1 /* 2 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems) 3 * 4 * Copyright (C) 2014 Atmel Corporation 5 * 6 * Author: Ludovic Desroches <ludovic.desroches@atmel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 * 17 * You should have received a copy of the GNU General Public License along with 18 * this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <asm/barrier.h> 22 #include <dt-bindings/dma/at91.h> 23 #include <linux/clk.h> 24 #include <linux/dmaengine.h> 25 #include <linux/dmapool.h> 26 #include <linux/interrupt.h> 27 #include <linux/irq.h> 28 #include <linux/kernel.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/of_dma.h> 32 #include <linux/of_platform.h> 33 #include <linux/platform_device.h> 34 #include <linux/pm.h> 35 36 #include "dmaengine.h" 37 38 /* Global registers */ 39 #define AT_XDMAC_GTYPE 0x00 /* Global Type Register */ 40 #define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */ 41 #define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */ 42 #define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */ 43 #define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */ 44 #define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */ 45 #define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */ 46 #define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */ 47 #define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */ 48 #define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */ 49 #define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */ 50 #define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */ 51 #define AT_XDMAC_GS 0x24 /* Global Channel Status Register */ 52 #define AT_XDMAC_GRS 0x28 /* Global Channel Read Suspend Register */ 53 #define AT_XDMAC_GWS 0x2C /* Global Write Suspend Register */ 54 #define AT_XDMAC_GRWS 0x30 /* Global Channel Read Write Suspend Register */ 55 #define AT_XDMAC_GRWR 0x34 /* Global Channel Read Write Resume Register */ 56 #define AT_XDMAC_GSWR 0x38 /* Global Channel Software Request Register */ 57 #define AT_XDMAC_GSWS 0x3C /* Global channel Software Request Status Register */ 58 #define AT_XDMAC_GSWF 0x40 /* Global Channel Software Flush Request Register */ 59 #define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */ 60 61 /* Channel relative registers offsets */ 62 #define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */ 63 #define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */ 64 #define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */ 65 #define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */ 66 #define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */ 67 #define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */ 68 #define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */ 69 #define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */ 70 #define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */ 71 #define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */ 72 #define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */ 73 #define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */ 74 #define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */ 75 #define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */ 76 #define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */ 77 #define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */ 78 #define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */ 79 #define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */ 80 #define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */ 81 #define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */ 82 #define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */ 83 #define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */ 84 #define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */ 85 #define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */ 86 #define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */ 87 #define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */ 88 #define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */ 89 #define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */ 90 #define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */ 91 #define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */ 92 #define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */ 93 #define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */ 94 #define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */ 95 #define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */ 96 #define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */ 97 #define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */ 98 #define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */ 99 #define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */ 100 #define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */ 101 #define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */ 102 #define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */ 103 #define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */ 104 #define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */ 105 #define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */ 106 #define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */ 107 #define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */ 108 #define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */ 109 #define AT_XDMAC_CC 0x28 /* Channel Configuration Register */ 110 #define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */ 111 #define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */ 112 #define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */ 113 #define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1) 114 #define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1) 115 #define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1) 116 #define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1) 117 #define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1) 118 #define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */ 119 #define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4) 120 #define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4) 121 #define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */ 122 #define AT_XDMAC_CC_PROT_SEC (0x0 << 5) 123 #define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5) 124 #define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */ 125 #define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6) 126 #define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6) 127 #define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */ 128 #define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7) 129 #define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7) 130 #define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */ 131 #define AT_XDMAC_CC_DWIDTH_OFFSET 11 132 #define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET) 133 #define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */ 134 #define AT_XDMAC_CC_DWIDTH_BYTE 0x0 135 #define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1 136 #define AT_XDMAC_CC_DWIDTH_WORD 0x2 137 #define AT_XDMAC_CC_DWIDTH_DWORD 0x3 138 #define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */ 139 #define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */ 140 #define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */ 141 #define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16) 142 #define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16) 143 #define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16) 144 #define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16) 145 #define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */ 146 #define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18) 147 #define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18) 148 #define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18) 149 #define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18) 150 #define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */ 151 #define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21) 152 #define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21) 153 #define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */ 154 #define AT_XDMAC_CC_RDIP_DONE (0x0 << 22) 155 #define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22) 156 #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */ 157 #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23) 158 #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23) 159 #define AT_XDMAC_CC_PERID(i) (0x7f & (i) << 24) /* Channel Peripheral Identifier */ 160 #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */ 161 #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */ 162 #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */ 163 164 #define AT_XDMAC_CHAN_REG_BASE 0x50 /* Channel registers base address */ 165 166 /* Microblock control members */ 167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */ 168 #define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */ 169 #define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */ 170 #define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */ 171 #define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */ 172 #define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */ 173 #define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */ 174 #define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */ 175 176 #define AT_XDMAC_MAX_CHAN 0x20 177 #define AT_XDMAC_MAX_CSIZE 16 /* 16 data */ 178 #define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */ 179 #define AT_XDMAC_RESIDUE_MAX_RETRIES 5 180 181 #define AT_XDMAC_DMA_BUSWIDTHS\ 182 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 183 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 184 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 185 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\ 186 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 187 188 enum atc_status { 189 AT_XDMAC_CHAN_IS_CYCLIC = 0, 190 AT_XDMAC_CHAN_IS_PAUSED, 191 }; 192 193 /* ----- Channels ----- */ 194 struct at_xdmac_chan { 195 struct dma_chan chan; 196 void __iomem *ch_regs; 197 u32 mask; /* Channel Mask */ 198 u32 cfg; /* Channel Configuration Register */ 199 u8 perid; /* Peripheral ID */ 200 u8 perif; /* Peripheral Interface */ 201 u8 memif; /* Memory Interface */ 202 u32 save_cc; 203 u32 save_cim; 204 u32 save_cnda; 205 u32 save_cndc; 206 u32 irq_status; 207 unsigned long status; 208 struct tasklet_struct tasklet; 209 struct dma_slave_config sconfig; 210 211 spinlock_t lock; 212 213 struct list_head xfers_list; 214 struct list_head free_descs_list; 215 }; 216 217 218 /* ----- Controller ----- */ 219 struct at_xdmac { 220 struct dma_device dma; 221 void __iomem *regs; 222 int irq; 223 struct clk *clk; 224 u32 save_gim; 225 struct dma_pool *at_xdmac_desc_pool; 226 struct at_xdmac_chan chan[0]; 227 }; 228 229 230 /* ----- Descriptors ----- */ 231 232 /* Linked List Descriptor */ 233 struct at_xdmac_lld { 234 dma_addr_t mbr_nda; /* Next Descriptor Member */ 235 u32 mbr_ubc; /* Microblock Control Member */ 236 dma_addr_t mbr_sa; /* Source Address Member */ 237 dma_addr_t mbr_da; /* Destination Address Member */ 238 u32 mbr_cfg; /* Configuration Register */ 239 u32 mbr_bc; /* Block Control Register */ 240 u32 mbr_ds; /* Data Stride Register */ 241 u32 mbr_sus; /* Source Microblock Stride Register */ 242 u32 mbr_dus; /* Destination Microblock Stride Register */ 243 }; 244 245 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */ 246 struct at_xdmac_desc { 247 struct at_xdmac_lld lld; 248 enum dma_transfer_direction direction; 249 struct dma_async_tx_descriptor tx_dma_desc; 250 struct list_head desc_node; 251 /* Following members are only used by the first descriptor */ 252 bool active_xfer; 253 unsigned int xfer_size; 254 struct list_head descs_list; 255 struct list_head xfer_node; 256 } __aligned(sizeof(u64)); 257 258 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb) 259 { 260 return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40); 261 } 262 263 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg)) 264 #define at_xdmac_write(atxdmac, reg, value) \ 265 writel_relaxed((value), (atxdmac)->regs + (reg)) 266 267 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg)) 268 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg)) 269 270 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan) 271 { 272 return container_of(dchan, struct at_xdmac_chan, chan); 273 } 274 275 static struct device *chan2dev(struct dma_chan *chan) 276 { 277 return &chan->dev->device; 278 } 279 280 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev) 281 { 282 return container_of(ddev, struct at_xdmac, dma); 283 } 284 285 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd) 286 { 287 return container_of(txd, struct at_xdmac_desc, tx_dma_desc); 288 } 289 290 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan) 291 { 292 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 293 } 294 295 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan) 296 { 297 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 298 } 299 300 static inline int at_xdmac_csize(u32 maxburst) 301 { 302 int csize; 303 304 csize = ffs(maxburst) - 1; 305 if (csize > 4) 306 csize = -EINVAL; 307 308 return csize; 309 }; 310 311 static inline u8 at_xdmac_get_dwidth(u32 cfg) 312 { 313 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET; 314 }; 315 316 static unsigned int init_nr_desc_per_channel = 64; 317 module_param(init_nr_desc_per_channel, uint, 0644); 318 MODULE_PARM_DESC(init_nr_desc_per_channel, 319 "initial descriptors per channel (default: 64)"); 320 321 322 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan) 323 { 324 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask; 325 } 326 327 static void at_xdmac_off(struct at_xdmac *atxdmac) 328 { 329 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L); 330 331 /* Wait that all chans are disabled. */ 332 while (at_xdmac_read(atxdmac, AT_XDMAC_GS)) 333 cpu_relax(); 334 335 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L); 336 } 337 338 /* Call with lock hold. */ 339 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan, 340 struct at_xdmac_desc *first) 341 { 342 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 343 u32 reg; 344 345 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first); 346 347 if (at_xdmac_chan_is_enabled(atchan)) 348 return; 349 350 /* Set transfer as active to not try to start it again. */ 351 first->active_xfer = true; 352 353 /* Tell xdmac where to get the first descriptor. */ 354 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys) 355 | AT_XDMAC_CNDA_NDAIF(atchan->memif); 356 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg); 357 358 /* 359 * When doing non cyclic transfer we need to use the next 360 * descriptor view 2 since some fields of the configuration register 361 * depend on transfer size and src/dest addresses. 362 */ 363 if (at_xdmac_chan_is_cyclic(atchan)) 364 reg = AT_XDMAC_CNDC_NDVIEW_NDV1; 365 else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3) 366 reg = AT_XDMAC_CNDC_NDVIEW_NDV3; 367 else 368 reg = AT_XDMAC_CNDC_NDVIEW_NDV2; 369 /* 370 * Even if the register will be updated from the configuration in the 371 * descriptor when using view 2 or higher, the PROT bit won't be set 372 * properly. This bit can be modified only by using the channel 373 * configuration register. 374 */ 375 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg); 376 377 reg |= AT_XDMAC_CNDC_NDDUP 378 | AT_XDMAC_CNDC_NDSUP 379 | AT_XDMAC_CNDC_NDE; 380 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg); 381 382 dev_vdbg(chan2dev(&atchan->chan), 383 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 384 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 385 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 386 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 387 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 388 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 389 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 390 391 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff); 392 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE; 393 /* 394 * There is no end of list when doing cyclic dma, we need to get 395 * an interrupt after each periods. 396 */ 397 if (at_xdmac_chan_is_cyclic(atchan)) 398 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 399 reg | AT_XDMAC_CIE_BIE); 400 else 401 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 402 reg | AT_XDMAC_CIE_LIE); 403 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask); 404 dev_vdbg(chan2dev(&atchan->chan), 405 "%s: enable channel (0x%08x)\n", __func__, atchan->mask); 406 wmb(); 407 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 408 409 dev_vdbg(chan2dev(&atchan->chan), 410 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 411 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 412 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 413 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 414 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 415 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 416 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 417 418 } 419 420 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx) 421 { 422 struct at_xdmac_desc *desc = txd_to_at_desc(tx); 423 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan); 424 dma_cookie_t cookie; 425 unsigned long irqflags; 426 427 spin_lock_irqsave(&atchan->lock, irqflags); 428 cookie = dma_cookie_assign(tx); 429 430 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n", 431 __func__, atchan, desc); 432 list_add_tail(&desc->xfer_node, &atchan->xfers_list); 433 if (list_is_singular(&atchan->xfers_list)) 434 at_xdmac_start_xfer(atchan, desc); 435 436 spin_unlock_irqrestore(&atchan->lock, irqflags); 437 return cookie; 438 } 439 440 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan, 441 gfp_t gfp_flags) 442 { 443 struct at_xdmac_desc *desc; 444 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 445 dma_addr_t phys; 446 447 desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys); 448 if (desc) { 449 INIT_LIST_HEAD(&desc->descs_list); 450 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan); 451 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit; 452 desc->tx_dma_desc.phys = phys; 453 } 454 455 return desc; 456 } 457 458 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc) 459 { 460 memset(&desc->lld, 0, sizeof(desc->lld)); 461 INIT_LIST_HEAD(&desc->descs_list); 462 desc->direction = DMA_TRANS_NONE; 463 desc->xfer_size = 0; 464 desc->active_xfer = false; 465 } 466 467 /* Call must be protected by lock. */ 468 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan) 469 { 470 struct at_xdmac_desc *desc; 471 472 if (list_empty(&atchan->free_descs_list)) { 473 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT); 474 } else { 475 desc = list_first_entry(&atchan->free_descs_list, 476 struct at_xdmac_desc, desc_node); 477 list_del(&desc->desc_node); 478 at_xdmac_init_used_desc(desc); 479 } 480 481 return desc; 482 } 483 484 static void at_xdmac_queue_desc(struct dma_chan *chan, 485 struct at_xdmac_desc *prev, 486 struct at_xdmac_desc *desc) 487 { 488 if (!prev || !desc) 489 return; 490 491 prev->lld.mbr_nda = desc->tx_dma_desc.phys; 492 prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE; 493 494 dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n", 495 __func__, prev, &prev->lld.mbr_nda); 496 } 497 498 static inline void at_xdmac_increment_block_count(struct dma_chan *chan, 499 struct at_xdmac_desc *desc) 500 { 501 if (!desc) 502 return; 503 504 desc->lld.mbr_bc++; 505 506 dev_dbg(chan2dev(chan), 507 "%s: incrementing the block count of the desc 0x%p\n", 508 __func__, desc); 509 } 510 511 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec, 512 struct of_dma *of_dma) 513 { 514 struct at_xdmac *atxdmac = of_dma->of_dma_data; 515 struct at_xdmac_chan *atchan; 516 struct dma_chan *chan; 517 struct device *dev = atxdmac->dma.dev; 518 519 if (dma_spec->args_count != 1) { 520 dev_err(dev, "dma phandler args: bad number of args\n"); 521 return NULL; 522 } 523 524 chan = dma_get_any_slave_channel(&atxdmac->dma); 525 if (!chan) { 526 dev_err(dev, "can't get a dma channel\n"); 527 return NULL; 528 } 529 530 atchan = to_at_xdmac_chan(chan); 531 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]); 532 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]); 533 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]); 534 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n", 535 atchan->memif, atchan->perif, atchan->perid); 536 537 return chan; 538 } 539 540 static int at_xdmac_compute_chan_conf(struct dma_chan *chan, 541 enum dma_transfer_direction direction) 542 { 543 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 544 int csize, dwidth; 545 546 if (direction == DMA_DEV_TO_MEM) { 547 atchan->cfg = 548 AT91_XDMAC_DT_PERID(atchan->perid) 549 | AT_XDMAC_CC_DAM_INCREMENTED_AM 550 | AT_XDMAC_CC_SAM_FIXED_AM 551 | AT_XDMAC_CC_DIF(atchan->memif) 552 | AT_XDMAC_CC_SIF(atchan->perif) 553 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 554 | AT_XDMAC_CC_DSYNC_PER2MEM 555 | AT_XDMAC_CC_MBSIZE_SIXTEEN 556 | AT_XDMAC_CC_TYPE_PER_TRAN; 557 csize = ffs(atchan->sconfig.src_maxburst) - 1; 558 if (csize < 0) { 559 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 560 return -EINVAL; 561 } 562 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 563 dwidth = ffs(atchan->sconfig.src_addr_width) - 1; 564 if (dwidth < 0) { 565 dev_err(chan2dev(chan), "invalid src addr width value\n"); 566 return -EINVAL; 567 } 568 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 569 } else if (direction == DMA_MEM_TO_DEV) { 570 atchan->cfg = 571 AT91_XDMAC_DT_PERID(atchan->perid) 572 | AT_XDMAC_CC_DAM_FIXED_AM 573 | AT_XDMAC_CC_SAM_INCREMENTED_AM 574 | AT_XDMAC_CC_DIF(atchan->perif) 575 | AT_XDMAC_CC_SIF(atchan->memif) 576 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 577 | AT_XDMAC_CC_DSYNC_MEM2PER 578 | AT_XDMAC_CC_MBSIZE_SIXTEEN 579 | AT_XDMAC_CC_TYPE_PER_TRAN; 580 csize = ffs(atchan->sconfig.dst_maxburst) - 1; 581 if (csize < 0) { 582 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 583 return -EINVAL; 584 } 585 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 586 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1; 587 if (dwidth < 0) { 588 dev_err(chan2dev(chan), "invalid dst addr width value\n"); 589 return -EINVAL; 590 } 591 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 592 } 593 594 dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg); 595 596 return 0; 597 } 598 599 /* 600 * Only check that maxburst and addr width values are supported by the 601 * the controller but not that the configuration is good to perform the 602 * transfer since we don't know the direction at this stage. 603 */ 604 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig) 605 { 606 if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE) 607 || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE)) 608 return -EINVAL; 609 610 if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH) 611 || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH)) 612 return -EINVAL; 613 614 return 0; 615 } 616 617 static int at_xdmac_set_slave_config(struct dma_chan *chan, 618 struct dma_slave_config *sconfig) 619 { 620 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 621 622 if (at_xdmac_check_slave_config(sconfig)) { 623 dev_err(chan2dev(chan), "invalid slave configuration\n"); 624 return -EINVAL; 625 } 626 627 memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig)); 628 629 return 0; 630 } 631 632 static struct dma_async_tx_descriptor * 633 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 634 unsigned int sg_len, enum dma_transfer_direction direction, 635 unsigned long flags, void *context) 636 { 637 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 638 struct at_xdmac_desc *first = NULL, *prev = NULL; 639 struct scatterlist *sg; 640 int i; 641 unsigned int xfer_size = 0; 642 unsigned long irqflags; 643 struct dma_async_tx_descriptor *ret = NULL; 644 645 if (!sgl) 646 return NULL; 647 648 if (!is_slave_direction(direction)) { 649 dev_err(chan2dev(chan), "invalid DMA direction\n"); 650 return NULL; 651 } 652 653 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n", 654 __func__, sg_len, 655 direction == DMA_MEM_TO_DEV ? "to device" : "from device", 656 flags); 657 658 /* Protect dma_sconfig field that can be modified by set_slave_conf. */ 659 spin_lock_irqsave(&atchan->lock, irqflags); 660 661 if (at_xdmac_compute_chan_conf(chan, direction)) 662 goto spin_unlock; 663 664 /* Prepare descriptors. */ 665 for_each_sg(sgl, sg, sg_len, i) { 666 struct at_xdmac_desc *desc = NULL; 667 u32 len, mem, dwidth, fixed_dwidth; 668 669 len = sg_dma_len(sg); 670 mem = sg_dma_address(sg); 671 if (unlikely(!len)) { 672 dev_err(chan2dev(chan), "sg data length is zero\n"); 673 goto spin_unlock; 674 } 675 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n", 676 __func__, i, len, mem); 677 678 desc = at_xdmac_get_desc(atchan); 679 if (!desc) { 680 dev_err(chan2dev(chan), "can't get descriptor\n"); 681 if (first) 682 list_splice_init(&first->descs_list, &atchan->free_descs_list); 683 goto spin_unlock; 684 } 685 686 /* Linked list descriptor setup. */ 687 if (direction == DMA_DEV_TO_MEM) { 688 desc->lld.mbr_sa = atchan->sconfig.src_addr; 689 desc->lld.mbr_da = mem; 690 } else { 691 desc->lld.mbr_sa = mem; 692 desc->lld.mbr_da = atchan->sconfig.dst_addr; 693 } 694 dwidth = at_xdmac_get_dwidth(atchan->cfg); 695 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth) 696 ? dwidth 697 : AT_XDMAC_CC_DWIDTH_BYTE; 698 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */ 699 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */ 700 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */ 701 | (len >> fixed_dwidth); /* microblock length */ 702 desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) | 703 AT_XDMAC_CC_DWIDTH(fixed_dwidth); 704 dev_dbg(chan2dev(chan), 705 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 706 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 707 708 /* Chain lld. */ 709 if (prev) 710 at_xdmac_queue_desc(chan, prev, desc); 711 712 prev = desc; 713 if (!first) 714 first = desc; 715 716 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 717 __func__, desc, first); 718 list_add_tail(&desc->desc_node, &first->descs_list); 719 xfer_size += len; 720 } 721 722 723 first->tx_dma_desc.flags = flags; 724 first->xfer_size = xfer_size; 725 first->direction = direction; 726 ret = &first->tx_dma_desc; 727 728 spin_unlock: 729 spin_unlock_irqrestore(&atchan->lock, irqflags); 730 return ret; 731 } 732 733 static struct dma_async_tx_descriptor * 734 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, 735 size_t buf_len, size_t period_len, 736 enum dma_transfer_direction direction, 737 unsigned long flags) 738 { 739 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 740 struct at_xdmac_desc *first = NULL, *prev = NULL; 741 unsigned int periods = buf_len / period_len; 742 int i; 743 unsigned long irqflags; 744 745 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n", 746 __func__, &buf_addr, buf_len, period_len, 747 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags); 748 749 if (!is_slave_direction(direction)) { 750 dev_err(chan2dev(chan), "invalid DMA direction\n"); 751 return NULL; 752 } 753 754 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) { 755 dev_err(chan2dev(chan), "channel currently used\n"); 756 return NULL; 757 } 758 759 if (at_xdmac_compute_chan_conf(chan, direction)) 760 return NULL; 761 762 for (i = 0; i < periods; i++) { 763 struct at_xdmac_desc *desc = NULL; 764 765 spin_lock_irqsave(&atchan->lock, irqflags); 766 desc = at_xdmac_get_desc(atchan); 767 if (!desc) { 768 dev_err(chan2dev(chan), "can't get descriptor\n"); 769 if (first) 770 list_splice_init(&first->descs_list, &atchan->free_descs_list); 771 spin_unlock_irqrestore(&atchan->lock, irqflags); 772 return NULL; 773 } 774 spin_unlock_irqrestore(&atchan->lock, irqflags); 775 dev_dbg(chan2dev(chan), 776 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n", 777 __func__, desc, &desc->tx_dma_desc.phys); 778 779 if (direction == DMA_DEV_TO_MEM) { 780 desc->lld.mbr_sa = atchan->sconfig.src_addr; 781 desc->lld.mbr_da = buf_addr + i * period_len; 782 } else { 783 desc->lld.mbr_sa = buf_addr + i * period_len; 784 desc->lld.mbr_da = atchan->sconfig.dst_addr; 785 } 786 desc->lld.mbr_cfg = atchan->cfg; 787 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1 788 | AT_XDMAC_MBR_UBC_NDEN 789 | AT_XDMAC_MBR_UBC_NSEN 790 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg); 791 792 dev_dbg(chan2dev(chan), 793 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 794 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 795 796 /* Chain lld. */ 797 if (prev) 798 at_xdmac_queue_desc(chan, prev, desc); 799 800 prev = desc; 801 if (!first) 802 first = desc; 803 804 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 805 __func__, desc, first); 806 list_add_tail(&desc->desc_node, &first->descs_list); 807 } 808 809 at_xdmac_queue_desc(chan, prev, first); 810 first->tx_dma_desc.flags = flags; 811 first->xfer_size = buf_len; 812 first->direction = direction; 813 814 return &first->tx_dma_desc; 815 } 816 817 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr) 818 { 819 u32 width; 820 821 /* 822 * Check address alignment to select the greater data width we 823 * can use. 824 * 825 * Some XDMAC implementations don't provide dword transfer, in 826 * this case selecting dword has the same behavior as 827 * selecting word transfers. 828 */ 829 if (!(addr & 7)) { 830 width = AT_XDMAC_CC_DWIDTH_DWORD; 831 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__); 832 } else if (!(addr & 3)) { 833 width = AT_XDMAC_CC_DWIDTH_WORD; 834 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__); 835 } else if (!(addr & 1)) { 836 width = AT_XDMAC_CC_DWIDTH_HALFWORD; 837 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__); 838 } else { 839 width = AT_XDMAC_CC_DWIDTH_BYTE; 840 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__); 841 } 842 843 return width; 844 } 845 846 static struct at_xdmac_desc * 847 at_xdmac_interleaved_queue_desc(struct dma_chan *chan, 848 struct at_xdmac_chan *atchan, 849 struct at_xdmac_desc *prev, 850 dma_addr_t src, dma_addr_t dst, 851 struct dma_interleaved_template *xt, 852 struct data_chunk *chunk) 853 { 854 struct at_xdmac_desc *desc; 855 u32 dwidth; 856 unsigned long flags; 857 size_t ublen; 858 /* 859 * WARNING: The channel configuration is set here since there is no 860 * dmaengine_slave_config call in this case. Moreover we don't know the 861 * direction, it involves we can't dynamically set the source and dest 862 * interface so we have to use the same one. Only interface 0 allows EBI 863 * access. Hopefully we can access DDR through both ports (at least on 864 * SAMA5D4x), so we can use the same interface for source and dest, 865 * that solves the fact we don't know the direction. 866 * ERRATA: Even if useless for memory transfers, the PERID has to not 867 * match the one of another channel. If not, it could lead to spurious 868 * flag status. 869 */ 870 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f) 871 | AT_XDMAC_CC_DIF(0) 872 | AT_XDMAC_CC_SIF(0) 873 | AT_XDMAC_CC_MBSIZE_SIXTEEN 874 | AT_XDMAC_CC_TYPE_MEM_TRAN; 875 876 dwidth = at_xdmac_align_width(chan, src | dst | chunk->size); 877 if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 878 dev_dbg(chan2dev(chan), 879 "%s: chunk too big (%zu, max size %lu)...\n", 880 __func__, chunk->size, 881 AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth); 882 return NULL; 883 } 884 885 if (prev) 886 dev_dbg(chan2dev(chan), 887 "Adding items at the end of desc 0x%p\n", prev); 888 889 if (xt->src_inc) { 890 if (xt->src_sgl) 891 chan_cc |= AT_XDMAC_CC_SAM_UBS_AM; 892 else 893 chan_cc |= AT_XDMAC_CC_SAM_INCREMENTED_AM; 894 } 895 896 if (xt->dst_inc) { 897 if (xt->dst_sgl) 898 chan_cc |= AT_XDMAC_CC_DAM_UBS_AM; 899 else 900 chan_cc |= AT_XDMAC_CC_DAM_INCREMENTED_AM; 901 } 902 903 spin_lock_irqsave(&atchan->lock, flags); 904 desc = at_xdmac_get_desc(atchan); 905 spin_unlock_irqrestore(&atchan->lock, flags); 906 if (!desc) { 907 dev_err(chan2dev(chan), "can't get descriptor\n"); 908 return NULL; 909 } 910 911 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 912 913 ublen = chunk->size >> dwidth; 914 915 desc->lld.mbr_sa = src; 916 desc->lld.mbr_da = dst; 917 desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk); 918 desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk); 919 920 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 921 | AT_XDMAC_MBR_UBC_NDEN 922 | AT_XDMAC_MBR_UBC_NSEN 923 | ublen; 924 desc->lld.mbr_cfg = chan_cc; 925 926 dev_dbg(chan2dev(chan), 927 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 928 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, 929 desc->lld.mbr_ubc, desc->lld.mbr_cfg); 930 931 /* Chain lld. */ 932 if (prev) 933 at_xdmac_queue_desc(chan, prev, desc); 934 935 return desc; 936 } 937 938 static struct dma_async_tx_descriptor * 939 at_xdmac_prep_interleaved(struct dma_chan *chan, 940 struct dma_interleaved_template *xt, 941 unsigned long flags) 942 { 943 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 944 struct at_xdmac_desc *prev = NULL, *first = NULL; 945 dma_addr_t dst_addr, src_addr; 946 size_t src_skip = 0, dst_skip = 0, len = 0; 947 struct data_chunk *chunk; 948 int i; 949 950 if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM)) 951 return NULL; 952 953 /* 954 * TODO: Handle the case where we have to repeat a chain of 955 * descriptors... 956 */ 957 if ((xt->numf > 1) && (xt->frame_size > 1)) 958 return NULL; 959 960 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n", 961 __func__, &xt->src_start, &xt->dst_start, xt->numf, 962 xt->frame_size, flags); 963 964 src_addr = xt->src_start; 965 dst_addr = xt->dst_start; 966 967 if (xt->numf > 1) { 968 first = at_xdmac_interleaved_queue_desc(chan, atchan, 969 NULL, 970 src_addr, dst_addr, 971 xt, xt->sgl); 972 973 /* Length of the block is (BLEN+1) microblocks. */ 974 for (i = 0; i < xt->numf - 1; i++) 975 at_xdmac_increment_block_count(chan, first); 976 977 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 978 __func__, first, first); 979 list_add_tail(&first->desc_node, &first->descs_list); 980 } else { 981 for (i = 0; i < xt->frame_size; i++) { 982 size_t src_icg = 0, dst_icg = 0; 983 struct at_xdmac_desc *desc; 984 985 chunk = xt->sgl + i; 986 987 dst_icg = dmaengine_get_dst_icg(xt, chunk); 988 src_icg = dmaengine_get_src_icg(xt, chunk); 989 990 src_skip = chunk->size + src_icg; 991 dst_skip = chunk->size + dst_icg; 992 993 dev_dbg(chan2dev(chan), 994 "%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n", 995 __func__, chunk->size, src_icg, dst_icg); 996 997 desc = at_xdmac_interleaved_queue_desc(chan, atchan, 998 prev, 999 src_addr, dst_addr, 1000 xt, chunk); 1001 if (!desc) { 1002 list_splice_init(&first->descs_list, 1003 &atchan->free_descs_list); 1004 return NULL; 1005 } 1006 1007 if (!first) 1008 first = desc; 1009 1010 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1011 __func__, desc, first); 1012 list_add_tail(&desc->desc_node, &first->descs_list); 1013 1014 if (xt->src_sgl) 1015 src_addr += src_skip; 1016 1017 if (xt->dst_sgl) 1018 dst_addr += dst_skip; 1019 1020 len += chunk->size; 1021 prev = desc; 1022 } 1023 } 1024 1025 first->tx_dma_desc.cookie = -EBUSY; 1026 first->tx_dma_desc.flags = flags; 1027 first->xfer_size = len; 1028 1029 return &first->tx_dma_desc; 1030 } 1031 1032 static struct dma_async_tx_descriptor * 1033 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1034 size_t len, unsigned long flags) 1035 { 1036 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1037 struct at_xdmac_desc *first = NULL, *prev = NULL; 1038 size_t remaining_size = len, xfer_size = 0, ublen; 1039 dma_addr_t src_addr = src, dst_addr = dest; 1040 u32 dwidth; 1041 /* 1042 * WARNING: We don't know the direction, it involves we can't 1043 * dynamically set the source and dest interface so we have to use the 1044 * same one. Only interface 0 allows EBI access. Hopefully we can 1045 * access DDR through both ports (at least on SAMA5D4x), so we can use 1046 * the same interface for source and dest, that solves the fact we 1047 * don't know the direction. 1048 * ERRATA: Even if useless for memory transfers, the PERID has to not 1049 * match the one of another channel. If not, it could lead to spurious 1050 * flag status. 1051 */ 1052 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f) 1053 | AT_XDMAC_CC_DAM_INCREMENTED_AM 1054 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1055 | AT_XDMAC_CC_DIF(0) 1056 | AT_XDMAC_CC_SIF(0) 1057 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1058 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1059 unsigned long irqflags; 1060 1061 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n", 1062 __func__, &src, &dest, len, flags); 1063 1064 if (unlikely(!len)) 1065 return NULL; 1066 1067 dwidth = at_xdmac_align_width(chan, src_addr | dst_addr); 1068 1069 /* Prepare descriptors. */ 1070 while (remaining_size) { 1071 struct at_xdmac_desc *desc = NULL; 1072 1073 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size); 1074 1075 spin_lock_irqsave(&atchan->lock, irqflags); 1076 desc = at_xdmac_get_desc(atchan); 1077 spin_unlock_irqrestore(&atchan->lock, irqflags); 1078 if (!desc) { 1079 dev_err(chan2dev(chan), "can't get descriptor\n"); 1080 if (first) 1081 list_splice_init(&first->descs_list, &atchan->free_descs_list); 1082 return NULL; 1083 } 1084 1085 /* Update src and dest addresses. */ 1086 src_addr += xfer_size; 1087 dst_addr += xfer_size; 1088 1089 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth) 1090 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth; 1091 else 1092 xfer_size = remaining_size; 1093 1094 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size); 1095 1096 /* Check remaining length and change data width if needed. */ 1097 dwidth = at_xdmac_align_width(chan, 1098 src_addr | dst_addr | xfer_size); 1099 chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK; 1100 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1101 1102 ublen = xfer_size >> dwidth; 1103 remaining_size -= xfer_size; 1104 1105 desc->lld.mbr_sa = src_addr; 1106 desc->lld.mbr_da = dst_addr; 1107 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 1108 | AT_XDMAC_MBR_UBC_NDEN 1109 | AT_XDMAC_MBR_UBC_NSEN 1110 | ublen; 1111 desc->lld.mbr_cfg = chan_cc; 1112 1113 dev_dbg(chan2dev(chan), 1114 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1115 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg); 1116 1117 /* Chain lld. */ 1118 if (prev) 1119 at_xdmac_queue_desc(chan, prev, desc); 1120 1121 prev = desc; 1122 if (!first) 1123 first = desc; 1124 1125 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1126 __func__, desc, first); 1127 list_add_tail(&desc->desc_node, &first->descs_list); 1128 } 1129 1130 first->tx_dma_desc.flags = flags; 1131 first->xfer_size = len; 1132 1133 return &first->tx_dma_desc; 1134 } 1135 1136 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan, 1137 struct at_xdmac_chan *atchan, 1138 dma_addr_t dst_addr, 1139 size_t len, 1140 int value) 1141 { 1142 struct at_xdmac_desc *desc; 1143 unsigned long flags; 1144 size_t ublen; 1145 u32 dwidth; 1146 /* 1147 * WARNING: The channel configuration is set here since there is no 1148 * dmaengine_slave_config call in this case. Moreover we don't know the 1149 * direction, it involves we can't dynamically set the source and dest 1150 * interface so we have to use the same one. Only interface 0 allows EBI 1151 * access. Hopefully we can access DDR through both ports (at least on 1152 * SAMA5D4x), so we can use the same interface for source and dest, 1153 * that solves the fact we don't know the direction. 1154 * ERRATA: Even if useless for memory transfers, the PERID has to not 1155 * match the one of another channel. If not, it could lead to spurious 1156 * flag status. 1157 */ 1158 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f) 1159 | AT_XDMAC_CC_DAM_UBS_AM 1160 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1161 | AT_XDMAC_CC_DIF(0) 1162 | AT_XDMAC_CC_SIF(0) 1163 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1164 | AT_XDMAC_CC_MEMSET_HW_MODE 1165 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1166 1167 dwidth = at_xdmac_align_width(chan, dst_addr); 1168 1169 if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 1170 dev_err(chan2dev(chan), 1171 "%s: Transfer too large, aborting...\n", 1172 __func__); 1173 return NULL; 1174 } 1175 1176 spin_lock_irqsave(&atchan->lock, flags); 1177 desc = at_xdmac_get_desc(atchan); 1178 spin_unlock_irqrestore(&atchan->lock, flags); 1179 if (!desc) { 1180 dev_err(chan2dev(chan), "can't get descriptor\n"); 1181 return NULL; 1182 } 1183 1184 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1185 1186 ublen = len >> dwidth; 1187 1188 desc->lld.mbr_da = dst_addr; 1189 desc->lld.mbr_ds = value; 1190 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 1191 | AT_XDMAC_MBR_UBC_NDEN 1192 | AT_XDMAC_MBR_UBC_NSEN 1193 | ublen; 1194 desc->lld.mbr_cfg = chan_cc; 1195 1196 dev_dbg(chan2dev(chan), 1197 "%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1198 __func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc, 1199 desc->lld.mbr_cfg); 1200 1201 return desc; 1202 } 1203 1204 static struct dma_async_tx_descriptor * 1205 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 1206 size_t len, unsigned long flags) 1207 { 1208 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1209 struct at_xdmac_desc *desc; 1210 1211 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n", 1212 __func__, &dest, len, value, flags); 1213 1214 if (unlikely(!len)) 1215 return NULL; 1216 1217 desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value); 1218 list_add_tail(&desc->desc_node, &desc->descs_list); 1219 1220 desc->tx_dma_desc.cookie = -EBUSY; 1221 desc->tx_dma_desc.flags = flags; 1222 desc->xfer_size = len; 1223 1224 return &desc->tx_dma_desc; 1225 } 1226 1227 static struct dma_async_tx_descriptor * 1228 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl, 1229 unsigned int sg_len, int value, 1230 unsigned long flags) 1231 { 1232 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1233 struct at_xdmac_desc *desc, *pdesc = NULL, 1234 *ppdesc = NULL, *first = NULL; 1235 struct scatterlist *sg, *psg = NULL, *ppsg = NULL; 1236 size_t stride = 0, pstride = 0, len = 0; 1237 int i; 1238 1239 if (!sgl) 1240 return NULL; 1241 1242 dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n", 1243 __func__, sg_len, value, flags); 1244 1245 /* Prepare descriptors. */ 1246 for_each_sg(sgl, sg, sg_len, i) { 1247 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n", 1248 __func__, &sg_dma_address(sg), sg_dma_len(sg), 1249 value, flags); 1250 desc = at_xdmac_memset_create_desc(chan, atchan, 1251 sg_dma_address(sg), 1252 sg_dma_len(sg), 1253 value); 1254 if (!desc && first) 1255 list_splice_init(&first->descs_list, 1256 &atchan->free_descs_list); 1257 1258 if (!first) 1259 first = desc; 1260 1261 /* Update our strides */ 1262 pstride = stride; 1263 if (psg) 1264 stride = sg_dma_address(sg) - 1265 (sg_dma_address(psg) + sg_dma_len(psg)); 1266 1267 /* 1268 * The scatterlist API gives us only the address and 1269 * length of each elements. 1270 * 1271 * Unfortunately, we don't have the stride, which we 1272 * will need to compute. 1273 * 1274 * That make us end up in a situation like this one: 1275 * len stride len stride len 1276 * +-------+ +-------+ +-------+ 1277 * | N-2 | | N-1 | | N | 1278 * +-------+ +-------+ +-------+ 1279 * 1280 * We need all these three elements (N-2, N-1 and N) 1281 * to actually take the decision on whether we need to 1282 * queue N-1 or reuse N-2. 1283 * 1284 * We will only consider N if it is the last element. 1285 */ 1286 if (ppdesc && pdesc) { 1287 if ((stride == pstride) && 1288 (sg_dma_len(ppsg) == sg_dma_len(psg))) { 1289 dev_dbg(chan2dev(chan), 1290 "%s: desc 0x%p can be merged with desc 0x%p\n", 1291 __func__, pdesc, ppdesc); 1292 1293 /* 1294 * Increment the block count of the 1295 * N-2 descriptor 1296 */ 1297 at_xdmac_increment_block_count(chan, ppdesc); 1298 ppdesc->lld.mbr_dus = stride; 1299 1300 /* 1301 * Put back the N-1 descriptor in the 1302 * free descriptor list 1303 */ 1304 list_add_tail(&pdesc->desc_node, 1305 &atchan->free_descs_list); 1306 1307 /* 1308 * Make our N-1 descriptor pointer 1309 * point to the N-2 since they were 1310 * actually merged. 1311 */ 1312 pdesc = ppdesc; 1313 1314 /* 1315 * Rule out the case where we don't have 1316 * pstride computed yet (our second sg 1317 * element) 1318 * 1319 * We also want to catch the case where there 1320 * would be a negative stride, 1321 */ 1322 } else if (pstride || 1323 sg_dma_address(sg) < sg_dma_address(psg)) { 1324 /* 1325 * Queue the N-1 descriptor after the 1326 * N-2 1327 */ 1328 at_xdmac_queue_desc(chan, ppdesc, pdesc); 1329 1330 /* 1331 * Add the N-1 descriptor to the list 1332 * of the descriptors used for this 1333 * transfer 1334 */ 1335 list_add_tail(&desc->desc_node, 1336 &first->descs_list); 1337 dev_dbg(chan2dev(chan), 1338 "%s: add desc 0x%p to descs_list 0x%p\n", 1339 __func__, desc, first); 1340 } 1341 } 1342 1343 /* 1344 * If we are the last element, just see if we have the 1345 * same size than the previous element. 1346 * 1347 * If so, we can merge it with the previous descriptor 1348 * since we don't care about the stride anymore. 1349 */ 1350 if ((i == (sg_len - 1)) && 1351 sg_dma_len(psg) == sg_dma_len(sg)) { 1352 dev_dbg(chan2dev(chan), 1353 "%s: desc 0x%p can be merged with desc 0x%p\n", 1354 __func__, desc, pdesc); 1355 1356 /* 1357 * Increment the block count of the N-1 1358 * descriptor 1359 */ 1360 at_xdmac_increment_block_count(chan, pdesc); 1361 pdesc->lld.mbr_dus = stride; 1362 1363 /* 1364 * Put back the N descriptor in the free 1365 * descriptor list 1366 */ 1367 list_add_tail(&desc->desc_node, 1368 &atchan->free_descs_list); 1369 } 1370 1371 /* Update our descriptors */ 1372 ppdesc = pdesc; 1373 pdesc = desc; 1374 1375 /* Update our scatter pointers */ 1376 ppsg = psg; 1377 psg = sg; 1378 1379 len += sg_dma_len(sg); 1380 } 1381 1382 first->tx_dma_desc.cookie = -EBUSY; 1383 first->tx_dma_desc.flags = flags; 1384 first->xfer_size = len; 1385 1386 return &first->tx_dma_desc; 1387 } 1388 1389 static enum dma_status 1390 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 1391 struct dma_tx_state *txstate) 1392 { 1393 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1394 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1395 struct at_xdmac_desc *desc, *_desc; 1396 struct list_head *descs_list; 1397 enum dma_status ret; 1398 int residue, retry; 1399 u32 cur_nda, check_nda, cur_ubc, mask, value; 1400 u8 dwidth = 0; 1401 unsigned long flags; 1402 bool initd; 1403 1404 ret = dma_cookie_status(chan, cookie, txstate); 1405 if (ret == DMA_COMPLETE) 1406 return ret; 1407 1408 if (!txstate) 1409 return ret; 1410 1411 spin_lock_irqsave(&atchan->lock, flags); 1412 1413 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 1414 1415 /* 1416 * If the transfer has not been started yet, don't need to compute the 1417 * residue, it's the transfer length. 1418 */ 1419 if (!desc->active_xfer) { 1420 dma_set_residue(txstate, desc->xfer_size); 1421 goto spin_unlock; 1422 } 1423 1424 residue = desc->xfer_size; 1425 /* 1426 * Flush FIFO: only relevant when the transfer is source peripheral 1427 * synchronized. Flush is needed before reading CUBC because data in 1428 * the FIFO are not reported by CUBC. Reporting a residue of the 1429 * transfer length while we have data in FIFO can cause issue. 1430 * Usecase: atmel USART has a timeout which means I have received 1431 * characters but there is no more character received for a while. On 1432 * timeout, it requests the residue. If the data are in the DMA FIFO, 1433 * we will return a residue of the transfer length. It means no data 1434 * received. If an application is waiting for these data, it will hang 1435 * since we won't have another USART timeout without receiving new 1436 * data. 1437 */ 1438 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC; 1439 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM; 1440 if ((desc->lld.mbr_cfg & mask) == value) { 1441 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask); 1442 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS)) 1443 cpu_relax(); 1444 } 1445 1446 /* 1447 * The easiest way to compute the residue should be to pause the DMA 1448 * but doing this can lead to miss some data as some devices don't 1449 * have FIFO. 1450 * We need to read several registers because: 1451 * - DMA is running therefore a descriptor change is possible while 1452 * reading these registers 1453 * - When the block transfer is done, the value of the CUBC register 1454 * is set to its initial value until the fetch of the next descriptor. 1455 * This value will corrupt the residue calculation so we have to skip 1456 * it. 1457 * 1458 * INITD -------- ------------ 1459 * |____________________| 1460 * _______________________ _______________ 1461 * NDA @desc2 \/ @desc3 1462 * _______________________/\_______________ 1463 * __________ ___________ _______________ 1464 * CUBC 0 \/ MAX desc1 \/ MAX desc2 1465 * __________/\___________/\_______________ 1466 * 1467 * Since descriptors are aligned on 64 bits, we can assume that 1468 * the update of NDA and CUBC is atomic. 1469 * Memory barriers are used to ensure the read order of the registers. 1470 * A max number of retries is set because unlikely it could never ends. 1471 */ 1472 for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) { 1473 check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 1474 rmb(); 1475 cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC); 1476 rmb(); 1477 initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD); 1478 rmb(); 1479 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 1480 rmb(); 1481 1482 if ((check_nda == cur_nda) && initd) 1483 break; 1484 } 1485 1486 if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) { 1487 ret = DMA_ERROR; 1488 goto spin_unlock; 1489 } 1490 1491 /* 1492 * Flush FIFO: only relevant when the transfer is source peripheral 1493 * synchronized. Another flush is needed here because CUBC is updated 1494 * when the controller sends the data write command. It can lead to 1495 * report data that are not written in the memory or the device. The 1496 * FIFO flush ensures that data are really written. 1497 */ 1498 if ((desc->lld.mbr_cfg & mask) == value) { 1499 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask); 1500 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS)) 1501 cpu_relax(); 1502 } 1503 1504 /* 1505 * Remove size of all microblocks already transferred and the current 1506 * one. Then add the remaining size to transfer of the current 1507 * microblock. 1508 */ 1509 descs_list = &desc->descs_list; 1510 list_for_each_entry_safe(desc, _desc, descs_list, desc_node) { 1511 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg); 1512 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth; 1513 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda) 1514 break; 1515 } 1516 residue += cur_ubc << dwidth; 1517 1518 dma_set_residue(txstate, residue); 1519 1520 dev_dbg(chan2dev(chan), 1521 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n", 1522 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue); 1523 1524 spin_unlock: 1525 spin_unlock_irqrestore(&atchan->lock, flags); 1526 return ret; 1527 } 1528 1529 /* Call must be protected by lock. */ 1530 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan, 1531 struct at_xdmac_desc *desc) 1532 { 1533 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1534 1535 /* 1536 * Remove the transfer from the transfer list then move the transfer 1537 * descriptors into the free descriptors list. 1538 */ 1539 list_del(&desc->xfer_node); 1540 list_splice_init(&desc->descs_list, &atchan->free_descs_list); 1541 } 1542 1543 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan) 1544 { 1545 struct at_xdmac_desc *desc; 1546 unsigned long flags; 1547 1548 spin_lock_irqsave(&atchan->lock, flags); 1549 1550 /* 1551 * If channel is enabled, do nothing, advance_work will be triggered 1552 * after the interruption. 1553 */ 1554 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) { 1555 desc = list_first_entry(&atchan->xfers_list, 1556 struct at_xdmac_desc, 1557 xfer_node); 1558 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1559 if (!desc->active_xfer) 1560 at_xdmac_start_xfer(atchan, desc); 1561 } 1562 1563 spin_unlock_irqrestore(&atchan->lock, flags); 1564 } 1565 1566 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan) 1567 { 1568 struct at_xdmac_desc *desc; 1569 struct dma_async_tx_descriptor *txd; 1570 1571 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 1572 txd = &desc->tx_dma_desc; 1573 1574 if (txd->flags & DMA_PREP_INTERRUPT) 1575 dmaengine_desc_get_callback_invoke(txd, NULL); 1576 } 1577 1578 static void at_xdmac_tasklet(unsigned long data) 1579 { 1580 struct at_xdmac_chan *atchan = (struct at_xdmac_chan *)data; 1581 struct at_xdmac_desc *desc; 1582 u32 error_mask; 1583 1584 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n", 1585 __func__, atchan->irq_status); 1586 1587 error_mask = AT_XDMAC_CIS_RBEIS 1588 | AT_XDMAC_CIS_WBEIS 1589 | AT_XDMAC_CIS_ROIS; 1590 1591 if (at_xdmac_chan_is_cyclic(atchan)) { 1592 at_xdmac_handle_cyclic(atchan); 1593 } else if ((atchan->irq_status & AT_XDMAC_CIS_LIS) 1594 || (atchan->irq_status & error_mask)) { 1595 struct dma_async_tx_descriptor *txd; 1596 1597 if (atchan->irq_status & AT_XDMAC_CIS_RBEIS) 1598 dev_err(chan2dev(&atchan->chan), "read bus error!!!"); 1599 if (atchan->irq_status & AT_XDMAC_CIS_WBEIS) 1600 dev_err(chan2dev(&atchan->chan), "write bus error!!!"); 1601 if (atchan->irq_status & AT_XDMAC_CIS_ROIS) 1602 dev_err(chan2dev(&atchan->chan), "request overflow error!!!"); 1603 1604 spin_lock(&atchan->lock); 1605 desc = list_first_entry(&atchan->xfers_list, 1606 struct at_xdmac_desc, 1607 xfer_node); 1608 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1609 BUG_ON(!desc->active_xfer); 1610 1611 txd = &desc->tx_dma_desc; 1612 1613 at_xdmac_remove_xfer(atchan, desc); 1614 spin_unlock(&atchan->lock); 1615 1616 if (!at_xdmac_chan_is_cyclic(atchan)) { 1617 dma_cookie_complete(txd); 1618 if (txd->flags & DMA_PREP_INTERRUPT) 1619 dmaengine_desc_get_callback_invoke(txd, NULL); 1620 } 1621 1622 dma_run_dependencies(txd); 1623 1624 at_xdmac_advance_work(atchan); 1625 } 1626 } 1627 1628 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id) 1629 { 1630 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id; 1631 struct at_xdmac_chan *atchan; 1632 u32 imr, status, pending; 1633 u32 chan_imr, chan_status; 1634 int i, ret = IRQ_NONE; 1635 1636 do { 1637 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1638 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS); 1639 pending = status & imr; 1640 1641 dev_vdbg(atxdmac->dma.dev, 1642 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n", 1643 __func__, status, imr, pending); 1644 1645 if (!pending) 1646 break; 1647 1648 /* We have to find which channel has generated the interrupt. */ 1649 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1650 if (!((1 << i) & pending)) 1651 continue; 1652 1653 atchan = &atxdmac->chan[i]; 1654 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1655 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS); 1656 atchan->irq_status = chan_status & chan_imr; 1657 dev_vdbg(atxdmac->dma.dev, 1658 "%s: chan%d: imr=0x%x, status=0x%x\n", 1659 __func__, i, chan_imr, chan_status); 1660 dev_vdbg(chan2dev(&atchan->chan), 1661 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 1662 __func__, 1663 at_xdmac_chan_read(atchan, AT_XDMAC_CC), 1664 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 1665 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 1666 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 1667 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 1668 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 1669 1670 if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS)) 1671 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1672 1673 tasklet_schedule(&atchan->tasklet); 1674 ret = IRQ_HANDLED; 1675 } 1676 1677 } while (pending); 1678 1679 return ret; 1680 } 1681 1682 static void at_xdmac_issue_pending(struct dma_chan *chan) 1683 { 1684 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1685 1686 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__); 1687 1688 if (!at_xdmac_chan_is_cyclic(atchan)) 1689 at_xdmac_advance_work(atchan); 1690 1691 return; 1692 } 1693 1694 static int at_xdmac_device_config(struct dma_chan *chan, 1695 struct dma_slave_config *config) 1696 { 1697 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1698 int ret; 1699 unsigned long flags; 1700 1701 dev_dbg(chan2dev(chan), "%s\n", __func__); 1702 1703 spin_lock_irqsave(&atchan->lock, flags); 1704 ret = at_xdmac_set_slave_config(chan, config); 1705 spin_unlock_irqrestore(&atchan->lock, flags); 1706 1707 return ret; 1708 } 1709 1710 static int at_xdmac_device_pause(struct dma_chan *chan) 1711 { 1712 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1713 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1714 unsigned long flags; 1715 1716 dev_dbg(chan2dev(chan), "%s\n", __func__); 1717 1718 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status)) 1719 return 0; 1720 1721 spin_lock_irqsave(&atchan->lock, flags); 1722 at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask); 1723 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC) 1724 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP)) 1725 cpu_relax(); 1726 spin_unlock_irqrestore(&atchan->lock, flags); 1727 1728 return 0; 1729 } 1730 1731 static int at_xdmac_device_resume(struct dma_chan *chan) 1732 { 1733 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1734 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1735 unsigned long flags; 1736 1737 dev_dbg(chan2dev(chan), "%s\n", __func__); 1738 1739 spin_lock_irqsave(&atchan->lock, flags); 1740 if (!at_xdmac_chan_is_paused(atchan)) { 1741 spin_unlock_irqrestore(&atchan->lock, flags); 1742 return 0; 1743 } 1744 1745 at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask); 1746 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1747 spin_unlock_irqrestore(&atchan->lock, flags); 1748 1749 return 0; 1750 } 1751 1752 static int at_xdmac_device_terminate_all(struct dma_chan *chan) 1753 { 1754 struct at_xdmac_desc *desc, *_desc; 1755 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1756 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1757 unsigned long flags; 1758 1759 dev_dbg(chan2dev(chan), "%s\n", __func__); 1760 1761 spin_lock_irqsave(&atchan->lock, flags); 1762 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1763 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask) 1764 cpu_relax(); 1765 1766 /* Cancel all pending transfers. */ 1767 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) 1768 at_xdmac_remove_xfer(atchan, desc); 1769 1770 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1771 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 1772 spin_unlock_irqrestore(&atchan->lock, flags); 1773 1774 return 0; 1775 } 1776 1777 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan) 1778 { 1779 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1780 struct at_xdmac_desc *desc; 1781 int i; 1782 unsigned long flags; 1783 1784 spin_lock_irqsave(&atchan->lock, flags); 1785 1786 if (at_xdmac_chan_is_enabled(atchan)) { 1787 dev_err(chan2dev(chan), 1788 "can't allocate channel resources (channel enabled)\n"); 1789 i = -EIO; 1790 goto spin_unlock; 1791 } 1792 1793 if (!list_empty(&atchan->free_descs_list)) { 1794 dev_err(chan2dev(chan), 1795 "can't allocate channel resources (channel not free from a previous use)\n"); 1796 i = -EIO; 1797 goto spin_unlock; 1798 } 1799 1800 for (i = 0; i < init_nr_desc_per_channel; i++) { 1801 desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC); 1802 if (!desc) { 1803 dev_warn(chan2dev(chan), 1804 "only %d descriptors have been allocated\n", i); 1805 break; 1806 } 1807 list_add_tail(&desc->desc_node, &atchan->free_descs_list); 1808 } 1809 1810 dma_cookie_init(chan); 1811 1812 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i); 1813 1814 spin_unlock: 1815 spin_unlock_irqrestore(&atchan->lock, flags); 1816 return i; 1817 } 1818 1819 static void at_xdmac_free_chan_resources(struct dma_chan *chan) 1820 { 1821 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1822 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 1823 struct at_xdmac_desc *desc, *_desc; 1824 1825 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) { 1826 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc); 1827 list_del(&desc->desc_node); 1828 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys); 1829 } 1830 1831 return; 1832 } 1833 1834 #ifdef CONFIG_PM 1835 static int atmel_xdmac_prepare(struct device *dev) 1836 { 1837 struct at_xdmac *atxdmac = dev_get_drvdata(dev); 1838 struct dma_chan *chan, *_chan; 1839 1840 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1841 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1842 1843 /* Wait for transfer completion, except in cyclic case. */ 1844 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan)) 1845 return -EAGAIN; 1846 } 1847 return 0; 1848 } 1849 #else 1850 # define atmel_xdmac_prepare NULL 1851 #endif 1852 1853 #ifdef CONFIG_PM_SLEEP 1854 static int atmel_xdmac_suspend(struct device *dev) 1855 { 1856 struct at_xdmac *atxdmac = dev_get_drvdata(dev); 1857 struct dma_chan *chan, *_chan; 1858 1859 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1860 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1861 1862 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC); 1863 if (at_xdmac_chan_is_cyclic(atchan)) { 1864 if (!at_xdmac_chan_is_paused(atchan)) 1865 at_xdmac_device_pause(chan); 1866 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1867 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA); 1868 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC); 1869 } 1870 } 1871 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1872 1873 at_xdmac_off(atxdmac); 1874 clk_disable_unprepare(atxdmac->clk); 1875 return 0; 1876 } 1877 1878 static int atmel_xdmac_resume(struct device *dev) 1879 { 1880 struct at_xdmac *atxdmac = dev_get_drvdata(dev); 1881 struct at_xdmac_chan *atchan; 1882 struct dma_chan *chan, *_chan; 1883 int i; 1884 int ret; 1885 1886 ret = clk_prepare_enable(atxdmac->clk); 1887 if (ret) 1888 return ret; 1889 1890 /* Clear pending interrupts. */ 1891 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1892 atchan = &atxdmac->chan[i]; 1893 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 1894 cpu_relax(); 1895 } 1896 1897 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim); 1898 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1899 atchan = to_at_xdmac_chan(chan); 1900 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc); 1901 if (at_xdmac_chan_is_cyclic(atchan)) { 1902 if (at_xdmac_chan_is_paused(atchan)) 1903 at_xdmac_device_resume(chan); 1904 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda); 1905 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc); 1906 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim); 1907 wmb(); 1908 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 1909 } 1910 } 1911 return 0; 1912 } 1913 #endif /* CONFIG_PM_SLEEP */ 1914 1915 static int at_xdmac_probe(struct platform_device *pdev) 1916 { 1917 struct resource *res; 1918 struct at_xdmac *atxdmac; 1919 int irq, size, nr_channels, i, ret; 1920 void __iomem *base; 1921 u32 reg; 1922 1923 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1924 if (!res) 1925 return -EINVAL; 1926 1927 irq = platform_get_irq(pdev, 0); 1928 if (irq < 0) 1929 return irq; 1930 1931 base = devm_ioremap_resource(&pdev->dev, res); 1932 if (IS_ERR(base)) 1933 return PTR_ERR(base); 1934 1935 /* 1936 * Read number of xdmac channels, read helper function can't be used 1937 * since atxdmac is not yet allocated and we need to know the number 1938 * of channels to do the allocation. 1939 */ 1940 reg = readl_relaxed(base + AT_XDMAC_GTYPE); 1941 nr_channels = AT_XDMAC_NB_CH(reg); 1942 if (nr_channels > AT_XDMAC_MAX_CHAN) { 1943 dev_err(&pdev->dev, "invalid number of channels (%u)\n", 1944 nr_channels); 1945 return -EINVAL; 1946 } 1947 1948 size = sizeof(*atxdmac); 1949 size += nr_channels * sizeof(struct at_xdmac_chan); 1950 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); 1951 if (!atxdmac) { 1952 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n"); 1953 return -ENOMEM; 1954 } 1955 1956 atxdmac->regs = base; 1957 atxdmac->irq = irq; 1958 1959 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk"); 1960 if (IS_ERR(atxdmac->clk)) { 1961 dev_err(&pdev->dev, "can't get dma_clk\n"); 1962 return PTR_ERR(atxdmac->clk); 1963 } 1964 1965 /* Do not use dev res to prevent races with tasklet */ 1966 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac); 1967 if (ret) { 1968 dev_err(&pdev->dev, "can't request irq\n"); 1969 return ret; 1970 } 1971 1972 ret = clk_prepare_enable(atxdmac->clk); 1973 if (ret) { 1974 dev_err(&pdev->dev, "can't prepare or enable clock\n"); 1975 goto err_free_irq; 1976 } 1977 1978 atxdmac->at_xdmac_desc_pool = 1979 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev, 1980 sizeof(struct at_xdmac_desc), 4, 0); 1981 if (!atxdmac->at_xdmac_desc_pool) { 1982 dev_err(&pdev->dev, "no memory for descriptors dma pool\n"); 1983 ret = -ENOMEM; 1984 goto err_clk_disable; 1985 } 1986 1987 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask); 1988 dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask); 1989 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask); 1990 dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask); 1991 dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask); 1992 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask); 1993 /* 1994 * Without DMA_PRIVATE the driver is not able to allocate more than 1995 * one channel, second allocation fails in private_candidate. 1996 */ 1997 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask); 1998 atxdmac->dma.dev = &pdev->dev; 1999 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources; 2000 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources; 2001 atxdmac->dma.device_tx_status = at_xdmac_tx_status; 2002 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending; 2003 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic; 2004 atxdmac->dma.device_prep_interleaved_dma = at_xdmac_prep_interleaved; 2005 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy; 2006 atxdmac->dma.device_prep_dma_memset = at_xdmac_prep_dma_memset; 2007 atxdmac->dma.device_prep_dma_memset_sg = at_xdmac_prep_dma_memset_sg; 2008 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg; 2009 atxdmac->dma.device_config = at_xdmac_device_config; 2010 atxdmac->dma.device_pause = at_xdmac_device_pause; 2011 atxdmac->dma.device_resume = at_xdmac_device_resume; 2012 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all; 2013 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 2014 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 2015 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2016 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2017 2018 /* Disable all chans and interrupts. */ 2019 at_xdmac_off(atxdmac); 2020 2021 /* Init channels. */ 2022 INIT_LIST_HEAD(&atxdmac->dma.channels); 2023 for (i = 0; i < nr_channels; i++) { 2024 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 2025 2026 atchan->chan.device = &atxdmac->dma; 2027 list_add_tail(&atchan->chan.device_node, 2028 &atxdmac->dma.channels); 2029 2030 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i); 2031 atchan->mask = 1 << i; 2032 2033 spin_lock_init(&atchan->lock); 2034 INIT_LIST_HEAD(&atchan->xfers_list); 2035 INIT_LIST_HEAD(&atchan->free_descs_list); 2036 tasklet_init(&atchan->tasklet, at_xdmac_tasklet, 2037 (unsigned long)atchan); 2038 2039 /* Clear pending interrupts. */ 2040 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 2041 cpu_relax(); 2042 } 2043 platform_set_drvdata(pdev, atxdmac); 2044 2045 ret = dma_async_device_register(&atxdmac->dma); 2046 if (ret) { 2047 dev_err(&pdev->dev, "fail to register DMA engine device\n"); 2048 goto err_clk_disable; 2049 } 2050 2051 ret = of_dma_controller_register(pdev->dev.of_node, 2052 at_xdmac_xlate, atxdmac); 2053 if (ret) { 2054 dev_err(&pdev->dev, "could not register of dma controller\n"); 2055 goto err_dma_unregister; 2056 } 2057 2058 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n", 2059 nr_channels, atxdmac->regs); 2060 2061 return 0; 2062 2063 err_dma_unregister: 2064 dma_async_device_unregister(&atxdmac->dma); 2065 err_clk_disable: 2066 clk_disable_unprepare(atxdmac->clk); 2067 err_free_irq: 2068 free_irq(atxdmac->irq, atxdmac); 2069 return ret; 2070 } 2071 2072 static int at_xdmac_remove(struct platform_device *pdev) 2073 { 2074 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev); 2075 int i; 2076 2077 at_xdmac_off(atxdmac); 2078 of_dma_controller_free(pdev->dev.of_node); 2079 dma_async_device_unregister(&atxdmac->dma); 2080 clk_disable_unprepare(atxdmac->clk); 2081 2082 free_irq(atxdmac->irq, atxdmac); 2083 2084 for (i = 0; i < atxdmac->dma.chancnt; i++) { 2085 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 2086 2087 tasklet_kill(&atchan->tasklet); 2088 at_xdmac_free_chan_resources(&atchan->chan); 2089 } 2090 2091 return 0; 2092 } 2093 2094 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = { 2095 .prepare = atmel_xdmac_prepare, 2096 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume) 2097 }; 2098 2099 static const struct of_device_id atmel_xdmac_dt_ids[] = { 2100 { 2101 .compatible = "atmel,sama5d4-dma", 2102 }, { 2103 /* sentinel */ 2104 } 2105 }; 2106 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids); 2107 2108 static struct platform_driver at_xdmac_driver = { 2109 .probe = at_xdmac_probe, 2110 .remove = at_xdmac_remove, 2111 .driver = { 2112 .name = "at_xdmac", 2113 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids), 2114 .pm = &atmel_xdmac_dev_pm_ops, 2115 } 2116 }; 2117 2118 static int __init at_xdmac_init(void) 2119 { 2120 return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe); 2121 } 2122 subsys_initcall(at_xdmac_init); 2123 2124 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver"); 2125 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>"); 2126 MODULE_LICENSE("GPL"); 2127