xref: /openbmc/linux/drivers/dma/dma-axi-dmac.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * Driver for the Analog Devices AXI-DMAC core
3  *
4  * Copyright 2013-2015 Analog Devices Inc.
5  *  Author: Lars-Peter Clausen <lars@metafoo.de>
6  *
7  * Licensed under the GPL-2.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 
24 #include <dt-bindings/dma/axi-dmac.h>
25 
26 #include "dmaengine.h"
27 #include "virt-dma.h"
28 
29 /*
30  * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
31  * various instantiation parameters which decided the exact feature set support
32  * by the core.
33  *
34  * Each channel of the core has a source interface and a destination interface.
35  * The number of channels and the type of the channel interfaces is selected at
36  * configuration time. A interface can either be a connected to a central memory
37  * interconnect, which allows access to system memory, or it can be connected to
38  * a dedicated bus which is directly connected to a data port on a peripheral.
39  * Given that those are configuration options of the core that are selected when
40  * it is instantiated this means that they can not be changed by software at
41  * runtime. By extension this means that each channel is uni-directional. It can
42  * either be device to memory or memory to device, but not both. Also since the
43  * device side is a dedicated data bus only connected to a single peripheral
44  * there is no address than can or needs to be configured for the device side.
45  */
46 
47 #define AXI_DMAC_REG_IRQ_MASK		0x80
48 #define AXI_DMAC_REG_IRQ_PENDING	0x84
49 #define AXI_DMAC_REG_IRQ_SOURCE		0x88
50 
51 #define AXI_DMAC_REG_CTRL		0x400
52 #define AXI_DMAC_REG_TRANSFER_ID	0x404
53 #define AXI_DMAC_REG_START_TRANSFER	0x408
54 #define AXI_DMAC_REG_FLAGS		0x40c
55 #define AXI_DMAC_REG_DEST_ADDRESS	0x410
56 #define AXI_DMAC_REG_SRC_ADDRESS	0x414
57 #define AXI_DMAC_REG_X_LENGTH		0x418
58 #define AXI_DMAC_REG_Y_LENGTH		0x41c
59 #define AXI_DMAC_REG_DEST_STRIDE	0x420
60 #define AXI_DMAC_REG_SRC_STRIDE		0x424
61 #define AXI_DMAC_REG_TRANSFER_DONE	0x428
62 #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
63 #define AXI_DMAC_REG_STATUS		0x430
64 #define AXI_DMAC_REG_CURRENT_SRC_ADDR	0x434
65 #define AXI_DMAC_REG_CURRENT_DEST_ADDR	0x438
66 
67 #define AXI_DMAC_CTRL_ENABLE		BIT(0)
68 #define AXI_DMAC_CTRL_PAUSE		BIT(1)
69 
70 #define AXI_DMAC_IRQ_SOT		BIT(0)
71 #define AXI_DMAC_IRQ_EOT		BIT(1)
72 
73 #define AXI_DMAC_FLAG_CYCLIC		BIT(0)
74 
75 /* The maximum ID allocated by the hardware is 31 */
76 #define AXI_DMAC_SG_UNUSED 32U
77 
78 struct axi_dmac_sg {
79 	dma_addr_t src_addr;
80 	dma_addr_t dest_addr;
81 	unsigned int x_len;
82 	unsigned int y_len;
83 	unsigned int dest_stride;
84 	unsigned int src_stride;
85 	unsigned int id;
86 	bool schedule_when_free;
87 };
88 
89 struct axi_dmac_desc {
90 	struct virt_dma_desc vdesc;
91 	bool cyclic;
92 
93 	unsigned int num_submitted;
94 	unsigned int num_completed;
95 	unsigned int num_sgs;
96 	struct axi_dmac_sg sg[];
97 };
98 
99 struct axi_dmac_chan {
100 	struct virt_dma_chan vchan;
101 
102 	struct axi_dmac_desc *next_desc;
103 	struct list_head active_descs;
104 	enum dma_transfer_direction direction;
105 
106 	unsigned int src_width;
107 	unsigned int dest_width;
108 	unsigned int src_type;
109 	unsigned int dest_type;
110 
111 	unsigned int max_length;
112 	unsigned int align_mask;
113 
114 	bool hw_cyclic;
115 	bool hw_2d;
116 };
117 
118 struct axi_dmac {
119 	void __iomem *base;
120 	int irq;
121 
122 	struct clk *clk;
123 
124 	struct dma_device dma_dev;
125 	struct axi_dmac_chan chan;
126 
127 	struct device_dma_parameters dma_parms;
128 };
129 
130 static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
131 {
132 	return container_of(chan->vchan.chan.device, struct axi_dmac,
133 		dma_dev);
134 }
135 
136 static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
137 {
138 	return container_of(c, struct axi_dmac_chan, vchan.chan);
139 }
140 
141 static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
142 {
143 	return container_of(vdesc, struct axi_dmac_desc, vdesc);
144 }
145 
146 static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
147 	unsigned int val)
148 {
149 	writel(val, axi_dmac->base + reg);
150 }
151 
152 static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
153 {
154 	return readl(axi_dmac->base + reg);
155 }
156 
157 static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
158 {
159 	return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
160 }
161 
162 static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
163 {
164 	return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
165 }
166 
167 static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
168 {
169 	if (len == 0 || len > chan->max_length)
170 		return false;
171 	if ((len & chan->align_mask) != 0) /* Not aligned */
172 		return false;
173 	return true;
174 }
175 
176 static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
177 {
178 	if ((addr & chan->align_mask) != 0) /* Not aligned */
179 		return false;
180 	return true;
181 }
182 
183 static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
184 {
185 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
186 	struct virt_dma_desc *vdesc;
187 	struct axi_dmac_desc *desc;
188 	struct axi_dmac_sg *sg;
189 	unsigned int flags = 0;
190 	unsigned int val;
191 
192 	val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
193 	if (val) /* Queue is full, wait for the next SOT IRQ */
194 		return;
195 
196 	desc = chan->next_desc;
197 
198 	if (!desc) {
199 		vdesc = vchan_next_desc(&chan->vchan);
200 		if (!vdesc)
201 			return;
202 		list_move_tail(&vdesc->node, &chan->active_descs);
203 		desc = to_axi_dmac_desc(vdesc);
204 	}
205 	sg = &desc->sg[desc->num_submitted];
206 
207 	/* Already queued in cyclic mode. Wait for it to finish */
208 	if (sg->id != AXI_DMAC_SG_UNUSED) {
209 		sg->schedule_when_free = true;
210 		return;
211 	}
212 
213 	desc->num_submitted++;
214 	if (desc->num_submitted == desc->num_sgs) {
215 		if (desc->cyclic)
216 			desc->num_submitted = 0; /* Start again */
217 		else
218 			chan->next_desc = NULL;
219 	} else {
220 		chan->next_desc = desc;
221 	}
222 
223 	sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
224 
225 	if (axi_dmac_dest_is_mem(chan)) {
226 		axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->dest_addr);
227 		axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->dest_stride);
228 	}
229 
230 	if (axi_dmac_src_is_mem(chan)) {
231 		axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->src_addr);
232 		axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->src_stride);
233 	}
234 
235 	/*
236 	 * If the hardware supports cyclic transfers and there is no callback to
237 	 * call and only a single segment, enable hw cyclic mode to avoid
238 	 * unnecessary interrupts.
239 	 */
240 	if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback &&
241 		desc->num_sgs == 1)
242 		flags |= AXI_DMAC_FLAG_CYCLIC;
243 
244 	axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1);
245 	axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->y_len - 1);
246 	axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
247 	axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
248 }
249 
250 static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
251 {
252 	return list_first_entry_or_null(&chan->active_descs,
253 		struct axi_dmac_desc, vdesc.node);
254 }
255 
256 static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
257 	unsigned int completed_transfers)
258 {
259 	struct axi_dmac_desc *active;
260 	struct axi_dmac_sg *sg;
261 	bool start_next = false;
262 
263 	active = axi_dmac_active_desc(chan);
264 	if (!active)
265 		return false;
266 
267 	do {
268 		sg = &active->sg[active->num_completed];
269 		if (sg->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
270 			break;
271 		if (!(BIT(sg->id) & completed_transfers))
272 			break;
273 		active->num_completed++;
274 		sg->id = AXI_DMAC_SG_UNUSED;
275 		if (sg->schedule_when_free) {
276 			sg->schedule_when_free = false;
277 			start_next = true;
278 		}
279 
280 		if (active->cyclic)
281 			vchan_cyclic_callback(&active->vdesc);
282 
283 		if (active->num_completed == active->num_sgs) {
284 			if (active->cyclic) {
285 				active->num_completed = 0; /* wrap around */
286 			} else {
287 				list_del(&active->vdesc.node);
288 				vchan_cookie_complete(&active->vdesc);
289 				active = axi_dmac_active_desc(chan);
290 			}
291 		}
292 	} while (active);
293 
294 	return start_next;
295 }
296 
297 static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
298 {
299 	struct axi_dmac *dmac = devid;
300 	unsigned int pending;
301 	bool start_next = false;
302 
303 	pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
304 	if (!pending)
305 		return IRQ_NONE;
306 
307 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
308 
309 	spin_lock(&dmac->chan.vchan.lock);
310 	/* One or more transfers have finished */
311 	if (pending & AXI_DMAC_IRQ_EOT) {
312 		unsigned int completed;
313 
314 		completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
315 		start_next = axi_dmac_transfer_done(&dmac->chan, completed);
316 	}
317 	/* Space has become available in the descriptor queue */
318 	if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
319 		axi_dmac_start_transfer(&dmac->chan);
320 	spin_unlock(&dmac->chan.vchan.lock);
321 
322 	return IRQ_HANDLED;
323 }
324 
325 static int axi_dmac_terminate_all(struct dma_chan *c)
326 {
327 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
328 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
329 	unsigned long flags;
330 	LIST_HEAD(head);
331 
332 	spin_lock_irqsave(&chan->vchan.lock, flags);
333 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
334 	chan->next_desc = NULL;
335 	vchan_get_all_descriptors(&chan->vchan, &head);
336 	list_splice_tail_init(&chan->active_descs, &head);
337 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
338 
339 	vchan_dma_desc_free_list(&chan->vchan, &head);
340 
341 	return 0;
342 }
343 
344 static void axi_dmac_synchronize(struct dma_chan *c)
345 {
346 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
347 
348 	vchan_synchronize(&chan->vchan);
349 }
350 
351 static void axi_dmac_issue_pending(struct dma_chan *c)
352 {
353 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
354 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
355 	unsigned long flags;
356 
357 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, AXI_DMAC_CTRL_ENABLE);
358 
359 	spin_lock_irqsave(&chan->vchan.lock, flags);
360 	if (vchan_issue_pending(&chan->vchan))
361 		axi_dmac_start_transfer(chan);
362 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
363 }
364 
365 static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs)
366 {
367 	struct axi_dmac_desc *desc;
368 	unsigned int i;
369 
370 	desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
371 	if (!desc)
372 		return NULL;
373 
374 	for (i = 0; i < num_sgs; i++)
375 		desc->sg[i].id = AXI_DMAC_SG_UNUSED;
376 
377 	desc->num_sgs = num_sgs;
378 
379 	return desc;
380 }
381 
382 static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
383 	struct dma_chan *c, struct scatterlist *sgl,
384 	unsigned int sg_len, enum dma_transfer_direction direction,
385 	unsigned long flags, void *context)
386 {
387 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
388 	struct axi_dmac_desc *desc;
389 	struct scatterlist *sg;
390 	unsigned int i;
391 
392 	if (direction != chan->direction)
393 		return NULL;
394 
395 	desc = axi_dmac_alloc_desc(sg_len);
396 	if (!desc)
397 		return NULL;
398 
399 	for_each_sg(sgl, sg, sg_len, i) {
400 		if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
401 		    !axi_dmac_check_len(chan, sg_dma_len(sg))) {
402 			kfree(desc);
403 			return NULL;
404 		}
405 
406 		if (direction == DMA_DEV_TO_MEM)
407 			desc->sg[i].dest_addr = sg_dma_address(sg);
408 		else
409 			desc->sg[i].src_addr = sg_dma_address(sg);
410 		desc->sg[i].x_len = sg_dma_len(sg);
411 		desc->sg[i].y_len = 1;
412 	}
413 
414 	desc->cyclic = false;
415 
416 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
417 }
418 
419 static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
420 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
421 	size_t period_len, enum dma_transfer_direction direction,
422 	unsigned long flags)
423 {
424 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
425 	struct axi_dmac_desc *desc;
426 	unsigned int num_periods, i;
427 
428 	if (direction != chan->direction)
429 		return NULL;
430 
431 	if (!axi_dmac_check_len(chan, buf_len) ||
432 	    !axi_dmac_check_addr(chan, buf_addr))
433 		return NULL;
434 
435 	if (period_len == 0 || buf_len % period_len)
436 		return NULL;
437 
438 	num_periods = buf_len / period_len;
439 
440 	desc = axi_dmac_alloc_desc(num_periods);
441 	if (!desc)
442 		return NULL;
443 
444 	for (i = 0; i < num_periods; i++) {
445 		if (direction == DMA_DEV_TO_MEM)
446 			desc->sg[i].dest_addr = buf_addr;
447 		else
448 			desc->sg[i].src_addr = buf_addr;
449 		desc->sg[i].x_len = period_len;
450 		desc->sg[i].y_len = 1;
451 		buf_addr += period_len;
452 	}
453 
454 	desc->cyclic = true;
455 
456 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
457 }
458 
459 static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
460 	struct dma_chan *c, struct dma_interleaved_template *xt,
461 	unsigned long flags)
462 {
463 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
464 	struct axi_dmac_desc *desc;
465 	size_t dst_icg, src_icg;
466 
467 	if (xt->frame_size != 1)
468 		return NULL;
469 
470 	if (xt->dir != chan->direction)
471 		return NULL;
472 
473 	if (axi_dmac_src_is_mem(chan)) {
474 		if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
475 			return NULL;
476 	}
477 
478 	if (axi_dmac_dest_is_mem(chan)) {
479 		if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
480 			return NULL;
481 	}
482 
483 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
484 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
485 
486 	if (chan->hw_2d) {
487 		if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
488 		    !axi_dmac_check_len(chan, xt->numf))
489 			return NULL;
490 		if (xt->sgl[0].size + dst_icg > chan->max_length ||
491 		    xt->sgl[0].size + src_icg > chan->max_length)
492 			return NULL;
493 	} else {
494 		if (dst_icg != 0 || src_icg != 0)
495 			return NULL;
496 		if (chan->max_length / xt->sgl[0].size < xt->numf)
497 			return NULL;
498 		if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
499 			return NULL;
500 	}
501 
502 	desc = axi_dmac_alloc_desc(1);
503 	if (!desc)
504 		return NULL;
505 
506 	if (axi_dmac_src_is_mem(chan)) {
507 		desc->sg[0].src_addr = xt->src_start;
508 		desc->sg[0].src_stride = xt->sgl[0].size + src_icg;
509 	}
510 
511 	if (axi_dmac_dest_is_mem(chan)) {
512 		desc->sg[0].dest_addr = xt->dst_start;
513 		desc->sg[0].dest_stride = xt->sgl[0].size + dst_icg;
514 	}
515 
516 	if (chan->hw_2d) {
517 		desc->sg[0].x_len = xt->sgl[0].size;
518 		desc->sg[0].y_len = xt->numf;
519 	} else {
520 		desc->sg[0].x_len = xt->sgl[0].size * xt->numf;
521 		desc->sg[0].y_len = 1;
522 	}
523 
524 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
525 }
526 
527 static void axi_dmac_free_chan_resources(struct dma_chan *c)
528 {
529 	vchan_free_chan_resources(to_virt_chan(c));
530 }
531 
532 static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
533 {
534 	kfree(container_of(vdesc, struct axi_dmac_desc, vdesc));
535 }
536 
537 /*
538  * The configuration stored in the devicetree matches the configuration
539  * parameters of the peripheral instance and allows the driver to know which
540  * features are implemented and how it should behave.
541  */
542 static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
543 	struct axi_dmac_chan *chan)
544 {
545 	u32 val;
546 	int ret;
547 
548 	ret = of_property_read_u32(of_chan, "reg", &val);
549 	if (ret)
550 		return ret;
551 
552 	/* We only support 1 channel for now */
553 	if (val != 0)
554 		return -EINVAL;
555 
556 	ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
557 	if (ret)
558 		return ret;
559 	if (val > AXI_DMAC_BUS_TYPE_FIFO)
560 		return -EINVAL;
561 	chan->src_type = val;
562 
563 	ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
564 	if (ret)
565 		return ret;
566 	if (val > AXI_DMAC_BUS_TYPE_FIFO)
567 		return -EINVAL;
568 	chan->dest_type = val;
569 
570 	ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
571 	if (ret)
572 		return ret;
573 	chan->src_width = val / 8;
574 
575 	ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
576 	if (ret)
577 		return ret;
578 	chan->dest_width = val / 8;
579 
580 	ret = of_property_read_u32(of_chan, "adi,length-width", &val);
581 	if (ret)
582 		return ret;
583 
584 	if (val >= 32)
585 		chan->max_length = UINT_MAX;
586 	else
587 		chan->max_length = (1ULL << val) - 1;
588 
589 	chan->align_mask = max(chan->dest_width, chan->src_width) - 1;
590 
591 	if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
592 		chan->direction = DMA_MEM_TO_MEM;
593 	else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
594 		chan->direction = DMA_MEM_TO_DEV;
595 	else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
596 		chan->direction = DMA_DEV_TO_MEM;
597 	else
598 		chan->direction = DMA_DEV_TO_DEV;
599 
600 	chan->hw_cyclic = of_property_read_bool(of_chan, "adi,cyclic");
601 	chan->hw_2d = of_property_read_bool(of_chan, "adi,2d");
602 
603 	return 0;
604 }
605 
606 static int axi_dmac_probe(struct platform_device *pdev)
607 {
608 	struct device_node *of_channels, *of_chan;
609 	struct dma_device *dma_dev;
610 	struct axi_dmac *dmac;
611 	struct resource *res;
612 	int ret;
613 
614 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
615 	if (!dmac)
616 		return -ENOMEM;
617 
618 	dmac->irq = platform_get_irq(pdev, 0);
619 	if (dmac->irq < 0)
620 		return dmac->irq;
621 	if (dmac->irq == 0)
622 		return -EINVAL;
623 
624 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
625 	dmac->base = devm_ioremap_resource(&pdev->dev, res);
626 	if (IS_ERR(dmac->base))
627 		return PTR_ERR(dmac->base);
628 
629 	dmac->clk = devm_clk_get(&pdev->dev, NULL);
630 	if (IS_ERR(dmac->clk))
631 		return PTR_ERR(dmac->clk);
632 
633 	INIT_LIST_HEAD(&dmac->chan.active_descs);
634 
635 	of_channels = of_get_child_by_name(pdev->dev.of_node, "adi,channels");
636 	if (of_channels == NULL)
637 		return -ENODEV;
638 
639 	for_each_child_of_node(of_channels, of_chan) {
640 		ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
641 		if (ret) {
642 			of_node_put(of_chan);
643 			of_node_put(of_channels);
644 			return -EINVAL;
645 		}
646 	}
647 	of_node_put(of_channels);
648 
649 	pdev->dev.dma_parms = &dmac->dma_parms;
650 	dma_set_max_seg_size(&pdev->dev, dmac->chan.max_length);
651 
652 	dma_dev = &dmac->dma_dev;
653 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
654 	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
655 	dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
656 	dma_dev->device_tx_status = dma_cookie_status;
657 	dma_dev->device_issue_pending = axi_dmac_issue_pending;
658 	dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
659 	dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
660 	dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
661 	dma_dev->device_terminate_all = axi_dmac_terminate_all;
662 	dma_dev->device_synchronize = axi_dmac_synchronize;
663 	dma_dev->dev = &pdev->dev;
664 	dma_dev->chancnt = 1;
665 	dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
666 	dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
667 	dma_dev->directions = BIT(dmac->chan.direction);
668 	dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
669 	INIT_LIST_HEAD(&dma_dev->channels);
670 
671 	dmac->chan.vchan.desc_free = axi_dmac_desc_free;
672 	vchan_init(&dmac->chan.vchan, dma_dev);
673 
674 	ret = clk_prepare_enable(dmac->clk);
675 	if (ret < 0)
676 		return ret;
677 
678 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, 0x00);
679 
680 	ret = dma_async_device_register(dma_dev);
681 	if (ret)
682 		goto err_clk_disable;
683 
684 	ret = of_dma_controller_register(pdev->dev.of_node,
685 		of_dma_xlate_by_chan_id, dma_dev);
686 	if (ret)
687 		goto err_unregister_device;
688 
689 	ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, IRQF_SHARED,
690 		dev_name(&pdev->dev), dmac);
691 	if (ret)
692 		goto err_unregister_of;
693 
694 	platform_set_drvdata(pdev, dmac);
695 
696 	return 0;
697 
698 err_unregister_of:
699 	of_dma_controller_free(pdev->dev.of_node);
700 err_unregister_device:
701 	dma_async_device_unregister(&dmac->dma_dev);
702 err_clk_disable:
703 	clk_disable_unprepare(dmac->clk);
704 
705 	return ret;
706 }
707 
708 static int axi_dmac_remove(struct platform_device *pdev)
709 {
710 	struct axi_dmac *dmac = platform_get_drvdata(pdev);
711 
712 	of_dma_controller_free(pdev->dev.of_node);
713 	free_irq(dmac->irq, dmac);
714 	tasklet_kill(&dmac->chan.vchan.task);
715 	dma_async_device_unregister(&dmac->dma_dev);
716 	clk_disable_unprepare(dmac->clk);
717 
718 	return 0;
719 }
720 
721 static const struct of_device_id axi_dmac_of_match_table[] = {
722 	{ .compatible = "adi,axi-dmac-1.00.a" },
723 	{ },
724 };
725 MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
726 
727 static struct platform_driver axi_dmac_driver = {
728 	.driver = {
729 		.name = "dma-axi-dmac",
730 		.of_match_table = axi_dmac_of_match_table,
731 	},
732 	.probe = axi_dmac_probe,
733 	.remove = axi_dmac_remove,
734 };
735 module_platform_driver(axi_dmac_driver);
736 
737 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
738 MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
739 MODULE_LICENSE("GPL v2");
740