xref: /openbmc/linux/drivers/dma/dma-axi-dmac.c (revision bc5aa3a0)
1 /*
2  * Driver for the Analog Devices AXI-DMAC core
3  *
4  * Copyright 2013-2015 Analog Devices Inc.
5  *  Author: Lars-Peter Clausen <lars@metafoo.de>
6  *
7  * Licensed under the GPL-2.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 
24 #include <dt-bindings/dma/axi-dmac.h>
25 
26 #include "dmaengine.h"
27 #include "virt-dma.h"
28 
29 /*
30  * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
31  * various instantiation parameters which decided the exact feature set support
32  * by the core.
33  *
34  * Each channel of the core has a source interface and a destination interface.
35  * The number of channels and the type of the channel interfaces is selected at
36  * configuration time. A interface can either be a connected to a central memory
37  * interconnect, which allows access to system memory, or it can be connected to
38  * a dedicated bus which is directly connected to a data port on a peripheral.
39  * Given that those are configuration options of the core that are selected when
40  * it is instantiated this means that they can not be changed by software at
41  * runtime. By extension this means that each channel is uni-directional. It can
42  * either be device to memory or memory to device, but not both. Also since the
43  * device side is a dedicated data bus only connected to a single peripheral
44  * there is no address than can or needs to be configured for the device side.
45  */
46 
47 #define AXI_DMAC_REG_IRQ_MASK		0x80
48 #define AXI_DMAC_REG_IRQ_PENDING	0x84
49 #define AXI_DMAC_REG_IRQ_SOURCE		0x88
50 
51 #define AXI_DMAC_REG_CTRL		0x400
52 #define AXI_DMAC_REG_TRANSFER_ID	0x404
53 #define AXI_DMAC_REG_START_TRANSFER	0x408
54 #define AXI_DMAC_REG_FLAGS		0x40c
55 #define AXI_DMAC_REG_DEST_ADDRESS	0x410
56 #define AXI_DMAC_REG_SRC_ADDRESS	0x414
57 #define AXI_DMAC_REG_X_LENGTH		0x418
58 #define AXI_DMAC_REG_Y_LENGTH		0x41c
59 #define AXI_DMAC_REG_DEST_STRIDE	0x420
60 #define AXI_DMAC_REG_SRC_STRIDE		0x424
61 #define AXI_DMAC_REG_TRANSFER_DONE	0x428
62 #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
63 #define AXI_DMAC_REG_STATUS		0x430
64 #define AXI_DMAC_REG_CURRENT_SRC_ADDR	0x434
65 #define AXI_DMAC_REG_CURRENT_DEST_ADDR	0x438
66 
67 #define AXI_DMAC_CTRL_ENABLE		BIT(0)
68 #define AXI_DMAC_CTRL_PAUSE		BIT(1)
69 
70 #define AXI_DMAC_IRQ_SOT		BIT(0)
71 #define AXI_DMAC_IRQ_EOT		BIT(1)
72 
73 #define AXI_DMAC_FLAG_CYCLIC		BIT(0)
74 
75 struct axi_dmac_sg {
76 	dma_addr_t src_addr;
77 	dma_addr_t dest_addr;
78 	unsigned int x_len;
79 	unsigned int y_len;
80 	unsigned int dest_stride;
81 	unsigned int src_stride;
82 	unsigned int id;
83 };
84 
85 struct axi_dmac_desc {
86 	struct virt_dma_desc vdesc;
87 	bool cyclic;
88 
89 	unsigned int num_submitted;
90 	unsigned int num_completed;
91 	unsigned int num_sgs;
92 	struct axi_dmac_sg sg[];
93 };
94 
95 struct axi_dmac_chan {
96 	struct virt_dma_chan vchan;
97 
98 	struct axi_dmac_desc *next_desc;
99 	struct list_head active_descs;
100 	enum dma_transfer_direction direction;
101 
102 	unsigned int src_width;
103 	unsigned int dest_width;
104 	unsigned int src_type;
105 	unsigned int dest_type;
106 
107 	unsigned int max_length;
108 	unsigned int align_mask;
109 
110 	bool hw_cyclic;
111 	bool hw_2d;
112 };
113 
114 struct axi_dmac {
115 	void __iomem *base;
116 	int irq;
117 
118 	struct clk *clk;
119 
120 	struct dma_device dma_dev;
121 	struct axi_dmac_chan chan;
122 
123 	struct device_dma_parameters dma_parms;
124 };
125 
126 static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
127 {
128 	return container_of(chan->vchan.chan.device, struct axi_dmac,
129 		dma_dev);
130 }
131 
132 static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
133 {
134 	return container_of(c, struct axi_dmac_chan, vchan.chan);
135 }
136 
137 static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
138 {
139 	return container_of(vdesc, struct axi_dmac_desc, vdesc);
140 }
141 
142 static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
143 	unsigned int val)
144 {
145 	writel(val, axi_dmac->base + reg);
146 }
147 
148 static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
149 {
150 	return readl(axi_dmac->base + reg);
151 }
152 
153 static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
154 {
155 	return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
156 }
157 
158 static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
159 {
160 	return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
161 }
162 
163 static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
164 {
165 	if (len == 0 || len > chan->max_length)
166 		return false;
167 	if ((len & chan->align_mask) != 0) /* Not aligned */
168 		return false;
169 	return true;
170 }
171 
172 static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
173 {
174 	if ((addr & chan->align_mask) != 0) /* Not aligned */
175 		return false;
176 	return true;
177 }
178 
179 static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
180 {
181 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
182 	struct virt_dma_desc *vdesc;
183 	struct axi_dmac_desc *desc;
184 	struct axi_dmac_sg *sg;
185 	unsigned int flags = 0;
186 	unsigned int val;
187 
188 	val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
189 	if (val) /* Queue is full, wait for the next SOT IRQ */
190 		return;
191 
192 	desc = chan->next_desc;
193 
194 	if (!desc) {
195 		vdesc = vchan_next_desc(&chan->vchan);
196 		if (!vdesc)
197 			return;
198 		list_move_tail(&vdesc->node, &chan->active_descs);
199 		desc = to_axi_dmac_desc(vdesc);
200 	}
201 	sg = &desc->sg[desc->num_submitted];
202 
203 	desc->num_submitted++;
204 	if (desc->num_submitted == desc->num_sgs)
205 		chan->next_desc = NULL;
206 	else
207 		chan->next_desc = desc;
208 
209 	sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
210 
211 	if (axi_dmac_dest_is_mem(chan)) {
212 		axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->dest_addr);
213 		axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->dest_stride);
214 	}
215 
216 	if (axi_dmac_src_is_mem(chan)) {
217 		axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->src_addr);
218 		axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->src_stride);
219 	}
220 
221 	/*
222 	 * If the hardware supports cyclic transfers and there is no callback to
223 	 * call, enable hw cyclic mode to avoid unnecessary interrupts.
224 	 */
225 	if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback)
226 		flags |= AXI_DMAC_FLAG_CYCLIC;
227 
228 	axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1);
229 	axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->y_len - 1);
230 	axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
231 	axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
232 }
233 
234 static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
235 {
236 	return list_first_entry_or_null(&chan->active_descs,
237 		struct axi_dmac_desc, vdesc.node);
238 }
239 
240 static void axi_dmac_transfer_done(struct axi_dmac_chan *chan,
241 	unsigned int completed_transfers)
242 {
243 	struct axi_dmac_desc *active;
244 	struct axi_dmac_sg *sg;
245 
246 	active = axi_dmac_active_desc(chan);
247 	if (!active)
248 		return;
249 
250 	if (active->cyclic) {
251 		vchan_cyclic_callback(&active->vdesc);
252 	} else {
253 		do {
254 			sg = &active->sg[active->num_completed];
255 			if (!(BIT(sg->id) & completed_transfers))
256 				break;
257 			active->num_completed++;
258 			if (active->num_completed == active->num_sgs) {
259 				list_del(&active->vdesc.node);
260 				vchan_cookie_complete(&active->vdesc);
261 				active = axi_dmac_active_desc(chan);
262 			}
263 		} while (active);
264 	}
265 }
266 
267 static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
268 {
269 	struct axi_dmac *dmac = devid;
270 	unsigned int pending;
271 
272 	pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
273 	if (!pending)
274 		return IRQ_NONE;
275 
276 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
277 
278 	spin_lock(&dmac->chan.vchan.lock);
279 	/* One or more transfers have finished */
280 	if (pending & AXI_DMAC_IRQ_EOT) {
281 		unsigned int completed;
282 
283 		completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
284 		axi_dmac_transfer_done(&dmac->chan, completed);
285 	}
286 	/* Space has become available in the descriptor queue */
287 	if (pending & AXI_DMAC_IRQ_SOT)
288 		axi_dmac_start_transfer(&dmac->chan);
289 	spin_unlock(&dmac->chan.vchan.lock);
290 
291 	return IRQ_HANDLED;
292 }
293 
294 static int axi_dmac_terminate_all(struct dma_chan *c)
295 {
296 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
297 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
298 	unsigned long flags;
299 	LIST_HEAD(head);
300 
301 	spin_lock_irqsave(&chan->vchan.lock, flags);
302 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
303 	chan->next_desc = NULL;
304 	vchan_get_all_descriptors(&chan->vchan, &head);
305 	list_splice_tail_init(&chan->active_descs, &head);
306 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
307 
308 	vchan_dma_desc_free_list(&chan->vchan, &head);
309 
310 	return 0;
311 }
312 
313 static void axi_dmac_synchronize(struct dma_chan *c)
314 {
315 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
316 
317 	vchan_synchronize(&chan->vchan);
318 }
319 
320 static void axi_dmac_issue_pending(struct dma_chan *c)
321 {
322 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
323 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
324 	unsigned long flags;
325 
326 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, AXI_DMAC_CTRL_ENABLE);
327 
328 	spin_lock_irqsave(&chan->vchan.lock, flags);
329 	if (vchan_issue_pending(&chan->vchan))
330 		axi_dmac_start_transfer(chan);
331 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
332 }
333 
334 static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs)
335 {
336 	struct axi_dmac_desc *desc;
337 
338 	desc = kzalloc(sizeof(struct axi_dmac_desc) +
339 		sizeof(struct axi_dmac_sg) * num_sgs, GFP_NOWAIT);
340 	if (!desc)
341 		return NULL;
342 
343 	desc->num_sgs = num_sgs;
344 
345 	return desc;
346 }
347 
348 static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
349 	struct dma_chan *c, struct scatterlist *sgl,
350 	unsigned int sg_len, enum dma_transfer_direction direction,
351 	unsigned long flags, void *context)
352 {
353 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
354 	struct axi_dmac_desc *desc;
355 	struct scatterlist *sg;
356 	unsigned int i;
357 
358 	if (direction != chan->direction)
359 		return NULL;
360 
361 	desc = axi_dmac_alloc_desc(sg_len);
362 	if (!desc)
363 		return NULL;
364 
365 	for_each_sg(sgl, sg, sg_len, i) {
366 		if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
367 		    !axi_dmac_check_len(chan, sg_dma_len(sg))) {
368 			kfree(desc);
369 			return NULL;
370 		}
371 
372 		if (direction == DMA_DEV_TO_MEM)
373 			desc->sg[i].dest_addr = sg_dma_address(sg);
374 		else
375 			desc->sg[i].src_addr = sg_dma_address(sg);
376 		desc->sg[i].x_len = sg_dma_len(sg);
377 		desc->sg[i].y_len = 1;
378 	}
379 
380 	desc->cyclic = false;
381 
382 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
383 }
384 
385 static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
386 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
387 	size_t period_len, enum dma_transfer_direction direction,
388 	unsigned long flags)
389 {
390 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
391 	struct axi_dmac_desc *desc;
392 	unsigned int num_periods, i;
393 
394 	if (direction != chan->direction)
395 		return NULL;
396 
397 	if (!axi_dmac_check_len(chan, buf_len) ||
398 	    !axi_dmac_check_addr(chan, buf_addr))
399 		return NULL;
400 
401 	if (period_len == 0 || buf_len % period_len)
402 		return NULL;
403 
404 	num_periods = buf_len / period_len;
405 
406 	desc = axi_dmac_alloc_desc(num_periods);
407 	if (!desc)
408 		return NULL;
409 
410 	for (i = 0; i < num_periods; i++) {
411 		if (direction == DMA_DEV_TO_MEM)
412 			desc->sg[i].dest_addr = buf_addr;
413 		else
414 			desc->sg[i].src_addr = buf_addr;
415 		desc->sg[i].x_len = period_len;
416 		desc->sg[i].y_len = 1;
417 		buf_addr += period_len;
418 	}
419 
420 	desc->cyclic = true;
421 
422 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
423 }
424 
425 static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
426 	struct dma_chan *c, struct dma_interleaved_template *xt,
427 	unsigned long flags)
428 {
429 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
430 	struct axi_dmac_desc *desc;
431 	size_t dst_icg, src_icg;
432 
433 	if (xt->frame_size != 1)
434 		return NULL;
435 
436 	if (xt->dir != chan->direction)
437 		return NULL;
438 
439 	if (axi_dmac_src_is_mem(chan)) {
440 		if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
441 			return NULL;
442 	}
443 
444 	if (axi_dmac_dest_is_mem(chan)) {
445 		if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
446 			return NULL;
447 	}
448 
449 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
450 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
451 
452 	if (chan->hw_2d) {
453 		if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
454 		    !axi_dmac_check_len(chan, xt->numf))
455 			return NULL;
456 		if (xt->sgl[0].size + dst_icg > chan->max_length ||
457 		    xt->sgl[0].size + src_icg > chan->max_length)
458 			return NULL;
459 	} else {
460 		if (dst_icg != 0 || src_icg != 0)
461 			return NULL;
462 		if (chan->max_length / xt->sgl[0].size < xt->numf)
463 			return NULL;
464 		if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
465 			return NULL;
466 	}
467 
468 	desc = axi_dmac_alloc_desc(1);
469 	if (!desc)
470 		return NULL;
471 
472 	if (axi_dmac_src_is_mem(chan)) {
473 		desc->sg[0].src_addr = xt->src_start;
474 		desc->sg[0].src_stride = xt->sgl[0].size + src_icg;
475 	}
476 
477 	if (axi_dmac_dest_is_mem(chan)) {
478 		desc->sg[0].dest_addr = xt->dst_start;
479 		desc->sg[0].dest_stride = xt->sgl[0].size + dst_icg;
480 	}
481 
482 	if (chan->hw_2d) {
483 		desc->sg[0].x_len = xt->sgl[0].size;
484 		desc->sg[0].y_len = xt->numf;
485 	} else {
486 		desc->sg[0].x_len = xt->sgl[0].size * xt->numf;
487 		desc->sg[0].y_len = 1;
488 	}
489 
490 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
491 }
492 
493 static void axi_dmac_free_chan_resources(struct dma_chan *c)
494 {
495 	vchan_free_chan_resources(to_virt_chan(c));
496 }
497 
498 static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
499 {
500 	kfree(container_of(vdesc, struct axi_dmac_desc, vdesc));
501 }
502 
503 /*
504  * The configuration stored in the devicetree matches the configuration
505  * parameters of the peripheral instance and allows the driver to know which
506  * features are implemented and how it should behave.
507  */
508 static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
509 	struct axi_dmac_chan *chan)
510 {
511 	u32 val;
512 	int ret;
513 
514 	ret = of_property_read_u32(of_chan, "reg", &val);
515 	if (ret)
516 		return ret;
517 
518 	/* We only support 1 channel for now */
519 	if (val != 0)
520 		return -EINVAL;
521 
522 	ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
523 	if (ret)
524 		return ret;
525 	if (val > AXI_DMAC_BUS_TYPE_FIFO)
526 		return -EINVAL;
527 	chan->src_type = val;
528 
529 	ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
530 	if (ret)
531 		return ret;
532 	if (val > AXI_DMAC_BUS_TYPE_FIFO)
533 		return -EINVAL;
534 	chan->dest_type = val;
535 
536 	ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
537 	if (ret)
538 		return ret;
539 	chan->src_width = val / 8;
540 
541 	ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
542 	if (ret)
543 		return ret;
544 	chan->dest_width = val / 8;
545 
546 	ret = of_property_read_u32(of_chan, "adi,length-width", &val);
547 	if (ret)
548 		return ret;
549 
550 	if (val >= 32)
551 		chan->max_length = UINT_MAX;
552 	else
553 		chan->max_length = (1ULL << val) - 1;
554 
555 	chan->align_mask = max(chan->dest_width, chan->src_width) - 1;
556 
557 	if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
558 		chan->direction = DMA_MEM_TO_MEM;
559 	else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
560 		chan->direction = DMA_MEM_TO_DEV;
561 	else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
562 		chan->direction = DMA_DEV_TO_MEM;
563 	else
564 		chan->direction = DMA_DEV_TO_DEV;
565 
566 	chan->hw_cyclic = of_property_read_bool(of_chan, "adi,cyclic");
567 	chan->hw_2d = of_property_read_bool(of_chan, "adi,2d");
568 
569 	return 0;
570 }
571 
572 static int axi_dmac_probe(struct platform_device *pdev)
573 {
574 	struct device_node *of_channels, *of_chan;
575 	struct dma_device *dma_dev;
576 	struct axi_dmac *dmac;
577 	struct resource *res;
578 	int ret;
579 
580 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
581 	if (!dmac)
582 		return -ENOMEM;
583 
584 	dmac->irq = platform_get_irq(pdev, 0);
585 	if (dmac->irq < 0)
586 		return dmac->irq;
587 	if (dmac->irq == 0)
588 		return -EINVAL;
589 
590 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
591 	dmac->base = devm_ioremap_resource(&pdev->dev, res);
592 	if (IS_ERR(dmac->base))
593 		return PTR_ERR(dmac->base);
594 
595 	dmac->clk = devm_clk_get(&pdev->dev, NULL);
596 	if (IS_ERR(dmac->clk))
597 		return PTR_ERR(dmac->clk);
598 
599 	INIT_LIST_HEAD(&dmac->chan.active_descs);
600 
601 	of_channels = of_get_child_by_name(pdev->dev.of_node, "adi,channels");
602 	if (of_channels == NULL)
603 		return -ENODEV;
604 
605 	for_each_child_of_node(of_channels, of_chan) {
606 		ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
607 		if (ret) {
608 			of_node_put(of_chan);
609 			of_node_put(of_channels);
610 			return -EINVAL;
611 		}
612 	}
613 	of_node_put(of_channels);
614 
615 	pdev->dev.dma_parms = &dmac->dma_parms;
616 	dma_set_max_seg_size(&pdev->dev, dmac->chan.max_length);
617 
618 	dma_dev = &dmac->dma_dev;
619 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
620 	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
621 	dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
622 	dma_dev->device_tx_status = dma_cookie_status;
623 	dma_dev->device_issue_pending = axi_dmac_issue_pending;
624 	dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
625 	dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
626 	dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
627 	dma_dev->device_terminate_all = axi_dmac_terminate_all;
628 	dma_dev->device_synchronize = axi_dmac_synchronize;
629 	dma_dev->dev = &pdev->dev;
630 	dma_dev->chancnt = 1;
631 	dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
632 	dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
633 	dma_dev->directions = BIT(dmac->chan.direction);
634 	dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
635 	INIT_LIST_HEAD(&dma_dev->channels);
636 
637 	dmac->chan.vchan.desc_free = axi_dmac_desc_free;
638 	vchan_init(&dmac->chan.vchan, dma_dev);
639 
640 	ret = clk_prepare_enable(dmac->clk);
641 	if (ret < 0)
642 		return ret;
643 
644 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, 0x00);
645 
646 	ret = dma_async_device_register(dma_dev);
647 	if (ret)
648 		goto err_clk_disable;
649 
650 	ret = of_dma_controller_register(pdev->dev.of_node,
651 		of_dma_xlate_by_chan_id, dma_dev);
652 	if (ret)
653 		goto err_unregister_device;
654 
655 	ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, 0,
656 		dev_name(&pdev->dev), dmac);
657 	if (ret)
658 		goto err_unregister_of;
659 
660 	platform_set_drvdata(pdev, dmac);
661 
662 	return 0;
663 
664 err_unregister_of:
665 	of_dma_controller_free(pdev->dev.of_node);
666 err_unregister_device:
667 	dma_async_device_unregister(&dmac->dma_dev);
668 err_clk_disable:
669 	clk_disable_unprepare(dmac->clk);
670 
671 	return ret;
672 }
673 
674 static int axi_dmac_remove(struct platform_device *pdev)
675 {
676 	struct axi_dmac *dmac = platform_get_drvdata(pdev);
677 
678 	of_dma_controller_free(pdev->dev.of_node);
679 	free_irq(dmac->irq, dmac);
680 	tasklet_kill(&dmac->chan.vchan.task);
681 	dma_async_device_unregister(&dmac->dma_dev);
682 	clk_disable_unprepare(dmac->clk);
683 
684 	return 0;
685 }
686 
687 static const struct of_device_id axi_dmac_of_match_table[] = {
688 	{ .compatible = "adi,axi-dmac-1.00.a" },
689 	{ },
690 };
691 MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
692 
693 static struct platform_driver axi_dmac_driver = {
694 	.driver = {
695 		.name = "dma-axi-dmac",
696 		.of_match_table = axi_dmac_of_match_table,
697 	},
698 	.probe = axi_dmac_probe,
699 	.remove = axi_dmac_remove,
700 };
701 module_platform_driver(axi_dmac_driver);
702 
703 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
704 MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
705 MODULE_LICENSE("GPL v2");
706