1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems) 4 * 5 * Copyright (C) 2014 Atmel Corporation 6 * 7 * Author: Ludovic Desroches <ludovic.desroches@atmel.com> 8 */ 9 10 #include <asm/barrier.h> 11 #include <dt-bindings/dma/at91.h> 12 #include <linux/clk.h> 13 #include <linux/dmaengine.h> 14 #include <linux/dmapool.h> 15 #include <linux/interrupt.h> 16 #include <linux/irq.h> 17 #include <linux/kernel.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/of_dma.h> 21 #include <linux/of_platform.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm.h> 24 25 #include "dmaengine.h" 26 27 /* Global registers */ 28 #define AT_XDMAC_GTYPE 0x00 /* Global Type Register */ 29 #define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */ 30 #define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */ 31 #define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */ 32 #define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */ 33 #define AT_XDMAC_WRHP(i) (((i) & 0xF) << 4) 34 #define AT_XDMAC_WRMP(i) (((i) & 0xF) << 8) 35 #define AT_XDMAC_WRLP(i) (((i) & 0xF) << 12) 36 #define AT_XDMAC_RDHP(i) (((i) & 0xF) << 16) 37 #define AT_XDMAC_RDMP(i) (((i) & 0xF) << 20) 38 #define AT_XDMAC_RDLP(i) (((i) & 0xF) << 24) 39 #define AT_XDMAC_RDSG(i) (((i) & 0xF) << 28) 40 #define AT_XDMAC_GCFG_M2M (AT_XDMAC_RDLP(0xF) | AT_XDMAC_WRLP(0xF)) 41 #define AT_XDMAC_GCFG_P2M (AT_XDMAC_RDSG(0x1) | AT_XDMAC_RDHP(0x3) | \ 42 AT_XDMAC_WRHP(0x5)) 43 #define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */ 44 #define AT_XDMAC_PW0(i) (((i) & 0xF) << 0) 45 #define AT_XDMAC_PW1(i) (((i) & 0xF) << 4) 46 #define AT_XDMAC_PW2(i) (((i) & 0xF) << 8) 47 #define AT_XDMAC_PW3(i) (((i) & 0xF) << 12) 48 #define AT_XDMAC_GWAC_M2M 0 49 #define AT_XDMAC_GWAC_P2M (AT_XDMAC_PW0(0xF) | AT_XDMAC_PW2(0xF)) 50 51 #define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */ 52 #define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */ 53 #define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */ 54 #define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */ 55 #define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */ 56 #define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */ 57 #define AT_XDMAC_GS 0x24 /* Global Channel Status Register */ 58 #define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */ 59 60 /* Channel relative registers offsets */ 61 #define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */ 62 #define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */ 63 #define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */ 64 #define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */ 65 #define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */ 66 #define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */ 67 #define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */ 68 #define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */ 69 #define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */ 70 #define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */ 71 #define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */ 72 #define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */ 73 #define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */ 74 #define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */ 75 #define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */ 76 #define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */ 77 #define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */ 78 #define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */ 79 #define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */ 80 #define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */ 81 #define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */ 82 #define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */ 83 #define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */ 84 #define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */ 85 #define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */ 86 #define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */ 87 #define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */ 88 #define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */ 89 #define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */ 90 #define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */ 91 #define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */ 92 #define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */ 93 #define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */ 94 #define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */ 95 #define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */ 96 #define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */ 97 #define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */ 98 #define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */ 99 #define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */ 100 #define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */ 101 #define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */ 102 #define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */ 103 #define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */ 104 #define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */ 105 #define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */ 106 #define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */ 107 #define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */ 108 #define AT_XDMAC_CC 0x28 /* Channel Configuration Register */ 109 #define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */ 110 #define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */ 111 #define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */ 112 #define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1) 113 #define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1) 114 #define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1) 115 #define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1) 116 #define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1) 117 #define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */ 118 #define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4) 119 #define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4) 120 #define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */ 121 #define AT_XDMAC_CC_PROT_SEC (0x0 << 5) 122 #define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5) 123 #define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */ 124 #define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6) 125 #define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6) 126 #define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */ 127 #define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7) 128 #define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7) 129 #define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */ 130 #define AT_XDMAC_CC_DWIDTH_OFFSET 11 131 #define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET) 132 #define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */ 133 #define AT_XDMAC_CC_DWIDTH_BYTE 0x0 134 #define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1 135 #define AT_XDMAC_CC_DWIDTH_WORD 0x2 136 #define AT_XDMAC_CC_DWIDTH_DWORD 0x3 137 #define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */ 138 #define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */ 139 #define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */ 140 #define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16) 141 #define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16) 142 #define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16) 143 #define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16) 144 #define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */ 145 #define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18) 146 #define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18) 147 #define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18) 148 #define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18) 149 #define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */ 150 #define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21) 151 #define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21) 152 #define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */ 153 #define AT_XDMAC_CC_RDIP_DONE (0x0 << 22) 154 #define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22) 155 #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */ 156 #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23) 157 #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23) 158 #define AT_XDMAC_CC_PERID(i) ((0x7f & (i)) << 24) /* Channel Peripheral Identifier */ 159 #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */ 160 #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */ 161 #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */ 162 163 /* Microblock control members */ 164 #define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */ 165 #define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */ 166 #define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */ 167 #define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */ 168 #define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */ 169 #define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */ 170 #define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */ 171 #define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */ 172 173 #define AT_XDMAC_MAX_CHAN 0x20 174 #define AT_XDMAC_MAX_CSIZE 16 /* 16 data */ 175 #define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */ 176 #define AT_XDMAC_RESIDUE_MAX_RETRIES 5 177 178 #define AT_XDMAC_DMA_BUSWIDTHS\ 179 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 180 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 181 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 182 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\ 183 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 184 185 enum atc_status { 186 AT_XDMAC_CHAN_IS_CYCLIC = 0, 187 AT_XDMAC_CHAN_IS_PAUSED, 188 }; 189 190 struct at_xdmac_layout { 191 /* Global Channel Read Suspend Register */ 192 u8 grs; 193 /* Global Write Suspend Register */ 194 u8 gws; 195 /* Global Channel Read Write Suspend Register */ 196 u8 grws; 197 /* Global Channel Read Write Resume Register */ 198 u8 grwr; 199 /* Global Channel Software Request Register */ 200 u8 gswr; 201 /* Global channel Software Request Status Register */ 202 u8 gsws; 203 /* Global Channel Software Flush Request Register */ 204 u8 gswf; 205 /* Channel reg base */ 206 u8 chan_cc_reg_base; 207 /* Source/Destination Interface must be specified or not */ 208 bool sdif; 209 /* AXI queue priority configuration supported */ 210 bool axi_config; 211 }; 212 213 /* ----- Channels ----- */ 214 struct at_xdmac_chan { 215 struct dma_chan chan; 216 void __iomem *ch_regs; 217 u32 mask; /* Channel Mask */ 218 u32 cfg; /* Channel Configuration Register */ 219 u8 perid; /* Peripheral ID */ 220 u8 perif; /* Peripheral Interface */ 221 u8 memif; /* Memory Interface */ 222 u32 save_cc; 223 u32 save_cim; 224 u32 save_cnda; 225 u32 save_cndc; 226 u32 irq_status; 227 unsigned long status; 228 struct tasklet_struct tasklet; 229 struct dma_slave_config sconfig; 230 231 spinlock_t lock; 232 233 struct list_head xfers_list; 234 struct list_head free_descs_list; 235 }; 236 237 238 /* ----- Controller ----- */ 239 struct at_xdmac { 240 struct dma_device dma; 241 void __iomem *regs; 242 int irq; 243 struct clk *clk; 244 u32 save_gim; 245 struct dma_pool *at_xdmac_desc_pool; 246 const struct at_xdmac_layout *layout; 247 struct at_xdmac_chan chan[]; 248 }; 249 250 251 /* ----- Descriptors ----- */ 252 253 /* Linked List Descriptor */ 254 struct at_xdmac_lld { 255 dma_addr_t mbr_nda; /* Next Descriptor Member */ 256 u32 mbr_ubc; /* Microblock Control Member */ 257 dma_addr_t mbr_sa; /* Source Address Member */ 258 dma_addr_t mbr_da; /* Destination Address Member */ 259 u32 mbr_cfg; /* Configuration Register */ 260 u32 mbr_bc; /* Block Control Register */ 261 u32 mbr_ds; /* Data Stride Register */ 262 u32 mbr_sus; /* Source Microblock Stride Register */ 263 u32 mbr_dus; /* Destination Microblock Stride Register */ 264 }; 265 266 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */ 267 struct at_xdmac_desc { 268 struct at_xdmac_lld lld; 269 enum dma_transfer_direction direction; 270 struct dma_async_tx_descriptor tx_dma_desc; 271 struct list_head desc_node; 272 /* Following members are only used by the first descriptor */ 273 bool active_xfer; 274 unsigned int xfer_size; 275 struct list_head descs_list; 276 struct list_head xfer_node; 277 } __aligned(sizeof(u64)); 278 279 static const struct at_xdmac_layout at_xdmac_sama5d4_layout = { 280 .grs = 0x28, 281 .gws = 0x2C, 282 .grws = 0x30, 283 .grwr = 0x34, 284 .gswr = 0x38, 285 .gsws = 0x3C, 286 .gswf = 0x40, 287 .chan_cc_reg_base = 0x50, 288 .sdif = true, 289 .axi_config = false, 290 }; 291 292 static const struct at_xdmac_layout at_xdmac_sama7g5_layout = { 293 .grs = 0x30, 294 .gws = 0x38, 295 .grws = 0x40, 296 .grwr = 0x44, 297 .gswr = 0x48, 298 .gsws = 0x4C, 299 .gswf = 0x50, 300 .chan_cc_reg_base = 0x60, 301 .sdif = false, 302 .axi_config = true, 303 }; 304 305 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb) 306 { 307 return atxdmac->regs + (atxdmac->layout->chan_cc_reg_base + chan_nb * 0x40); 308 } 309 310 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg)) 311 #define at_xdmac_write(atxdmac, reg, value) \ 312 writel_relaxed((value), (atxdmac)->regs + (reg)) 313 314 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg)) 315 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg)) 316 317 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan) 318 { 319 return container_of(dchan, struct at_xdmac_chan, chan); 320 } 321 322 static struct device *chan2dev(struct dma_chan *chan) 323 { 324 return &chan->dev->device; 325 } 326 327 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev) 328 { 329 return container_of(ddev, struct at_xdmac, dma); 330 } 331 332 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd) 333 { 334 return container_of(txd, struct at_xdmac_desc, tx_dma_desc); 335 } 336 337 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan) 338 { 339 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 340 } 341 342 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan) 343 { 344 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 345 } 346 347 static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg) 348 { 349 return cfg & AT_XDMAC_CC_TYPE_PER_TRAN; 350 } 351 352 static inline u8 at_xdmac_get_dwidth(u32 cfg) 353 { 354 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET; 355 }; 356 357 static unsigned int init_nr_desc_per_channel = 64; 358 module_param(init_nr_desc_per_channel, uint, 0644); 359 MODULE_PARM_DESC(init_nr_desc_per_channel, 360 "initial descriptors per channel (default: 64)"); 361 362 363 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan) 364 { 365 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask; 366 } 367 368 static void at_xdmac_off(struct at_xdmac *atxdmac) 369 { 370 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L); 371 372 /* Wait that all chans are disabled. */ 373 while (at_xdmac_read(atxdmac, AT_XDMAC_GS)) 374 cpu_relax(); 375 376 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L); 377 } 378 379 /* Call with lock hold. */ 380 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan, 381 struct at_xdmac_desc *first) 382 { 383 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 384 u32 reg; 385 386 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first); 387 388 if (at_xdmac_chan_is_enabled(atchan)) 389 return; 390 391 /* Set transfer as active to not try to start it again. */ 392 first->active_xfer = true; 393 394 /* Tell xdmac where to get the first descriptor. */ 395 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys); 396 if (atxdmac->layout->sdif) 397 reg |= AT_XDMAC_CNDA_NDAIF(atchan->memif); 398 399 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg); 400 401 /* 402 * When doing non cyclic transfer we need to use the next 403 * descriptor view 2 since some fields of the configuration register 404 * depend on transfer size and src/dest addresses. 405 */ 406 if (at_xdmac_chan_is_cyclic(atchan)) 407 reg = AT_XDMAC_CNDC_NDVIEW_NDV1; 408 else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3) 409 reg = AT_XDMAC_CNDC_NDVIEW_NDV3; 410 else 411 reg = AT_XDMAC_CNDC_NDVIEW_NDV2; 412 /* 413 * Even if the register will be updated from the configuration in the 414 * descriptor when using view 2 or higher, the PROT bit won't be set 415 * properly. This bit can be modified only by using the channel 416 * configuration register. 417 */ 418 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg); 419 420 reg |= AT_XDMAC_CNDC_NDDUP 421 | AT_XDMAC_CNDC_NDSUP 422 | AT_XDMAC_CNDC_NDE; 423 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg); 424 425 dev_vdbg(chan2dev(&atchan->chan), 426 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 427 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 428 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 429 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 430 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 431 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 432 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 433 434 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff); 435 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE; 436 /* 437 * Request Overflow Error is only for peripheral synchronized transfers 438 */ 439 if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg)) 440 reg |= AT_XDMAC_CIE_ROIE; 441 442 /* 443 * There is no end of list when doing cyclic dma, we need to get 444 * an interrupt after each periods. 445 */ 446 if (at_xdmac_chan_is_cyclic(atchan)) 447 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 448 reg | AT_XDMAC_CIE_BIE); 449 else 450 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 451 reg | AT_XDMAC_CIE_LIE); 452 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask); 453 dev_vdbg(chan2dev(&atchan->chan), 454 "%s: enable channel (0x%08x)\n", __func__, atchan->mask); 455 wmb(); 456 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 457 458 dev_vdbg(chan2dev(&atchan->chan), 459 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 460 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 461 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 462 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 463 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 464 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 465 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 466 467 } 468 469 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx) 470 { 471 struct at_xdmac_desc *desc = txd_to_at_desc(tx); 472 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan); 473 dma_cookie_t cookie; 474 unsigned long irqflags; 475 476 spin_lock_irqsave(&atchan->lock, irqflags); 477 cookie = dma_cookie_assign(tx); 478 479 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n", 480 __func__, atchan, desc); 481 list_add_tail(&desc->xfer_node, &atchan->xfers_list); 482 if (list_is_singular(&atchan->xfers_list)) 483 at_xdmac_start_xfer(atchan, desc); 484 485 spin_unlock_irqrestore(&atchan->lock, irqflags); 486 return cookie; 487 } 488 489 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan, 490 gfp_t gfp_flags) 491 { 492 struct at_xdmac_desc *desc; 493 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 494 dma_addr_t phys; 495 496 desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys); 497 if (desc) { 498 INIT_LIST_HEAD(&desc->descs_list); 499 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan); 500 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit; 501 desc->tx_dma_desc.phys = phys; 502 } 503 504 return desc; 505 } 506 507 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc) 508 { 509 memset(&desc->lld, 0, sizeof(desc->lld)); 510 INIT_LIST_HEAD(&desc->descs_list); 511 desc->direction = DMA_TRANS_NONE; 512 desc->xfer_size = 0; 513 desc->active_xfer = false; 514 } 515 516 /* Call must be protected by lock. */ 517 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan) 518 { 519 struct at_xdmac_desc *desc; 520 521 if (list_empty(&atchan->free_descs_list)) { 522 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT); 523 } else { 524 desc = list_first_entry(&atchan->free_descs_list, 525 struct at_xdmac_desc, desc_node); 526 list_del(&desc->desc_node); 527 at_xdmac_init_used_desc(desc); 528 } 529 530 return desc; 531 } 532 533 static void at_xdmac_queue_desc(struct dma_chan *chan, 534 struct at_xdmac_desc *prev, 535 struct at_xdmac_desc *desc) 536 { 537 if (!prev || !desc) 538 return; 539 540 prev->lld.mbr_nda = desc->tx_dma_desc.phys; 541 prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE; 542 543 dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n", 544 __func__, prev, &prev->lld.mbr_nda); 545 } 546 547 static inline void at_xdmac_increment_block_count(struct dma_chan *chan, 548 struct at_xdmac_desc *desc) 549 { 550 if (!desc) 551 return; 552 553 desc->lld.mbr_bc++; 554 555 dev_dbg(chan2dev(chan), 556 "%s: incrementing the block count of the desc 0x%p\n", 557 __func__, desc); 558 } 559 560 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec, 561 struct of_dma *of_dma) 562 { 563 struct at_xdmac *atxdmac = of_dma->of_dma_data; 564 struct at_xdmac_chan *atchan; 565 struct dma_chan *chan; 566 struct device *dev = atxdmac->dma.dev; 567 568 if (dma_spec->args_count != 1) { 569 dev_err(dev, "dma phandler args: bad number of args\n"); 570 return NULL; 571 } 572 573 chan = dma_get_any_slave_channel(&atxdmac->dma); 574 if (!chan) { 575 dev_err(dev, "can't get a dma channel\n"); 576 return NULL; 577 } 578 579 atchan = to_at_xdmac_chan(chan); 580 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]); 581 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]); 582 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]); 583 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n", 584 atchan->memif, atchan->perif, atchan->perid); 585 586 return chan; 587 } 588 589 static int at_xdmac_compute_chan_conf(struct dma_chan *chan, 590 enum dma_transfer_direction direction) 591 { 592 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 593 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 594 int csize, dwidth; 595 596 if (direction == DMA_DEV_TO_MEM) { 597 atchan->cfg = 598 AT91_XDMAC_DT_PERID(atchan->perid) 599 | AT_XDMAC_CC_DAM_INCREMENTED_AM 600 | AT_XDMAC_CC_SAM_FIXED_AM 601 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 602 | AT_XDMAC_CC_DSYNC_PER2MEM 603 | AT_XDMAC_CC_MBSIZE_SIXTEEN 604 | AT_XDMAC_CC_TYPE_PER_TRAN; 605 if (atxdmac->layout->sdif) 606 atchan->cfg |= AT_XDMAC_CC_DIF(atchan->memif) | 607 AT_XDMAC_CC_SIF(atchan->perif); 608 609 csize = ffs(atchan->sconfig.src_maxburst) - 1; 610 if (csize < 0) { 611 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 612 return -EINVAL; 613 } 614 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 615 dwidth = ffs(atchan->sconfig.src_addr_width) - 1; 616 if (dwidth < 0) { 617 dev_err(chan2dev(chan), "invalid src addr width value\n"); 618 return -EINVAL; 619 } 620 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 621 } else if (direction == DMA_MEM_TO_DEV) { 622 atchan->cfg = 623 AT91_XDMAC_DT_PERID(atchan->perid) 624 | AT_XDMAC_CC_DAM_FIXED_AM 625 | AT_XDMAC_CC_SAM_INCREMENTED_AM 626 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 627 | AT_XDMAC_CC_DSYNC_MEM2PER 628 | AT_XDMAC_CC_MBSIZE_SIXTEEN 629 | AT_XDMAC_CC_TYPE_PER_TRAN; 630 if (atxdmac->layout->sdif) 631 atchan->cfg |= AT_XDMAC_CC_DIF(atchan->perif) | 632 AT_XDMAC_CC_SIF(atchan->memif); 633 634 csize = ffs(atchan->sconfig.dst_maxburst) - 1; 635 if (csize < 0) { 636 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 637 return -EINVAL; 638 } 639 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 640 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1; 641 if (dwidth < 0) { 642 dev_err(chan2dev(chan), "invalid dst addr width value\n"); 643 return -EINVAL; 644 } 645 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 646 } 647 648 dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg); 649 650 return 0; 651 } 652 653 /* 654 * Only check that maxburst and addr width values are supported by the 655 * the controller but not that the configuration is good to perform the 656 * transfer since we don't know the direction at this stage. 657 */ 658 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig) 659 { 660 if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE) 661 || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE)) 662 return -EINVAL; 663 664 if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH) 665 || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH)) 666 return -EINVAL; 667 668 return 0; 669 } 670 671 static int at_xdmac_set_slave_config(struct dma_chan *chan, 672 struct dma_slave_config *sconfig) 673 { 674 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 675 676 if (at_xdmac_check_slave_config(sconfig)) { 677 dev_err(chan2dev(chan), "invalid slave configuration\n"); 678 return -EINVAL; 679 } 680 681 memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig)); 682 683 return 0; 684 } 685 686 static struct dma_async_tx_descriptor * 687 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 688 unsigned int sg_len, enum dma_transfer_direction direction, 689 unsigned long flags, void *context) 690 { 691 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 692 struct at_xdmac_desc *first = NULL, *prev = NULL; 693 struct scatterlist *sg; 694 int i; 695 unsigned int xfer_size = 0; 696 unsigned long irqflags; 697 struct dma_async_tx_descriptor *ret = NULL; 698 699 if (!sgl) 700 return NULL; 701 702 if (!is_slave_direction(direction)) { 703 dev_err(chan2dev(chan), "invalid DMA direction\n"); 704 return NULL; 705 } 706 707 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n", 708 __func__, sg_len, 709 direction == DMA_MEM_TO_DEV ? "to device" : "from device", 710 flags); 711 712 /* Protect dma_sconfig field that can be modified by set_slave_conf. */ 713 spin_lock_irqsave(&atchan->lock, irqflags); 714 715 if (at_xdmac_compute_chan_conf(chan, direction)) 716 goto spin_unlock; 717 718 /* Prepare descriptors. */ 719 for_each_sg(sgl, sg, sg_len, i) { 720 struct at_xdmac_desc *desc = NULL; 721 u32 len, mem, dwidth, fixed_dwidth; 722 723 len = sg_dma_len(sg); 724 mem = sg_dma_address(sg); 725 if (unlikely(!len)) { 726 dev_err(chan2dev(chan), "sg data length is zero\n"); 727 goto spin_unlock; 728 } 729 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n", 730 __func__, i, len, mem); 731 732 desc = at_xdmac_get_desc(atchan); 733 if (!desc) { 734 dev_err(chan2dev(chan), "can't get descriptor\n"); 735 if (first) 736 list_splice_init(&first->descs_list, &atchan->free_descs_list); 737 goto spin_unlock; 738 } 739 740 /* Linked list descriptor setup. */ 741 if (direction == DMA_DEV_TO_MEM) { 742 desc->lld.mbr_sa = atchan->sconfig.src_addr; 743 desc->lld.mbr_da = mem; 744 } else { 745 desc->lld.mbr_sa = mem; 746 desc->lld.mbr_da = atchan->sconfig.dst_addr; 747 } 748 dwidth = at_xdmac_get_dwidth(atchan->cfg); 749 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth) 750 ? dwidth 751 : AT_XDMAC_CC_DWIDTH_BYTE; 752 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */ 753 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */ 754 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */ 755 | (len >> fixed_dwidth); /* microblock length */ 756 desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) | 757 AT_XDMAC_CC_DWIDTH(fixed_dwidth); 758 dev_dbg(chan2dev(chan), 759 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 760 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 761 762 /* Chain lld. */ 763 if (prev) 764 at_xdmac_queue_desc(chan, prev, desc); 765 766 prev = desc; 767 if (!first) 768 first = desc; 769 770 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 771 __func__, desc, first); 772 list_add_tail(&desc->desc_node, &first->descs_list); 773 xfer_size += len; 774 } 775 776 777 first->tx_dma_desc.flags = flags; 778 first->xfer_size = xfer_size; 779 first->direction = direction; 780 ret = &first->tx_dma_desc; 781 782 spin_unlock: 783 spin_unlock_irqrestore(&atchan->lock, irqflags); 784 return ret; 785 } 786 787 static struct dma_async_tx_descriptor * 788 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, 789 size_t buf_len, size_t period_len, 790 enum dma_transfer_direction direction, 791 unsigned long flags) 792 { 793 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 794 struct at_xdmac_desc *first = NULL, *prev = NULL; 795 unsigned int periods = buf_len / period_len; 796 int i; 797 unsigned long irqflags; 798 799 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n", 800 __func__, &buf_addr, buf_len, period_len, 801 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags); 802 803 if (!is_slave_direction(direction)) { 804 dev_err(chan2dev(chan), "invalid DMA direction\n"); 805 return NULL; 806 } 807 808 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) { 809 dev_err(chan2dev(chan), "channel currently used\n"); 810 return NULL; 811 } 812 813 if (at_xdmac_compute_chan_conf(chan, direction)) 814 return NULL; 815 816 for (i = 0; i < periods; i++) { 817 struct at_xdmac_desc *desc = NULL; 818 819 spin_lock_irqsave(&atchan->lock, irqflags); 820 desc = at_xdmac_get_desc(atchan); 821 if (!desc) { 822 dev_err(chan2dev(chan), "can't get descriptor\n"); 823 if (first) 824 list_splice_init(&first->descs_list, &atchan->free_descs_list); 825 spin_unlock_irqrestore(&atchan->lock, irqflags); 826 return NULL; 827 } 828 spin_unlock_irqrestore(&atchan->lock, irqflags); 829 dev_dbg(chan2dev(chan), 830 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n", 831 __func__, desc, &desc->tx_dma_desc.phys); 832 833 if (direction == DMA_DEV_TO_MEM) { 834 desc->lld.mbr_sa = atchan->sconfig.src_addr; 835 desc->lld.mbr_da = buf_addr + i * period_len; 836 } else { 837 desc->lld.mbr_sa = buf_addr + i * period_len; 838 desc->lld.mbr_da = atchan->sconfig.dst_addr; 839 } 840 desc->lld.mbr_cfg = atchan->cfg; 841 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1 842 | AT_XDMAC_MBR_UBC_NDEN 843 | AT_XDMAC_MBR_UBC_NSEN 844 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg); 845 846 dev_dbg(chan2dev(chan), 847 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 848 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 849 850 /* Chain lld. */ 851 if (prev) 852 at_xdmac_queue_desc(chan, prev, desc); 853 854 prev = desc; 855 if (!first) 856 first = desc; 857 858 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 859 __func__, desc, first); 860 list_add_tail(&desc->desc_node, &first->descs_list); 861 } 862 863 at_xdmac_queue_desc(chan, prev, first); 864 first->tx_dma_desc.flags = flags; 865 first->xfer_size = buf_len; 866 first->direction = direction; 867 868 return &first->tx_dma_desc; 869 } 870 871 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr) 872 { 873 u32 width; 874 875 /* 876 * Check address alignment to select the greater data width we 877 * can use. 878 * 879 * Some XDMAC implementations don't provide dword transfer, in 880 * this case selecting dword has the same behavior as 881 * selecting word transfers. 882 */ 883 if (!(addr & 7)) { 884 width = AT_XDMAC_CC_DWIDTH_DWORD; 885 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__); 886 } else if (!(addr & 3)) { 887 width = AT_XDMAC_CC_DWIDTH_WORD; 888 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__); 889 } else if (!(addr & 1)) { 890 width = AT_XDMAC_CC_DWIDTH_HALFWORD; 891 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__); 892 } else { 893 width = AT_XDMAC_CC_DWIDTH_BYTE; 894 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__); 895 } 896 897 return width; 898 } 899 900 static struct at_xdmac_desc * 901 at_xdmac_interleaved_queue_desc(struct dma_chan *chan, 902 struct at_xdmac_chan *atchan, 903 struct at_xdmac_desc *prev, 904 dma_addr_t src, dma_addr_t dst, 905 struct dma_interleaved_template *xt, 906 struct data_chunk *chunk) 907 { 908 struct at_xdmac_desc *desc; 909 u32 dwidth; 910 unsigned long flags; 911 size_t ublen; 912 /* 913 * WARNING: The channel configuration is set here since there is no 914 * dmaengine_slave_config call in this case. Moreover we don't know the 915 * direction, it involves we can't dynamically set the source and dest 916 * interface so we have to use the same one. Only interface 0 allows EBI 917 * access. Hopefully we can access DDR through both ports (at least on 918 * SAMA5D4x), so we can use the same interface for source and dest, 919 * that solves the fact we don't know the direction. 920 * ERRATA: Even if useless for memory transfers, the PERID has to not 921 * match the one of another channel. If not, it could lead to spurious 922 * flag status. 923 * For SAMA7G5x case, the SIF and DIF fields are no longer used. 924 * Thus, no need to have the SIF/DIF interfaces here. 925 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as 926 * zero. 927 */ 928 u32 chan_cc = AT_XDMAC_CC_PERID(0x7f) 929 | AT_XDMAC_CC_MBSIZE_SIXTEEN 930 | AT_XDMAC_CC_TYPE_MEM_TRAN; 931 932 dwidth = at_xdmac_align_width(chan, src | dst | chunk->size); 933 if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 934 dev_dbg(chan2dev(chan), 935 "%s: chunk too big (%zu, max size %lu)...\n", 936 __func__, chunk->size, 937 AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth); 938 return NULL; 939 } 940 941 if (prev) 942 dev_dbg(chan2dev(chan), 943 "Adding items at the end of desc 0x%p\n", prev); 944 945 if (xt->src_inc) { 946 if (xt->src_sgl) 947 chan_cc |= AT_XDMAC_CC_SAM_UBS_AM; 948 else 949 chan_cc |= AT_XDMAC_CC_SAM_INCREMENTED_AM; 950 } 951 952 if (xt->dst_inc) { 953 if (xt->dst_sgl) 954 chan_cc |= AT_XDMAC_CC_DAM_UBS_AM; 955 else 956 chan_cc |= AT_XDMAC_CC_DAM_INCREMENTED_AM; 957 } 958 959 spin_lock_irqsave(&atchan->lock, flags); 960 desc = at_xdmac_get_desc(atchan); 961 spin_unlock_irqrestore(&atchan->lock, flags); 962 if (!desc) { 963 dev_err(chan2dev(chan), "can't get descriptor\n"); 964 return NULL; 965 } 966 967 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 968 969 ublen = chunk->size >> dwidth; 970 971 desc->lld.mbr_sa = src; 972 desc->lld.mbr_da = dst; 973 desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk); 974 desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk); 975 976 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 977 | AT_XDMAC_MBR_UBC_NDEN 978 | AT_XDMAC_MBR_UBC_NSEN 979 | ublen; 980 desc->lld.mbr_cfg = chan_cc; 981 982 dev_dbg(chan2dev(chan), 983 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 984 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, 985 desc->lld.mbr_ubc, desc->lld.mbr_cfg); 986 987 /* Chain lld. */ 988 if (prev) 989 at_xdmac_queue_desc(chan, prev, desc); 990 991 return desc; 992 } 993 994 static struct dma_async_tx_descriptor * 995 at_xdmac_prep_interleaved(struct dma_chan *chan, 996 struct dma_interleaved_template *xt, 997 unsigned long flags) 998 { 999 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1000 struct at_xdmac_desc *prev = NULL, *first = NULL; 1001 dma_addr_t dst_addr, src_addr; 1002 size_t src_skip = 0, dst_skip = 0, len = 0; 1003 struct data_chunk *chunk; 1004 int i; 1005 1006 if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM)) 1007 return NULL; 1008 1009 /* 1010 * TODO: Handle the case where we have to repeat a chain of 1011 * descriptors... 1012 */ 1013 if ((xt->numf > 1) && (xt->frame_size > 1)) 1014 return NULL; 1015 1016 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n", 1017 __func__, &xt->src_start, &xt->dst_start, xt->numf, 1018 xt->frame_size, flags); 1019 1020 src_addr = xt->src_start; 1021 dst_addr = xt->dst_start; 1022 1023 if (xt->numf > 1) { 1024 first = at_xdmac_interleaved_queue_desc(chan, atchan, 1025 NULL, 1026 src_addr, dst_addr, 1027 xt, xt->sgl); 1028 1029 /* Length of the block is (BLEN+1) microblocks. */ 1030 for (i = 0; i < xt->numf - 1; i++) 1031 at_xdmac_increment_block_count(chan, first); 1032 1033 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1034 __func__, first, first); 1035 list_add_tail(&first->desc_node, &first->descs_list); 1036 } else { 1037 for (i = 0; i < xt->frame_size; i++) { 1038 size_t src_icg = 0, dst_icg = 0; 1039 struct at_xdmac_desc *desc; 1040 1041 chunk = xt->sgl + i; 1042 1043 dst_icg = dmaengine_get_dst_icg(xt, chunk); 1044 src_icg = dmaengine_get_src_icg(xt, chunk); 1045 1046 src_skip = chunk->size + src_icg; 1047 dst_skip = chunk->size + dst_icg; 1048 1049 dev_dbg(chan2dev(chan), 1050 "%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n", 1051 __func__, chunk->size, src_icg, dst_icg); 1052 1053 desc = at_xdmac_interleaved_queue_desc(chan, atchan, 1054 prev, 1055 src_addr, dst_addr, 1056 xt, chunk); 1057 if (!desc) { 1058 list_splice_init(&first->descs_list, 1059 &atchan->free_descs_list); 1060 return NULL; 1061 } 1062 1063 if (!first) 1064 first = desc; 1065 1066 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1067 __func__, desc, first); 1068 list_add_tail(&desc->desc_node, &first->descs_list); 1069 1070 if (xt->src_sgl) 1071 src_addr += src_skip; 1072 1073 if (xt->dst_sgl) 1074 dst_addr += dst_skip; 1075 1076 len += chunk->size; 1077 prev = desc; 1078 } 1079 } 1080 1081 first->tx_dma_desc.cookie = -EBUSY; 1082 first->tx_dma_desc.flags = flags; 1083 first->xfer_size = len; 1084 1085 return &first->tx_dma_desc; 1086 } 1087 1088 static struct dma_async_tx_descriptor * 1089 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1090 size_t len, unsigned long flags) 1091 { 1092 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1093 struct at_xdmac_desc *first = NULL, *prev = NULL; 1094 size_t remaining_size = len, xfer_size = 0, ublen; 1095 dma_addr_t src_addr = src, dst_addr = dest; 1096 u32 dwidth; 1097 /* 1098 * WARNING: We don't know the direction, it involves we can't 1099 * dynamically set the source and dest interface so we have to use the 1100 * same one. Only interface 0 allows EBI access. Hopefully we can 1101 * access DDR through both ports (at least on SAMA5D4x), so we can use 1102 * the same interface for source and dest, that solves the fact we 1103 * don't know the direction. 1104 * ERRATA: Even if useless for memory transfers, the PERID has to not 1105 * match the one of another channel. If not, it could lead to spurious 1106 * flag status. 1107 * For SAMA7G5x case, the SIF and DIF fields are no longer used. 1108 * Thus, no need to have the SIF/DIF interfaces here. 1109 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as 1110 * zero. 1111 */ 1112 u32 chan_cc = AT_XDMAC_CC_PERID(0x7f) 1113 | AT_XDMAC_CC_DAM_INCREMENTED_AM 1114 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1115 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1116 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1117 unsigned long irqflags; 1118 1119 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n", 1120 __func__, &src, &dest, len, flags); 1121 1122 if (unlikely(!len)) 1123 return NULL; 1124 1125 dwidth = at_xdmac_align_width(chan, src_addr | dst_addr); 1126 1127 /* Prepare descriptors. */ 1128 while (remaining_size) { 1129 struct at_xdmac_desc *desc = NULL; 1130 1131 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size); 1132 1133 spin_lock_irqsave(&atchan->lock, irqflags); 1134 desc = at_xdmac_get_desc(atchan); 1135 spin_unlock_irqrestore(&atchan->lock, irqflags); 1136 if (!desc) { 1137 dev_err(chan2dev(chan), "can't get descriptor\n"); 1138 if (first) 1139 list_splice_init(&first->descs_list, &atchan->free_descs_list); 1140 return NULL; 1141 } 1142 1143 /* Update src and dest addresses. */ 1144 src_addr += xfer_size; 1145 dst_addr += xfer_size; 1146 1147 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth) 1148 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth; 1149 else 1150 xfer_size = remaining_size; 1151 1152 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size); 1153 1154 /* Check remaining length and change data width if needed. */ 1155 dwidth = at_xdmac_align_width(chan, 1156 src_addr | dst_addr | xfer_size); 1157 chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK; 1158 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1159 1160 ublen = xfer_size >> dwidth; 1161 remaining_size -= xfer_size; 1162 1163 desc->lld.mbr_sa = src_addr; 1164 desc->lld.mbr_da = dst_addr; 1165 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 1166 | AT_XDMAC_MBR_UBC_NDEN 1167 | AT_XDMAC_MBR_UBC_NSEN 1168 | ublen; 1169 desc->lld.mbr_cfg = chan_cc; 1170 1171 dev_dbg(chan2dev(chan), 1172 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1173 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg); 1174 1175 /* Chain lld. */ 1176 if (prev) 1177 at_xdmac_queue_desc(chan, prev, desc); 1178 1179 prev = desc; 1180 if (!first) 1181 first = desc; 1182 1183 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1184 __func__, desc, first); 1185 list_add_tail(&desc->desc_node, &first->descs_list); 1186 } 1187 1188 first->tx_dma_desc.flags = flags; 1189 first->xfer_size = len; 1190 1191 return &first->tx_dma_desc; 1192 } 1193 1194 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan, 1195 struct at_xdmac_chan *atchan, 1196 dma_addr_t dst_addr, 1197 size_t len, 1198 int value) 1199 { 1200 struct at_xdmac_desc *desc; 1201 unsigned long flags; 1202 size_t ublen; 1203 u32 dwidth; 1204 /* 1205 * WARNING: The channel configuration is set here since there is no 1206 * dmaengine_slave_config call in this case. Moreover we don't know the 1207 * direction, it involves we can't dynamically set the source and dest 1208 * interface so we have to use the same one. Only interface 0 allows EBI 1209 * access. Hopefully we can access DDR through both ports (at least on 1210 * SAMA5D4x), so we can use the same interface for source and dest, 1211 * that solves the fact we don't know the direction. 1212 * ERRATA: Even if useless for memory transfers, the PERID has to not 1213 * match the one of another channel. If not, it could lead to spurious 1214 * flag status. 1215 * For SAMA7G5x case, the SIF and DIF fields are no longer used. 1216 * Thus, no need to have the SIF/DIF interfaces here. 1217 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as 1218 * zero. 1219 */ 1220 u32 chan_cc = AT_XDMAC_CC_PERID(0x7f) 1221 | AT_XDMAC_CC_DAM_UBS_AM 1222 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1223 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1224 | AT_XDMAC_CC_MEMSET_HW_MODE 1225 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1226 1227 dwidth = at_xdmac_align_width(chan, dst_addr); 1228 1229 if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 1230 dev_err(chan2dev(chan), 1231 "%s: Transfer too large, aborting...\n", 1232 __func__); 1233 return NULL; 1234 } 1235 1236 spin_lock_irqsave(&atchan->lock, flags); 1237 desc = at_xdmac_get_desc(atchan); 1238 spin_unlock_irqrestore(&atchan->lock, flags); 1239 if (!desc) { 1240 dev_err(chan2dev(chan), "can't get descriptor\n"); 1241 return NULL; 1242 } 1243 1244 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1245 1246 ublen = len >> dwidth; 1247 1248 desc->lld.mbr_da = dst_addr; 1249 desc->lld.mbr_ds = value; 1250 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 1251 | AT_XDMAC_MBR_UBC_NDEN 1252 | AT_XDMAC_MBR_UBC_NSEN 1253 | ublen; 1254 desc->lld.mbr_cfg = chan_cc; 1255 1256 dev_dbg(chan2dev(chan), 1257 "%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1258 __func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc, 1259 desc->lld.mbr_cfg); 1260 1261 return desc; 1262 } 1263 1264 static struct dma_async_tx_descriptor * 1265 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 1266 size_t len, unsigned long flags) 1267 { 1268 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1269 struct at_xdmac_desc *desc; 1270 1271 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n", 1272 __func__, &dest, len, value, flags); 1273 1274 if (unlikely(!len)) 1275 return NULL; 1276 1277 desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value); 1278 list_add_tail(&desc->desc_node, &desc->descs_list); 1279 1280 desc->tx_dma_desc.cookie = -EBUSY; 1281 desc->tx_dma_desc.flags = flags; 1282 desc->xfer_size = len; 1283 1284 return &desc->tx_dma_desc; 1285 } 1286 1287 static struct dma_async_tx_descriptor * 1288 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl, 1289 unsigned int sg_len, int value, 1290 unsigned long flags) 1291 { 1292 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1293 struct at_xdmac_desc *desc, *pdesc = NULL, 1294 *ppdesc = NULL, *first = NULL; 1295 struct scatterlist *sg, *psg = NULL, *ppsg = NULL; 1296 size_t stride = 0, pstride = 0, len = 0; 1297 int i; 1298 1299 if (!sgl) 1300 return NULL; 1301 1302 dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n", 1303 __func__, sg_len, value, flags); 1304 1305 /* Prepare descriptors. */ 1306 for_each_sg(sgl, sg, sg_len, i) { 1307 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n", 1308 __func__, &sg_dma_address(sg), sg_dma_len(sg), 1309 value, flags); 1310 desc = at_xdmac_memset_create_desc(chan, atchan, 1311 sg_dma_address(sg), 1312 sg_dma_len(sg), 1313 value); 1314 if (!desc && first) 1315 list_splice_init(&first->descs_list, 1316 &atchan->free_descs_list); 1317 1318 if (!first) 1319 first = desc; 1320 1321 /* Update our strides */ 1322 pstride = stride; 1323 if (psg) 1324 stride = sg_dma_address(sg) - 1325 (sg_dma_address(psg) + sg_dma_len(psg)); 1326 1327 /* 1328 * The scatterlist API gives us only the address and 1329 * length of each elements. 1330 * 1331 * Unfortunately, we don't have the stride, which we 1332 * will need to compute. 1333 * 1334 * That make us end up in a situation like this one: 1335 * len stride len stride len 1336 * +-------+ +-------+ +-------+ 1337 * | N-2 | | N-1 | | N | 1338 * +-------+ +-------+ +-------+ 1339 * 1340 * We need all these three elements (N-2, N-1 and N) 1341 * to actually take the decision on whether we need to 1342 * queue N-1 or reuse N-2. 1343 * 1344 * We will only consider N if it is the last element. 1345 */ 1346 if (ppdesc && pdesc) { 1347 if ((stride == pstride) && 1348 (sg_dma_len(ppsg) == sg_dma_len(psg))) { 1349 dev_dbg(chan2dev(chan), 1350 "%s: desc 0x%p can be merged with desc 0x%p\n", 1351 __func__, pdesc, ppdesc); 1352 1353 /* 1354 * Increment the block count of the 1355 * N-2 descriptor 1356 */ 1357 at_xdmac_increment_block_count(chan, ppdesc); 1358 ppdesc->lld.mbr_dus = stride; 1359 1360 /* 1361 * Put back the N-1 descriptor in the 1362 * free descriptor list 1363 */ 1364 list_add_tail(&pdesc->desc_node, 1365 &atchan->free_descs_list); 1366 1367 /* 1368 * Make our N-1 descriptor pointer 1369 * point to the N-2 since they were 1370 * actually merged. 1371 */ 1372 pdesc = ppdesc; 1373 1374 /* 1375 * Rule out the case where we don't have 1376 * pstride computed yet (our second sg 1377 * element) 1378 * 1379 * We also want to catch the case where there 1380 * would be a negative stride, 1381 */ 1382 } else if (pstride || 1383 sg_dma_address(sg) < sg_dma_address(psg)) { 1384 /* 1385 * Queue the N-1 descriptor after the 1386 * N-2 1387 */ 1388 at_xdmac_queue_desc(chan, ppdesc, pdesc); 1389 1390 /* 1391 * Add the N-1 descriptor to the list 1392 * of the descriptors used for this 1393 * transfer 1394 */ 1395 list_add_tail(&desc->desc_node, 1396 &first->descs_list); 1397 dev_dbg(chan2dev(chan), 1398 "%s: add desc 0x%p to descs_list 0x%p\n", 1399 __func__, desc, first); 1400 } 1401 } 1402 1403 /* 1404 * If we are the last element, just see if we have the 1405 * same size than the previous element. 1406 * 1407 * If so, we can merge it with the previous descriptor 1408 * since we don't care about the stride anymore. 1409 */ 1410 if ((i == (sg_len - 1)) && 1411 sg_dma_len(psg) == sg_dma_len(sg)) { 1412 dev_dbg(chan2dev(chan), 1413 "%s: desc 0x%p can be merged with desc 0x%p\n", 1414 __func__, desc, pdesc); 1415 1416 /* 1417 * Increment the block count of the N-1 1418 * descriptor 1419 */ 1420 at_xdmac_increment_block_count(chan, pdesc); 1421 pdesc->lld.mbr_dus = stride; 1422 1423 /* 1424 * Put back the N descriptor in the free 1425 * descriptor list 1426 */ 1427 list_add_tail(&desc->desc_node, 1428 &atchan->free_descs_list); 1429 } 1430 1431 /* Update our descriptors */ 1432 ppdesc = pdesc; 1433 pdesc = desc; 1434 1435 /* Update our scatter pointers */ 1436 ppsg = psg; 1437 psg = sg; 1438 1439 len += sg_dma_len(sg); 1440 } 1441 1442 first->tx_dma_desc.cookie = -EBUSY; 1443 first->tx_dma_desc.flags = flags; 1444 first->xfer_size = len; 1445 1446 return &first->tx_dma_desc; 1447 } 1448 1449 static enum dma_status 1450 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 1451 struct dma_tx_state *txstate) 1452 { 1453 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1454 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1455 struct at_xdmac_desc *desc, *_desc; 1456 struct list_head *descs_list; 1457 enum dma_status ret; 1458 int residue, retry; 1459 u32 cur_nda, check_nda, cur_ubc, mask, value; 1460 u8 dwidth = 0; 1461 unsigned long flags; 1462 bool initd; 1463 1464 ret = dma_cookie_status(chan, cookie, txstate); 1465 if (ret == DMA_COMPLETE) 1466 return ret; 1467 1468 if (!txstate) 1469 return ret; 1470 1471 spin_lock_irqsave(&atchan->lock, flags); 1472 1473 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 1474 1475 /* 1476 * If the transfer has not been started yet, don't need to compute the 1477 * residue, it's the transfer length. 1478 */ 1479 if (!desc->active_xfer) { 1480 dma_set_residue(txstate, desc->xfer_size); 1481 goto spin_unlock; 1482 } 1483 1484 residue = desc->xfer_size; 1485 /* 1486 * Flush FIFO: only relevant when the transfer is source peripheral 1487 * synchronized. Flush is needed before reading CUBC because data in 1488 * the FIFO are not reported by CUBC. Reporting a residue of the 1489 * transfer length while we have data in FIFO can cause issue. 1490 * Usecase: atmel USART has a timeout which means I have received 1491 * characters but there is no more character received for a while. On 1492 * timeout, it requests the residue. If the data are in the DMA FIFO, 1493 * we will return a residue of the transfer length. It means no data 1494 * received. If an application is waiting for these data, it will hang 1495 * since we won't have another USART timeout without receiving new 1496 * data. 1497 */ 1498 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC; 1499 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM; 1500 if ((desc->lld.mbr_cfg & mask) == value) { 1501 at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask); 1502 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS)) 1503 cpu_relax(); 1504 } 1505 1506 /* 1507 * The easiest way to compute the residue should be to pause the DMA 1508 * but doing this can lead to miss some data as some devices don't 1509 * have FIFO. 1510 * We need to read several registers because: 1511 * - DMA is running therefore a descriptor change is possible while 1512 * reading these registers 1513 * - When the block transfer is done, the value of the CUBC register 1514 * is set to its initial value until the fetch of the next descriptor. 1515 * This value will corrupt the residue calculation so we have to skip 1516 * it. 1517 * 1518 * INITD -------- ------------ 1519 * |____________________| 1520 * _______________________ _______________ 1521 * NDA @desc2 \/ @desc3 1522 * _______________________/\_______________ 1523 * __________ ___________ _______________ 1524 * CUBC 0 \/ MAX desc1 \/ MAX desc2 1525 * __________/\___________/\_______________ 1526 * 1527 * Since descriptors are aligned on 64 bits, we can assume that 1528 * the update of NDA and CUBC is atomic. 1529 * Memory barriers are used to ensure the read order of the registers. 1530 * A max number of retries is set because unlikely it could never ends. 1531 */ 1532 for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) { 1533 check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 1534 rmb(); 1535 cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC); 1536 rmb(); 1537 initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD); 1538 rmb(); 1539 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 1540 rmb(); 1541 1542 if ((check_nda == cur_nda) && initd) 1543 break; 1544 } 1545 1546 if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) { 1547 ret = DMA_ERROR; 1548 goto spin_unlock; 1549 } 1550 1551 /* 1552 * Flush FIFO: only relevant when the transfer is source peripheral 1553 * synchronized. Another flush is needed here because CUBC is updated 1554 * when the controller sends the data write command. It can lead to 1555 * report data that are not written in the memory or the device. The 1556 * FIFO flush ensures that data are really written. 1557 */ 1558 if ((desc->lld.mbr_cfg & mask) == value) { 1559 at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask); 1560 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS)) 1561 cpu_relax(); 1562 } 1563 1564 /* 1565 * Remove size of all microblocks already transferred and the current 1566 * one. Then add the remaining size to transfer of the current 1567 * microblock. 1568 */ 1569 descs_list = &desc->descs_list; 1570 list_for_each_entry_safe(desc, _desc, descs_list, desc_node) { 1571 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg); 1572 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth; 1573 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda) 1574 break; 1575 } 1576 residue += cur_ubc << dwidth; 1577 1578 dma_set_residue(txstate, residue); 1579 1580 dev_dbg(chan2dev(chan), 1581 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n", 1582 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue); 1583 1584 spin_unlock: 1585 spin_unlock_irqrestore(&atchan->lock, flags); 1586 return ret; 1587 } 1588 1589 /* Call must be protected by lock. */ 1590 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan, 1591 struct at_xdmac_desc *desc) 1592 { 1593 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1594 1595 /* 1596 * Remove the transfer from the transfer list then move the transfer 1597 * descriptors into the free descriptors list. 1598 */ 1599 list_del(&desc->xfer_node); 1600 list_splice_init(&desc->descs_list, &atchan->free_descs_list); 1601 } 1602 1603 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan) 1604 { 1605 struct at_xdmac_desc *desc; 1606 1607 /* 1608 * If channel is enabled, do nothing, advance_work will be triggered 1609 * after the interruption. 1610 */ 1611 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) { 1612 desc = list_first_entry(&atchan->xfers_list, 1613 struct at_xdmac_desc, 1614 xfer_node); 1615 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1616 if (!desc->active_xfer) 1617 at_xdmac_start_xfer(atchan, desc); 1618 } 1619 } 1620 1621 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan) 1622 { 1623 struct at_xdmac_desc *desc; 1624 struct dma_async_tx_descriptor *txd; 1625 1626 if (!list_empty(&atchan->xfers_list)) { 1627 desc = list_first_entry(&atchan->xfers_list, 1628 struct at_xdmac_desc, xfer_node); 1629 txd = &desc->tx_dma_desc; 1630 1631 if (txd->flags & DMA_PREP_INTERRUPT) 1632 dmaengine_desc_get_callback_invoke(txd, NULL); 1633 } 1634 } 1635 1636 static void at_xdmac_handle_error(struct at_xdmac_chan *atchan) 1637 { 1638 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1639 struct at_xdmac_desc *bad_desc; 1640 1641 /* 1642 * The descriptor currently at the head of the active list is 1643 * broken. Since we don't have any way to report errors, we'll 1644 * just have to scream loudly and try to continue with other 1645 * descriptors queued (if any). 1646 */ 1647 if (atchan->irq_status & AT_XDMAC_CIS_RBEIS) 1648 dev_err(chan2dev(&atchan->chan), "read bus error!!!"); 1649 if (atchan->irq_status & AT_XDMAC_CIS_WBEIS) 1650 dev_err(chan2dev(&atchan->chan), "write bus error!!!"); 1651 if (atchan->irq_status & AT_XDMAC_CIS_ROIS) 1652 dev_err(chan2dev(&atchan->chan), "request overflow error!!!"); 1653 1654 spin_lock_irq(&atchan->lock); 1655 1656 /* Channel must be disabled first as it's not done automatically */ 1657 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1658 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask) 1659 cpu_relax(); 1660 1661 bad_desc = list_first_entry(&atchan->xfers_list, 1662 struct at_xdmac_desc, 1663 xfer_node); 1664 1665 spin_unlock_irq(&atchan->lock); 1666 1667 /* Print bad descriptor's details if needed */ 1668 dev_dbg(chan2dev(&atchan->chan), 1669 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 1670 __func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da, 1671 bad_desc->lld.mbr_ubc); 1672 1673 /* Then continue with usual descriptor management */ 1674 } 1675 1676 static void at_xdmac_tasklet(struct tasklet_struct *t) 1677 { 1678 struct at_xdmac_chan *atchan = from_tasklet(atchan, t, tasklet); 1679 struct at_xdmac_desc *desc; 1680 u32 error_mask; 1681 1682 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n", 1683 __func__, atchan->irq_status); 1684 1685 error_mask = AT_XDMAC_CIS_RBEIS 1686 | AT_XDMAC_CIS_WBEIS 1687 | AT_XDMAC_CIS_ROIS; 1688 1689 if (at_xdmac_chan_is_cyclic(atchan)) { 1690 at_xdmac_handle_cyclic(atchan); 1691 } else if ((atchan->irq_status & AT_XDMAC_CIS_LIS) 1692 || (atchan->irq_status & error_mask)) { 1693 struct dma_async_tx_descriptor *txd; 1694 1695 if (atchan->irq_status & error_mask) 1696 at_xdmac_handle_error(atchan); 1697 1698 spin_lock_irq(&atchan->lock); 1699 desc = list_first_entry(&atchan->xfers_list, 1700 struct at_xdmac_desc, 1701 xfer_node); 1702 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1703 if (!desc->active_xfer) { 1704 dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting"); 1705 spin_unlock_irq(&atchan->lock); 1706 return; 1707 } 1708 1709 txd = &desc->tx_dma_desc; 1710 1711 at_xdmac_remove_xfer(atchan, desc); 1712 spin_unlock_irq(&atchan->lock); 1713 1714 dma_cookie_complete(txd); 1715 if (txd->flags & DMA_PREP_INTERRUPT) 1716 dmaengine_desc_get_callback_invoke(txd, NULL); 1717 1718 dma_run_dependencies(txd); 1719 1720 spin_lock_irq(&atchan->lock); 1721 at_xdmac_advance_work(atchan); 1722 spin_unlock_irq(&atchan->lock); 1723 } 1724 } 1725 1726 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id) 1727 { 1728 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id; 1729 struct at_xdmac_chan *atchan; 1730 u32 imr, status, pending; 1731 u32 chan_imr, chan_status; 1732 int i, ret = IRQ_NONE; 1733 1734 do { 1735 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1736 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS); 1737 pending = status & imr; 1738 1739 dev_vdbg(atxdmac->dma.dev, 1740 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n", 1741 __func__, status, imr, pending); 1742 1743 if (!pending) 1744 break; 1745 1746 /* We have to find which channel has generated the interrupt. */ 1747 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1748 if (!((1 << i) & pending)) 1749 continue; 1750 1751 atchan = &atxdmac->chan[i]; 1752 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1753 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS); 1754 atchan->irq_status = chan_status & chan_imr; 1755 dev_vdbg(atxdmac->dma.dev, 1756 "%s: chan%d: imr=0x%x, status=0x%x\n", 1757 __func__, i, chan_imr, chan_status); 1758 dev_vdbg(chan2dev(&atchan->chan), 1759 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 1760 __func__, 1761 at_xdmac_chan_read(atchan, AT_XDMAC_CC), 1762 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 1763 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 1764 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 1765 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 1766 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 1767 1768 if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS)) 1769 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1770 1771 tasklet_schedule(&atchan->tasklet); 1772 ret = IRQ_HANDLED; 1773 } 1774 1775 } while (pending); 1776 1777 return ret; 1778 } 1779 1780 static void at_xdmac_issue_pending(struct dma_chan *chan) 1781 { 1782 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1783 unsigned long flags; 1784 1785 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__); 1786 1787 if (!at_xdmac_chan_is_cyclic(atchan)) { 1788 spin_lock_irqsave(&atchan->lock, flags); 1789 at_xdmac_advance_work(atchan); 1790 spin_unlock_irqrestore(&atchan->lock, flags); 1791 } 1792 1793 return; 1794 } 1795 1796 static int at_xdmac_device_config(struct dma_chan *chan, 1797 struct dma_slave_config *config) 1798 { 1799 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1800 int ret; 1801 unsigned long flags; 1802 1803 dev_dbg(chan2dev(chan), "%s\n", __func__); 1804 1805 spin_lock_irqsave(&atchan->lock, flags); 1806 ret = at_xdmac_set_slave_config(chan, config); 1807 spin_unlock_irqrestore(&atchan->lock, flags); 1808 1809 return ret; 1810 } 1811 1812 static int at_xdmac_device_pause(struct dma_chan *chan) 1813 { 1814 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1815 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1816 unsigned long flags; 1817 1818 dev_dbg(chan2dev(chan), "%s\n", __func__); 1819 1820 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status)) 1821 return 0; 1822 1823 spin_lock_irqsave(&atchan->lock, flags); 1824 at_xdmac_write(atxdmac, atxdmac->layout->grws, atchan->mask); 1825 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC) 1826 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP)) 1827 cpu_relax(); 1828 spin_unlock_irqrestore(&atchan->lock, flags); 1829 1830 return 0; 1831 } 1832 1833 static int at_xdmac_device_resume(struct dma_chan *chan) 1834 { 1835 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1836 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1837 unsigned long flags; 1838 1839 dev_dbg(chan2dev(chan), "%s\n", __func__); 1840 1841 spin_lock_irqsave(&atchan->lock, flags); 1842 if (!at_xdmac_chan_is_paused(atchan)) { 1843 spin_unlock_irqrestore(&atchan->lock, flags); 1844 return 0; 1845 } 1846 1847 at_xdmac_write(atxdmac, atxdmac->layout->grwr, atchan->mask); 1848 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1849 spin_unlock_irqrestore(&atchan->lock, flags); 1850 1851 return 0; 1852 } 1853 1854 static int at_xdmac_device_terminate_all(struct dma_chan *chan) 1855 { 1856 struct at_xdmac_desc *desc, *_desc; 1857 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1858 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1859 unsigned long flags; 1860 1861 dev_dbg(chan2dev(chan), "%s\n", __func__); 1862 1863 spin_lock_irqsave(&atchan->lock, flags); 1864 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1865 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask) 1866 cpu_relax(); 1867 1868 /* Cancel all pending transfers. */ 1869 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) 1870 at_xdmac_remove_xfer(atchan, desc); 1871 1872 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1873 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 1874 spin_unlock_irqrestore(&atchan->lock, flags); 1875 1876 return 0; 1877 } 1878 1879 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan) 1880 { 1881 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1882 struct at_xdmac_desc *desc; 1883 int i; 1884 1885 if (at_xdmac_chan_is_enabled(atchan)) { 1886 dev_err(chan2dev(chan), 1887 "can't allocate channel resources (channel enabled)\n"); 1888 return -EIO; 1889 } 1890 1891 if (!list_empty(&atchan->free_descs_list)) { 1892 dev_err(chan2dev(chan), 1893 "can't allocate channel resources (channel not free from a previous use)\n"); 1894 return -EIO; 1895 } 1896 1897 for (i = 0; i < init_nr_desc_per_channel; i++) { 1898 desc = at_xdmac_alloc_desc(chan, GFP_KERNEL); 1899 if (!desc) { 1900 dev_warn(chan2dev(chan), 1901 "only %d descriptors have been allocated\n", i); 1902 break; 1903 } 1904 list_add_tail(&desc->desc_node, &atchan->free_descs_list); 1905 } 1906 1907 dma_cookie_init(chan); 1908 1909 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i); 1910 1911 return i; 1912 } 1913 1914 static void at_xdmac_free_chan_resources(struct dma_chan *chan) 1915 { 1916 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1917 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 1918 struct at_xdmac_desc *desc, *_desc; 1919 1920 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) { 1921 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc); 1922 list_del(&desc->desc_node); 1923 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys); 1924 } 1925 1926 return; 1927 } 1928 1929 static void at_xdmac_axi_config(struct platform_device *pdev) 1930 { 1931 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev); 1932 bool dev_m2m = false; 1933 u32 dma_requests; 1934 1935 if (!atxdmac->layout->axi_config) 1936 return; /* Not supported */ 1937 1938 if (!of_property_read_u32(pdev->dev.of_node, "dma-requests", 1939 &dma_requests)) { 1940 dev_info(&pdev->dev, "controller in mem2mem mode.\n"); 1941 dev_m2m = true; 1942 } 1943 1944 if (dev_m2m) { 1945 at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_M2M); 1946 at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_M2M); 1947 } else { 1948 at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_P2M); 1949 at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_P2M); 1950 } 1951 } 1952 1953 static int __maybe_unused atmel_xdmac_prepare(struct device *dev) 1954 { 1955 struct at_xdmac *atxdmac = dev_get_drvdata(dev); 1956 struct dma_chan *chan, *_chan; 1957 1958 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1959 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1960 1961 /* Wait for transfer completion, except in cyclic case. */ 1962 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan)) 1963 return -EAGAIN; 1964 } 1965 return 0; 1966 } 1967 1968 static int __maybe_unused atmel_xdmac_suspend(struct device *dev) 1969 { 1970 struct at_xdmac *atxdmac = dev_get_drvdata(dev); 1971 struct dma_chan *chan, *_chan; 1972 1973 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1974 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1975 1976 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC); 1977 if (at_xdmac_chan_is_cyclic(atchan)) { 1978 if (!at_xdmac_chan_is_paused(atchan)) 1979 at_xdmac_device_pause(chan); 1980 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1981 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA); 1982 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC); 1983 } 1984 } 1985 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1986 1987 at_xdmac_off(atxdmac); 1988 clk_disable_unprepare(atxdmac->clk); 1989 return 0; 1990 } 1991 1992 static int __maybe_unused atmel_xdmac_resume(struct device *dev) 1993 { 1994 struct at_xdmac *atxdmac = dev_get_drvdata(dev); 1995 struct at_xdmac_chan *atchan; 1996 struct dma_chan *chan, *_chan; 1997 struct platform_device *pdev = container_of(dev, struct platform_device, dev); 1998 int i; 1999 int ret; 2000 2001 ret = clk_prepare_enable(atxdmac->clk); 2002 if (ret) 2003 return ret; 2004 2005 at_xdmac_axi_config(pdev); 2006 2007 /* Clear pending interrupts. */ 2008 for (i = 0; i < atxdmac->dma.chancnt; i++) { 2009 atchan = &atxdmac->chan[i]; 2010 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 2011 cpu_relax(); 2012 } 2013 2014 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim); 2015 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 2016 atchan = to_at_xdmac_chan(chan); 2017 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc); 2018 if (at_xdmac_chan_is_cyclic(atchan)) { 2019 if (at_xdmac_chan_is_paused(atchan)) 2020 at_xdmac_device_resume(chan); 2021 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda); 2022 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc); 2023 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim); 2024 wmb(); 2025 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 2026 } 2027 } 2028 return 0; 2029 } 2030 2031 static int at_xdmac_probe(struct platform_device *pdev) 2032 { 2033 struct at_xdmac *atxdmac; 2034 int irq, size, nr_channels, i, ret; 2035 void __iomem *base; 2036 u32 reg; 2037 2038 irq = platform_get_irq(pdev, 0); 2039 if (irq < 0) 2040 return irq; 2041 2042 base = devm_platform_ioremap_resource(pdev, 0); 2043 if (IS_ERR(base)) 2044 return PTR_ERR(base); 2045 2046 /* 2047 * Read number of xdmac channels, read helper function can't be used 2048 * since atxdmac is not yet allocated and we need to know the number 2049 * of channels to do the allocation. 2050 */ 2051 reg = readl_relaxed(base + AT_XDMAC_GTYPE); 2052 nr_channels = AT_XDMAC_NB_CH(reg); 2053 if (nr_channels > AT_XDMAC_MAX_CHAN) { 2054 dev_err(&pdev->dev, "invalid number of channels (%u)\n", 2055 nr_channels); 2056 return -EINVAL; 2057 } 2058 2059 size = sizeof(*atxdmac); 2060 size += nr_channels * sizeof(struct at_xdmac_chan); 2061 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); 2062 if (!atxdmac) { 2063 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n"); 2064 return -ENOMEM; 2065 } 2066 2067 atxdmac->regs = base; 2068 atxdmac->irq = irq; 2069 2070 atxdmac->layout = of_device_get_match_data(&pdev->dev); 2071 if (!atxdmac->layout) 2072 return -ENODEV; 2073 2074 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk"); 2075 if (IS_ERR(atxdmac->clk)) { 2076 dev_err(&pdev->dev, "can't get dma_clk\n"); 2077 return PTR_ERR(atxdmac->clk); 2078 } 2079 2080 /* Do not use dev res to prevent races with tasklet */ 2081 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac); 2082 if (ret) { 2083 dev_err(&pdev->dev, "can't request irq\n"); 2084 return ret; 2085 } 2086 2087 ret = clk_prepare_enable(atxdmac->clk); 2088 if (ret) { 2089 dev_err(&pdev->dev, "can't prepare or enable clock\n"); 2090 goto err_free_irq; 2091 } 2092 2093 atxdmac->at_xdmac_desc_pool = 2094 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev, 2095 sizeof(struct at_xdmac_desc), 4, 0); 2096 if (!atxdmac->at_xdmac_desc_pool) { 2097 dev_err(&pdev->dev, "no memory for descriptors dma pool\n"); 2098 ret = -ENOMEM; 2099 goto err_clk_disable; 2100 } 2101 2102 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask); 2103 dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask); 2104 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask); 2105 dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask); 2106 dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask); 2107 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask); 2108 /* 2109 * Without DMA_PRIVATE the driver is not able to allocate more than 2110 * one channel, second allocation fails in private_candidate. 2111 */ 2112 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask); 2113 atxdmac->dma.dev = &pdev->dev; 2114 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources; 2115 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources; 2116 atxdmac->dma.device_tx_status = at_xdmac_tx_status; 2117 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending; 2118 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic; 2119 atxdmac->dma.device_prep_interleaved_dma = at_xdmac_prep_interleaved; 2120 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy; 2121 atxdmac->dma.device_prep_dma_memset = at_xdmac_prep_dma_memset; 2122 atxdmac->dma.device_prep_dma_memset_sg = at_xdmac_prep_dma_memset_sg; 2123 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg; 2124 atxdmac->dma.device_config = at_xdmac_device_config; 2125 atxdmac->dma.device_pause = at_xdmac_device_pause; 2126 atxdmac->dma.device_resume = at_xdmac_device_resume; 2127 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all; 2128 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 2129 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 2130 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2131 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2132 2133 /* Disable all chans and interrupts. */ 2134 at_xdmac_off(atxdmac); 2135 2136 /* Init channels. */ 2137 INIT_LIST_HEAD(&atxdmac->dma.channels); 2138 for (i = 0; i < nr_channels; i++) { 2139 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 2140 2141 atchan->chan.device = &atxdmac->dma; 2142 list_add_tail(&atchan->chan.device_node, 2143 &atxdmac->dma.channels); 2144 2145 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i); 2146 atchan->mask = 1 << i; 2147 2148 spin_lock_init(&atchan->lock); 2149 INIT_LIST_HEAD(&atchan->xfers_list); 2150 INIT_LIST_HEAD(&atchan->free_descs_list); 2151 tasklet_setup(&atchan->tasklet, at_xdmac_tasklet); 2152 2153 /* Clear pending interrupts. */ 2154 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 2155 cpu_relax(); 2156 } 2157 platform_set_drvdata(pdev, atxdmac); 2158 2159 ret = dma_async_device_register(&atxdmac->dma); 2160 if (ret) { 2161 dev_err(&pdev->dev, "fail to register DMA engine device\n"); 2162 goto err_clk_disable; 2163 } 2164 2165 ret = of_dma_controller_register(pdev->dev.of_node, 2166 at_xdmac_xlate, atxdmac); 2167 if (ret) { 2168 dev_err(&pdev->dev, "could not register of dma controller\n"); 2169 goto err_dma_unregister; 2170 } 2171 2172 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n", 2173 nr_channels, atxdmac->regs); 2174 2175 at_xdmac_axi_config(pdev); 2176 2177 return 0; 2178 2179 err_dma_unregister: 2180 dma_async_device_unregister(&atxdmac->dma); 2181 err_clk_disable: 2182 clk_disable_unprepare(atxdmac->clk); 2183 err_free_irq: 2184 free_irq(atxdmac->irq, atxdmac); 2185 return ret; 2186 } 2187 2188 static int at_xdmac_remove(struct platform_device *pdev) 2189 { 2190 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev); 2191 int i; 2192 2193 at_xdmac_off(atxdmac); 2194 of_dma_controller_free(pdev->dev.of_node); 2195 dma_async_device_unregister(&atxdmac->dma); 2196 clk_disable_unprepare(atxdmac->clk); 2197 2198 free_irq(atxdmac->irq, atxdmac); 2199 2200 for (i = 0; i < atxdmac->dma.chancnt; i++) { 2201 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 2202 2203 tasklet_kill(&atchan->tasklet); 2204 at_xdmac_free_chan_resources(&atchan->chan); 2205 } 2206 2207 return 0; 2208 } 2209 2210 static const struct dev_pm_ops __maybe_unused atmel_xdmac_dev_pm_ops = { 2211 .prepare = atmel_xdmac_prepare, 2212 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume) 2213 }; 2214 2215 static const struct of_device_id atmel_xdmac_dt_ids[] = { 2216 { 2217 .compatible = "atmel,sama5d4-dma", 2218 .data = &at_xdmac_sama5d4_layout, 2219 }, { 2220 .compatible = "microchip,sama7g5-dma", 2221 .data = &at_xdmac_sama7g5_layout, 2222 }, { 2223 /* sentinel */ 2224 } 2225 }; 2226 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids); 2227 2228 static struct platform_driver at_xdmac_driver = { 2229 .probe = at_xdmac_probe, 2230 .remove = at_xdmac_remove, 2231 .driver = { 2232 .name = "at_xdmac", 2233 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids), 2234 .pm = pm_ptr(&atmel_xdmac_dev_pm_ops), 2235 } 2236 }; 2237 2238 static int __init at_xdmac_init(void) 2239 { 2240 return platform_driver_register(&at_xdmac_driver); 2241 } 2242 subsys_initcall(at_xdmac_init); 2243 2244 static void __exit at_xdmac_exit(void) 2245 { 2246 platform_driver_unregister(&at_xdmac_driver); 2247 } 2248 module_exit(at_xdmac_exit); 2249 2250 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver"); 2251 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>"); 2252 MODULE_LICENSE("GPL"); 2253