return NULL;
648 	} else {
649 		if (dst_icg != 0 || src_icg != 0)
650 			return NULL;
651 		if (chan->max_length / xt->sgl[0].size < xt->numf)
652 			return NULL;
653 		if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
654 			return NULL;
655 	}
656 
657 	desc = axi_dmac_alloc_desc(1);
658 	if (!desc)
659 		return NULL;
660 
661 	if (axi_dmac_src_is_mem(chan)) {
662 		desc->sg[0].src_addr = xt->src_start;
663 		desc->sg[0].src_stride = xt->sgl[0].size + src_icg;
664 	}
665 
666 	if (axi_dmac_dest_is_mem(chan)) {
667 		desc->sg[0].dest_addr = xt->dst_start;
668 		desc->sg[0].dest_stride = xt->sgl[0].size + dst_icg;
669 	}
670 
671 	if (chan->hw_2d) {
672 		desc->sg[0].x_len = xt->sgl[0].size;
673 		desc->sg[0].y_len = xt->numf;
674 	} else {
675 		desc->sg[0].x_len = xt->sgl[0].size * xt->numf;
676 		desc->sg[0].y_len = 1;
677 	}
678 
679 	if (flags & DMA_CYCLIC)
680 		desc->cyclic = true;
681 
682 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
683 }
684 
685 static void axi_dmac_free_chan_resources(struct dma_chan *c)
686 {
687 	vchan_free_chan_resources(to_virt_chan(c));
688 }
689 
690 static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
691 {
692 	kfree(container_of(vdesc, struct axi_dmac_desc, vdesc));
693 }
694 
695 static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg)
696 {
697 	switch (reg) {
698 	case AXI_DMAC_REG_IRQ_MASK:
699 	case AXI_DMAC_REG_IRQ_SOURCE:
700 	case AXI_DMAC_REG_IRQ_PENDING:
701 	case AXI_DMAC_REG_CTRL:
702 	case AXI_DMAC_REG_TRANSFER_ID:
703 	case AXI_DMAC_REG_START_TRANSFER:
704 	case AXI_DMAC_REG_FLAGS:
705 	case AXI_DMAC_REG_DEST_ADDRESS:
706 	case AXI_DMAC_REG_SRC_ADDRESS:
707 	case AXI_DMAC_REG_X_LENGTH:
708 	case AXI_DMAC_REG_Y_LENGTH:
709 	case AXI_DMAC_REG_DEST_STRIDE:
710 	case AXI_DMAC_REG_SRC_STRIDE:
711 	case AXI_DMAC_REG_TRANSFER_DONE:
712 	case AXI_DMAC_REG_ACTIVE_TRANSFER_ID:
713 	case AXI_DMAC_REG_STATUS:
714 	case AXI_DMAC_REG_CURRENT_SRC_ADDR:
715 	case AXI_DMAC_REG_CURRENT_DEST_ADDR:
716 	case AXI_DMAC_REG_PARTIAL_XFER_LEN:
717 	case AXI_DMAC_REG_PARTIAL_XFER_ID:
718 		return true;
719 	default:
720 		return false;
721 	}
722 }
723 
724 static const struct regmap_config axi_dmac_regmap_config = {
725 	.reg_bits = 32,
726 	.val_bits = 32,
727 	.reg_stride = 4,
728 	.max_register = AXI_DMAC_REG_PARTIAL_XFER_ID,
729 	.readable_reg = axi_dmac_regmap_rdwr,
730 	.writeable_reg = axi_dmac_regmap_rdwr,
731 };
732 
733 static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan)
734 {
735 	chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1;
736 
737 	if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
738 		chan->direction = DMA_MEM_TO_MEM;
739 	else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
740 		chan->direction = DMA_MEM_TO_DEV;
741 	else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
742 		chan->direction = DMA_DEV_TO_MEM;
743 	else
744 		chan->direction = DMA_DEV_TO_DEV;
745 }
746 
747 /*
748  * The configuration stored in the devicetree matches the configuration
749  * parameters of the peripheral instance and allows the driver to know which
750  * features are implemented and how it should behave.
751  */
752 static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
753 	struct axi_dmac_chan *chan)
754 {
755 	u32 val;
756 	int ret;
757 
758 	ret = of_property_read_u32(of_chan, "reg", &val);
759 	if (ret)
760 		return ret;
761 
762 	/* We only support 1 channel for now */
763 	if (val != 0)
764 		return -EINVAL;
765 
766 	ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
767 	if (ret)
768 		return ret;
769 	if (val > AXI_DMAC_BUS_TYPE_FIFO)
770 		return -EINVAL;
771 	chan->src_type = val;
772 
773 	ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
774 	if (ret)
775 		return ret;
776 	if (val > AXI_DMAC_BUS_TYPE_FIFO)
777 		return -EINVAL;
778 	chan->dest_type = val;
779 
780 	ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
781 	if (ret)
782 		return ret;
783 	chan->src_width = val / 8;
784 
785 	ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
786 	if (ret)
787 		return ret;
788 	chan->dest_width = val / 8;
789 
790 	axi_dmac_adjust_chan_params(chan);
791 
792 	return 0;
793 }
794 
795 static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac)
796 {
797 	struct device_node *of_channels, *of_chan;
798 	int ret;
799 
800 	of_channels = of_get_child_by_name(dev->of_node, "adi,channels");
801 	if (of_channels == NULL)
802 		return -ENODEV;
803 
804 	for_each_child_of_node(of_channels, of_chan) {
805 		ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
806 		if (ret) {
807 			of_node_put(of_chan);
808 			of_node_put(of_channels);
809 			return -EINVAL;
810 		}
811 	}
812 	of_node_put(of_channels);
813 
814 	return 0;
815 }
816 
817 static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac)
818 {
819 	struct axi_dmac_chan *chan = &dmac->chan;
820 	unsigned int val, desc;
821 
822 	desc = axi_dmac_read(dmac, AXI_DMAC_REG_INTERFACE_DESC);
823 	if (desc == 0) {
824 		dev_err(dev, "DMA interface register reads zero\n");
825 		return -EFAULT;
826 	}
827 
828 	val = AXI_DMAC_DMA_SRC_TYPE_GET(desc);
829 	if (val > AXI_DMAC_BUS_TYPE_FIFO) {
830 		dev_err(dev, "Invalid source bus type read: %d\n", val);
831 		return -EINVAL;
832 	}
833 	chan->src_type = val;
834 
835 	val = AXI_DMAC_DMA_DST_TYPE_GET(desc);
836 	if (val > AXI_DMAC_BUS_TYPE_FIFO) {
837 		dev_err(dev, "Invalid destination bus type read: %d\n", val);
838 		return -EINVAL;
839 	}
840 	chan->dest_type = val;
841 
842 	val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc);
843 	if (val == 0) {
844 		dev_err(dev, "Source bus width is zero\n");
845 		return -EINVAL;
846 	}
847 	/* widths are stored in log2 */
848 	chan->src_width = 1 << val;
849 
850 	val = AXI_DMAC_DMA_DST_WIDTH_GET(desc);
851 	if (val == 0) {
852 		dev_err(dev, "Destination bus width is zero\n");
853 		return -EINVAL;
854 	}
855 	chan->dest_width = 1 << val;
856 
857 	axi_dmac_adjust_chan_params(chan);
858 
859 	return 0;
860 }
861 
862 static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version)
863 {
864 	struct axi_dmac_chan *chan = &dmac->chan;
865 
866 	axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC);
867 	if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC)
868 		chan->hw_cyclic = true;
869 
870 	axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1);
871 	if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1)
872 		chan->hw_2d = true;
873 
874 	axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff);
875 	chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
876 	if (chan->max_length != UINT_MAX)
877 		chan->max_length++;
878 
879 	axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff);
880 	if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 &&
881 	    chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
882 		dev_err(dmac->dma_dev.dev,
883 			"Destination memory-mapped interface not supported.");
884 		return -ENODEV;
885 	}
886 
887 	axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff);
888 	if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 &&
889 	    chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
890 		dev_err(dmac->dma_dev.dev,
891 			"Source memory-mapped interface not supported.");
892 		return -ENODEV;
893 	}
894 
895 	if (version >= ADI_AXI_PCORE_VER(4, 2, 'a'))
896 		chan->hw_partial_xfer = true;
897 
898 	if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) {
899 		axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00);
900 		chan->length_align_mask =
901 			axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
902 	} else {
903 		chan->length_align_mask = chan->address_align_mask;
904 	}
905 
906 	return 0;
907 }
908 
909 static int axi_dmac_probe(struct platform_device *pdev)
910 {
911 	struct dma_device *dma_dev;
912 	struct axi_dmac *dmac;
913 	struct regmap *regmap;
914 	unsigned int version;
915 	int ret;
916 
917 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
918 	if (!dmac)
919 		return -ENOMEM;
920 
921 	dmac->irq = platform_get_irq(pdev, 0);
922 	if (dmac->irq < 0)
923 		return dmac->irq;
924 	if (dmac->irq == 0)
925 		return -EINVAL;
926 
927 	dmac->base = devm_platform_ioremap_resource(pdev, 0);
928 	if (IS_ERR(dmac->base))
929 		return PTR_ERR(dmac->base);
930 
931 	dmac->clk = devm_clk_get(&pdev->dev, NULL);
932 	if (IS_ERR(dmac->clk))
933 		return PTR_ERR(dmac->clk);
934 
935 	ret = clk_prepare_enable(dmac->clk);
936 	if (ret < 0)
937 		return ret;
938 
939 	version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION);
940 
941 	if (version >= ADI_AXI_PCORE_VER(4, 3, 'a'))
942 		ret = axi_dmac_read_chan_config(&pdev->dev, dmac);
943 	else
944 		ret = axi_dmac_parse_dt(&pdev->dev, dmac);
945 
946 	if (ret < 0)
947 		goto err_clk_disable;
948 
949 	INIT_LIST_HEAD(&dmac->chan.active_descs);
950 
951 	dma_set_max_seg_size(&pdev->dev, UINT_MAX);
952 
953 	dma_dev = &dmac->dma_dev;
954 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
955 	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
956 	dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask);
957 	dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
958 	dma_dev->device_tx_status = dma_cookie_status;
959 	dma_dev->device_issue_pending = axi_dmac_issue_pending;
960 	dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
961 	dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
962 	dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
963 	dma_dev->device_terminate_all = axi_dmac_terminate_all;
964 	dma_dev->device_synchronize = axi_dmac_synchronize;
965 	dma_dev->dev = &pdev->dev;
966 	dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
967 	dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
968 	dma_dev->directions = BIT(dmac->chan.direction);
969 	dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
970 	INIT_LIST_HEAD(&dma_dev->channels);
971 
972 	dmac->chan.vchan.desc_free = axi_dmac_desc_free;
973 	vchan_init(&dmac->chan.vchan, dma_dev);
974 
975 	ret = axi_dmac_detect_caps(dmac, version);
976 	if (ret)
977 		goto err_clk_disable;
978 
979 	dma_dev->copy_align = (dmac->chan.address_align_mask + 1);
980 
981 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, 0x00);
982 
983 	if (of_dma_is_coherent(pdev->dev.of_node)) {
984 		ret = axi_dmac_read(dmac, AXI_DMAC_REG_COHERENCY_DESC);
985 
986 		if (version < ADI_AXI_PCORE_VER(4, 4, 'a') ||
987 		    !AXI_DMAC_DST_COHERENT_GET(ret)) {
988 			dev_err(dmac->dma_dev.dev,
989 				"Coherent DMA not supported in hardware");
990 			ret = -EINVAL;
991 			goto err_clk_disable;
992 		}
993 	}
994 
995 	ret = dma_async_device_register(dma_dev);
996 	if (ret)
997 		goto err_clk_disable;
998 
999 	ret = of_dma_controller_register(pdev->dev.of_node,
1000 		of_dma_xlate_by_chan_id, dma_dev);
1001 	if (ret)
1002 		goto err_unregister_device;
1003 
1004 	ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, IRQF_SHARED,
1005 		dev_name(&pdev->dev), dmac);
1006 	if (ret)
1007 		goto err_unregister_of;
1008 
1009 	platform_set_drvdata(pdev, dmac);
1010 
1011 	regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base,
1012 		 &axi_dmac_regmap_config);
1013 	if (IS_ERR(regmap)) {
1014 		ret = PTR_ERR(regmap);
1015 		goto err_free_irq;
1016 	}
1017 
1018 	return 0;
1019 
1020 err_free_irq:
1021 	free_irq(dmac->irq, dmac);
1022 err_unregister_of:
1023 	of_dma_controller_free(pdev->dev.of_node);
1024 err_unregister_device:
1025 	dma_async_device_unregister(&dmac->dma_dev);
1026 err_clk_disable:
1027 	clk_disable_unprepare(dmac->clk);
1028 
1029 	return ret;
1030 }
1031 
1032 static int axi_dmac_remove(struct platform_device *pdev)
1033 {
1034 	struct axi_dmac *dmac = platform_get_drvdata(pdev);
1035 
1036 	of_dma_controller_free(pdev->dev.of_node);
1037 	free_irq(dmac->irq, dmac);
1038 	tasklet_kill(&dmac->chan.vchan.task);
1039 	dma_async_device_unregister(&dmac->dma_dev);
1040 	clk_disable_unprepare(dmac->clk);
1041 
1042 	return 0;
1043 }
1044 
1045 static const struct of_device_id axi_dmac_of_match_table[] = {
1046 	{ .compatible = "adi,axi-dmac-1.00.a" },
1047 	{ },
1048 };
1049 MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
1050 
1051 static struct platform_driver axi_dmac_driver = {
1052 	.driver = {
1053 		.name = "dma-axi-dmac",
1054 		.of_match_table = axi_dmac_of_match_table,
1055 	},
1056 	.probe = axi_dmac_probe,
1057 	.remove = axi_dmac_remove,
1058 };
1059 module_platform_driver(axi_dmac_driver);
1060 
1061 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1062 MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
1063 MODULE_LICENSE("GPL v2");
1064