1 /* 2 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems) 3 * 4 * Copyright (C) 2014 Atmel Corporation 5 * 6 * Author: Ludovic Desroches <ludovic.desroches@atmel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 * 17 * You should have received a copy of the GNU General Public License along with 18 * this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <asm/barrier.h> 22 #include <dt-bindings/dma/at91.h> 23 #include <linux/clk.h> 24 #include <linux/dmaengine.h> 25 #include <linux/dmapool.h> 26 #include <linux/interrupt.h> 27 #include <linux/irq.h> 28 #include <linux/kernel.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/of_dma.h> 32 #include <linux/of_platform.h> 33 #include <linux/platform_device.h> 34 #include <linux/pm.h> 35 36 #include "dmaengine.h" 37 38 /* Global registers */ 39 #define AT_XDMAC_GTYPE 0x00 /* Global Type Register */ 40 #define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */ 41 #define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */ 42 #define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */ 43 #define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */ 44 #define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */ 45 #define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */ 46 #define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */ 47 #define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */ 48 #define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */ 49 #define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */ 50 #define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */ 51 #define AT_XDMAC_GS 0x24 /* Global Channel Status Register */ 52 #define AT_XDMAC_GRS 0x28 /* Global Channel Read Suspend Register */ 53 #define AT_XDMAC_GWS 0x2C /* Global Write Suspend Register */ 54 #define AT_XDMAC_GRWS 0x30 /* Global Channel Read Write Suspend Register */ 55 #define AT_XDMAC_GRWR 0x34 /* Global Channel Read Write Resume Register */ 56 #define AT_XDMAC_GSWR 0x38 /* Global Channel Software Request Register */ 57 #define AT_XDMAC_GSWS 0x3C /* Global channel Software Request Status Register */ 58 #define AT_XDMAC_GSWF 0x40 /* Global Channel Software Flush Request Register */ 59 #define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */ 60 61 /* Channel relative registers offsets */ 62 #define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */ 63 #define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */ 64 #define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */ 65 #define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */ 66 #define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */ 67 #define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */ 68 #define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */ 69 #define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */ 70 #define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */ 71 #define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */ 72 #define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */ 73 #define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */ 74 #define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */ 75 #define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */ 76 #define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */ 77 #define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */ 78 #define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */ 79 #define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */ 80 #define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */ 81 #define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */ 82 #define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */ 83 #define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */ 84 #define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */ 85 #define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */ 86 #define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */ 87 #define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */ 88 #define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */ 89 #define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */ 90 #define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */ 91 #define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */ 92 #define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */ 93 #define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */ 94 #define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */ 95 #define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */ 96 #define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */ 97 #define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */ 98 #define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */ 99 #define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */ 100 #define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */ 101 #define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */ 102 #define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */ 103 #define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */ 104 #define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */ 105 #define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */ 106 #define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */ 107 #define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */ 108 #define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */ 109 #define AT_XDMAC_CC 0x28 /* Channel Configuration Register */ 110 #define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */ 111 #define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */ 112 #define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */ 113 #define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1) 114 #define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1) 115 #define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1) 116 #define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1) 117 #define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1) 118 #define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */ 119 #define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4) 120 #define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4) 121 #define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */ 122 #define AT_XDMAC_CC_PROT_SEC (0x0 << 5) 123 #define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5) 124 #define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */ 125 #define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6) 126 #define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6) 127 #define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */ 128 #define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7) 129 #define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7) 130 #define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */ 131 #define AT_XDMAC_CC_DWIDTH_OFFSET 11 132 #define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET) 133 #define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */ 134 #define AT_XDMAC_CC_DWIDTH_BYTE 0x0 135 #define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1 136 #define AT_XDMAC_CC_DWIDTH_WORD 0x2 137 #define AT_XDMAC_CC_DWIDTH_DWORD 0x3 138 #define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */ 139 #define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */ 140 #define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */ 141 #define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16) 142 #define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16) 143 #define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16) 144 #define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16) 145 #define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */ 146 #define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18) 147 #define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18) 148 #define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18) 149 #define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18) 150 #define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */ 151 #define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21) 152 #define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21) 153 #define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */ 154 #define AT_XDMAC_CC_RDIP_DONE (0x0 << 22) 155 #define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22) 156 #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */ 157 #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23) 158 #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23) 159 #define AT_XDMAC_CC_PERID(i) (0x7f & (i) << 24) /* Channel Peripheral Identifier */ 160 #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */ 161 #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */ 162 #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */ 163 164 #define AT_XDMAC_CHAN_REG_BASE 0x50 /* Channel registers base address */ 165 166 /* Microblock control members */ 167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */ 168 #define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */ 169 #define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */ 170 #define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */ 171 #define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */ 172 #define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */ 173 #define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */ 174 #define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */ 175 176 #define AT_XDMAC_MAX_CHAN 0x20 177 #define AT_XDMAC_MAX_CSIZE 16 /* 16 data */ 178 #define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */ 179 180 #define AT_XDMAC_DMA_BUSWIDTHS\ 181 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 182 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 183 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 184 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\ 185 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 186 187 enum atc_status { 188 AT_XDMAC_CHAN_IS_CYCLIC = 0, 189 AT_XDMAC_CHAN_IS_PAUSED, 190 }; 191 192 /* ----- Channels ----- */ 193 struct at_xdmac_chan { 194 struct dma_chan chan; 195 void __iomem *ch_regs; 196 u32 mask; /* Channel Mask */ 197 u32 cfg; /* Channel Configuration Register */ 198 u8 perid; /* Peripheral ID */ 199 u8 perif; /* Peripheral Interface */ 200 u8 memif; /* Memory Interface */ 201 u32 save_cc; 202 u32 save_cim; 203 u32 save_cnda; 204 u32 save_cndc; 205 unsigned long status; 206 struct tasklet_struct tasklet; 207 struct dma_slave_config sconfig; 208 209 spinlock_t lock; 210 211 struct list_head xfers_list; 212 struct list_head free_descs_list; 213 }; 214 215 216 /* ----- Controller ----- */ 217 struct at_xdmac { 218 struct dma_device dma; 219 void __iomem *regs; 220 int irq; 221 struct clk *clk; 222 u32 save_gim; 223 u32 save_gs; 224 struct dma_pool *at_xdmac_desc_pool; 225 struct at_xdmac_chan chan[0]; 226 }; 227 228 229 /* ----- Descriptors ----- */ 230 231 /* Linked List Descriptor */ 232 struct at_xdmac_lld { 233 dma_addr_t mbr_nda; /* Next Descriptor Member */ 234 u32 mbr_ubc; /* Microblock Control Member */ 235 dma_addr_t mbr_sa; /* Source Address Member */ 236 dma_addr_t mbr_da; /* Destination Address Member */ 237 u32 mbr_cfg; /* Configuration Register */ 238 u32 mbr_bc; /* Block Control Register */ 239 u32 mbr_ds; /* Data Stride Register */ 240 u32 mbr_sus; /* Source Microblock Stride Register */ 241 u32 mbr_dus; /* Destination Microblock Stride Register */ 242 }; 243 244 245 struct at_xdmac_desc { 246 struct at_xdmac_lld lld; 247 enum dma_transfer_direction direction; 248 struct dma_async_tx_descriptor tx_dma_desc; 249 struct list_head desc_node; 250 /* Following members are only used by the first descriptor */ 251 bool active_xfer; 252 unsigned int xfer_size; 253 struct list_head descs_list; 254 struct list_head xfer_node; 255 }; 256 257 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb) 258 { 259 return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40); 260 } 261 262 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg)) 263 #define at_xdmac_write(atxdmac, reg, value) \ 264 writel_relaxed((value), (atxdmac)->regs + (reg)) 265 266 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg)) 267 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg)) 268 269 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan) 270 { 271 return container_of(dchan, struct at_xdmac_chan, chan); 272 } 273 274 static struct device *chan2dev(struct dma_chan *chan) 275 { 276 return &chan->dev->device; 277 } 278 279 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev) 280 { 281 return container_of(ddev, struct at_xdmac, dma); 282 } 283 284 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd) 285 { 286 return container_of(txd, struct at_xdmac_desc, tx_dma_desc); 287 } 288 289 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan) 290 { 291 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 292 } 293 294 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan) 295 { 296 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 297 } 298 299 static inline int at_xdmac_csize(u32 maxburst) 300 { 301 int csize; 302 303 csize = ffs(maxburst) - 1; 304 if (csize > 4) 305 csize = -EINVAL; 306 307 return csize; 308 }; 309 310 static inline u8 at_xdmac_get_dwidth(u32 cfg) 311 { 312 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET; 313 }; 314 315 static unsigned int init_nr_desc_per_channel = 64; 316 module_param(init_nr_desc_per_channel, uint, 0644); 317 MODULE_PARM_DESC(init_nr_desc_per_channel, 318 "initial descriptors per channel (default: 64)"); 319 320 321 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan) 322 { 323 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask; 324 } 325 326 static void at_xdmac_off(struct at_xdmac *atxdmac) 327 { 328 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L); 329 330 /* Wait that all chans are disabled. */ 331 while (at_xdmac_read(atxdmac, AT_XDMAC_GS)) 332 cpu_relax(); 333 334 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L); 335 } 336 337 /* Call with lock hold. */ 338 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan, 339 struct at_xdmac_desc *first) 340 { 341 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 342 u32 reg; 343 344 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first); 345 346 if (at_xdmac_chan_is_enabled(atchan)) 347 return; 348 349 /* Set transfer as active to not try to start it again. */ 350 first->active_xfer = true; 351 352 /* Tell xdmac where to get the first descriptor. */ 353 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys) 354 | AT_XDMAC_CNDA_NDAIF(atchan->memif); 355 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg); 356 357 /* 358 * When doing non cyclic transfer we need to use the next 359 * descriptor view 2 since some fields of the configuration register 360 * depend on transfer size and src/dest addresses. 361 */ 362 if (at_xdmac_chan_is_cyclic(atchan)) 363 reg = AT_XDMAC_CNDC_NDVIEW_NDV1; 364 else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3) 365 reg = AT_XDMAC_CNDC_NDVIEW_NDV3; 366 else 367 reg = AT_XDMAC_CNDC_NDVIEW_NDV2; 368 /* 369 * Even if the register will be updated from the configuration in the 370 * descriptor when using view 2 or higher, the PROT bit won't be set 371 * properly. This bit can be modified only by using the channel 372 * configuration register. 373 */ 374 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg); 375 376 reg |= AT_XDMAC_CNDC_NDDUP 377 | AT_XDMAC_CNDC_NDSUP 378 | AT_XDMAC_CNDC_NDE; 379 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg); 380 381 dev_vdbg(chan2dev(&atchan->chan), 382 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 383 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 384 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 385 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 386 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 387 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 388 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 389 390 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff); 391 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE; 392 /* 393 * There is no end of list when doing cyclic dma, we need to get 394 * an interrupt after each periods. 395 */ 396 if (at_xdmac_chan_is_cyclic(atchan)) 397 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 398 reg | AT_XDMAC_CIE_BIE); 399 else 400 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 401 reg | AT_XDMAC_CIE_LIE); 402 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask); 403 dev_vdbg(chan2dev(&atchan->chan), 404 "%s: enable channel (0x%08x)\n", __func__, atchan->mask); 405 wmb(); 406 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 407 408 dev_vdbg(chan2dev(&atchan->chan), 409 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 410 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 411 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 412 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 413 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 414 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 415 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 416 417 } 418 419 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx) 420 { 421 struct at_xdmac_desc *desc = txd_to_at_desc(tx); 422 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan); 423 dma_cookie_t cookie; 424 unsigned long irqflags; 425 426 spin_lock_irqsave(&atchan->lock, irqflags); 427 cookie = dma_cookie_assign(tx); 428 429 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n", 430 __func__, atchan, desc); 431 list_add_tail(&desc->xfer_node, &atchan->xfers_list); 432 if (list_is_singular(&atchan->xfers_list)) 433 at_xdmac_start_xfer(atchan, desc); 434 435 spin_unlock_irqrestore(&atchan->lock, irqflags); 436 return cookie; 437 } 438 439 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan, 440 gfp_t gfp_flags) 441 { 442 struct at_xdmac_desc *desc; 443 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 444 dma_addr_t phys; 445 446 desc = dma_pool_alloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys); 447 if (desc) { 448 memset(desc, 0, sizeof(*desc)); 449 INIT_LIST_HEAD(&desc->descs_list); 450 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan); 451 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit; 452 desc->tx_dma_desc.phys = phys; 453 } 454 455 return desc; 456 } 457 458 void at_xdmac_init_used_desc(struct at_xdmac_desc *desc) 459 { 460 memset(&desc->lld, 0, sizeof(desc->lld)); 461 INIT_LIST_HEAD(&desc->descs_list); 462 desc->direction = DMA_TRANS_NONE; 463 desc->xfer_size = 0; 464 desc->active_xfer = false; 465 } 466 467 /* Call must be protected by lock. */ 468 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan) 469 { 470 struct at_xdmac_desc *desc; 471 472 if (list_empty(&atchan->free_descs_list)) { 473 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT); 474 } else { 475 desc = list_first_entry(&atchan->free_descs_list, 476 struct at_xdmac_desc, desc_node); 477 list_del(&desc->desc_node); 478 at_xdmac_init_used_desc(desc); 479 } 480 481 return desc; 482 } 483 484 static void at_xdmac_queue_desc(struct dma_chan *chan, 485 struct at_xdmac_desc *prev, 486 struct at_xdmac_desc *desc) 487 { 488 if (!prev || !desc) 489 return; 490 491 prev->lld.mbr_nda = desc->tx_dma_desc.phys; 492 prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE; 493 494 dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n", 495 __func__, prev, &prev->lld.mbr_nda); 496 } 497 498 static inline void at_xdmac_increment_block_count(struct dma_chan *chan, 499 struct at_xdmac_desc *desc) 500 { 501 if (!desc) 502 return; 503 504 desc->lld.mbr_bc++; 505 506 dev_dbg(chan2dev(chan), 507 "%s: incrementing the block count of the desc 0x%p\n", 508 __func__, desc); 509 } 510 511 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec, 512 struct of_dma *of_dma) 513 { 514 struct at_xdmac *atxdmac = of_dma->of_dma_data; 515 struct at_xdmac_chan *atchan; 516 struct dma_chan *chan; 517 struct device *dev = atxdmac->dma.dev; 518 519 if (dma_spec->args_count != 1) { 520 dev_err(dev, "dma phandler args: bad number of args\n"); 521 return NULL; 522 } 523 524 chan = dma_get_any_slave_channel(&atxdmac->dma); 525 if (!chan) { 526 dev_err(dev, "can't get a dma channel\n"); 527 return NULL; 528 } 529 530 atchan = to_at_xdmac_chan(chan); 531 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]); 532 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]); 533 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]); 534 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n", 535 atchan->memif, atchan->perif, atchan->perid); 536 537 return chan; 538 } 539 540 static int at_xdmac_compute_chan_conf(struct dma_chan *chan, 541 enum dma_transfer_direction direction) 542 { 543 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 544 int csize, dwidth; 545 546 if (direction == DMA_DEV_TO_MEM) { 547 atchan->cfg = 548 AT91_XDMAC_DT_PERID(atchan->perid) 549 | AT_XDMAC_CC_DAM_INCREMENTED_AM 550 | AT_XDMAC_CC_SAM_FIXED_AM 551 | AT_XDMAC_CC_DIF(atchan->memif) 552 | AT_XDMAC_CC_SIF(atchan->perif) 553 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 554 | AT_XDMAC_CC_DSYNC_PER2MEM 555 | AT_XDMAC_CC_MBSIZE_SIXTEEN 556 | AT_XDMAC_CC_TYPE_PER_TRAN; 557 csize = ffs(atchan->sconfig.src_maxburst) - 1; 558 if (csize < 0) { 559 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 560 return -EINVAL; 561 } 562 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 563 dwidth = ffs(atchan->sconfig.src_addr_width) - 1; 564 if (dwidth < 0) { 565 dev_err(chan2dev(chan), "invalid src addr width value\n"); 566 return -EINVAL; 567 } 568 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 569 } else if (direction == DMA_MEM_TO_DEV) { 570 atchan->cfg = 571 AT91_XDMAC_DT_PERID(atchan->perid) 572 | AT_XDMAC_CC_DAM_FIXED_AM 573 | AT_XDMAC_CC_SAM_INCREMENTED_AM 574 | AT_XDMAC_CC_DIF(atchan->perif) 575 | AT_XDMAC_CC_SIF(atchan->memif) 576 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 577 | AT_XDMAC_CC_DSYNC_MEM2PER 578 | AT_XDMAC_CC_MBSIZE_SIXTEEN 579 | AT_XDMAC_CC_TYPE_PER_TRAN; 580 csize = ffs(atchan->sconfig.dst_maxburst) - 1; 581 if (csize < 0) { 582 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 583 return -EINVAL; 584 } 585 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 586 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1; 587 if (dwidth < 0) { 588 dev_err(chan2dev(chan), "invalid dst addr width value\n"); 589 return -EINVAL; 590 } 591 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 592 } 593 594 dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg); 595 596 return 0; 597 } 598 599 /* 600 * Only check that maxburst and addr width values are supported by the 601 * the controller but not that the configuration is good to perform the 602 * transfer since we don't know the direction at this stage. 603 */ 604 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig) 605 { 606 if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE) 607 || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE)) 608 return -EINVAL; 609 610 if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH) 611 || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH)) 612 return -EINVAL; 613 614 return 0; 615 } 616 617 static int at_xdmac_set_slave_config(struct dma_chan *chan, 618 struct dma_slave_config *sconfig) 619 { 620 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 621 622 if (at_xdmac_check_slave_config(sconfig)) { 623 dev_err(chan2dev(chan), "invalid slave configuration\n"); 624 return -EINVAL; 625 } 626 627 memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig)); 628 629 return 0; 630 } 631 632 static struct dma_async_tx_descriptor * 633 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 634 unsigned int sg_len, enum dma_transfer_direction direction, 635 unsigned long flags, void *context) 636 { 637 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 638 struct at_xdmac_desc *first = NULL, *prev = NULL; 639 struct scatterlist *sg; 640 int i; 641 unsigned int xfer_size = 0; 642 unsigned long irqflags; 643 struct dma_async_tx_descriptor *ret = NULL; 644 645 if (!sgl) 646 return NULL; 647 648 if (!is_slave_direction(direction)) { 649 dev_err(chan2dev(chan), "invalid DMA direction\n"); 650 return NULL; 651 } 652 653 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n", 654 __func__, sg_len, 655 direction == DMA_MEM_TO_DEV ? "to device" : "from device", 656 flags); 657 658 /* Protect dma_sconfig field that can be modified by set_slave_conf. */ 659 spin_lock_irqsave(&atchan->lock, irqflags); 660 661 if (at_xdmac_compute_chan_conf(chan, direction)) 662 goto spin_unlock; 663 664 /* Prepare descriptors. */ 665 for_each_sg(sgl, sg, sg_len, i) { 666 struct at_xdmac_desc *desc = NULL; 667 u32 len, mem, dwidth, fixed_dwidth; 668 669 len = sg_dma_len(sg); 670 mem = sg_dma_address(sg); 671 if (unlikely(!len)) { 672 dev_err(chan2dev(chan), "sg data length is zero\n"); 673 goto spin_unlock; 674 } 675 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n", 676 __func__, i, len, mem); 677 678 desc = at_xdmac_get_desc(atchan); 679 if (!desc) { 680 dev_err(chan2dev(chan), "can't get descriptor\n"); 681 if (first) 682 list_splice_init(&first->descs_list, &atchan->free_descs_list); 683 goto spin_unlock; 684 } 685 686 /* Linked list descriptor setup. */ 687 if (direction == DMA_DEV_TO_MEM) { 688 desc->lld.mbr_sa = atchan->sconfig.src_addr; 689 desc->lld.mbr_da = mem; 690 } else { 691 desc->lld.mbr_sa = mem; 692 desc->lld.mbr_da = atchan->sconfig.dst_addr; 693 } 694 dwidth = at_xdmac_get_dwidth(atchan->cfg); 695 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth) 696 ? dwidth 697 : AT_XDMAC_CC_DWIDTH_BYTE; 698 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */ 699 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */ 700 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */ 701 | (len >> fixed_dwidth); /* microblock length */ 702 desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) | 703 AT_XDMAC_CC_DWIDTH(fixed_dwidth); 704 dev_dbg(chan2dev(chan), 705 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 706 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 707 708 /* Chain lld. */ 709 if (prev) 710 at_xdmac_queue_desc(chan, prev, desc); 711 712 prev = desc; 713 if (!first) 714 first = desc; 715 716 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 717 __func__, desc, first); 718 list_add_tail(&desc->desc_node, &first->descs_list); 719 xfer_size += len; 720 } 721 722 723 first->tx_dma_desc.flags = flags; 724 first->xfer_size = xfer_size; 725 first->direction = direction; 726 ret = &first->tx_dma_desc; 727 728 spin_unlock: 729 spin_unlock_irqrestore(&atchan->lock, irqflags); 730 return ret; 731 } 732 733 static struct dma_async_tx_descriptor * 734 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, 735 size_t buf_len, size_t period_len, 736 enum dma_transfer_direction direction, 737 unsigned long flags) 738 { 739 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 740 struct at_xdmac_desc *first = NULL, *prev = NULL; 741 unsigned int periods = buf_len / period_len; 742 int i; 743 unsigned long irqflags; 744 745 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n", 746 __func__, &buf_addr, buf_len, period_len, 747 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags); 748 749 if (!is_slave_direction(direction)) { 750 dev_err(chan2dev(chan), "invalid DMA direction\n"); 751 return NULL; 752 } 753 754 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) { 755 dev_err(chan2dev(chan), "channel currently used\n"); 756 return NULL; 757 } 758 759 if (at_xdmac_compute_chan_conf(chan, direction)) 760 return NULL; 761 762 for (i = 0; i < periods; i++) { 763 struct at_xdmac_desc *desc = NULL; 764 765 spin_lock_irqsave(&atchan->lock, irqflags); 766 desc = at_xdmac_get_desc(atchan); 767 if (!desc) { 768 dev_err(chan2dev(chan), "can't get descriptor\n"); 769 if (first) 770 list_splice_init(&first->descs_list, &atchan->free_descs_list); 771 spin_unlock_irqrestore(&atchan->lock, irqflags); 772 return NULL; 773 } 774 spin_unlock_irqrestore(&atchan->lock, irqflags); 775 dev_dbg(chan2dev(chan), 776 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n", 777 __func__, desc, &desc->tx_dma_desc.phys); 778 779 if (direction == DMA_DEV_TO_MEM) { 780 desc->lld.mbr_sa = atchan->sconfig.src_addr; 781 desc->lld.mbr_da = buf_addr + i * period_len; 782 } else { 783 desc->lld.mbr_sa = buf_addr + i * period_len; 784 desc->lld.mbr_da = atchan->sconfig.dst_addr; 785 } 786 desc->lld.mbr_cfg = atchan->cfg; 787 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1 788 | AT_XDMAC_MBR_UBC_NDEN 789 | AT_XDMAC_MBR_UBC_NSEN 790 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg); 791 792 dev_dbg(chan2dev(chan), 793 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 794 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 795 796 /* Chain lld. */ 797 if (prev) 798 at_xdmac_queue_desc(chan, prev, desc); 799 800 prev = desc; 801 if (!first) 802 first = desc; 803 804 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 805 __func__, desc, first); 806 list_add_tail(&desc->desc_node, &first->descs_list); 807 } 808 809 at_xdmac_queue_desc(chan, prev, first); 810 first->tx_dma_desc.flags = flags; 811 first->xfer_size = buf_len; 812 first->direction = direction; 813 814 return &first->tx_dma_desc; 815 } 816 817 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr) 818 { 819 u32 width; 820 821 /* 822 * Check address alignment to select the greater data width we 823 * can use. 824 * 825 * Some XDMAC implementations don't provide dword transfer, in 826 * this case selecting dword has the same behavior as 827 * selecting word transfers. 828 */ 829 if (!(addr & 7)) { 830 width = AT_XDMAC_CC_DWIDTH_DWORD; 831 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__); 832 } else if (!(addr & 3)) { 833 width = AT_XDMAC_CC_DWIDTH_WORD; 834 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__); 835 } else if (!(addr & 1)) { 836 width = AT_XDMAC_CC_DWIDTH_HALFWORD; 837 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__); 838 } else { 839 width = AT_XDMAC_CC_DWIDTH_BYTE; 840 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__); 841 } 842 843 return width; 844 } 845 846 static struct at_xdmac_desc * 847 at_xdmac_interleaved_queue_desc(struct dma_chan *chan, 848 struct at_xdmac_chan *atchan, 849 struct at_xdmac_desc *prev, 850 dma_addr_t src, dma_addr_t dst, 851 struct dma_interleaved_template *xt, 852 struct data_chunk *chunk) 853 { 854 struct at_xdmac_desc *desc; 855 u32 dwidth; 856 unsigned long flags; 857 size_t ublen; 858 /* 859 * WARNING: The channel configuration is set here since there is no 860 * dmaengine_slave_config call in this case. Moreover we don't know the 861 * direction, it involves we can't dynamically set the source and dest 862 * interface so we have to use the same one. Only interface 0 allows EBI 863 * access. Hopefully we can access DDR through both ports (at least on 864 * SAMA5D4x), so we can use the same interface for source and dest, 865 * that solves the fact we don't know the direction. 866 */ 867 u32 chan_cc = AT_XDMAC_CC_DIF(0) 868 | AT_XDMAC_CC_SIF(0) 869 | AT_XDMAC_CC_MBSIZE_SIXTEEN 870 | AT_XDMAC_CC_TYPE_MEM_TRAN; 871 872 dwidth = at_xdmac_align_width(chan, src | dst | chunk->size); 873 if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 874 dev_dbg(chan2dev(chan), 875 "%s: chunk too big (%d, max size %lu)...\n", 876 __func__, chunk->size, 877 AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth); 878 return NULL; 879 } 880 881 if (prev) 882 dev_dbg(chan2dev(chan), 883 "Adding items at the end of desc 0x%p\n", prev); 884 885 if (xt->src_inc) { 886 if (xt->src_sgl) 887 chan_cc |= AT_XDMAC_CC_SAM_UBS_AM; 888 else 889 chan_cc |= AT_XDMAC_CC_SAM_INCREMENTED_AM; 890 } 891 892 if (xt->dst_inc) { 893 if (xt->dst_sgl) 894 chan_cc |= AT_XDMAC_CC_DAM_UBS_AM; 895 else 896 chan_cc |= AT_XDMAC_CC_DAM_INCREMENTED_AM; 897 } 898 899 spin_lock_irqsave(&atchan->lock, flags); 900 desc = at_xdmac_get_desc(atchan); 901 spin_unlock_irqrestore(&atchan->lock, flags); 902 if (!desc) { 903 dev_err(chan2dev(chan), "can't get descriptor\n"); 904 return NULL; 905 } 906 907 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 908 909 ublen = chunk->size >> dwidth; 910 911 desc->lld.mbr_sa = src; 912 desc->lld.mbr_da = dst; 913 desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk); 914 desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk); 915 916 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 917 | AT_XDMAC_MBR_UBC_NDEN 918 | AT_XDMAC_MBR_UBC_NSEN 919 | ublen; 920 desc->lld.mbr_cfg = chan_cc; 921 922 dev_dbg(chan2dev(chan), 923 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 924 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, 925 desc->lld.mbr_ubc, desc->lld.mbr_cfg); 926 927 /* Chain lld. */ 928 if (prev) 929 at_xdmac_queue_desc(chan, prev, desc); 930 931 return desc; 932 } 933 934 static struct dma_async_tx_descriptor * 935 at_xdmac_prep_interleaved(struct dma_chan *chan, 936 struct dma_interleaved_template *xt, 937 unsigned long flags) 938 { 939 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 940 struct at_xdmac_desc *prev = NULL, *first = NULL; 941 dma_addr_t dst_addr, src_addr; 942 size_t src_skip = 0, dst_skip = 0, len = 0; 943 struct data_chunk *chunk; 944 int i; 945 946 if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM)) 947 return NULL; 948 949 /* 950 * TODO: Handle the case where we have to repeat a chain of 951 * descriptors... 952 */ 953 if ((xt->numf > 1) && (xt->frame_size > 1)) 954 return NULL; 955 956 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", 957 __func__, &xt->src_start, &xt->dst_start, xt->numf, 958 xt->frame_size, flags); 959 960 src_addr = xt->src_start; 961 dst_addr = xt->dst_start; 962 963 if (xt->numf > 1) { 964 first = at_xdmac_interleaved_queue_desc(chan, atchan, 965 NULL, 966 src_addr, dst_addr, 967 xt, xt->sgl); 968 969 /* Length of the block is (BLEN+1) microblocks. */ 970 for (i = 0; i < xt->numf - 1; i++) 971 at_xdmac_increment_block_count(chan, first); 972 973 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 974 __func__, first, first); 975 list_add_tail(&first->desc_node, &first->descs_list); 976 } else { 977 for (i = 0; i < xt->frame_size; i++) { 978 size_t src_icg = 0, dst_icg = 0; 979 struct at_xdmac_desc *desc; 980 981 chunk = xt->sgl + i; 982 983 dst_icg = dmaengine_get_dst_icg(xt, chunk); 984 src_icg = dmaengine_get_src_icg(xt, chunk); 985 986 src_skip = chunk->size + src_icg; 987 dst_skip = chunk->size + dst_icg; 988 989 dev_dbg(chan2dev(chan), 990 "%s: chunk size=%d, src icg=%d, dst icg=%d\n", 991 __func__, chunk->size, src_icg, dst_icg); 992 993 desc = at_xdmac_interleaved_queue_desc(chan, atchan, 994 prev, 995 src_addr, dst_addr, 996 xt, chunk); 997 if (!desc) { 998 list_splice_init(&first->descs_list, 999 &atchan->free_descs_list); 1000 return NULL; 1001 } 1002 1003 if (!first) 1004 first = desc; 1005 1006 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1007 __func__, desc, first); 1008 list_add_tail(&desc->desc_node, &first->descs_list); 1009 1010 if (xt->src_sgl) 1011 src_addr += src_skip; 1012 1013 if (xt->dst_sgl) 1014 dst_addr += dst_skip; 1015 1016 len += chunk->size; 1017 prev = desc; 1018 } 1019 } 1020 1021 first->tx_dma_desc.cookie = -EBUSY; 1022 first->tx_dma_desc.flags = flags; 1023 first->xfer_size = len; 1024 1025 return &first->tx_dma_desc; 1026 } 1027 1028 static struct dma_async_tx_descriptor * 1029 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1030 size_t len, unsigned long flags) 1031 { 1032 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1033 struct at_xdmac_desc *first = NULL, *prev = NULL; 1034 size_t remaining_size = len, xfer_size = 0, ublen; 1035 dma_addr_t src_addr = src, dst_addr = dest; 1036 u32 dwidth; 1037 /* 1038 * WARNING: We don't know the direction, it involves we can't 1039 * dynamically set the source and dest interface so we have to use the 1040 * same one. Only interface 0 allows EBI access. Hopefully we can 1041 * access DDR through both ports (at least on SAMA5D4x), so we can use 1042 * the same interface for source and dest, that solves the fact we 1043 * don't know the direction. 1044 */ 1045 u32 chan_cc = AT_XDMAC_CC_DAM_INCREMENTED_AM 1046 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1047 | AT_XDMAC_CC_DIF(0) 1048 | AT_XDMAC_CC_SIF(0) 1049 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1050 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1051 unsigned long irqflags; 1052 1053 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n", 1054 __func__, &src, &dest, len, flags); 1055 1056 if (unlikely(!len)) 1057 return NULL; 1058 1059 dwidth = at_xdmac_align_width(chan, src_addr | dst_addr); 1060 1061 /* Prepare descriptors. */ 1062 while (remaining_size) { 1063 struct at_xdmac_desc *desc = NULL; 1064 1065 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size); 1066 1067 spin_lock_irqsave(&atchan->lock, irqflags); 1068 desc = at_xdmac_get_desc(atchan); 1069 spin_unlock_irqrestore(&atchan->lock, irqflags); 1070 if (!desc) { 1071 dev_err(chan2dev(chan), "can't get descriptor\n"); 1072 if (first) 1073 list_splice_init(&first->descs_list, &atchan->free_descs_list); 1074 return NULL; 1075 } 1076 1077 /* Update src and dest addresses. */ 1078 src_addr += xfer_size; 1079 dst_addr += xfer_size; 1080 1081 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth) 1082 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth; 1083 else 1084 xfer_size = remaining_size; 1085 1086 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size); 1087 1088 /* Check remaining length and change data width if needed. */ 1089 dwidth = at_xdmac_align_width(chan, 1090 src_addr | dst_addr | xfer_size); 1091 chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK; 1092 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1093 1094 ublen = xfer_size >> dwidth; 1095 remaining_size -= xfer_size; 1096 1097 desc->lld.mbr_sa = src_addr; 1098 desc->lld.mbr_da = dst_addr; 1099 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 1100 | AT_XDMAC_MBR_UBC_NDEN 1101 | AT_XDMAC_MBR_UBC_NSEN 1102 | ublen; 1103 desc->lld.mbr_cfg = chan_cc; 1104 1105 dev_dbg(chan2dev(chan), 1106 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1107 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg); 1108 1109 /* Chain lld. */ 1110 if (prev) 1111 at_xdmac_queue_desc(chan, prev, desc); 1112 1113 prev = desc; 1114 if (!first) 1115 first = desc; 1116 1117 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1118 __func__, desc, first); 1119 list_add_tail(&desc->desc_node, &first->descs_list); 1120 } 1121 1122 first->tx_dma_desc.flags = flags; 1123 first->xfer_size = len; 1124 1125 return &first->tx_dma_desc; 1126 } 1127 1128 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan, 1129 struct at_xdmac_chan *atchan, 1130 dma_addr_t dst_addr, 1131 size_t len, 1132 int value) 1133 { 1134 struct at_xdmac_desc *desc; 1135 unsigned long flags; 1136 size_t ublen; 1137 u32 dwidth; 1138 /* 1139 * WARNING: The channel configuration is set here since there is no 1140 * dmaengine_slave_config call in this case. Moreover we don't know the 1141 * direction, it involves we can't dynamically set the source and dest 1142 * interface so we have to use the same one. Only interface 0 allows EBI 1143 * access. Hopefully we can access DDR through both ports (at least on 1144 * SAMA5D4x), so we can use the same interface for source and dest, 1145 * that solves the fact we don't know the direction. 1146 */ 1147 u32 chan_cc = AT_XDMAC_CC_DAM_UBS_AM 1148 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1149 | AT_XDMAC_CC_DIF(0) 1150 | AT_XDMAC_CC_SIF(0) 1151 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1152 | AT_XDMAC_CC_MEMSET_HW_MODE 1153 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1154 1155 dwidth = at_xdmac_align_width(chan, dst_addr); 1156 1157 if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 1158 dev_err(chan2dev(chan), 1159 "%s: Transfer too large, aborting...\n", 1160 __func__); 1161 return NULL; 1162 } 1163 1164 spin_lock_irqsave(&atchan->lock, flags); 1165 desc = at_xdmac_get_desc(atchan); 1166 spin_unlock_irqrestore(&atchan->lock, flags); 1167 if (!desc) { 1168 dev_err(chan2dev(chan), "can't get descriptor\n"); 1169 return NULL; 1170 } 1171 1172 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1173 1174 ublen = len >> dwidth; 1175 1176 desc->lld.mbr_da = dst_addr; 1177 desc->lld.mbr_ds = value; 1178 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 1179 | AT_XDMAC_MBR_UBC_NDEN 1180 | AT_XDMAC_MBR_UBC_NSEN 1181 | ublen; 1182 desc->lld.mbr_cfg = chan_cc; 1183 1184 dev_dbg(chan2dev(chan), 1185 "%s: lld: mbr_da=%pad, mbr_ds=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1186 __func__, &desc->lld.mbr_da, &desc->lld.mbr_ds, desc->lld.mbr_ubc, 1187 desc->lld.mbr_cfg); 1188 1189 return desc; 1190 } 1191 1192 struct dma_async_tx_descriptor * 1193 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 1194 size_t len, unsigned long flags) 1195 { 1196 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1197 struct at_xdmac_desc *desc; 1198 1199 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n", 1200 __func__, &dest, len, value, flags); 1201 1202 if (unlikely(!len)) 1203 return NULL; 1204 1205 desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value); 1206 list_add_tail(&desc->desc_node, &desc->descs_list); 1207 1208 desc->tx_dma_desc.cookie = -EBUSY; 1209 desc->tx_dma_desc.flags = flags; 1210 desc->xfer_size = len; 1211 1212 return &desc->tx_dma_desc; 1213 } 1214 1215 static struct dma_async_tx_descriptor * 1216 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl, 1217 unsigned int sg_len, int value, 1218 unsigned long flags) 1219 { 1220 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1221 struct at_xdmac_desc *desc, *pdesc = NULL, 1222 *ppdesc = NULL, *first = NULL; 1223 struct scatterlist *sg, *psg = NULL, *ppsg = NULL; 1224 size_t stride = 0, pstride = 0, len = 0; 1225 int i; 1226 1227 if (!sgl) 1228 return NULL; 1229 1230 dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n", 1231 __func__, sg_len, value, flags); 1232 1233 /* Prepare descriptors. */ 1234 for_each_sg(sgl, sg, sg_len, i) { 1235 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n", 1236 __func__, &sg_dma_address(sg), sg_dma_len(sg), 1237 value, flags); 1238 desc = at_xdmac_memset_create_desc(chan, atchan, 1239 sg_dma_address(sg), 1240 sg_dma_len(sg), 1241 value); 1242 if (!desc && first) 1243 list_splice_init(&first->descs_list, 1244 &atchan->free_descs_list); 1245 1246 if (!first) 1247 first = desc; 1248 1249 /* Update our strides */ 1250 pstride = stride; 1251 if (psg) 1252 stride = sg_dma_address(sg) - 1253 (sg_dma_address(psg) + sg_dma_len(psg)); 1254 1255 /* 1256 * The scatterlist API gives us only the address and 1257 * length of each elements. 1258 * 1259 * Unfortunately, we don't have the stride, which we 1260 * will need to compute. 1261 * 1262 * That make us end up in a situation like this one: 1263 * len stride len stride len 1264 * +-------+ +-------+ +-------+ 1265 * | N-2 | | N-1 | | N | 1266 * +-------+ +-------+ +-------+ 1267 * 1268 * We need all these three elements (N-2, N-1 and N) 1269 * to actually take the decision on whether we need to 1270 * queue N-1 or reuse N-2. 1271 * 1272 * We will only consider N if it is the last element. 1273 */ 1274 if (ppdesc && pdesc) { 1275 if ((stride == pstride) && 1276 (sg_dma_len(ppsg) == sg_dma_len(psg))) { 1277 dev_dbg(chan2dev(chan), 1278 "%s: desc 0x%p can be merged with desc 0x%p\n", 1279 __func__, pdesc, ppdesc); 1280 1281 /* 1282 * Increment the block count of the 1283 * N-2 descriptor 1284 */ 1285 at_xdmac_increment_block_count(chan, ppdesc); 1286 ppdesc->lld.mbr_dus = stride; 1287 1288 /* 1289 * Put back the N-1 descriptor in the 1290 * free descriptor list 1291 */ 1292 list_add_tail(&pdesc->desc_node, 1293 &atchan->free_descs_list); 1294 1295 /* 1296 * Make our N-1 descriptor pointer 1297 * point to the N-2 since they were 1298 * actually merged. 1299 */ 1300 pdesc = ppdesc; 1301 1302 /* 1303 * Rule out the case where we don't have 1304 * pstride computed yet (our second sg 1305 * element) 1306 * 1307 * We also want to catch the case where there 1308 * would be a negative stride, 1309 */ 1310 } else if (pstride || 1311 sg_dma_address(sg) < sg_dma_address(psg)) { 1312 /* 1313 * Queue the N-1 descriptor after the 1314 * N-2 1315 */ 1316 at_xdmac_queue_desc(chan, ppdesc, pdesc); 1317 1318 /* 1319 * Add the N-1 descriptor to the list 1320 * of the descriptors used for this 1321 * transfer 1322 */ 1323 list_add_tail(&desc->desc_node, 1324 &first->descs_list); 1325 dev_dbg(chan2dev(chan), 1326 "%s: add desc 0x%p to descs_list 0x%p\n", 1327 __func__, desc, first); 1328 } 1329 } 1330 1331 /* 1332 * If we are the last element, just see if we have the 1333 * same size than the previous element. 1334 * 1335 * If so, we can merge it with the previous descriptor 1336 * since we don't care about the stride anymore. 1337 */ 1338 if ((i == (sg_len - 1)) && 1339 sg_dma_len(psg) == sg_dma_len(sg)) { 1340 dev_dbg(chan2dev(chan), 1341 "%s: desc 0x%p can be merged with desc 0x%p\n", 1342 __func__, desc, pdesc); 1343 1344 /* 1345 * Increment the block count of the N-1 1346 * descriptor 1347 */ 1348 at_xdmac_increment_block_count(chan, pdesc); 1349 pdesc->lld.mbr_dus = stride; 1350 1351 /* 1352 * Put back the N descriptor in the free 1353 * descriptor list 1354 */ 1355 list_add_tail(&desc->desc_node, 1356 &atchan->free_descs_list); 1357 } 1358 1359 /* Update our descriptors */ 1360 ppdesc = pdesc; 1361 pdesc = desc; 1362 1363 /* Update our scatter pointers */ 1364 ppsg = psg; 1365 psg = sg; 1366 1367 len += sg_dma_len(sg); 1368 } 1369 1370 first->tx_dma_desc.cookie = -EBUSY; 1371 first->tx_dma_desc.flags = flags; 1372 first->xfer_size = len; 1373 1374 return &first->tx_dma_desc; 1375 } 1376 1377 static enum dma_status 1378 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 1379 struct dma_tx_state *txstate) 1380 { 1381 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1382 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1383 struct at_xdmac_desc *desc, *_desc; 1384 struct list_head *descs_list; 1385 enum dma_status ret; 1386 int residue; 1387 u32 cur_nda, mask, value; 1388 u8 dwidth = 0; 1389 unsigned long flags; 1390 1391 ret = dma_cookie_status(chan, cookie, txstate); 1392 if (ret == DMA_COMPLETE) 1393 return ret; 1394 1395 if (!txstate) 1396 return ret; 1397 1398 spin_lock_irqsave(&atchan->lock, flags); 1399 1400 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 1401 1402 /* 1403 * If the transfer has not been started yet, don't need to compute the 1404 * residue, it's the transfer length. 1405 */ 1406 if (!desc->active_xfer) { 1407 dma_set_residue(txstate, desc->xfer_size); 1408 goto spin_unlock; 1409 } 1410 1411 residue = desc->xfer_size; 1412 /* 1413 * Flush FIFO: only relevant when the transfer is source peripheral 1414 * synchronized. 1415 */ 1416 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC; 1417 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM; 1418 if ((desc->lld.mbr_cfg & mask) == value) { 1419 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask); 1420 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS)) 1421 cpu_relax(); 1422 } 1423 1424 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 1425 /* 1426 * Remove size of all microblocks already transferred and the current 1427 * one. Then add the remaining size to transfer of the current 1428 * microblock. 1429 */ 1430 descs_list = &desc->descs_list; 1431 list_for_each_entry_safe(desc, _desc, descs_list, desc_node) { 1432 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg); 1433 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth; 1434 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda) 1435 break; 1436 } 1437 residue += at_xdmac_chan_read(atchan, AT_XDMAC_CUBC) << dwidth; 1438 1439 dma_set_residue(txstate, residue); 1440 1441 dev_dbg(chan2dev(chan), 1442 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n", 1443 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue); 1444 1445 spin_unlock: 1446 spin_unlock_irqrestore(&atchan->lock, flags); 1447 return ret; 1448 } 1449 1450 /* Call must be protected by lock. */ 1451 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan, 1452 struct at_xdmac_desc *desc) 1453 { 1454 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1455 1456 /* 1457 * Remove the transfer from the transfer list then move the transfer 1458 * descriptors into the free descriptors list. 1459 */ 1460 list_del(&desc->xfer_node); 1461 list_splice_init(&desc->descs_list, &atchan->free_descs_list); 1462 } 1463 1464 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan) 1465 { 1466 struct at_xdmac_desc *desc; 1467 unsigned long flags; 1468 1469 spin_lock_irqsave(&atchan->lock, flags); 1470 1471 /* 1472 * If channel is enabled, do nothing, advance_work will be triggered 1473 * after the interruption. 1474 */ 1475 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) { 1476 desc = list_first_entry(&atchan->xfers_list, 1477 struct at_xdmac_desc, 1478 xfer_node); 1479 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1480 if (!desc->active_xfer) 1481 at_xdmac_start_xfer(atchan, desc); 1482 } 1483 1484 spin_unlock_irqrestore(&atchan->lock, flags); 1485 } 1486 1487 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan) 1488 { 1489 struct at_xdmac_desc *desc; 1490 struct dma_async_tx_descriptor *txd; 1491 1492 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 1493 txd = &desc->tx_dma_desc; 1494 1495 if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT)) 1496 txd->callback(txd->callback_param); 1497 } 1498 1499 static void at_xdmac_tasklet(unsigned long data) 1500 { 1501 struct at_xdmac_chan *atchan = (struct at_xdmac_chan *)data; 1502 struct at_xdmac_desc *desc; 1503 u32 error_mask; 1504 1505 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n", 1506 __func__, atchan->status); 1507 1508 error_mask = AT_XDMAC_CIS_RBEIS 1509 | AT_XDMAC_CIS_WBEIS 1510 | AT_XDMAC_CIS_ROIS; 1511 1512 if (at_xdmac_chan_is_cyclic(atchan)) { 1513 at_xdmac_handle_cyclic(atchan); 1514 } else if ((atchan->status & AT_XDMAC_CIS_LIS) 1515 || (atchan->status & error_mask)) { 1516 struct dma_async_tx_descriptor *txd; 1517 1518 if (atchan->status & AT_XDMAC_CIS_RBEIS) 1519 dev_err(chan2dev(&atchan->chan), "read bus error!!!"); 1520 if (atchan->status & AT_XDMAC_CIS_WBEIS) 1521 dev_err(chan2dev(&atchan->chan), "write bus error!!!"); 1522 if (atchan->status & AT_XDMAC_CIS_ROIS) 1523 dev_err(chan2dev(&atchan->chan), "request overflow error!!!"); 1524 1525 spin_lock_bh(&atchan->lock); 1526 desc = list_first_entry(&atchan->xfers_list, 1527 struct at_xdmac_desc, 1528 xfer_node); 1529 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1530 BUG_ON(!desc->active_xfer); 1531 1532 txd = &desc->tx_dma_desc; 1533 1534 at_xdmac_remove_xfer(atchan, desc); 1535 spin_unlock_bh(&atchan->lock); 1536 1537 if (!at_xdmac_chan_is_cyclic(atchan)) { 1538 dma_cookie_complete(txd); 1539 if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT)) 1540 txd->callback(txd->callback_param); 1541 } 1542 1543 dma_run_dependencies(txd); 1544 1545 at_xdmac_advance_work(atchan); 1546 } 1547 } 1548 1549 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id) 1550 { 1551 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id; 1552 struct at_xdmac_chan *atchan; 1553 u32 imr, status, pending; 1554 u32 chan_imr, chan_status; 1555 int i, ret = IRQ_NONE; 1556 1557 do { 1558 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1559 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS); 1560 pending = status & imr; 1561 1562 dev_vdbg(atxdmac->dma.dev, 1563 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n", 1564 __func__, status, imr, pending); 1565 1566 if (!pending) 1567 break; 1568 1569 /* We have to find which channel has generated the interrupt. */ 1570 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1571 if (!((1 << i) & pending)) 1572 continue; 1573 1574 atchan = &atxdmac->chan[i]; 1575 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1576 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS); 1577 atchan->status = chan_status & chan_imr; 1578 dev_vdbg(atxdmac->dma.dev, 1579 "%s: chan%d: imr=0x%x, status=0x%x\n", 1580 __func__, i, chan_imr, chan_status); 1581 dev_vdbg(chan2dev(&atchan->chan), 1582 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 1583 __func__, 1584 at_xdmac_chan_read(atchan, AT_XDMAC_CC), 1585 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 1586 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 1587 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 1588 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 1589 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 1590 1591 if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS)) 1592 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1593 1594 tasklet_schedule(&atchan->tasklet); 1595 ret = IRQ_HANDLED; 1596 } 1597 1598 } while (pending); 1599 1600 return ret; 1601 } 1602 1603 static void at_xdmac_issue_pending(struct dma_chan *chan) 1604 { 1605 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1606 1607 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__); 1608 1609 if (!at_xdmac_chan_is_cyclic(atchan)) 1610 at_xdmac_advance_work(atchan); 1611 1612 return; 1613 } 1614 1615 static int at_xdmac_device_config(struct dma_chan *chan, 1616 struct dma_slave_config *config) 1617 { 1618 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1619 int ret; 1620 unsigned long flags; 1621 1622 dev_dbg(chan2dev(chan), "%s\n", __func__); 1623 1624 spin_lock_irqsave(&atchan->lock, flags); 1625 ret = at_xdmac_set_slave_config(chan, config); 1626 spin_unlock_irqrestore(&atchan->lock, flags); 1627 1628 return ret; 1629 } 1630 1631 static int at_xdmac_device_pause(struct dma_chan *chan) 1632 { 1633 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1634 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1635 unsigned long flags; 1636 1637 dev_dbg(chan2dev(chan), "%s\n", __func__); 1638 1639 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status)) 1640 return 0; 1641 1642 spin_lock_irqsave(&atchan->lock, flags); 1643 at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask); 1644 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC) 1645 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP)) 1646 cpu_relax(); 1647 spin_unlock_irqrestore(&atchan->lock, flags); 1648 1649 return 0; 1650 } 1651 1652 static int at_xdmac_device_resume(struct dma_chan *chan) 1653 { 1654 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1655 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1656 unsigned long flags; 1657 1658 dev_dbg(chan2dev(chan), "%s\n", __func__); 1659 1660 spin_lock_irqsave(&atchan->lock, flags); 1661 if (!at_xdmac_chan_is_paused(atchan)) { 1662 spin_unlock_irqrestore(&atchan->lock, flags); 1663 return 0; 1664 } 1665 1666 at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask); 1667 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1668 spin_unlock_irqrestore(&atchan->lock, flags); 1669 1670 return 0; 1671 } 1672 1673 static int at_xdmac_device_terminate_all(struct dma_chan *chan) 1674 { 1675 struct at_xdmac_desc *desc, *_desc; 1676 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1677 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1678 unsigned long flags; 1679 1680 dev_dbg(chan2dev(chan), "%s\n", __func__); 1681 1682 spin_lock_irqsave(&atchan->lock, flags); 1683 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1684 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask) 1685 cpu_relax(); 1686 1687 /* Cancel all pending transfers. */ 1688 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) 1689 at_xdmac_remove_xfer(atchan, desc); 1690 1691 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 1692 spin_unlock_irqrestore(&atchan->lock, flags); 1693 1694 return 0; 1695 } 1696 1697 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan) 1698 { 1699 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1700 struct at_xdmac_desc *desc; 1701 int i; 1702 unsigned long flags; 1703 1704 spin_lock_irqsave(&atchan->lock, flags); 1705 1706 if (at_xdmac_chan_is_enabled(atchan)) { 1707 dev_err(chan2dev(chan), 1708 "can't allocate channel resources (channel enabled)\n"); 1709 i = -EIO; 1710 goto spin_unlock; 1711 } 1712 1713 if (!list_empty(&atchan->free_descs_list)) { 1714 dev_err(chan2dev(chan), 1715 "can't allocate channel resources (channel not free from a previous use)\n"); 1716 i = -EIO; 1717 goto spin_unlock; 1718 } 1719 1720 for (i = 0; i < init_nr_desc_per_channel; i++) { 1721 desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC); 1722 if (!desc) { 1723 dev_warn(chan2dev(chan), 1724 "only %d descriptors have been allocated\n", i); 1725 break; 1726 } 1727 list_add_tail(&desc->desc_node, &atchan->free_descs_list); 1728 } 1729 1730 dma_cookie_init(chan); 1731 1732 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i); 1733 1734 spin_unlock: 1735 spin_unlock_irqrestore(&atchan->lock, flags); 1736 return i; 1737 } 1738 1739 static void at_xdmac_free_chan_resources(struct dma_chan *chan) 1740 { 1741 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1742 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 1743 struct at_xdmac_desc *desc, *_desc; 1744 1745 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) { 1746 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc); 1747 list_del(&desc->desc_node); 1748 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys); 1749 } 1750 1751 return; 1752 } 1753 1754 #ifdef CONFIG_PM 1755 static int atmel_xdmac_prepare(struct device *dev) 1756 { 1757 struct platform_device *pdev = to_platform_device(dev); 1758 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1759 struct dma_chan *chan, *_chan; 1760 1761 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1762 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1763 1764 /* Wait for transfer completion, except in cyclic case. */ 1765 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan)) 1766 return -EAGAIN; 1767 } 1768 return 0; 1769 } 1770 #else 1771 # define atmel_xdmac_prepare NULL 1772 #endif 1773 1774 #ifdef CONFIG_PM_SLEEP 1775 static int atmel_xdmac_suspend(struct device *dev) 1776 { 1777 struct platform_device *pdev = to_platform_device(dev); 1778 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1779 struct dma_chan *chan, *_chan; 1780 1781 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1782 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1783 1784 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC); 1785 if (at_xdmac_chan_is_cyclic(atchan)) { 1786 if (!at_xdmac_chan_is_paused(atchan)) 1787 at_xdmac_device_pause(chan); 1788 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1789 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA); 1790 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC); 1791 } 1792 } 1793 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1794 1795 at_xdmac_off(atxdmac); 1796 clk_disable_unprepare(atxdmac->clk); 1797 return 0; 1798 } 1799 1800 static int atmel_xdmac_resume(struct device *dev) 1801 { 1802 struct platform_device *pdev = to_platform_device(dev); 1803 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1804 struct at_xdmac_chan *atchan; 1805 struct dma_chan *chan, *_chan; 1806 int i; 1807 1808 clk_prepare_enable(atxdmac->clk); 1809 1810 /* Clear pending interrupts. */ 1811 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1812 atchan = &atxdmac->chan[i]; 1813 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 1814 cpu_relax(); 1815 } 1816 1817 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim); 1818 at_xdmac_write(atxdmac, AT_XDMAC_GE, atxdmac->save_gs); 1819 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1820 atchan = to_at_xdmac_chan(chan); 1821 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc); 1822 if (at_xdmac_chan_is_cyclic(atchan)) { 1823 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda); 1824 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc); 1825 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim); 1826 wmb(); 1827 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 1828 } 1829 } 1830 return 0; 1831 } 1832 #endif /* CONFIG_PM_SLEEP */ 1833 1834 static int at_xdmac_probe(struct platform_device *pdev) 1835 { 1836 struct resource *res; 1837 struct at_xdmac *atxdmac; 1838 int irq, size, nr_channels, i, ret; 1839 void __iomem *base; 1840 u32 reg; 1841 1842 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1843 if (!res) 1844 return -EINVAL; 1845 1846 irq = platform_get_irq(pdev, 0); 1847 if (irq < 0) 1848 return irq; 1849 1850 base = devm_ioremap_resource(&pdev->dev, res); 1851 if (IS_ERR(base)) 1852 return PTR_ERR(base); 1853 1854 /* 1855 * Read number of xdmac channels, read helper function can't be used 1856 * since atxdmac is not yet allocated and we need to know the number 1857 * of channels to do the allocation. 1858 */ 1859 reg = readl_relaxed(base + AT_XDMAC_GTYPE); 1860 nr_channels = AT_XDMAC_NB_CH(reg); 1861 if (nr_channels > AT_XDMAC_MAX_CHAN) { 1862 dev_err(&pdev->dev, "invalid number of channels (%u)\n", 1863 nr_channels); 1864 return -EINVAL; 1865 } 1866 1867 size = sizeof(*atxdmac); 1868 size += nr_channels * sizeof(struct at_xdmac_chan); 1869 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); 1870 if (!atxdmac) { 1871 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n"); 1872 return -ENOMEM; 1873 } 1874 1875 atxdmac->regs = base; 1876 atxdmac->irq = irq; 1877 1878 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk"); 1879 if (IS_ERR(atxdmac->clk)) { 1880 dev_err(&pdev->dev, "can't get dma_clk\n"); 1881 return PTR_ERR(atxdmac->clk); 1882 } 1883 1884 /* Do not use dev res to prevent races with tasklet */ 1885 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac); 1886 if (ret) { 1887 dev_err(&pdev->dev, "can't request irq\n"); 1888 return ret; 1889 } 1890 1891 ret = clk_prepare_enable(atxdmac->clk); 1892 if (ret) { 1893 dev_err(&pdev->dev, "can't prepare or enable clock\n"); 1894 goto err_free_irq; 1895 } 1896 1897 atxdmac->at_xdmac_desc_pool = 1898 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev, 1899 sizeof(struct at_xdmac_desc), 4, 0); 1900 if (!atxdmac->at_xdmac_desc_pool) { 1901 dev_err(&pdev->dev, "no memory for descriptors dma pool\n"); 1902 ret = -ENOMEM; 1903 goto err_clk_disable; 1904 } 1905 1906 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask); 1907 dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask); 1908 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask); 1909 dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask); 1910 dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask); 1911 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask); 1912 /* 1913 * Without DMA_PRIVATE the driver is not able to allocate more than 1914 * one channel, second allocation fails in private_candidate. 1915 */ 1916 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask); 1917 atxdmac->dma.dev = &pdev->dev; 1918 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources; 1919 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources; 1920 atxdmac->dma.device_tx_status = at_xdmac_tx_status; 1921 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending; 1922 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic; 1923 atxdmac->dma.device_prep_interleaved_dma = at_xdmac_prep_interleaved; 1924 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy; 1925 atxdmac->dma.device_prep_dma_memset = at_xdmac_prep_dma_memset; 1926 atxdmac->dma.device_prep_dma_memset_sg = at_xdmac_prep_dma_memset_sg; 1927 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg; 1928 atxdmac->dma.device_config = at_xdmac_device_config; 1929 atxdmac->dma.device_pause = at_xdmac_device_pause; 1930 atxdmac->dma.device_resume = at_xdmac_device_resume; 1931 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all; 1932 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 1933 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 1934 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1935 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1936 1937 /* Disable all chans and interrupts. */ 1938 at_xdmac_off(atxdmac); 1939 1940 /* Init channels. */ 1941 INIT_LIST_HEAD(&atxdmac->dma.channels); 1942 for (i = 0; i < nr_channels; i++) { 1943 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 1944 1945 atchan->chan.device = &atxdmac->dma; 1946 list_add_tail(&atchan->chan.device_node, 1947 &atxdmac->dma.channels); 1948 1949 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i); 1950 atchan->mask = 1 << i; 1951 1952 spin_lock_init(&atchan->lock); 1953 INIT_LIST_HEAD(&atchan->xfers_list); 1954 INIT_LIST_HEAD(&atchan->free_descs_list); 1955 tasklet_init(&atchan->tasklet, at_xdmac_tasklet, 1956 (unsigned long)atchan); 1957 1958 /* Clear pending interrupts. */ 1959 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 1960 cpu_relax(); 1961 } 1962 platform_set_drvdata(pdev, atxdmac); 1963 1964 ret = dma_async_device_register(&atxdmac->dma); 1965 if (ret) { 1966 dev_err(&pdev->dev, "fail to register DMA engine device\n"); 1967 goto err_clk_disable; 1968 } 1969 1970 ret = of_dma_controller_register(pdev->dev.of_node, 1971 at_xdmac_xlate, atxdmac); 1972 if (ret) { 1973 dev_err(&pdev->dev, "could not register of dma controller\n"); 1974 goto err_dma_unregister; 1975 } 1976 1977 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n", 1978 nr_channels, atxdmac->regs); 1979 1980 return 0; 1981 1982 err_dma_unregister: 1983 dma_async_device_unregister(&atxdmac->dma); 1984 err_clk_disable: 1985 clk_disable_unprepare(atxdmac->clk); 1986 err_free_irq: 1987 free_irq(atxdmac->irq, atxdmac->dma.dev); 1988 return ret; 1989 } 1990 1991 static int at_xdmac_remove(struct platform_device *pdev) 1992 { 1993 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev); 1994 int i; 1995 1996 at_xdmac_off(atxdmac); 1997 of_dma_controller_free(pdev->dev.of_node); 1998 dma_async_device_unregister(&atxdmac->dma); 1999 clk_disable_unprepare(atxdmac->clk); 2000 2001 synchronize_irq(atxdmac->irq); 2002 2003 free_irq(atxdmac->irq, atxdmac->dma.dev); 2004 2005 for (i = 0; i < atxdmac->dma.chancnt; i++) { 2006 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 2007 2008 tasklet_kill(&atchan->tasklet); 2009 at_xdmac_free_chan_resources(&atchan->chan); 2010 } 2011 2012 return 0; 2013 } 2014 2015 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = { 2016 .prepare = atmel_xdmac_prepare, 2017 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume) 2018 }; 2019 2020 static const struct of_device_id atmel_xdmac_dt_ids[] = { 2021 { 2022 .compatible = "atmel,sama5d4-dma", 2023 }, { 2024 /* sentinel */ 2025 } 2026 }; 2027 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids); 2028 2029 static struct platform_driver at_xdmac_driver = { 2030 .probe = at_xdmac_probe, 2031 .remove = at_xdmac_remove, 2032 .driver = { 2033 .name = "at_xdmac", 2034 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids), 2035 .pm = &atmel_xdmac_dev_pm_ops, 2036 } 2037 }; 2038 2039 static int __init at_xdmac_init(void) 2040 { 2041 return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe); 2042 } 2043 subsys_initcall(at_xdmac_init); 2044 2045 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver"); 2046 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>"); 2047 MODULE_LICENSE("GPL"); 2048