xref: /openbmc/linux/drivers/dma/at_xdmac.c (revision f05643a0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
4  *
5  * Copyright (C) 2014 Atmel Corporation
6  *
7  * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
8  */
9 
10 #include <asm/barrier.h>
11 #include <dt-bindings/dma/at91.h>
12 #include <linux/clk.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 
25 #include "dmaengine.h"
26 
27 /* Global registers */
28 #define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
29 #define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
30 #define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
31 #define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
32 #define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
33 #define		AT_XDMAC_WRHP(i)		(((i) & 0xF) << 4)
34 #define		AT_XDMAC_WRMP(i)		(((i) & 0xF) << 8)
35 #define		AT_XDMAC_WRLP(i)		(((i) & 0xF) << 12)
36 #define		AT_XDMAC_RDHP(i)		(((i) & 0xF) << 16)
37 #define		AT_XDMAC_RDMP(i)		(((i) & 0xF) << 20)
38 #define		AT_XDMAC_RDLP(i)		(((i) & 0xF) << 24)
39 #define		AT_XDMAC_RDSG(i)		(((i) & 0xF) << 28)
40 #define AT_XDMAC_GCFG_M2M	(AT_XDMAC_RDLP(0xF) | AT_XDMAC_WRLP(0xF))
41 #define AT_XDMAC_GCFG_P2M	(AT_XDMAC_RDSG(0x1) | AT_XDMAC_RDHP(0x3) | \
42 				AT_XDMAC_WRHP(0x5))
43 #define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
44 #define		AT_XDMAC_PW0(i)		(((i) & 0xF) << 0)
45 #define		AT_XDMAC_PW1(i)		(((i) & 0xF) << 4)
46 #define		AT_XDMAC_PW2(i)		(((i) & 0xF) << 8)
47 #define		AT_XDMAC_PW3(i)		(((i) & 0xF) << 12)
48 #define AT_XDMAC_GWAC_M2M	0
49 #define AT_XDMAC_GWAC_P2M	(AT_XDMAC_PW0(0xF) | AT_XDMAC_PW2(0xF))
50 
51 #define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
52 #define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
53 #define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
54 #define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
55 #define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
56 #define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
57 #define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
58 #define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */
59 
60 /* Channel relative registers offsets */
61 #define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
62 #define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
63 #define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
64 #define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
65 #define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
66 #define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
67 #define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
68 #define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
69 #define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
70 #define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
71 #define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
72 #define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
73 #define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
74 #define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
75 #define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
76 #define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
77 #define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
78 #define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
79 #define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
80 #define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
81 #define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
82 #define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
83 #define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
84 #define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
85 #define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
86 #define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
87 #define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
88 #define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
89 #define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
90 #define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
91 #define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
92 #define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
93 #define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
94 #define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
95 #define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
96 #define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
97 #define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
98 #define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
99 #define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
100 #define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
101 #define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
102 #define		AT_XDMAC_CNDC_NDVIEW_MASK	GENMASK(28, 27)
103 #define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
104 #define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
105 #define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
106 #define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
107 #define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
108 #define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
109 #define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
110 #define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
111 #define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
112 #define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
113 #define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
114 #define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
115 #define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
116 #define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
117 #define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
118 #define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
119 #define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
120 #define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
121 #define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
122 #define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
123 #define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
124 #define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
125 #define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
126 #define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
127 #define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
128 #define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
129 #define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
130 #define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
131 #define		AT_XDMAC_CC_DWIDTH_OFFSET	11
132 #define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
133 #define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
134 #define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
135 #define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
136 #define			AT_XDMAC_CC_DWIDTH_WORD		0x2
137 #define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
138 #define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
139 #define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
140 #define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
141 #define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
142 #define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
143 #define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
144 #define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
145 #define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
146 #define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
147 #define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
148 #define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
149 #define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
150 #define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
151 #define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
152 #define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
153 #define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
154 #define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
155 #define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
156 #define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
157 #define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
158 #define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
159 #define		AT_XDMAC_CC_PERID(i)	((0x7f & (i)) << 24)	/* Channel Peripheral Identifier */
160 #define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
161 #define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
162 #define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */
163 
164 /* Microblock control members */
165 #define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
166 #define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
167 #define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
168 #define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
169 #define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
170 #define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
171 #define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
172 #define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */
173 
174 #define AT_XDMAC_MAX_CHAN	0x20
175 #define AT_XDMAC_MAX_CSIZE	16	/* 16 data */
176 #define AT_XDMAC_MAX_DWIDTH	8	/* 64 bits */
177 #define AT_XDMAC_RESIDUE_MAX_RETRIES	5
178 
179 #define AT_XDMAC_DMA_BUSWIDTHS\
180 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
181 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
182 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
183 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
184 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
185 
186 enum atc_status {
187 	AT_XDMAC_CHAN_IS_CYCLIC = 0,
188 	AT_XDMAC_CHAN_IS_PAUSED,
189 };
190 
191 struct at_xdmac_layout {
192 	/* Global Channel Read Suspend Register */
193 	u8				grs;
194 	/* Global Write Suspend Register */
195 	u8				gws;
196 	/* Global Channel Read Write Suspend Register */
197 	u8				grws;
198 	/* Global Channel Read Write Resume Register */
199 	u8				grwr;
200 	/* Global Channel Software Request Register */
201 	u8				gswr;
202 	/* Global channel Software Request Status Register */
203 	u8				gsws;
204 	/* Global Channel Software Flush Request Register */
205 	u8				gswf;
206 	/* Channel reg base */
207 	u8				chan_cc_reg_base;
208 	/* Source/Destination Interface must be specified or not */
209 	bool				sdif;
210 	/* AXI queue priority configuration supported */
211 	bool				axi_config;
212 };
213 
214 /* ----- Channels ----- */
215 struct at_xdmac_chan {
216 	struct dma_chan			chan;
217 	void __iomem			*ch_regs;
218 	u32				mask;		/* Channel Mask */
219 	u32				cfg;		/* Channel Configuration Register */
220 	u8				perid;		/* Peripheral ID */
221 	u8				perif;		/* Peripheral Interface */
222 	u8				memif;		/* Memory Interface */
223 	u32				save_cc;
224 	u32				save_cim;
225 	u32				save_cnda;
226 	u32				save_cndc;
227 	u32				irq_status;
228 	unsigned long			status;
229 	struct tasklet_struct		tasklet;
230 	struct dma_slave_config		sconfig;
231 
232 	spinlock_t			lock;
233 
234 	struct list_head		xfers_list;
235 	struct list_head		free_descs_list;
236 };
237 
238 
239 /* ----- Controller ----- */
240 struct at_xdmac {
241 	struct dma_device	dma;
242 	void __iomem		*regs;
243 	int			irq;
244 	struct clk		*clk;
245 	u32			save_gim;
246 	struct dma_pool		*at_xdmac_desc_pool;
247 	const struct at_xdmac_layout	*layout;
248 	struct at_xdmac_chan	chan[];
249 };
250 
251 
252 /* ----- Descriptors ----- */
253 
254 /* Linked List Descriptor */
255 struct at_xdmac_lld {
256 	u32 mbr_nda;	/* Next Descriptor Member */
257 	u32 mbr_ubc;	/* Microblock Control Member */
258 	u32 mbr_sa;	/* Source Address Member */
259 	u32 mbr_da;	/* Destination Address Member */
260 	u32 mbr_cfg;	/* Configuration Register */
261 	u32 mbr_bc;	/* Block Control Register */
262 	u32 mbr_ds;	/* Data Stride Register */
263 	u32 mbr_sus;	/* Source Microblock Stride Register */
264 	u32 mbr_dus;	/* Destination Microblock Stride Register */
265 };
266 
267 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
268 struct at_xdmac_desc {
269 	struct at_xdmac_lld		lld;
270 	enum dma_transfer_direction	direction;
271 	struct dma_async_tx_descriptor	tx_dma_desc;
272 	struct list_head		desc_node;
273 	/* Following members are only used by the first descriptor */
274 	bool				active_xfer;
275 	unsigned int			xfer_size;
276 	struct list_head		descs_list;
277 	struct list_head		xfer_node;
278 } __aligned(sizeof(u64));
279 
280 static const struct at_xdmac_layout at_xdmac_sama5d4_layout = {
281 	.grs = 0x28,
282 	.gws = 0x2C,
283 	.grws = 0x30,
284 	.grwr = 0x34,
285 	.gswr = 0x38,
286 	.gsws = 0x3C,
287 	.gswf = 0x40,
288 	.chan_cc_reg_base = 0x50,
289 	.sdif = true,
290 	.axi_config = false,
291 };
292 
293 static const struct at_xdmac_layout at_xdmac_sama7g5_layout = {
294 	.grs = 0x30,
295 	.gws = 0x38,
296 	.grws = 0x40,
297 	.grwr = 0x44,
298 	.gswr = 0x48,
299 	.gsws = 0x4C,
300 	.gswf = 0x50,
301 	.chan_cc_reg_base = 0x60,
302 	.sdif = false,
303 	.axi_config = true,
304 };
305 
306 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
307 {
308 	return atxdmac->regs + (atxdmac->layout->chan_cc_reg_base + chan_nb * 0x40);
309 }
310 
311 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
312 #define at_xdmac_write(atxdmac, reg, value) \
313 	writel_relaxed((value), (atxdmac)->regs + (reg))
314 
315 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
316 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
317 
318 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
319 {
320 	return container_of(dchan, struct at_xdmac_chan, chan);
321 }
322 
323 static struct device *chan2dev(struct dma_chan *chan)
324 {
325 	return &chan->dev->device;
326 }
327 
328 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
329 {
330 	return container_of(ddev, struct at_xdmac, dma);
331 }
332 
333 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
334 {
335 	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
336 }
337 
338 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
339 {
340 	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
341 }
342 
343 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
344 {
345 	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
346 }
347 
348 static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg)
349 {
350 	return cfg & AT_XDMAC_CC_TYPE_PER_TRAN;
351 }
352 
353 static inline u8 at_xdmac_get_dwidth(u32 cfg)
354 {
355 	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
356 };
357 
358 static unsigned int init_nr_desc_per_channel = 64;
359 module_param(init_nr_desc_per_channel, uint, 0644);
360 MODULE_PARM_DESC(init_nr_desc_per_channel,
361 		 "initial descriptors per channel (default: 64)");
362 
363 
364 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
365 {
366 	return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
367 }
368 
369 static void at_xdmac_off(struct at_xdmac *atxdmac)
370 {
371 	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
372 
373 	/* Wait that all chans are disabled. */
374 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
375 		cpu_relax();
376 
377 	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
378 }
379 
380 /* Call with lock hold. */
381 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
382 				struct at_xdmac_desc *first)
383 {
384 	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
385 	u32		reg;
386 
387 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
388 
389 	/* Set transfer as active to not try to start it again. */
390 	first->active_xfer = true;
391 
392 	/* Tell xdmac where to get the first descriptor. */
393 	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys);
394 	if (atxdmac->layout->sdif)
395 		reg |= AT_XDMAC_CNDA_NDAIF(atchan->memif);
396 
397 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
398 
399 	/*
400 	 * When doing non cyclic transfer we need to use the next
401 	 * descriptor view 2 since some fields of the configuration register
402 	 * depend on transfer size and src/dest addresses.
403 	 */
404 	if (at_xdmac_chan_is_cyclic(atchan))
405 		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
406 	else if ((first->lld.mbr_ubc &
407 		  AT_XDMAC_CNDC_NDVIEW_MASK) == AT_XDMAC_MBR_UBC_NDV3)
408 		reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
409 	else
410 		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
411 	/*
412 	 * Even if the register will be updated from the configuration in the
413 	 * descriptor when using view 2 or higher, the PROT bit won't be set
414 	 * properly. This bit can be modified only by using the channel
415 	 * configuration register.
416 	 */
417 	at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
418 
419 	reg |= AT_XDMAC_CNDC_NDDUP
420 	       | AT_XDMAC_CNDC_NDSUP
421 	       | AT_XDMAC_CNDC_NDE;
422 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
423 
424 	dev_vdbg(chan2dev(&atchan->chan),
425 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
426 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
427 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
428 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
429 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
430 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
431 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
432 
433 	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
434 	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE;
435 	/*
436 	 * Request Overflow Error is only for peripheral synchronized transfers
437 	 */
438 	if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg))
439 		reg |= AT_XDMAC_CIE_ROIE;
440 
441 	/*
442 	 * There is no end of list when doing cyclic dma, we need to get
443 	 * an interrupt after each periods.
444 	 */
445 	if (at_xdmac_chan_is_cyclic(atchan))
446 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
447 				    reg | AT_XDMAC_CIE_BIE);
448 	else
449 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
450 				    reg | AT_XDMAC_CIE_LIE);
451 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
452 	dev_vdbg(chan2dev(&atchan->chan),
453 		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
454 	wmb();
455 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
456 
457 	dev_vdbg(chan2dev(&atchan->chan),
458 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
459 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
460 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
461 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
462 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
463 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
464 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
465 
466 }
467 
468 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
469 {
470 	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
471 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
472 	dma_cookie_t		cookie;
473 	unsigned long		irqflags;
474 
475 	spin_lock_irqsave(&atchan->lock, irqflags);
476 	cookie = dma_cookie_assign(tx);
477 
478 	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
479 	spin_unlock_irqrestore(&atchan->lock, irqflags);
480 
481 	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
482 		 __func__, atchan, desc);
483 
484 	return cookie;
485 }
486 
487 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
488 						 gfp_t gfp_flags)
489 {
490 	struct at_xdmac_desc	*desc;
491 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
492 	dma_addr_t		phys;
493 
494 	desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
495 	if (desc) {
496 		INIT_LIST_HEAD(&desc->descs_list);
497 		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
498 		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
499 		desc->tx_dma_desc.phys = phys;
500 	}
501 
502 	return desc;
503 }
504 
505 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
506 {
507 	memset(&desc->lld, 0, sizeof(desc->lld));
508 	INIT_LIST_HEAD(&desc->descs_list);
509 	desc->direction = DMA_TRANS_NONE;
510 	desc->xfer_size = 0;
511 	desc->active_xfer = false;
512 }
513 
514 /* Call must be protected by lock. */
515 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
516 {
517 	struct at_xdmac_desc *desc;
518 
519 	if (list_empty(&atchan->free_descs_list)) {
520 		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
521 	} else {
522 		desc = list_first_entry(&atchan->free_descs_list,
523 					struct at_xdmac_desc, desc_node);
524 		list_del(&desc->desc_node);
525 		at_xdmac_init_used_desc(desc);
526 	}
527 
528 	return desc;
529 }
530 
531 static void at_xdmac_queue_desc(struct dma_chan *chan,
532 				struct at_xdmac_desc *prev,
533 				struct at_xdmac_desc *desc)
534 {
535 	if (!prev || !desc)
536 		return;
537 
538 	prev->lld.mbr_nda = desc->tx_dma_desc.phys;
539 	prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
540 
541 	dev_dbg(chan2dev(chan),	"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
542 		__func__, prev, &prev->lld.mbr_nda);
543 }
544 
545 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
546 						  struct at_xdmac_desc *desc)
547 {
548 	if (!desc)
549 		return;
550 
551 	desc->lld.mbr_bc++;
552 
553 	dev_dbg(chan2dev(chan),
554 		"%s: incrementing the block count of the desc 0x%p\n",
555 		__func__, desc);
556 }
557 
558 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
559 				       struct of_dma *of_dma)
560 {
561 	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
562 	struct at_xdmac_chan	*atchan;
563 	struct dma_chan		*chan;
564 	struct device		*dev = atxdmac->dma.dev;
565 
566 	if (dma_spec->args_count != 1) {
567 		dev_err(dev, "dma phandler args: bad number of args\n");
568 		return NULL;
569 	}
570 
571 	chan = dma_get_any_slave_channel(&atxdmac->dma);
572 	if (!chan) {
573 		dev_err(dev, "can't get a dma channel\n");
574 		return NULL;
575 	}
576 
577 	atchan = to_at_xdmac_chan(chan);
578 	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
579 	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
580 	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
581 	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
582 		 atchan->memif, atchan->perif, atchan->perid);
583 
584 	return chan;
585 }
586 
587 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
588 				      enum dma_transfer_direction direction)
589 {
590 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
591 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
592 	int			csize, dwidth;
593 
594 	if (direction == DMA_DEV_TO_MEM) {
595 		atchan->cfg =
596 			AT91_XDMAC_DT_PERID(atchan->perid)
597 			| AT_XDMAC_CC_DAM_INCREMENTED_AM
598 			| AT_XDMAC_CC_SAM_FIXED_AM
599 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
600 			| AT_XDMAC_CC_DSYNC_PER2MEM
601 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
602 			| AT_XDMAC_CC_TYPE_PER_TRAN;
603 		if (atxdmac->layout->sdif)
604 			atchan->cfg |= AT_XDMAC_CC_DIF(atchan->memif) |
605 				       AT_XDMAC_CC_SIF(atchan->perif);
606 
607 		csize = ffs(atchan->sconfig.src_maxburst) - 1;
608 		if (csize < 0) {
609 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
610 			return -EINVAL;
611 		}
612 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
613 		dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
614 		if (dwidth < 0) {
615 			dev_err(chan2dev(chan), "invalid src addr width value\n");
616 			return -EINVAL;
617 		}
618 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
619 	} else if (direction == DMA_MEM_TO_DEV) {
620 		atchan->cfg =
621 			AT91_XDMAC_DT_PERID(atchan->perid)
622 			| AT_XDMAC_CC_DAM_FIXED_AM
623 			| AT_XDMAC_CC_SAM_INCREMENTED_AM
624 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
625 			| AT_XDMAC_CC_DSYNC_MEM2PER
626 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
627 			| AT_XDMAC_CC_TYPE_PER_TRAN;
628 		if (atxdmac->layout->sdif)
629 			atchan->cfg |= AT_XDMAC_CC_DIF(atchan->perif) |
630 				       AT_XDMAC_CC_SIF(atchan->memif);
631 
632 		csize = ffs(atchan->sconfig.dst_maxburst) - 1;
633 		if (csize < 0) {
634 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
635 			return -EINVAL;
636 		}
637 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
638 		dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
639 		if (dwidth < 0) {
640 			dev_err(chan2dev(chan), "invalid dst addr width value\n");
641 			return -EINVAL;
642 		}
643 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
644 	}
645 
646 	dev_dbg(chan2dev(chan),	"%s: cfg=0x%08x\n", __func__, atchan->cfg);
647 
648 	return 0;
649 }
650 
651 /*
652  * Only check that maxburst and addr width values are supported by the
653  * the controller but not that the configuration is good to perform the
654  * transfer since we don't know the direction at this stage.
655  */
656 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
657 {
658 	if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
659 	    || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
660 		return -EINVAL;
661 
662 	if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
663 	    || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
664 		return -EINVAL;
665 
666 	return 0;
667 }
668 
669 static int at_xdmac_set_slave_config(struct dma_chan *chan,
670 				      struct dma_slave_config *sconfig)
671 {
672 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
673 
674 	if (at_xdmac_check_slave_config(sconfig)) {
675 		dev_err(chan2dev(chan), "invalid slave configuration\n");
676 		return -EINVAL;
677 	}
678 
679 	memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
680 
681 	return 0;
682 }
683 
684 static struct dma_async_tx_descriptor *
685 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
686 		       unsigned int sg_len, enum dma_transfer_direction direction,
687 		       unsigned long flags, void *context)
688 {
689 	struct at_xdmac_chan		*atchan = to_at_xdmac_chan(chan);
690 	struct at_xdmac_desc		*first = NULL, *prev = NULL;
691 	struct scatterlist		*sg;
692 	int				i;
693 	unsigned int			xfer_size = 0;
694 	unsigned long			irqflags;
695 	struct dma_async_tx_descriptor	*ret = NULL;
696 
697 	if (!sgl)
698 		return NULL;
699 
700 	if (!is_slave_direction(direction)) {
701 		dev_err(chan2dev(chan), "invalid DMA direction\n");
702 		return NULL;
703 	}
704 
705 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
706 		 __func__, sg_len,
707 		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
708 		 flags);
709 
710 	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
711 	spin_lock_irqsave(&atchan->lock, irqflags);
712 
713 	if (at_xdmac_compute_chan_conf(chan, direction))
714 		goto spin_unlock;
715 
716 	/* Prepare descriptors. */
717 	for_each_sg(sgl, sg, sg_len, i) {
718 		struct at_xdmac_desc	*desc = NULL;
719 		u32			len, mem, dwidth, fixed_dwidth;
720 
721 		len = sg_dma_len(sg);
722 		mem = sg_dma_address(sg);
723 		if (unlikely(!len)) {
724 			dev_err(chan2dev(chan), "sg data length is zero\n");
725 			goto spin_unlock;
726 		}
727 		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
728 			 __func__, i, len, mem);
729 
730 		desc = at_xdmac_get_desc(atchan);
731 		if (!desc) {
732 			dev_err(chan2dev(chan), "can't get descriptor\n");
733 			if (first)
734 				list_splice_tail_init(&first->descs_list,
735 						      &atchan->free_descs_list);
736 			goto spin_unlock;
737 		}
738 
739 		/* Linked list descriptor setup. */
740 		if (direction == DMA_DEV_TO_MEM) {
741 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
742 			desc->lld.mbr_da = mem;
743 		} else {
744 			desc->lld.mbr_sa = mem;
745 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
746 		}
747 		dwidth = at_xdmac_get_dwidth(atchan->cfg);
748 		fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
749 			       ? dwidth
750 			       : AT_XDMAC_CC_DWIDTH_BYTE;
751 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2			/* next descriptor view */
752 			| AT_XDMAC_MBR_UBC_NDEN					/* next descriptor dst parameter update */
753 			| AT_XDMAC_MBR_UBC_NSEN					/* next descriptor src parameter update */
754 			| (len >> fixed_dwidth);				/* microblock length */
755 		desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
756 				    AT_XDMAC_CC_DWIDTH(fixed_dwidth);
757 		dev_dbg(chan2dev(chan),
758 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
759 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
760 
761 		/* Chain lld. */
762 		if (prev)
763 			at_xdmac_queue_desc(chan, prev, desc);
764 
765 		prev = desc;
766 		if (!first)
767 			first = desc;
768 
769 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
770 			 __func__, desc, first);
771 		list_add_tail(&desc->desc_node, &first->descs_list);
772 		xfer_size += len;
773 	}
774 
775 
776 	first->tx_dma_desc.flags = flags;
777 	first->xfer_size = xfer_size;
778 	first->direction = direction;
779 	ret = &first->tx_dma_desc;
780 
781 spin_unlock:
782 	spin_unlock_irqrestore(&atchan->lock, irqflags);
783 	return ret;
784 }
785 
786 static struct dma_async_tx_descriptor *
787 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
788 			 size_t buf_len, size_t period_len,
789 			 enum dma_transfer_direction direction,
790 			 unsigned long flags)
791 {
792 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
793 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
794 	unsigned int		periods = buf_len / period_len;
795 	int			i;
796 	unsigned long		irqflags;
797 
798 	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
799 		__func__, &buf_addr, buf_len, period_len,
800 		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
801 
802 	if (!is_slave_direction(direction)) {
803 		dev_err(chan2dev(chan), "invalid DMA direction\n");
804 		return NULL;
805 	}
806 
807 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
808 		dev_err(chan2dev(chan), "channel currently used\n");
809 		return NULL;
810 	}
811 
812 	if (at_xdmac_compute_chan_conf(chan, direction))
813 		return NULL;
814 
815 	for (i = 0; i < periods; i++) {
816 		struct at_xdmac_desc	*desc = NULL;
817 
818 		spin_lock_irqsave(&atchan->lock, irqflags);
819 		desc = at_xdmac_get_desc(atchan);
820 		if (!desc) {
821 			dev_err(chan2dev(chan), "can't get descriptor\n");
822 			if (first)
823 				list_splice_tail_init(&first->descs_list,
824 						      &atchan->free_descs_list);
825 			spin_unlock_irqrestore(&atchan->lock, irqflags);
826 			return NULL;
827 		}
828 		spin_unlock_irqrestore(&atchan->lock, irqflags);
829 		dev_dbg(chan2dev(chan),
830 			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
831 			__func__, desc, &desc->tx_dma_desc.phys);
832 
833 		if (direction == DMA_DEV_TO_MEM) {
834 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
835 			desc->lld.mbr_da = buf_addr + i * period_len;
836 		} else {
837 			desc->lld.mbr_sa = buf_addr + i * period_len;
838 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
839 		}
840 		desc->lld.mbr_cfg = atchan->cfg;
841 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
842 			| AT_XDMAC_MBR_UBC_NDEN
843 			| AT_XDMAC_MBR_UBC_NSEN
844 			| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
845 
846 		dev_dbg(chan2dev(chan),
847 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
848 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
849 
850 		/* Chain lld. */
851 		if (prev)
852 			at_xdmac_queue_desc(chan, prev, desc);
853 
854 		prev = desc;
855 		if (!first)
856 			first = desc;
857 
858 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
859 			 __func__, desc, first);
860 		list_add_tail(&desc->desc_node, &first->descs_list);
861 	}
862 
863 	at_xdmac_queue_desc(chan, prev, first);
864 	first->tx_dma_desc.flags = flags;
865 	first->xfer_size = buf_len;
866 	first->direction = direction;
867 
868 	return &first->tx_dma_desc;
869 }
870 
871 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
872 {
873 	u32 width;
874 
875 	/*
876 	 * Check address alignment to select the greater data width we
877 	 * can use.
878 	 *
879 	 * Some XDMAC implementations don't provide dword transfer, in
880 	 * this case selecting dword has the same behavior as
881 	 * selecting word transfers.
882 	 */
883 	if (!(addr & 7)) {
884 		width = AT_XDMAC_CC_DWIDTH_DWORD;
885 		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
886 	} else if (!(addr & 3)) {
887 		width = AT_XDMAC_CC_DWIDTH_WORD;
888 		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
889 	} else if (!(addr & 1)) {
890 		width = AT_XDMAC_CC_DWIDTH_HALFWORD;
891 		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
892 	} else {
893 		width = AT_XDMAC_CC_DWIDTH_BYTE;
894 		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
895 	}
896 
897 	return width;
898 }
899 
900 static struct at_xdmac_desc *
901 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
902 				struct at_xdmac_chan *atchan,
903 				struct at_xdmac_desc *prev,
904 				dma_addr_t src, dma_addr_t dst,
905 				struct dma_interleaved_template *xt,
906 				struct data_chunk *chunk)
907 {
908 	struct at_xdmac_desc	*desc;
909 	u32			dwidth;
910 	unsigned long		flags;
911 	size_t			ublen;
912 	/*
913 	 * WARNING: The channel configuration is set here since there is no
914 	 * dmaengine_slave_config call in this case. Moreover we don't know the
915 	 * direction, it involves we can't dynamically set the source and dest
916 	 * interface so we have to use the same one. Only interface 0 allows EBI
917 	 * access. Hopefully we can access DDR through both ports (at least on
918 	 * SAMA5D4x), so we can use the same interface for source and dest,
919 	 * that solves the fact we don't know the direction.
920 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
921 	 * match the one of another channel. If not, it could lead to spurious
922 	 * flag status.
923 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
924 	 * Thus, no need to have the SIF/DIF interfaces here.
925 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
926 	 * zero.
927 	 */
928 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
929 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
930 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
931 
932 	dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
933 	if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
934 		dev_dbg(chan2dev(chan),
935 			"%s: chunk too big (%zu, max size %lu)...\n",
936 			__func__, chunk->size,
937 			AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
938 		return NULL;
939 	}
940 
941 	if (prev)
942 		dev_dbg(chan2dev(chan),
943 			"Adding items at the end of desc 0x%p\n", prev);
944 
945 	if (xt->src_inc) {
946 		if (xt->src_sgl)
947 			chan_cc |=  AT_XDMAC_CC_SAM_UBS_AM;
948 		else
949 			chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
950 	}
951 
952 	if (xt->dst_inc) {
953 		if (xt->dst_sgl)
954 			chan_cc |=  AT_XDMAC_CC_DAM_UBS_AM;
955 		else
956 			chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
957 	}
958 
959 	spin_lock_irqsave(&atchan->lock, flags);
960 	desc = at_xdmac_get_desc(atchan);
961 	spin_unlock_irqrestore(&atchan->lock, flags);
962 	if (!desc) {
963 		dev_err(chan2dev(chan), "can't get descriptor\n");
964 		return NULL;
965 	}
966 
967 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
968 
969 	ublen = chunk->size >> dwidth;
970 
971 	desc->lld.mbr_sa = src;
972 	desc->lld.mbr_da = dst;
973 	desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
974 	desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
975 
976 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
977 		| AT_XDMAC_MBR_UBC_NDEN
978 		| AT_XDMAC_MBR_UBC_NSEN
979 		| ublen;
980 	desc->lld.mbr_cfg = chan_cc;
981 
982 	dev_dbg(chan2dev(chan),
983 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
984 		__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
985 		desc->lld.mbr_ubc, desc->lld.mbr_cfg);
986 
987 	/* Chain lld. */
988 	if (prev)
989 		at_xdmac_queue_desc(chan, prev, desc);
990 
991 	return desc;
992 }
993 
994 static struct dma_async_tx_descriptor *
995 at_xdmac_prep_interleaved(struct dma_chan *chan,
996 			  struct dma_interleaved_template *xt,
997 			  unsigned long flags)
998 {
999 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1000 	struct at_xdmac_desc	*prev = NULL, *first = NULL;
1001 	dma_addr_t		dst_addr, src_addr;
1002 	size_t			src_skip = 0, dst_skip = 0, len = 0;
1003 	struct data_chunk	*chunk;
1004 	int			i;
1005 
1006 	if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
1007 		return NULL;
1008 
1009 	/*
1010 	 * TODO: Handle the case where we have to repeat a chain of
1011 	 * descriptors...
1012 	 */
1013 	if ((xt->numf > 1) && (xt->frame_size > 1))
1014 		return NULL;
1015 
1016 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
1017 		__func__, &xt->src_start, &xt->dst_start,	xt->numf,
1018 		xt->frame_size, flags);
1019 
1020 	src_addr = xt->src_start;
1021 	dst_addr = xt->dst_start;
1022 
1023 	if (xt->numf > 1) {
1024 		first = at_xdmac_interleaved_queue_desc(chan, atchan,
1025 							NULL,
1026 							src_addr, dst_addr,
1027 							xt, xt->sgl);
1028 
1029 		/* Length of the block is (BLEN+1) microblocks. */
1030 		for (i = 0; i < xt->numf - 1; i++)
1031 			at_xdmac_increment_block_count(chan, first);
1032 
1033 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1034 			__func__, first, first);
1035 		list_add_tail(&first->desc_node, &first->descs_list);
1036 	} else {
1037 		for (i = 0; i < xt->frame_size; i++) {
1038 			size_t src_icg = 0, dst_icg = 0;
1039 			struct at_xdmac_desc *desc;
1040 
1041 			chunk = xt->sgl + i;
1042 
1043 			dst_icg = dmaengine_get_dst_icg(xt, chunk);
1044 			src_icg = dmaengine_get_src_icg(xt, chunk);
1045 
1046 			src_skip = chunk->size + src_icg;
1047 			dst_skip = chunk->size + dst_icg;
1048 
1049 			dev_dbg(chan2dev(chan),
1050 				"%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
1051 				__func__, chunk->size, src_icg, dst_icg);
1052 
1053 			desc = at_xdmac_interleaved_queue_desc(chan, atchan,
1054 							       prev,
1055 							       src_addr, dst_addr,
1056 							       xt, chunk);
1057 			if (!desc) {
1058 				list_splice_tail_init(&first->descs_list,
1059 						      &atchan->free_descs_list);
1060 				return NULL;
1061 			}
1062 
1063 			if (!first)
1064 				first = desc;
1065 
1066 			dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1067 				__func__, desc, first);
1068 			list_add_tail(&desc->desc_node, &first->descs_list);
1069 
1070 			if (xt->src_sgl)
1071 				src_addr += src_skip;
1072 
1073 			if (xt->dst_sgl)
1074 				dst_addr += dst_skip;
1075 
1076 			len += chunk->size;
1077 			prev = desc;
1078 		}
1079 	}
1080 
1081 	first->tx_dma_desc.cookie = -EBUSY;
1082 	first->tx_dma_desc.flags = flags;
1083 	first->xfer_size = len;
1084 
1085 	return &first->tx_dma_desc;
1086 }
1087 
1088 static struct dma_async_tx_descriptor *
1089 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1090 			 size_t len, unsigned long flags)
1091 {
1092 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1093 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
1094 	size_t			remaining_size = len, xfer_size = 0, ublen;
1095 	dma_addr_t		src_addr = src, dst_addr = dest;
1096 	u32			dwidth;
1097 	/*
1098 	 * WARNING: We don't know the direction, it involves we can't
1099 	 * dynamically set the source and dest interface so we have to use the
1100 	 * same one. Only interface 0 allows EBI access. Hopefully we can
1101 	 * access DDR through both ports (at least on SAMA5D4x), so we can use
1102 	 * the same interface for source and dest, that solves the fact we
1103 	 * don't know the direction.
1104 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1105 	 * match the one of another channel. If not, it could lead to spurious
1106 	 * flag status.
1107 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1108 	 * Thus, no need to have the SIF/DIF interfaces here.
1109 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1110 	 * zero.
1111 	 */
1112 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1113 					| AT_XDMAC_CC_DAM_INCREMENTED_AM
1114 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1115 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1116 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1117 	unsigned long		irqflags;
1118 
1119 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1120 		__func__, &src, &dest, len, flags);
1121 
1122 	if (unlikely(!len))
1123 		return NULL;
1124 
1125 	dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1126 
1127 	/* Prepare descriptors. */
1128 	while (remaining_size) {
1129 		struct at_xdmac_desc	*desc = NULL;
1130 
1131 		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1132 
1133 		spin_lock_irqsave(&atchan->lock, irqflags);
1134 		desc = at_xdmac_get_desc(atchan);
1135 		spin_unlock_irqrestore(&atchan->lock, irqflags);
1136 		if (!desc) {
1137 			dev_err(chan2dev(chan), "can't get descriptor\n");
1138 			if (first)
1139 				list_splice_tail_init(&first->descs_list,
1140 						      &atchan->free_descs_list);
1141 			return NULL;
1142 		}
1143 
1144 		/* Update src and dest addresses. */
1145 		src_addr += xfer_size;
1146 		dst_addr += xfer_size;
1147 
1148 		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1149 			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1150 		else
1151 			xfer_size = remaining_size;
1152 
1153 		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1154 
1155 		/* Check remaining length and change data width if needed. */
1156 		dwidth = at_xdmac_align_width(chan,
1157 					      src_addr | dst_addr | xfer_size);
1158 		chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1159 		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1160 
1161 		ublen = xfer_size >> dwidth;
1162 		remaining_size -= xfer_size;
1163 
1164 		desc->lld.mbr_sa = src_addr;
1165 		desc->lld.mbr_da = dst_addr;
1166 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1167 			| AT_XDMAC_MBR_UBC_NDEN
1168 			| AT_XDMAC_MBR_UBC_NSEN
1169 			| ublen;
1170 		desc->lld.mbr_cfg = chan_cc;
1171 
1172 		dev_dbg(chan2dev(chan),
1173 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1174 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1175 
1176 		/* Chain lld. */
1177 		if (prev)
1178 			at_xdmac_queue_desc(chan, prev, desc);
1179 
1180 		prev = desc;
1181 		if (!first)
1182 			first = desc;
1183 
1184 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1185 			 __func__, desc, first);
1186 		list_add_tail(&desc->desc_node, &first->descs_list);
1187 	}
1188 
1189 	first->tx_dma_desc.flags = flags;
1190 	first->xfer_size = len;
1191 
1192 	return &first->tx_dma_desc;
1193 }
1194 
1195 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1196 							 struct at_xdmac_chan *atchan,
1197 							 dma_addr_t dst_addr,
1198 							 size_t len,
1199 							 int value)
1200 {
1201 	struct at_xdmac_desc	*desc;
1202 	unsigned long		flags;
1203 	size_t			ublen;
1204 	u32			dwidth;
1205 	char			pattern;
1206 	/*
1207 	 * WARNING: The channel configuration is set here since there is no
1208 	 * dmaengine_slave_config call in this case. Moreover we don't know the
1209 	 * direction, it involves we can't dynamically set the source and dest
1210 	 * interface so we have to use the same one. Only interface 0 allows EBI
1211 	 * access. Hopefully we can access DDR through both ports (at least on
1212 	 * SAMA5D4x), so we can use the same interface for source and dest,
1213 	 * that solves the fact we don't know the direction.
1214 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1215 	 * match the one of another channel. If not, it could lead to spurious
1216 	 * flag status.
1217 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1218 	 * Thus, no need to have the SIF/DIF interfaces here.
1219 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1220 	 * zero.
1221 	 */
1222 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1223 					| AT_XDMAC_CC_DAM_UBS_AM
1224 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1225 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1226 					| AT_XDMAC_CC_MEMSET_HW_MODE
1227 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1228 
1229 	dwidth = at_xdmac_align_width(chan, dst_addr);
1230 
1231 	if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1232 		dev_err(chan2dev(chan),
1233 			"%s: Transfer too large, aborting...\n",
1234 			__func__);
1235 		return NULL;
1236 	}
1237 
1238 	spin_lock_irqsave(&atchan->lock, flags);
1239 	desc = at_xdmac_get_desc(atchan);
1240 	spin_unlock_irqrestore(&atchan->lock, flags);
1241 	if (!desc) {
1242 		dev_err(chan2dev(chan), "can't get descriptor\n");
1243 		return NULL;
1244 	}
1245 
1246 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1247 
1248 	/* Only the first byte of value is to be used according to dmaengine */
1249 	pattern = (char)value;
1250 
1251 	ublen = len >> dwidth;
1252 
1253 	desc->lld.mbr_da = dst_addr;
1254 	desc->lld.mbr_ds = (pattern << 24) |
1255 			   (pattern << 16) |
1256 			   (pattern << 8) |
1257 			   pattern;
1258 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1259 		| AT_XDMAC_MBR_UBC_NDEN
1260 		| AT_XDMAC_MBR_UBC_NSEN
1261 		| ublen;
1262 	desc->lld.mbr_cfg = chan_cc;
1263 
1264 	dev_dbg(chan2dev(chan),
1265 		"%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1266 		__func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1267 		desc->lld.mbr_cfg);
1268 
1269 	return desc;
1270 }
1271 
1272 static struct dma_async_tx_descriptor *
1273 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1274 			 size_t len, unsigned long flags)
1275 {
1276 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1277 	struct at_xdmac_desc	*desc;
1278 
1279 	dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1280 		__func__, &dest, len, value, flags);
1281 
1282 	if (unlikely(!len))
1283 		return NULL;
1284 
1285 	desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1286 	list_add_tail(&desc->desc_node, &desc->descs_list);
1287 
1288 	desc->tx_dma_desc.cookie = -EBUSY;
1289 	desc->tx_dma_desc.flags = flags;
1290 	desc->xfer_size = len;
1291 
1292 	return &desc->tx_dma_desc;
1293 }
1294 
1295 static struct dma_async_tx_descriptor *
1296 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1297 			    unsigned int sg_len, int value,
1298 			    unsigned long flags)
1299 {
1300 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1301 	struct at_xdmac_desc	*desc, *pdesc = NULL,
1302 				*ppdesc = NULL, *first = NULL;
1303 	struct scatterlist	*sg, *psg = NULL, *ppsg = NULL;
1304 	size_t			stride = 0, pstride = 0, len = 0;
1305 	int			i;
1306 
1307 	if (!sgl)
1308 		return NULL;
1309 
1310 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1311 		__func__, sg_len, value, flags);
1312 
1313 	/* Prepare descriptors. */
1314 	for_each_sg(sgl, sg, sg_len, i) {
1315 		dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1316 			__func__, &sg_dma_address(sg), sg_dma_len(sg),
1317 			value, flags);
1318 		desc = at_xdmac_memset_create_desc(chan, atchan,
1319 						   sg_dma_address(sg),
1320 						   sg_dma_len(sg),
1321 						   value);
1322 		if (!desc && first)
1323 			list_splice_tail_init(&first->descs_list,
1324 					      &atchan->free_descs_list);
1325 
1326 		if (!first)
1327 			first = desc;
1328 
1329 		/* Update our strides */
1330 		pstride = stride;
1331 		if (psg)
1332 			stride = sg_dma_address(sg) -
1333 				(sg_dma_address(psg) + sg_dma_len(psg));
1334 
1335 		/*
1336 		 * The scatterlist API gives us only the address and
1337 		 * length of each elements.
1338 		 *
1339 		 * Unfortunately, we don't have the stride, which we
1340 		 * will need to compute.
1341 		 *
1342 		 * That make us end up in a situation like this one:
1343 		 *    len    stride    len    stride    len
1344 		 * +-------+        +-------+        +-------+
1345 		 * |  N-2  |        |  N-1  |        |   N   |
1346 		 * +-------+        +-------+        +-------+
1347 		 *
1348 		 * We need all these three elements (N-2, N-1 and N)
1349 		 * to actually take the decision on whether we need to
1350 		 * queue N-1 or reuse N-2.
1351 		 *
1352 		 * We will only consider N if it is the last element.
1353 		 */
1354 		if (ppdesc && pdesc) {
1355 			if ((stride == pstride) &&
1356 			    (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1357 				dev_dbg(chan2dev(chan),
1358 					"%s: desc 0x%p can be merged with desc 0x%p\n",
1359 					__func__, pdesc, ppdesc);
1360 
1361 				/*
1362 				 * Increment the block count of the
1363 				 * N-2 descriptor
1364 				 */
1365 				at_xdmac_increment_block_count(chan, ppdesc);
1366 				ppdesc->lld.mbr_dus = stride;
1367 
1368 				/*
1369 				 * Put back the N-1 descriptor in the
1370 				 * free descriptor list
1371 				 */
1372 				list_add_tail(&pdesc->desc_node,
1373 					      &atchan->free_descs_list);
1374 
1375 				/*
1376 				 * Make our N-1 descriptor pointer
1377 				 * point to the N-2 since they were
1378 				 * actually merged.
1379 				 */
1380 				pdesc = ppdesc;
1381 
1382 			/*
1383 			 * Rule out the case where we don't have
1384 			 * pstride computed yet (our second sg
1385 			 * element)
1386 			 *
1387 			 * We also want to catch the case where there
1388 			 * would be a negative stride,
1389 			 */
1390 			} else if (pstride ||
1391 				   sg_dma_address(sg) < sg_dma_address(psg)) {
1392 				/*
1393 				 * Queue the N-1 descriptor after the
1394 				 * N-2
1395 				 */
1396 				at_xdmac_queue_desc(chan, ppdesc, pdesc);
1397 
1398 				/*
1399 				 * Add the N-1 descriptor to the list
1400 				 * of the descriptors used for this
1401 				 * transfer
1402 				 */
1403 				list_add_tail(&desc->desc_node,
1404 					      &first->descs_list);
1405 				dev_dbg(chan2dev(chan),
1406 					"%s: add desc 0x%p to descs_list 0x%p\n",
1407 					__func__, desc, first);
1408 			}
1409 		}
1410 
1411 		/*
1412 		 * If we are the last element, just see if we have the
1413 		 * same size than the previous element.
1414 		 *
1415 		 * If so, we can merge it with the previous descriptor
1416 		 * since we don't care about the stride anymore.
1417 		 */
1418 		if ((i == (sg_len - 1)) &&
1419 		    sg_dma_len(psg) == sg_dma_len(sg)) {
1420 			dev_dbg(chan2dev(chan),
1421 				"%s: desc 0x%p can be merged with desc 0x%p\n",
1422 				__func__, desc, pdesc);
1423 
1424 			/*
1425 			 * Increment the block count of the N-1
1426 			 * descriptor
1427 			 */
1428 			at_xdmac_increment_block_count(chan, pdesc);
1429 			pdesc->lld.mbr_dus = stride;
1430 
1431 			/*
1432 			 * Put back the N descriptor in the free
1433 			 * descriptor list
1434 			 */
1435 			list_add_tail(&desc->desc_node,
1436 				      &atchan->free_descs_list);
1437 		}
1438 
1439 		/* Update our descriptors */
1440 		ppdesc = pdesc;
1441 		pdesc = desc;
1442 
1443 		/* Update our scatter pointers */
1444 		ppsg = psg;
1445 		psg = sg;
1446 
1447 		len += sg_dma_len(sg);
1448 	}
1449 
1450 	first->tx_dma_desc.cookie = -EBUSY;
1451 	first->tx_dma_desc.flags = flags;
1452 	first->xfer_size = len;
1453 
1454 	return &first->tx_dma_desc;
1455 }
1456 
1457 static enum dma_status
1458 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1459 		struct dma_tx_state *txstate)
1460 {
1461 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1462 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1463 	struct at_xdmac_desc	*desc, *_desc, *iter;
1464 	struct list_head	*descs_list;
1465 	enum dma_status		ret;
1466 	int			residue, retry;
1467 	u32			cur_nda, check_nda, cur_ubc, mask, value;
1468 	u8			dwidth = 0;
1469 	unsigned long		flags;
1470 	bool			initd;
1471 
1472 	ret = dma_cookie_status(chan, cookie, txstate);
1473 	if (ret == DMA_COMPLETE)
1474 		return ret;
1475 
1476 	if (!txstate)
1477 		return ret;
1478 
1479 	spin_lock_irqsave(&atchan->lock, flags);
1480 
1481 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1482 
1483 	/*
1484 	 * If the transfer has not been started yet, don't need to compute the
1485 	 * residue, it's the transfer length.
1486 	 */
1487 	if (!desc->active_xfer) {
1488 		dma_set_residue(txstate, desc->xfer_size);
1489 		goto spin_unlock;
1490 	}
1491 
1492 	residue = desc->xfer_size;
1493 	/*
1494 	 * Flush FIFO: only relevant when the transfer is source peripheral
1495 	 * synchronized. Flush is needed before reading CUBC because data in
1496 	 * the FIFO are not reported by CUBC. Reporting a residue of the
1497 	 * transfer length while we have data in FIFO can cause issue.
1498 	 * Usecase: atmel USART has a timeout which means I have received
1499 	 * characters but there is no more character received for a while. On
1500 	 * timeout, it requests the residue. If the data are in the DMA FIFO,
1501 	 * we will return a residue of the transfer length. It means no data
1502 	 * received. If an application is waiting for these data, it will hang
1503 	 * since we won't have another USART timeout without receiving new
1504 	 * data.
1505 	 */
1506 	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1507 	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1508 	if ((desc->lld.mbr_cfg & mask) == value) {
1509 		at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1510 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1511 			cpu_relax();
1512 	}
1513 
1514 	/*
1515 	 * The easiest way to compute the residue should be to pause the DMA
1516 	 * but doing this can lead to miss some data as some devices don't
1517 	 * have FIFO.
1518 	 * We need to read several registers because:
1519 	 * - DMA is running therefore a descriptor change is possible while
1520 	 * reading these registers
1521 	 * - When the block transfer is done, the value of the CUBC register
1522 	 * is set to its initial value until the fetch of the next descriptor.
1523 	 * This value will corrupt the residue calculation so we have to skip
1524 	 * it.
1525 	 *
1526 	 * INITD --------                    ------------
1527 	 *              |____________________|
1528 	 *       _______________________  _______________
1529 	 * NDA       @desc2             \/   @desc3
1530 	 *       _______________________/\_______________
1531 	 *       __________  ___________  _______________
1532 	 * CUBC       0    \/ MAX desc1 \/  MAX desc2
1533 	 *       __________/\___________/\_______________
1534 	 *
1535 	 * Since descriptors are aligned on 64 bits, we can assume that
1536 	 * the update of NDA and CUBC is atomic.
1537 	 * Memory barriers are used to ensure the read order of the registers.
1538 	 * A max number of retries is set because unlikely it could never ends.
1539 	 */
1540 	for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1541 		check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1542 		rmb();
1543 		cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1544 		rmb();
1545 		initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1546 		rmb();
1547 		cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1548 		rmb();
1549 
1550 		if ((check_nda == cur_nda) && initd)
1551 			break;
1552 	}
1553 
1554 	if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1555 		ret = DMA_ERROR;
1556 		goto spin_unlock;
1557 	}
1558 
1559 	/*
1560 	 * Flush FIFO: only relevant when the transfer is source peripheral
1561 	 * synchronized. Another flush is needed here because CUBC is updated
1562 	 * when the controller sends the data write command. It can lead to
1563 	 * report data that are not written in the memory or the device. The
1564 	 * FIFO flush ensures that data are really written.
1565 	 */
1566 	if ((desc->lld.mbr_cfg & mask) == value) {
1567 		at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1568 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1569 			cpu_relax();
1570 	}
1571 
1572 	/*
1573 	 * Remove size of all microblocks already transferred and the current
1574 	 * one. Then add the remaining size to transfer of the current
1575 	 * microblock.
1576 	 */
1577 	descs_list = &desc->descs_list;
1578 	list_for_each_entry_safe(iter, _desc, descs_list, desc_node) {
1579 		dwidth = at_xdmac_get_dwidth(iter->lld.mbr_cfg);
1580 		residue -= (iter->lld.mbr_ubc & 0xffffff) << dwidth;
1581 		if ((iter->lld.mbr_nda & 0xfffffffc) == cur_nda) {
1582 			desc = iter;
1583 			break;
1584 		}
1585 	}
1586 	residue += cur_ubc << dwidth;
1587 
1588 	dma_set_residue(txstate, residue);
1589 
1590 	dev_dbg(chan2dev(chan),
1591 		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1592 		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1593 
1594 spin_unlock:
1595 	spin_unlock_irqrestore(&atchan->lock, flags);
1596 	return ret;
1597 }
1598 
1599 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1600 {
1601 	struct at_xdmac_desc	*desc;
1602 
1603 	/*
1604 	 * If channel is enabled, do nothing, advance_work will be triggered
1605 	 * after the interruption.
1606 	 */
1607 	if (at_xdmac_chan_is_enabled(atchan) || list_empty(&atchan->xfers_list))
1608 		return;
1609 
1610 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1611 				xfer_node);
1612 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1613 	if (!desc->active_xfer)
1614 		at_xdmac_start_xfer(atchan, desc);
1615 }
1616 
1617 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1618 {
1619 	struct at_xdmac_desc		*desc;
1620 	struct dma_async_tx_descriptor	*txd;
1621 
1622 	spin_lock_irq(&atchan->lock);
1623 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1624 		__func__, atchan->irq_status);
1625 	if (list_empty(&atchan->xfers_list)) {
1626 		spin_unlock_irq(&atchan->lock);
1627 		return;
1628 	}
1629 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1630 				xfer_node);
1631 	spin_unlock_irq(&atchan->lock);
1632 	txd = &desc->tx_dma_desc;
1633 	if (txd->flags & DMA_PREP_INTERRUPT)
1634 		dmaengine_desc_get_callback_invoke(txd, NULL);
1635 }
1636 
1637 /* Called with atchan->lock held. */
1638 static void at_xdmac_handle_error(struct at_xdmac_chan *atchan)
1639 {
1640 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1641 	struct at_xdmac_desc	*bad_desc;
1642 
1643 	/*
1644 	 * The descriptor currently at the head of the active list is
1645 	 * broken. Since we don't have any way to report errors, we'll
1646 	 * just have to scream loudly and try to continue with other
1647 	 * descriptors queued (if any).
1648 	 */
1649 	if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
1650 		dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1651 	if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
1652 		dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1653 	if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
1654 		dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1655 
1656 	/* Channel must be disabled first as it's not done automatically */
1657 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1658 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1659 		cpu_relax();
1660 
1661 	bad_desc = list_first_entry(&atchan->xfers_list,
1662 				    struct at_xdmac_desc,
1663 				    xfer_node);
1664 
1665 	/* Print bad descriptor's details if needed */
1666 	dev_dbg(chan2dev(&atchan->chan),
1667 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
1668 		__func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da,
1669 		bad_desc->lld.mbr_ubc);
1670 
1671 	/* Then continue with usual descriptor management */
1672 }
1673 
1674 static void at_xdmac_tasklet(struct tasklet_struct *t)
1675 {
1676 	struct at_xdmac_chan	*atchan = from_tasklet(atchan, t, tasklet);
1677 	struct at_xdmac_desc	*desc;
1678 	struct dma_async_tx_descriptor *txd;
1679 	u32			error_mask;
1680 
1681 	if (at_xdmac_chan_is_cyclic(atchan))
1682 		return at_xdmac_handle_cyclic(atchan);
1683 
1684 	error_mask = AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS |
1685 		AT_XDMAC_CIS_ROIS;
1686 
1687 	spin_lock_irq(&atchan->lock);
1688 
1689 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1690 		__func__, atchan->irq_status);
1691 
1692 	if (!(atchan->irq_status & AT_XDMAC_CIS_LIS) &&
1693 	    !(atchan->irq_status & error_mask)) {
1694 		spin_unlock_irq(&atchan->lock);
1695 		return;
1696 	}
1697 
1698 	if (atchan->irq_status & error_mask)
1699 		at_xdmac_handle_error(atchan);
1700 
1701 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1702 				xfer_node);
1703 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1704 	if (!desc->active_xfer) {
1705 		dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting");
1706 		spin_unlock_irq(&atchan->lock);
1707 		return;
1708 	}
1709 
1710 	txd = &desc->tx_dma_desc;
1711 	dma_cookie_complete(txd);
1712 	/* Remove the transfer from the transfer list. */
1713 	list_del(&desc->xfer_node);
1714 	spin_unlock_irq(&atchan->lock);
1715 
1716 	if (txd->flags & DMA_PREP_INTERRUPT)
1717 		dmaengine_desc_get_callback_invoke(txd, NULL);
1718 
1719 	dma_run_dependencies(txd);
1720 
1721 	spin_lock_irq(&atchan->lock);
1722 	/* Move the xfer descriptors into the free descriptors list. */
1723 	list_splice_tail_init(&desc->descs_list, &atchan->free_descs_list);
1724 	at_xdmac_advance_work(atchan);
1725 	spin_unlock_irq(&atchan->lock);
1726 }
1727 
1728 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1729 {
1730 	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
1731 	struct at_xdmac_chan	*atchan;
1732 	u32			imr, status, pending;
1733 	u32			chan_imr, chan_status;
1734 	int			i, ret = IRQ_NONE;
1735 
1736 	do {
1737 		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1738 		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1739 		pending = status & imr;
1740 
1741 		dev_vdbg(atxdmac->dma.dev,
1742 			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1743 			 __func__, status, imr, pending);
1744 
1745 		if (!pending)
1746 			break;
1747 
1748 		/* We have to find which channel has generated the interrupt. */
1749 		for (i = 0; i < atxdmac->dma.chancnt; i++) {
1750 			if (!((1 << i) & pending))
1751 				continue;
1752 
1753 			atchan = &atxdmac->chan[i];
1754 			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1755 			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1756 			atchan->irq_status = chan_status & chan_imr;
1757 			dev_vdbg(atxdmac->dma.dev,
1758 				 "%s: chan%d: imr=0x%x, status=0x%x\n",
1759 				 __func__, i, chan_imr, chan_status);
1760 			dev_vdbg(chan2dev(&atchan->chan),
1761 				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1762 				 __func__,
1763 				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1764 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1765 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1766 				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1767 				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1768 				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1769 
1770 			if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1771 				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1772 
1773 			tasklet_schedule(&atchan->tasklet);
1774 			ret = IRQ_HANDLED;
1775 		}
1776 
1777 	} while (pending);
1778 
1779 	return ret;
1780 }
1781 
1782 static void at_xdmac_issue_pending(struct dma_chan *chan)
1783 {
1784 	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1785 	unsigned long flags;
1786 
1787 	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1788 
1789 	spin_lock_irqsave(&atchan->lock, flags);
1790 	at_xdmac_advance_work(atchan);
1791 	spin_unlock_irqrestore(&atchan->lock, flags);
1792 
1793 	return;
1794 }
1795 
1796 static int at_xdmac_device_config(struct dma_chan *chan,
1797 				  struct dma_slave_config *config)
1798 {
1799 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1800 	int ret;
1801 	unsigned long		flags;
1802 
1803 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1804 
1805 	spin_lock_irqsave(&atchan->lock, flags);
1806 	ret = at_xdmac_set_slave_config(chan, config);
1807 	spin_unlock_irqrestore(&atchan->lock, flags);
1808 
1809 	return ret;
1810 }
1811 
1812 static int at_xdmac_device_pause(struct dma_chan *chan)
1813 {
1814 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1815 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1816 	unsigned long		flags;
1817 
1818 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1819 
1820 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1821 		return 0;
1822 
1823 	spin_lock_irqsave(&atchan->lock, flags);
1824 	at_xdmac_write(atxdmac, atxdmac->layout->grws, atchan->mask);
1825 	while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1826 	       & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1827 		cpu_relax();
1828 	spin_unlock_irqrestore(&atchan->lock, flags);
1829 
1830 	return 0;
1831 }
1832 
1833 static int at_xdmac_device_resume(struct dma_chan *chan)
1834 {
1835 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1836 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1837 	unsigned long		flags;
1838 
1839 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1840 
1841 	spin_lock_irqsave(&atchan->lock, flags);
1842 	if (!at_xdmac_chan_is_paused(atchan)) {
1843 		spin_unlock_irqrestore(&atchan->lock, flags);
1844 		return 0;
1845 	}
1846 
1847 	at_xdmac_write(atxdmac, atxdmac->layout->grwr, atchan->mask);
1848 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1849 	spin_unlock_irqrestore(&atchan->lock, flags);
1850 
1851 	return 0;
1852 }
1853 
1854 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1855 {
1856 	struct at_xdmac_desc	*desc, *_desc;
1857 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1858 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1859 	unsigned long		flags;
1860 
1861 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1862 
1863 	spin_lock_irqsave(&atchan->lock, flags);
1864 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1865 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1866 		cpu_relax();
1867 
1868 	/* Cancel all pending transfers. */
1869 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) {
1870 		list_del(&desc->xfer_node);
1871 		list_splice_tail_init(&desc->descs_list,
1872 				      &atchan->free_descs_list);
1873 	}
1874 
1875 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1876 	clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1877 	spin_unlock_irqrestore(&atchan->lock, flags);
1878 
1879 	return 0;
1880 }
1881 
1882 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1883 {
1884 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1885 	struct at_xdmac_desc	*desc;
1886 	int			i;
1887 
1888 	if (at_xdmac_chan_is_enabled(atchan)) {
1889 		dev_err(chan2dev(chan),
1890 			"can't allocate channel resources (channel enabled)\n");
1891 		return -EIO;
1892 	}
1893 
1894 	if (!list_empty(&atchan->free_descs_list)) {
1895 		dev_err(chan2dev(chan),
1896 			"can't allocate channel resources (channel not free from a previous use)\n");
1897 		return -EIO;
1898 	}
1899 
1900 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1901 		desc = at_xdmac_alloc_desc(chan, GFP_KERNEL);
1902 		if (!desc) {
1903 			dev_warn(chan2dev(chan),
1904 				"only %d descriptors have been allocated\n", i);
1905 			break;
1906 		}
1907 		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1908 	}
1909 
1910 	dma_cookie_init(chan);
1911 
1912 	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1913 
1914 	return i;
1915 }
1916 
1917 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1918 {
1919 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1920 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
1921 	struct at_xdmac_desc	*desc, *_desc;
1922 
1923 	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1924 		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1925 		list_del(&desc->desc_node);
1926 		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1927 	}
1928 
1929 	return;
1930 }
1931 
1932 static void at_xdmac_axi_config(struct platform_device *pdev)
1933 {
1934 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
1935 	bool dev_m2m = false;
1936 	u32 dma_requests;
1937 
1938 	if (!atxdmac->layout->axi_config)
1939 		return; /* Not supported */
1940 
1941 	if (!of_property_read_u32(pdev->dev.of_node, "dma-requests",
1942 				  &dma_requests)) {
1943 		dev_info(&pdev->dev, "controller in mem2mem mode.\n");
1944 		dev_m2m = true;
1945 	}
1946 
1947 	if (dev_m2m) {
1948 		at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_M2M);
1949 		at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_M2M);
1950 	} else {
1951 		at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_P2M);
1952 		at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_P2M);
1953 	}
1954 }
1955 
1956 static int __maybe_unused atmel_xdmac_prepare(struct device *dev)
1957 {
1958 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
1959 	struct dma_chan		*chan, *_chan;
1960 
1961 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1962 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1963 
1964 		/* Wait for transfer completion, except in cyclic case. */
1965 		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1966 			return -EAGAIN;
1967 	}
1968 	return 0;
1969 }
1970 
1971 static int __maybe_unused atmel_xdmac_suspend(struct device *dev)
1972 {
1973 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
1974 	struct dma_chan		*chan, *_chan;
1975 
1976 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1977 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1978 
1979 		atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1980 		if (at_xdmac_chan_is_cyclic(atchan)) {
1981 			if (!at_xdmac_chan_is_paused(atchan))
1982 				at_xdmac_device_pause(chan);
1983 			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1984 			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1985 			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1986 		}
1987 	}
1988 	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1989 
1990 	at_xdmac_off(atxdmac);
1991 	clk_disable_unprepare(atxdmac->clk);
1992 	return 0;
1993 }
1994 
1995 static int __maybe_unused atmel_xdmac_resume(struct device *dev)
1996 {
1997 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
1998 	struct at_xdmac_chan	*atchan;
1999 	struct dma_chan		*chan, *_chan;
2000 	struct platform_device	*pdev = container_of(dev, struct platform_device, dev);
2001 	int			i;
2002 	int ret;
2003 
2004 	ret = clk_prepare_enable(atxdmac->clk);
2005 	if (ret)
2006 		return ret;
2007 
2008 	at_xdmac_axi_config(pdev);
2009 
2010 	/* Clear pending interrupts. */
2011 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2012 		atchan = &atxdmac->chan[i];
2013 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2014 			cpu_relax();
2015 	}
2016 
2017 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
2018 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
2019 		atchan = to_at_xdmac_chan(chan);
2020 		at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
2021 		if (at_xdmac_chan_is_cyclic(atchan)) {
2022 			if (at_xdmac_chan_is_paused(atchan))
2023 				at_xdmac_device_resume(chan);
2024 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
2025 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
2026 			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
2027 			wmb();
2028 			at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
2029 		}
2030 	}
2031 	return 0;
2032 }
2033 
2034 static int at_xdmac_probe(struct platform_device *pdev)
2035 {
2036 	struct at_xdmac	*atxdmac;
2037 	int		irq, nr_channels, i, ret;
2038 	void __iomem	*base;
2039 	u32		reg;
2040 
2041 	irq = platform_get_irq(pdev, 0);
2042 	if (irq < 0)
2043 		return irq;
2044 
2045 	base = devm_platform_ioremap_resource(pdev, 0);
2046 	if (IS_ERR(base))
2047 		return PTR_ERR(base);
2048 
2049 	/*
2050 	 * Read number of xdmac channels, read helper function can't be used
2051 	 * since atxdmac is not yet allocated and we need to know the number
2052 	 * of channels to do the allocation.
2053 	 */
2054 	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
2055 	nr_channels = AT_XDMAC_NB_CH(reg);
2056 	if (nr_channels > AT_XDMAC_MAX_CHAN) {
2057 		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
2058 			nr_channels);
2059 		return -EINVAL;
2060 	}
2061 
2062 	atxdmac = devm_kzalloc(&pdev->dev,
2063 			       struct_size(atxdmac, chan, nr_channels),
2064 			       GFP_KERNEL);
2065 	if (!atxdmac) {
2066 		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
2067 		return -ENOMEM;
2068 	}
2069 
2070 	atxdmac->regs = base;
2071 	atxdmac->irq = irq;
2072 
2073 	atxdmac->layout = of_device_get_match_data(&pdev->dev);
2074 	if (!atxdmac->layout)
2075 		return -ENODEV;
2076 
2077 	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
2078 	if (IS_ERR(atxdmac->clk)) {
2079 		dev_err(&pdev->dev, "can't get dma_clk\n");
2080 		return PTR_ERR(atxdmac->clk);
2081 	}
2082 
2083 	/* Do not use dev res to prevent races with tasklet */
2084 	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
2085 	if (ret) {
2086 		dev_err(&pdev->dev, "can't request irq\n");
2087 		return ret;
2088 	}
2089 
2090 	ret = clk_prepare_enable(atxdmac->clk);
2091 	if (ret) {
2092 		dev_err(&pdev->dev, "can't prepare or enable clock\n");
2093 		goto err_free_irq;
2094 	}
2095 
2096 	atxdmac->at_xdmac_desc_pool =
2097 		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
2098 				sizeof(struct at_xdmac_desc), 4, 0);
2099 	if (!atxdmac->at_xdmac_desc_pool) {
2100 		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
2101 		ret = -ENOMEM;
2102 		goto err_clk_disable;
2103 	}
2104 
2105 	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
2106 	dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
2107 	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
2108 	dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
2109 	dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
2110 	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
2111 	/*
2112 	 * Without DMA_PRIVATE the driver is not able to allocate more than
2113 	 * one channel, second allocation fails in private_candidate.
2114 	 */
2115 	dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2116 	atxdmac->dma.dev				= &pdev->dev;
2117 	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
2118 	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
2119 	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
2120 	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
2121 	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
2122 	atxdmac->dma.device_prep_interleaved_dma	= at_xdmac_prep_interleaved;
2123 	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
2124 	atxdmac->dma.device_prep_dma_memset		= at_xdmac_prep_dma_memset;
2125 	atxdmac->dma.device_prep_dma_memset_sg		= at_xdmac_prep_dma_memset_sg;
2126 	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
2127 	atxdmac->dma.device_config			= at_xdmac_device_config;
2128 	atxdmac->dma.device_pause			= at_xdmac_device_pause;
2129 	atxdmac->dma.device_resume			= at_xdmac_device_resume;
2130 	atxdmac->dma.device_terminate_all		= at_xdmac_device_terminate_all;
2131 	atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2132 	atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2133 	atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2134 	atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2135 
2136 	/* Disable all chans and interrupts. */
2137 	at_xdmac_off(atxdmac);
2138 
2139 	/* Init channels. */
2140 	INIT_LIST_HEAD(&atxdmac->dma.channels);
2141 	for (i = 0; i < nr_channels; i++) {
2142 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2143 
2144 		atchan->chan.device = &atxdmac->dma;
2145 		list_add_tail(&atchan->chan.device_node,
2146 			      &atxdmac->dma.channels);
2147 
2148 		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2149 		atchan->mask = 1 << i;
2150 
2151 		spin_lock_init(&atchan->lock);
2152 		INIT_LIST_HEAD(&atchan->xfers_list);
2153 		INIT_LIST_HEAD(&atchan->free_descs_list);
2154 		tasklet_setup(&atchan->tasklet, at_xdmac_tasklet);
2155 
2156 		/* Clear pending interrupts. */
2157 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2158 			cpu_relax();
2159 	}
2160 	platform_set_drvdata(pdev, atxdmac);
2161 
2162 	ret = dma_async_device_register(&atxdmac->dma);
2163 	if (ret) {
2164 		dev_err(&pdev->dev, "fail to register DMA engine device\n");
2165 		goto err_clk_disable;
2166 	}
2167 
2168 	ret = of_dma_controller_register(pdev->dev.of_node,
2169 					 at_xdmac_xlate, atxdmac);
2170 	if (ret) {
2171 		dev_err(&pdev->dev, "could not register of dma controller\n");
2172 		goto err_dma_unregister;
2173 	}
2174 
2175 	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2176 		 nr_channels, atxdmac->regs);
2177 
2178 	at_xdmac_axi_config(pdev);
2179 
2180 	return 0;
2181 
2182 err_dma_unregister:
2183 	dma_async_device_unregister(&atxdmac->dma);
2184 err_clk_disable:
2185 	clk_disable_unprepare(atxdmac->clk);
2186 err_free_irq:
2187 	free_irq(atxdmac->irq, atxdmac);
2188 	return ret;
2189 }
2190 
2191 static int at_xdmac_remove(struct platform_device *pdev)
2192 {
2193 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2194 	int		i;
2195 
2196 	at_xdmac_off(atxdmac);
2197 	of_dma_controller_free(pdev->dev.of_node);
2198 	dma_async_device_unregister(&atxdmac->dma);
2199 	clk_disable_unprepare(atxdmac->clk);
2200 
2201 	free_irq(atxdmac->irq, atxdmac);
2202 
2203 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2204 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2205 
2206 		tasklet_kill(&atchan->tasklet);
2207 		at_xdmac_free_chan_resources(&atchan->chan);
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 static const struct dev_pm_ops __maybe_unused atmel_xdmac_dev_pm_ops = {
2214 	.prepare	= atmel_xdmac_prepare,
2215 	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2216 };
2217 
2218 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2219 	{
2220 		.compatible = "atmel,sama5d4-dma",
2221 		.data = &at_xdmac_sama5d4_layout,
2222 	}, {
2223 		.compatible = "microchip,sama7g5-dma",
2224 		.data = &at_xdmac_sama7g5_layout,
2225 	}, {
2226 		/* sentinel */
2227 	}
2228 };
2229 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2230 
2231 static struct platform_driver at_xdmac_driver = {
2232 	.probe		= at_xdmac_probe,
2233 	.remove		= at_xdmac_remove,
2234 	.driver = {
2235 		.name		= "at_xdmac",
2236 		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
2237 		.pm		= pm_ptr(&atmel_xdmac_dev_pm_ops),
2238 	}
2239 };
2240 
2241 static int __init at_xdmac_init(void)
2242 {
2243 	return platform_driver_register(&at_xdmac_driver);
2244 }
2245 subsys_initcall(at_xdmac_init);
2246 
2247 static void __exit at_xdmac_exit(void)
2248 {
2249 	platform_driver_unregister(&at_xdmac_driver);
2250 }
2251 module_exit(at_xdmac_exit);
2252 
2253 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2254 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2255 MODULE_LICENSE("GPL");
2256