1 /* 2 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems) 3 * 4 * Copyright (C) 2014 Atmel Corporation 5 * 6 * Author: Ludovic Desroches <ludovic.desroches@atmel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 * 17 * You should have received a copy of the GNU General Public License along with 18 * this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <asm/barrier.h> 22 #include <dt-bindings/dma/at91.h> 23 #include <linux/clk.h> 24 #include <linux/dmaengine.h> 25 #include <linux/dmapool.h> 26 #include <linux/interrupt.h> 27 #include <linux/irq.h> 28 #include <linux/kernel.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/of_dma.h> 32 #include <linux/of_platform.h> 33 #include <linux/platform_device.h> 34 #include <linux/pm.h> 35 36 #include "dmaengine.h" 37 38 /* Global registers */ 39 #define AT_XDMAC_GTYPE 0x00 /* Global Type Register */ 40 #define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */ 41 #define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */ 42 #define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */ 43 #define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */ 44 #define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */ 45 #define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */ 46 #define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */ 47 #define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */ 48 #define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */ 49 #define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */ 50 #define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */ 51 #define AT_XDMAC_GS 0x24 /* Global Channel Status Register */ 52 #define AT_XDMAC_GRS 0x28 /* Global Channel Read Suspend Register */ 53 #define AT_XDMAC_GWS 0x2C /* Global Write Suspend Register */ 54 #define AT_XDMAC_GRWS 0x30 /* Global Channel Read Write Suspend Register */ 55 #define AT_XDMAC_GRWR 0x34 /* Global Channel Read Write Resume Register */ 56 #define AT_XDMAC_GSWR 0x38 /* Global Channel Software Request Register */ 57 #define AT_XDMAC_GSWS 0x3C /* Global channel Software Request Status Register */ 58 #define AT_XDMAC_GSWF 0x40 /* Global Channel Software Flush Request Register */ 59 #define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */ 60 61 /* Channel relative registers offsets */ 62 #define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */ 63 #define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */ 64 #define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */ 65 #define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */ 66 #define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */ 67 #define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */ 68 #define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */ 69 #define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */ 70 #define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */ 71 #define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */ 72 #define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */ 73 #define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */ 74 #define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */ 75 #define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */ 76 #define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */ 77 #define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */ 78 #define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */ 79 #define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */ 80 #define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */ 81 #define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */ 82 #define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */ 83 #define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */ 84 #define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */ 85 #define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */ 86 #define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */ 87 #define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */ 88 #define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */ 89 #define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */ 90 #define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */ 91 #define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */ 92 #define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */ 93 #define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */ 94 #define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */ 95 #define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */ 96 #define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */ 97 #define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */ 98 #define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */ 99 #define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */ 100 #define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */ 101 #define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */ 102 #define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */ 103 #define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */ 104 #define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */ 105 #define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */ 106 #define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */ 107 #define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */ 108 #define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */ 109 #define AT_XDMAC_CC 0x28 /* Channel Configuration Register */ 110 #define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */ 111 #define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */ 112 #define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */ 113 #define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1) 114 #define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1) 115 #define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1) 116 #define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1) 117 #define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1) 118 #define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */ 119 #define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4) 120 #define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4) 121 #define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */ 122 #define AT_XDMAC_CC_PROT_SEC (0x0 << 5) 123 #define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5) 124 #define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */ 125 #define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6) 126 #define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6) 127 #define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */ 128 #define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7) 129 #define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7) 130 #define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */ 131 #define AT_XDMAC_CC_DWIDTH_OFFSET 11 132 #define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET) 133 #define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */ 134 #define AT_XDMAC_CC_DWIDTH_BYTE 0x0 135 #define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1 136 #define AT_XDMAC_CC_DWIDTH_WORD 0x2 137 #define AT_XDMAC_CC_DWIDTH_DWORD 0x3 138 #define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */ 139 #define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */ 140 #define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */ 141 #define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16) 142 #define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16) 143 #define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16) 144 #define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16) 145 #define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */ 146 #define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18) 147 #define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18) 148 #define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18) 149 #define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18) 150 #define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */ 151 #define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21) 152 #define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21) 153 #define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */ 154 #define AT_XDMAC_CC_RDIP_DONE (0x0 << 22) 155 #define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22) 156 #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */ 157 #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23) 158 #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23) 159 #define AT_XDMAC_CC_PERID(i) (0x7f & (h) << 24) /* Channel Peripheral Identifier */ 160 #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */ 161 #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */ 162 #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */ 163 164 #define AT_XDMAC_CHAN_REG_BASE 0x50 /* Channel registers base address */ 165 166 /* Microblock control members */ 167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */ 168 #define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */ 169 #define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */ 170 #define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */ 171 #define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */ 172 #define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */ 173 #define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */ 174 #define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */ 175 176 #define AT_XDMAC_MAX_CHAN 0x20 177 #define AT_XDMAC_MAX_CSIZE 16 /* 16 data */ 178 #define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */ 179 180 #define AT_XDMAC_DMA_BUSWIDTHS\ 181 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 182 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 183 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 184 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\ 185 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 186 187 enum atc_status { 188 AT_XDMAC_CHAN_IS_CYCLIC = 0, 189 AT_XDMAC_CHAN_IS_PAUSED, 190 }; 191 192 /* ----- Channels ----- */ 193 struct at_xdmac_chan { 194 struct dma_chan chan; 195 void __iomem *ch_regs; 196 u32 mask; /* Channel Mask */ 197 u32 cfg; /* Channel Configuration Register */ 198 u8 perid; /* Peripheral ID */ 199 u8 perif; /* Peripheral Interface */ 200 u8 memif; /* Memory Interface */ 201 u32 save_cc; 202 u32 save_cim; 203 u32 save_cnda; 204 u32 save_cndc; 205 unsigned long status; 206 struct tasklet_struct tasklet; 207 struct dma_slave_config sconfig; 208 209 spinlock_t lock; 210 211 struct list_head xfers_list; 212 struct list_head free_descs_list; 213 }; 214 215 216 /* ----- Controller ----- */ 217 struct at_xdmac { 218 struct dma_device dma; 219 void __iomem *regs; 220 int irq; 221 struct clk *clk; 222 u32 save_gim; 223 u32 save_gs; 224 struct dma_pool *at_xdmac_desc_pool; 225 struct at_xdmac_chan chan[0]; 226 }; 227 228 229 /* ----- Descriptors ----- */ 230 231 /* Linked List Descriptor */ 232 struct at_xdmac_lld { 233 dma_addr_t mbr_nda; /* Next Descriptor Member */ 234 u32 mbr_ubc; /* Microblock Control Member */ 235 dma_addr_t mbr_sa; /* Source Address Member */ 236 dma_addr_t mbr_da; /* Destination Address Member */ 237 u32 mbr_cfg; /* Configuration Register */ 238 u32 mbr_bc; /* Block Control Register */ 239 u32 mbr_ds; /* Data Stride Register */ 240 u32 mbr_sus; /* Source Microblock Stride Register */ 241 u32 mbr_dus; /* Destination Microblock Stride Register */ 242 }; 243 244 245 struct at_xdmac_desc { 246 struct at_xdmac_lld lld; 247 enum dma_transfer_direction direction; 248 struct dma_async_tx_descriptor tx_dma_desc; 249 struct list_head desc_node; 250 /* Following members are only used by the first descriptor */ 251 bool active_xfer; 252 unsigned int xfer_size; 253 struct list_head descs_list; 254 struct list_head xfer_node; 255 }; 256 257 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb) 258 { 259 return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40); 260 } 261 262 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg)) 263 #define at_xdmac_write(atxdmac, reg, value) \ 264 writel_relaxed((value), (atxdmac)->regs + (reg)) 265 266 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg)) 267 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg)) 268 269 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan) 270 { 271 return container_of(dchan, struct at_xdmac_chan, chan); 272 } 273 274 static struct device *chan2dev(struct dma_chan *chan) 275 { 276 return &chan->dev->device; 277 } 278 279 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev) 280 { 281 return container_of(ddev, struct at_xdmac, dma); 282 } 283 284 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd) 285 { 286 return container_of(txd, struct at_xdmac_desc, tx_dma_desc); 287 } 288 289 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan) 290 { 291 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 292 } 293 294 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan) 295 { 296 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 297 } 298 299 static inline int at_xdmac_csize(u32 maxburst) 300 { 301 int csize; 302 303 csize = ffs(maxburst) - 1; 304 if (csize > 4) 305 csize = -EINVAL; 306 307 return csize; 308 }; 309 310 static inline u8 at_xdmac_get_dwidth(u32 cfg) 311 { 312 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET; 313 }; 314 315 static unsigned int init_nr_desc_per_channel = 64; 316 module_param(init_nr_desc_per_channel, uint, 0644); 317 MODULE_PARM_DESC(init_nr_desc_per_channel, 318 "initial descriptors per channel (default: 64)"); 319 320 321 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan) 322 { 323 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask; 324 } 325 326 static void at_xdmac_off(struct at_xdmac *atxdmac) 327 { 328 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L); 329 330 /* Wait that all chans are disabled. */ 331 while (at_xdmac_read(atxdmac, AT_XDMAC_GS)) 332 cpu_relax(); 333 334 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L); 335 } 336 337 /* Call with lock hold. */ 338 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan, 339 struct at_xdmac_desc *first) 340 { 341 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 342 u32 reg; 343 344 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first); 345 346 if (at_xdmac_chan_is_enabled(atchan)) 347 return; 348 349 /* Set transfer as active to not try to start it again. */ 350 first->active_xfer = true; 351 352 /* Tell xdmac where to get the first descriptor. */ 353 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys) 354 | AT_XDMAC_CNDA_NDAIF(atchan->memif); 355 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg); 356 357 /* 358 * When doing non cyclic transfer we need to use the next 359 * descriptor view 2 since some fields of the configuration register 360 * depend on transfer size and src/dest addresses. 361 */ 362 if (at_xdmac_chan_is_cyclic(atchan)) 363 reg = AT_XDMAC_CNDC_NDVIEW_NDV1; 364 else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3) 365 reg = AT_XDMAC_CNDC_NDVIEW_NDV3; 366 else 367 reg = AT_XDMAC_CNDC_NDVIEW_NDV2; 368 /* 369 * Even if the register will be updated from the configuration in the 370 * descriptor when using view 2 or higher, the PROT bit won't be set 371 * properly. This bit can be modified only by using the channel 372 * configuration register. 373 */ 374 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg); 375 376 reg |= AT_XDMAC_CNDC_NDDUP 377 | AT_XDMAC_CNDC_NDSUP 378 | AT_XDMAC_CNDC_NDE; 379 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg); 380 381 dev_vdbg(chan2dev(&atchan->chan), 382 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 383 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 384 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 385 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 386 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 387 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 388 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 389 390 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff); 391 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE; 392 /* 393 * There is no end of list when doing cyclic dma, we need to get 394 * an interrupt after each periods. 395 */ 396 if (at_xdmac_chan_is_cyclic(atchan)) 397 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 398 reg | AT_XDMAC_CIE_BIE); 399 else 400 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 401 reg | AT_XDMAC_CIE_LIE); 402 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask); 403 dev_vdbg(chan2dev(&atchan->chan), 404 "%s: enable channel (0x%08x)\n", __func__, atchan->mask); 405 wmb(); 406 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 407 408 dev_vdbg(chan2dev(&atchan->chan), 409 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 410 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 411 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 412 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 413 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 414 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 415 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 416 417 } 418 419 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx) 420 { 421 struct at_xdmac_desc *desc = txd_to_at_desc(tx); 422 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan); 423 dma_cookie_t cookie; 424 unsigned long irqflags; 425 426 spin_lock_irqsave(&atchan->lock, irqflags); 427 cookie = dma_cookie_assign(tx); 428 429 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n", 430 __func__, atchan, desc); 431 list_add_tail(&desc->xfer_node, &atchan->xfers_list); 432 if (list_is_singular(&atchan->xfers_list)) 433 at_xdmac_start_xfer(atchan, desc); 434 435 spin_unlock_irqrestore(&atchan->lock, irqflags); 436 return cookie; 437 } 438 439 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan, 440 gfp_t gfp_flags) 441 { 442 struct at_xdmac_desc *desc; 443 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 444 dma_addr_t phys; 445 446 desc = dma_pool_alloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys); 447 if (desc) { 448 memset(desc, 0, sizeof(*desc)); 449 INIT_LIST_HEAD(&desc->descs_list); 450 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan); 451 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit; 452 desc->tx_dma_desc.phys = phys; 453 } 454 455 return desc; 456 } 457 458 /* Call must be protected by lock. */ 459 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan) 460 { 461 struct at_xdmac_desc *desc; 462 463 if (list_empty(&atchan->free_descs_list)) { 464 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT); 465 } else { 466 desc = list_first_entry(&atchan->free_descs_list, 467 struct at_xdmac_desc, desc_node); 468 list_del(&desc->desc_node); 469 desc->active_xfer = false; 470 } 471 472 return desc; 473 } 474 475 static void at_xdmac_queue_desc(struct dma_chan *chan, 476 struct at_xdmac_desc *prev, 477 struct at_xdmac_desc *desc) 478 { 479 if (!prev || !desc) 480 return; 481 482 prev->lld.mbr_nda = desc->tx_dma_desc.phys; 483 prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE; 484 485 dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n", 486 __func__, prev, &prev->lld.mbr_nda); 487 } 488 489 static inline void at_xdmac_increment_block_count(struct dma_chan *chan, 490 struct at_xdmac_desc *desc) 491 { 492 if (!desc) 493 return; 494 495 desc->lld.mbr_bc++; 496 497 dev_dbg(chan2dev(chan), 498 "%s: incrementing the block count of the desc 0x%p\n", 499 __func__, desc); 500 } 501 502 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec, 503 struct of_dma *of_dma) 504 { 505 struct at_xdmac *atxdmac = of_dma->of_dma_data; 506 struct at_xdmac_chan *atchan; 507 struct dma_chan *chan; 508 struct device *dev = atxdmac->dma.dev; 509 510 if (dma_spec->args_count != 1) { 511 dev_err(dev, "dma phandler args: bad number of args\n"); 512 return NULL; 513 } 514 515 chan = dma_get_any_slave_channel(&atxdmac->dma); 516 if (!chan) { 517 dev_err(dev, "can't get a dma channel\n"); 518 return NULL; 519 } 520 521 atchan = to_at_xdmac_chan(chan); 522 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]); 523 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]); 524 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]); 525 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n", 526 atchan->memif, atchan->perif, atchan->perid); 527 528 return chan; 529 } 530 531 static int at_xdmac_compute_chan_conf(struct dma_chan *chan, 532 enum dma_transfer_direction direction) 533 { 534 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 535 int csize, dwidth; 536 537 if (direction == DMA_DEV_TO_MEM) { 538 atchan->cfg = 539 AT91_XDMAC_DT_PERID(atchan->perid) 540 | AT_XDMAC_CC_DAM_INCREMENTED_AM 541 | AT_XDMAC_CC_SAM_FIXED_AM 542 | AT_XDMAC_CC_DIF(atchan->memif) 543 | AT_XDMAC_CC_SIF(atchan->perif) 544 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 545 | AT_XDMAC_CC_DSYNC_PER2MEM 546 | AT_XDMAC_CC_MBSIZE_SIXTEEN 547 | AT_XDMAC_CC_TYPE_PER_TRAN; 548 csize = ffs(atchan->sconfig.src_maxburst) - 1; 549 if (csize < 0) { 550 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 551 return -EINVAL; 552 } 553 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 554 dwidth = ffs(atchan->sconfig.src_addr_width) - 1; 555 if (dwidth < 0) { 556 dev_err(chan2dev(chan), "invalid src addr width value\n"); 557 return -EINVAL; 558 } 559 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 560 } else if (direction == DMA_MEM_TO_DEV) { 561 atchan->cfg = 562 AT91_XDMAC_DT_PERID(atchan->perid) 563 | AT_XDMAC_CC_DAM_FIXED_AM 564 | AT_XDMAC_CC_SAM_INCREMENTED_AM 565 | AT_XDMAC_CC_DIF(atchan->perif) 566 | AT_XDMAC_CC_SIF(atchan->memif) 567 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 568 | AT_XDMAC_CC_DSYNC_MEM2PER 569 | AT_XDMAC_CC_MBSIZE_SIXTEEN 570 | AT_XDMAC_CC_TYPE_PER_TRAN; 571 csize = ffs(atchan->sconfig.dst_maxburst) - 1; 572 if (csize < 0) { 573 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 574 return -EINVAL; 575 } 576 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 577 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1; 578 if (dwidth < 0) { 579 dev_err(chan2dev(chan), "invalid dst addr width value\n"); 580 return -EINVAL; 581 } 582 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 583 } 584 585 dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg); 586 587 return 0; 588 } 589 590 /* 591 * Only check that maxburst and addr width values are supported by the 592 * the controller but not that the configuration is good to perform the 593 * transfer since we don't know the direction at this stage. 594 */ 595 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig) 596 { 597 if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE) 598 || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE)) 599 return -EINVAL; 600 601 if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH) 602 || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH)) 603 return -EINVAL; 604 605 return 0; 606 } 607 608 static int at_xdmac_set_slave_config(struct dma_chan *chan, 609 struct dma_slave_config *sconfig) 610 { 611 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 612 613 if (at_xdmac_check_slave_config(sconfig)) { 614 dev_err(chan2dev(chan), "invalid slave configuration\n"); 615 return -EINVAL; 616 } 617 618 memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig)); 619 620 return 0; 621 } 622 623 static struct dma_async_tx_descriptor * 624 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 625 unsigned int sg_len, enum dma_transfer_direction direction, 626 unsigned long flags, void *context) 627 { 628 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 629 struct at_xdmac_desc *first = NULL, *prev = NULL; 630 struct scatterlist *sg; 631 int i; 632 unsigned int xfer_size = 0; 633 unsigned long irqflags; 634 struct dma_async_tx_descriptor *ret = NULL; 635 636 if (!sgl) 637 return NULL; 638 639 if (!is_slave_direction(direction)) { 640 dev_err(chan2dev(chan), "invalid DMA direction\n"); 641 return NULL; 642 } 643 644 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n", 645 __func__, sg_len, 646 direction == DMA_MEM_TO_DEV ? "to device" : "from device", 647 flags); 648 649 /* Protect dma_sconfig field that can be modified by set_slave_conf. */ 650 spin_lock_irqsave(&atchan->lock, irqflags); 651 652 if (at_xdmac_compute_chan_conf(chan, direction)) 653 goto spin_unlock; 654 655 /* Prepare descriptors. */ 656 for_each_sg(sgl, sg, sg_len, i) { 657 struct at_xdmac_desc *desc = NULL; 658 u32 len, mem, dwidth, fixed_dwidth; 659 660 len = sg_dma_len(sg); 661 mem = sg_dma_address(sg); 662 if (unlikely(!len)) { 663 dev_err(chan2dev(chan), "sg data length is zero\n"); 664 goto spin_unlock; 665 } 666 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n", 667 __func__, i, len, mem); 668 669 desc = at_xdmac_get_desc(atchan); 670 if (!desc) { 671 dev_err(chan2dev(chan), "can't get descriptor\n"); 672 if (first) 673 list_splice_init(&first->descs_list, &atchan->free_descs_list); 674 goto spin_unlock; 675 } 676 677 /* Linked list descriptor setup. */ 678 if (direction == DMA_DEV_TO_MEM) { 679 desc->lld.mbr_sa = atchan->sconfig.src_addr; 680 desc->lld.mbr_da = mem; 681 } else { 682 desc->lld.mbr_sa = mem; 683 desc->lld.mbr_da = atchan->sconfig.dst_addr; 684 } 685 dwidth = at_xdmac_get_dwidth(atchan->cfg); 686 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth) 687 ? dwidth 688 : AT_XDMAC_CC_DWIDTH_BYTE; 689 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */ 690 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */ 691 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */ 692 | (len >> fixed_dwidth); /* microblock length */ 693 desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) | 694 AT_XDMAC_CC_DWIDTH(fixed_dwidth); 695 dev_dbg(chan2dev(chan), 696 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 697 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 698 699 /* Chain lld. */ 700 if (prev) 701 at_xdmac_queue_desc(chan, prev, desc); 702 703 prev = desc; 704 if (!first) 705 first = desc; 706 707 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 708 __func__, desc, first); 709 list_add_tail(&desc->desc_node, &first->descs_list); 710 xfer_size += len; 711 } 712 713 714 first->tx_dma_desc.flags = flags; 715 first->xfer_size = xfer_size; 716 first->direction = direction; 717 ret = &first->tx_dma_desc; 718 719 spin_unlock: 720 spin_unlock_irqrestore(&atchan->lock, irqflags); 721 return ret; 722 } 723 724 static struct dma_async_tx_descriptor * 725 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, 726 size_t buf_len, size_t period_len, 727 enum dma_transfer_direction direction, 728 unsigned long flags) 729 { 730 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 731 struct at_xdmac_desc *first = NULL, *prev = NULL; 732 unsigned int periods = buf_len / period_len; 733 int i; 734 unsigned long irqflags; 735 736 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n", 737 __func__, &buf_addr, buf_len, period_len, 738 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags); 739 740 if (!is_slave_direction(direction)) { 741 dev_err(chan2dev(chan), "invalid DMA direction\n"); 742 return NULL; 743 } 744 745 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) { 746 dev_err(chan2dev(chan), "channel currently used\n"); 747 return NULL; 748 } 749 750 if (at_xdmac_compute_chan_conf(chan, direction)) 751 return NULL; 752 753 for (i = 0; i < periods; i++) { 754 struct at_xdmac_desc *desc = NULL; 755 756 spin_lock_irqsave(&atchan->lock, irqflags); 757 desc = at_xdmac_get_desc(atchan); 758 if (!desc) { 759 dev_err(chan2dev(chan), "can't get descriptor\n"); 760 if (first) 761 list_splice_init(&first->descs_list, &atchan->free_descs_list); 762 spin_unlock_irqrestore(&atchan->lock, irqflags); 763 return NULL; 764 } 765 spin_unlock_irqrestore(&atchan->lock, irqflags); 766 dev_dbg(chan2dev(chan), 767 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n", 768 __func__, desc, &desc->tx_dma_desc.phys); 769 770 if (direction == DMA_DEV_TO_MEM) { 771 desc->lld.mbr_sa = atchan->sconfig.src_addr; 772 desc->lld.mbr_da = buf_addr + i * period_len; 773 } else { 774 desc->lld.mbr_sa = buf_addr + i * period_len; 775 desc->lld.mbr_da = atchan->sconfig.dst_addr; 776 } 777 desc->lld.mbr_cfg = atchan->cfg; 778 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1 779 | AT_XDMAC_MBR_UBC_NDEN 780 | AT_XDMAC_MBR_UBC_NSEN 781 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg); 782 783 dev_dbg(chan2dev(chan), 784 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 785 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 786 787 /* Chain lld. */ 788 if (prev) 789 at_xdmac_queue_desc(chan, prev, desc); 790 791 prev = desc; 792 if (!first) 793 first = desc; 794 795 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 796 __func__, desc, first); 797 list_add_tail(&desc->desc_node, &first->descs_list); 798 } 799 800 at_xdmac_queue_desc(chan, prev, first); 801 first->tx_dma_desc.flags = flags; 802 first->xfer_size = buf_len; 803 first->direction = direction; 804 805 return &first->tx_dma_desc; 806 } 807 808 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr) 809 { 810 u32 width; 811 812 /* 813 * Check address alignment to select the greater data width we 814 * can use. 815 * 816 * Some XDMAC implementations don't provide dword transfer, in 817 * this case selecting dword has the same behavior as 818 * selecting word transfers. 819 */ 820 if (!(addr & 7)) { 821 width = AT_XDMAC_CC_DWIDTH_DWORD; 822 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__); 823 } else if (!(addr & 3)) { 824 width = AT_XDMAC_CC_DWIDTH_WORD; 825 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__); 826 } else if (!(addr & 1)) { 827 width = AT_XDMAC_CC_DWIDTH_HALFWORD; 828 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__); 829 } else { 830 width = AT_XDMAC_CC_DWIDTH_BYTE; 831 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__); 832 } 833 834 return width; 835 } 836 837 static struct at_xdmac_desc * 838 at_xdmac_interleaved_queue_desc(struct dma_chan *chan, 839 struct at_xdmac_chan *atchan, 840 struct at_xdmac_desc *prev, 841 dma_addr_t src, dma_addr_t dst, 842 struct dma_interleaved_template *xt, 843 struct data_chunk *chunk) 844 { 845 struct at_xdmac_desc *desc; 846 u32 dwidth; 847 unsigned long flags; 848 size_t ublen; 849 /* 850 * WARNING: The channel configuration is set here since there is no 851 * dmaengine_slave_config call in this case. Moreover we don't know the 852 * direction, it involves we can't dynamically set the source and dest 853 * interface so we have to use the same one. Only interface 0 allows EBI 854 * access. Hopefully we can access DDR through both ports (at least on 855 * SAMA5D4x), so we can use the same interface for source and dest, 856 * that solves the fact we don't know the direction. 857 */ 858 u32 chan_cc = AT_XDMAC_CC_DIF(0) 859 | AT_XDMAC_CC_SIF(0) 860 | AT_XDMAC_CC_MBSIZE_SIXTEEN 861 | AT_XDMAC_CC_TYPE_MEM_TRAN; 862 863 dwidth = at_xdmac_align_width(chan, src | dst | chunk->size); 864 if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 865 dev_dbg(chan2dev(chan), 866 "%s: chunk too big (%d, max size %lu)...\n", 867 __func__, chunk->size, 868 AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth); 869 return NULL; 870 } 871 872 if (prev) 873 dev_dbg(chan2dev(chan), 874 "Adding items at the end of desc 0x%p\n", prev); 875 876 if (xt->src_inc) { 877 if (xt->src_sgl) 878 chan_cc |= AT_XDMAC_CC_SAM_UBS_DS_AM; 879 else 880 chan_cc |= AT_XDMAC_CC_SAM_INCREMENTED_AM; 881 } 882 883 if (xt->dst_inc) { 884 if (xt->dst_sgl) 885 chan_cc |= AT_XDMAC_CC_DAM_UBS_DS_AM; 886 else 887 chan_cc |= AT_XDMAC_CC_DAM_INCREMENTED_AM; 888 } 889 890 spin_lock_irqsave(&atchan->lock, flags); 891 desc = at_xdmac_get_desc(atchan); 892 spin_unlock_irqrestore(&atchan->lock, flags); 893 if (!desc) { 894 dev_err(chan2dev(chan), "can't get descriptor\n"); 895 return NULL; 896 } 897 898 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 899 900 ublen = chunk->size >> dwidth; 901 902 desc->lld.mbr_sa = src; 903 desc->lld.mbr_da = dst; 904 desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk); 905 desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk); 906 907 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 908 | AT_XDMAC_MBR_UBC_NDEN 909 | AT_XDMAC_MBR_UBC_NSEN 910 | ublen; 911 desc->lld.mbr_cfg = chan_cc; 912 913 dev_dbg(chan2dev(chan), 914 "%s: lld: mbr_sa=0x%08x, mbr_da=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 915 __func__, desc->lld.mbr_sa, desc->lld.mbr_da, 916 desc->lld.mbr_ubc, desc->lld.mbr_cfg); 917 918 /* Chain lld. */ 919 if (prev) 920 at_xdmac_queue_desc(chan, prev, desc); 921 922 return desc; 923 } 924 925 static struct dma_async_tx_descriptor * 926 at_xdmac_prep_interleaved(struct dma_chan *chan, 927 struct dma_interleaved_template *xt, 928 unsigned long flags) 929 { 930 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 931 struct at_xdmac_desc *prev = NULL, *first = NULL; 932 struct data_chunk *chunk, *prev_chunk = NULL; 933 dma_addr_t dst_addr, src_addr; 934 size_t dst_skip, src_skip, len = 0; 935 size_t prev_dst_icg = 0, prev_src_icg = 0; 936 int i; 937 938 if (!xt || (xt->numf != 1) || (xt->dir != DMA_MEM_TO_MEM)) 939 return NULL; 940 941 dev_dbg(chan2dev(chan), "%s: src=0x%08x, dest=0x%08x, numf=%d, frame_size=%d, flags=0x%lx\n", 942 __func__, xt->src_start, xt->dst_start, xt->numf, 943 xt->frame_size, flags); 944 945 src_addr = xt->src_start; 946 dst_addr = xt->dst_start; 947 948 for (i = 0; i < xt->frame_size; i++) { 949 struct at_xdmac_desc *desc; 950 size_t src_icg, dst_icg; 951 952 chunk = xt->sgl + i; 953 954 dst_icg = dmaengine_get_dst_icg(xt, chunk); 955 src_icg = dmaengine_get_src_icg(xt, chunk); 956 957 src_skip = chunk->size + src_icg; 958 dst_skip = chunk->size + dst_icg; 959 960 dev_dbg(chan2dev(chan), 961 "%s: chunk size=%d, src icg=%d, dst icg=%d\n", 962 __func__, chunk->size, src_icg, dst_icg); 963 964 /* 965 * Handle the case where we just have the same 966 * transfer to setup, we can just increase the 967 * block number and reuse the same descriptor. 968 */ 969 if (prev_chunk && prev && 970 (prev_chunk->size == chunk->size) && 971 (prev_src_icg == src_icg) && 972 (prev_dst_icg == dst_icg)) { 973 dev_dbg(chan2dev(chan), 974 "%s: same configuration that the previous chunk, merging the descriptors...\n", 975 __func__); 976 at_xdmac_increment_block_count(chan, prev); 977 continue; 978 } 979 980 desc = at_xdmac_interleaved_queue_desc(chan, atchan, 981 prev, 982 src_addr, dst_addr, 983 xt, chunk); 984 if (!desc) { 985 list_splice_init(&first->descs_list, 986 &atchan->free_descs_list); 987 return NULL; 988 } 989 990 if (!first) 991 first = desc; 992 993 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 994 __func__, desc, first); 995 list_add_tail(&desc->desc_node, &first->descs_list); 996 997 if (xt->src_sgl) 998 src_addr += src_skip; 999 1000 if (xt->dst_sgl) 1001 dst_addr += dst_skip; 1002 1003 len += chunk->size; 1004 prev_chunk = chunk; 1005 prev_dst_icg = dst_icg; 1006 prev_src_icg = src_icg; 1007 prev = desc; 1008 } 1009 1010 first->tx_dma_desc.cookie = -EBUSY; 1011 first->tx_dma_desc.flags = flags; 1012 first->xfer_size = len; 1013 1014 return &first->tx_dma_desc; 1015 } 1016 1017 static struct dma_async_tx_descriptor * 1018 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1019 size_t len, unsigned long flags) 1020 { 1021 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1022 struct at_xdmac_desc *first = NULL, *prev = NULL; 1023 size_t remaining_size = len, xfer_size = 0, ublen; 1024 dma_addr_t src_addr = src, dst_addr = dest; 1025 u32 dwidth; 1026 /* 1027 * WARNING: We don't know the direction, it involves we can't 1028 * dynamically set the source and dest interface so we have to use the 1029 * same one. Only interface 0 allows EBI access. Hopefully we can 1030 * access DDR through both ports (at least on SAMA5D4x), so we can use 1031 * the same interface for source and dest, that solves the fact we 1032 * don't know the direction. 1033 */ 1034 u32 chan_cc = AT_XDMAC_CC_DAM_INCREMENTED_AM 1035 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1036 | AT_XDMAC_CC_DIF(0) 1037 | AT_XDMAC_CC_SIF(0) 1038 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1039 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1040 unsigned long irqflags; 1041 1042 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n", 1043 __func__, &src, &dest, len, flags); 1044 1045 if (unlikely(!len)) 1046 return NULL; 1047 1048 dwidth = at_xdmac_align_width(chan, src_addr | dst_addr); 1049 1050 /* Prepare descriptors. */ 1051 while (remaining_size) { 1052 struct at_xdmac_desc *desc = NULL; 1053 1054 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size); 1055 1056 spin_lock_irqsave(&atchan->lock, irqflags); 1057 desc = at_xdmac_get_desc(atchan); 1058 spin_unlock_irqrestore(&atchan->lock, irqflags); 1059 if (!desc) { 1060 dev_err(chan2dev(chan), "can't get descriptor\n"); 1061 if (first) 1062 list_splice_init(&first->descs_list, &atchan->free_descs_list); 1063 return NULL; 1064 } 1065 1066 /* Update src and dest addresses. */ 1067 src_addr += xfer_size; 1068 dst_addr += xfer_size; 1069 1070 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth) 1071 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth; 1072 else 1073 xfer_size = remaining_size; 1074 1075 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size); 1076 1077 /* Check remaining length and change data width if needed. */ 1078 dwidth = at_xdmac_align_width(chan, 1079 src_addr | dst_addr | xfer_size); 1080 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1081 1082 ublen = xfer_size >> dwidth; 1083 remaining_size -= xfer_size; 1084 1085 desc->lld.mbr_sa = src_addr; 1086 desc->lld.mbr_da = dst_addr; 1087 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 1088 | AT_XDMAC_MBR_UBC_NDEN 1089 | AT_XDMAC_MBR_UBC_NSEN 1090 | ublen; 1091 desc->lld.mbr_cfg = chan_cc; 1092 1093 dev_dbg(chan2dev(chan), 1094 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1095 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg); 1096 1097 /* Chain lld. */ 1098 if (prev) 1099 at_xdmac_queue_desc(chan, prev, desc); 1100 1101 prev = desc; 1102 if (!first) 1103 first = desc; 1104 1105 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1106 __func__, desc, first); 1107 list_add_tail(&desc->desc_node, &first->descs_list); 1108 } 1109 1110 first->tx_dma_desc.flags = flags; 1111 first->xfer_size = len; 1112 1113 return &first->tx_dma_desc; 1114 } 1115 1116 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan, 1117 struct at_xdmac_chan *atchan, 1118 dma_addr_t dst_addr, 1119 size_t len, 1120 int value) 1121 { 1122 struct at_xdmac_desc *desc; 1123 unsigned long flags; 1124 size_t ublen; 1125 u32 dwidth; 1126 /* 1127 * WARNING: The channel configuration is set here since there is no 1128 * dmaengine_slave_config call in this case. Moreover we don't know the 1129 * direction, it involves we can't dynamically set the source and dest 1130 * interface so we have to use the same one. Only interface 0 allows EBI 1131 * access. Hopefully we can access DDR through both ports (at least on 1132 * SAMA5D4x), so we can use the same interface for source and dest, 1133 * that solves the fact we don't know the direction. 1134 */ 1135 u32 chan_cc = AT_XDMAC_CC_DAM_UBS_AM 1136 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1137 | AT_XDMAC_CC_DIF(0) 1138 | AT_XDMAC_CC_SIF(0) 1139 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1140 | AT_XDMAC_CC_MEMSET_HW_MODE 1141 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1142 1143 dwidth = at_xdmac_align_width(chan, dst_addr); 1144 1145 if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 1146 dev_err(chan2dev(chan), 1147 "%s: Transfer too large, aborting...\n", 1148 __func__); 1149 return NULL; 1150 } 1151 1152 spin_lock_irqsave(&atchan->lock, flags); 1153 desc = at_xdmac_get_desc(atchan); 1154 spin_unlock_irqrestore(&atchan->lock, flags); 1155 if (!desc) { 1156 dev_err(chan2dev(chan), "can't get descriptor\n"); 1157 return NULL; 1158 } 1159 1160 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1161 1162 ublen = len >> dwidth; 1163 1164 desc->lld.mbr_da = dst_addr; 1165 desc->lld.mbr_ds = value; 1166 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 1167 | AT_XDMAC_MBR_UBC_NDEN 1168 | AT_XDMAC_MBR_UBC_NSEN 1169 | ublen; 1170 desc->lld.mbr_cfg = chan_cc; 1171 1172 dev_dbg(chan2dev(chan), 1173 "%s: lld: mbr_da=0x%08x, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1174 __func__, desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc, 1175 desc->lld.mbr_cfg); 1176 1177 return desc; 1178 } 1179 1180 struct dma_async_tx_descriptor * 1181 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 1182 size_t len, unsigned long flags) 1183 { 1184 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1185 struct at_xdmac_desc *desc; 1186 1187 dev_dbg(chan2dev(chan), "%s: dest=0x%08x, len=%d, pattern=0x%x, flags=0x%lx\n", 1188 __func__, dest, len, value, flags); 1189 1190 if (unlikely(!len)) 1191 return NULL; 1192 1193 desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value); 1194 list_add_tail(&desc->desc_node, &desc->descs_list); 1195 1196 desc->tx_dma_desc.cookie = -EBUSY; 1197 desc->tx_dma_desc.flags = flags; 1198 desc->xfer_size = len; 1199 1200 return &desc->tx_dma_desc; 1201 } 1202 1203 static struct dma_async_tx_descriptor * 1204 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl, 1205 unsigned int sg_len, int value, 1206 unsigned long flags) 1207 { 1208 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1209 struct at_xdmac_desc *desc, *pdesc = NULL, 1210 *ppdesc = NULL, *first = NULL; 1211 struct scatterlist *sg, *psg = NULL, *ppsg = NULL; 1212 size_t stride = 0, pstride = 0, len = 0; 1213 int i; 1214 1215 if (!sgl) 1216 return NULL; 1217 1218 dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n", 1219 __func__, sg_len, value, flags); 1220 1221 /* Prepare descriptors. */ 1222 for_each_sg(sgl, sg, sg_len, i) { 1223 dev_dbg(chan2dev(chan), "%s: dest=0x%08x, len=%d, pattern=0x%x, flags=0x%lx\n", 1224 __func__, sg_dma_address(sg), sg_dma_len(sg), 1225 value, flags); 1226 desc = at_xdmac_memset_create_desc(chan, atchan, 1227 sg_dma_address(sg), 1228 sg_dma_len(sg), 1229 value); 1230 if (!desc && first) 1231 list_splice_init(&first->descs_list, 1232 &atchan->free_descs_list); 1233 1234 if (!first) 1235 first = desc; 1236 1237 /* Update our strides */ 1238 pstride = stride; 1239 if (psg) 1240 stride = sg_dma_address(sg) - 1241 (sg_dma_address(psg) + sg_dma_len(psg)); 1242 1243 /* 1244 * The scatterlist API gives us only the address and 1245 * length of each elements. 1246 * 1247 * Unfortunately, we don't have the stride, which we 1248 * will need to compute. 1249 * 1250 * That make us end up in a situation like this one: 1251 * len stride len stride len 1252 * +-------+ +-------+ +-------+ 1253 * | N-2 | | N-1 | | N | 1254 * +-------+ +-------+ +-------+ 1255 * 1256 * We need all these three elements (N-2, N-1 and N) 1257 * to actually take the decision on whether we need to 1258 * queue N-1 or reuse N-2. 1259 * 1260 * We will only consider N if it is the last element. 1261 */ 1262 if (ppdesc && pdesc) { 1263 if ((stride == pstride) && 1264 (sg_dma_len(ppsg) == sg_dma_len(psg))) { 1265 dev_dbg(chan2dev(chan), 1266 "%s: desc 0x%p can be merged with desc 0x%p\n", 1267 __func__, pdesc, ppdesc); 1268 1269 /* 1270 * Increment the block count of the 1271 * N-2 descriptor 1272 */ 1273 at_xdmac_increment_block_count(chan, ppdesc); 1274 ppdesc->lld.mbr_dus = stride; 1275 1276 /* 1277 * Put back the N-1 descriptor in the 1278 * free descriptor list 1279 */ 1280 list_add_tail(&pdesc->desc_node, 1281 &atchan->free_descs_list); 1282 1283 /* 1284 * Make our N-1 descriptor pointer 1285 * point to the N-2 since they were 1286 * actually merged. 1287 */ 1288 pdesc = ppdesc; 1289 1290 /* 1291 * Rule out the case where we don't have 1292 * pstride computed yet (our second sg 1293 * element) 1294 * 1295 * We also want to catch the case where there 1296 * would be a negative stride, 1297 */ 1298 } else if (pstride || 1299 sg_dma_address(sg) < sg_dma_address(psg)) { 1300 /* 1301 * Queue the N-1 descriptor after the 1302 * N-2 1303 */ 1304 at_xdmac_queue_desc(chan, ppdesc, pdesc); 1305 1306 /* 1307 * Add the N-1 descriptor to the list 1308 * of the descriptors used for this 1309 * transfer 1310 */ 1311 list_add_tail(&desc->desc_node, 1312 &first->descs_list); 1313 dev_dbg(chan2dev(chan), 1314 "%s: add desc 0x%p to descs_list 0x%p\n", 1315 __func__, desc, first); 1316 } 1317 } 1318 1319 /* 1320 * If we are the last element, just see if we have the 1321 * same size than the previous element. 1322 * 1323 * If so, we can merge it with the previous descriptor 1324 * since we don't care about the stride anymore. 1325 */ 1326 if ((i == (sg_len - 1)) && 1327 sg_dma_len(ppsg) == sg_dma_len(psg)) { 1328 dev_dbg(chan2dev(chan), 1329 "%s: desc 0x%p can be merged with desc 0x%p\n", 1330 __func__, desc, pdesc); 1331 1332 /* 1333 * Increment the block count of the N-1 1334 * descriptor 1335 */ 1336 at_xdmac_increment_block_count(chan, pdesc); 1337 pdesc->lld.mbr_dus = stride; 1338 1339 /* 1340 * Put back the N descriptor in the free 1341 * descriptor list 1342 */ 1343 list_add_tail(&desc->desc_node, 1344 &atchan->free_descs_list); 1345 } 1346 1347 /* Update our descriptors */ 1348 ppdesc = pdesc; 1349 pdesc = desc; 1350 1351 /* Update our scatter pointers */ 1352 ppsg = psg; 1353 psg = sg; 1354 1355 len += sg_dma_len(sg); 1356 } 1357 1358 first->tx_dma_desc.cookie = -EBUSY; 1359 first->tx_dma_desc.flags = flags; 1360 first->xfer_size = len; 1361 1362 return &first->tx_dma_desc; 1363 } 1364 1365 static enum dma_status 1366 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 1367 struct dma_tx_state *txstate) 1368 { 1369 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1370 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1371 struct at_xdmac_desc *desc, *_desc; 1372 struct list_head *descs_list; 1373 enum dma_status ret; 1374 int residue; 1375 u32 cur_nda, mask, value; 1376 u8 dwidth = 0; 1377 unsigned long flags; 1378 1379 ret = dma_cookie_status(chan, cookie, txstate); 1380 if (ret == DMA_COMPLETE) 1381 return ret; 1382 1383 if (!txstate) 1384 return ret; 1385 1386 spin_lock_irqsave(&atchan->lock, flags); 1387 1388 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 1389 1390 /* 1391 * If the transfer has not been started yet, don't need to compute the 1392 * residue, it's the transfer length. 1393 */ 1394 if (!desc->active_xfer) { 1395 dma_set_residue(txstate, desc->xfer_size); 1396 goto spin_unlock; 1397 } 1398 1399 residue = desc->xfer_size; 1400 /* 1401 * Flush FIFO: only relevant when the transfer is source peripheral 1402 * synchronized. 1403 */ 1404 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC; 1405 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM; 1406 if ((desc->lld.mbr_cfg & mask) == value) { 1407 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask); 1408 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS)) 1409 cpu_relax(); 1410 } 1411 1412 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 1413 /* 1414 * Remove size of all microblocks already transferred and the current 1415 * one. Then add the remaining size to transfer of the current 1416 * microblock. 1417 */ 1418 descs_list = &desc->descs_list; 1419 list_for_each_entry_safe(desc, _desc, descs_list, desc_node) { 1420 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg); 1421 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth; 1422 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda) 1423 break; 1424 } 1425 residue += at_xdmac_chan_read(atchan, AT_XDMAC_CUBC) << dwidth; 1426 1427 dma_set_residue(txstate, residue); 1428 1429 dev_dbg(chan2dev(chan), 1430 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n", 1431 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue); 1432 1433 spin_unlock: 1434 spin_unlock_irqrestore(&atchan->lock, flags); 1435 return ret; 1436 } 1437 1438 /* Call must be protected by lock. */ 1439 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan, 1440 struct at_xdmac_desc *desc) 1441 { 1442 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1443 1444 /* 1445 * Remove the transfer from the transfer list then move the transfer 1446 * descriptors into the free descriptors list. 1447 */ 1448 list_del(&desc->xfer_node); 1449 list_splice_init(&desc->descs_list, &atchan->free_descs_list); 1450 } 1451 1452 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan) 1453 { 1454 struct at_xdmac_desc *desc; 1455 unsigned long flags; 1456 1457 spin_lock_irqsave(&atchan->lock, flags); 1458 1459 /* 1460 * If channel is enabled, do nothing, advance_work will be triggered 1461 * after the interruption. 1462 */ 1463 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) { 1464 desc = list_first_entry(&atchan->xfers_list, 1465 struct at_xdmac_desc, 1466 xfer_node); 1467 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1468 if (!desc->active_xfer) 1469 at_xdmac_start_xfer(atchan, desc); 1470 } 1471 1472 spin_unlock_irqrestore(&atchan->lock, flags); 1473 } 1474 1475 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan) 1476 { 1477 struct at_xdmac_desc *desc; 1478 struct dma_async_tx_descriptor *txd; 1479 1480 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 1481 txd = &desc->tx_dma_desc; 1482 1483 if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT)) 1484 txd->callback(txd->callback_param); 1485 } 1486 1487 static void at_xdmac_tasklet(unsigned long data) 1488 { 1489 struct at_xdmac_chan *atchan = (struct at_xdmac_chan *)data; 1490 struct at_xdmac_desc *desc; 1491 u32 error_mask; 1492 1493 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n", 1494 __func__, atchan->status); 1495 1496 error_mask = AT_XDMAC_CIS_RBEIS 1497 | AT_XDMAC_CIS_WBEIS 1498 | AT_XDMAC_CIS_ROIS; 1499 1500 if (at_xdmac_chan_is_cyclic(atchan)) { 1501 at_xdmac_handle_cyclic(atchan); 1502 } else if ((atchan->status & AT_XDMAC_CIS_LIS) 1503 || (atchan->status & error_mask)) { 1504 struct dma_async_tx_descriptor *txd; 1505 1506 if (atchan->status & AT_XDMAC_CIS_RBEIS) 1507 dev_err(chan2dev(&atchan->chan), "read bus error!!!"); 1508 if (atchan->status & AT_XDMAC_CIS_WBEIS) 1509 dev_err(chan2dev(&atchan->chan), "write bus error!!!"); 1510 if (atchan->status & AT_XDMAC_CIS_ROIS) 1511 dev_err(chan2dev(&atchan->chan), "request overflow error!!!"); 1512 1513 spin_lock_bh(&atchan->lock); 1514 desc = list_first_entry(&atchan->xfers_list, 1515 struct at_xdmac_desc, 1516 xfer_node); 1517 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1518 BUG_ON(!desc->active_xfer); 1519 1520 txd = &desc->tx_dma_desc; 1521 1522 at_xdmac_remove_xfer(atchan, desc); 1523 spin_unlock_bh(&atchan->lock); 1524 1525 if (!at_xdmac_chan_is_cyclic(atchan)) { 1526 dma_cookie_complete(txd); 1527 if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT)) 1528 txd->callback(txd->callback_param); 1529 } 1530 1531 dma_run_dependencies(txd); 1532 1533 at_xdmac_advance_work(atchan); 1534 } 1535 } 1536 1537 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id) 1538 { 1539 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id; 1540 struct at_xdmac_chan *atchan; 1541 u32 imr, status, pending; 1542 u32 chan_imr, chan_status; 1543 int i, ret = IRQ_NONE; 1544 1545 do { 1546 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1547 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS); 1548 pending = status & imr; 1549 1550 dev_vdbg(atxdmac->dma.dev, 1551 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n", 1552 __func__, status, imr, pending); 1553 1554 if (!pending) 1555 break; 1556 1557 /* We have to find which channel has generated the interrupt. */ 1558 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1559 if (!((1 << i) & pending)) 1560 continue; 1561 1562 atchan = &atxdmac->chan[i]; 1563 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1564 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS); 1565 atchan->status = chan_status & chan_imr; 1566 dev_vdbg(atxdmac->dma.dev, 1567 "%s: chan%d: imr=0x%x, status=0x%x\n", 1568 __func__, i, chan_imr, chan_status); 1569 dev_vdbg(chan2dev(&atchan->chan), 1570 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 1571 __func__, 1572 at_xdmac_chan_read(atchan, AT_XDMAC_CC), 1573 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 1574 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 1575 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 1576 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 1577 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 1578 1579 if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS)) 1580 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1581 1582 tasklet_schedule(&atchan->tasklet); 1583 ret = IRQ_HANDLED; 1584 } 1585 1586 } while (pending); 1587 1588 return ret; 1589 } 1590 1591 static void at_xdmac_issue_pending(struct dma_chan *chan) 1592 { 1593 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1594 1595 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__); 1596 1597 if (!at_xdmac_chan_is_cyclic(atchan)) 1598 at_xdmac_advance_work(atchan); 1599 1600 return; 1601 } 1602 1603 static int at_xdmac_device_config(struct dma_chan *chan, 1604 struct dma_slave_config *config) 1605 { 1606 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1607 int ret; 1608 unsigned long flags; 1609 1610 dev_dbg(chan2dev(chan), "%s\n", __func__); 1611 1612 spin_lock_irqsave(&atchan->lock, flags); 1613 ret = at_xdmac_set_slave_config(chan, config); 1614 spin_unlock_irqrestore(&atchan->lock, flags); 1615 1616 return ret; 1617 } 1618 1619 static int at_xdmac_device_pause(struct dma_chan *chan) 1620 { 1621 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1622 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1623 unsigned long flags; 1624 1625 dev_dbg(chan2dev(chan), "%s\n", __func__); 1626 1627 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status)) 1628 return 0; 1629 1630 spin_lock_irqsave(&atchan->lock, flags); 1631 at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask); 1632 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC) 1633 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP)) 1634 cpu_relax(); 1635 spin_unlock_irqrestore(&atchan->lock, flags); 1636 1637 return 0; 1638 } 1639 1640 static int at_xdmac_device_resume(struct dma_chan *chan) 1641 { 1642 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1643 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1644 unsigned long flags; 1645 1646 dev_dbg(chan2dev(chan), "%s\n", __func__); 1647 1648 spin_lock_irqsave(&atchan->lock, flags); 1649 if (!at_xdmac_chan_is_paused(atchan)) { 1650 spin_unlock_irqrestore(&atchan->lock, flags); 1651 return 0; 1652 } 1653 1654 at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask); 1655 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1656 spin_unlock_irqrestore(&atchan->lock, flags); 1657 1658 return 0; 1659 } 1660 1661 static int at_xdmac_device_terminate_all(struct dma_chan *chan) 1662 { 1663 struct at_xdmac_desc *desc, *_desc; 1664 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1665 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1666 unsigned long flags; 1667 1668 dev_dbg(chan2dev(chan), "%s\n", __func__); 1669 1670 spin_lock_irqsave(&atchan->lock, flags); 1671 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1672 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask) 1673 cpu_relax(); 1674 1675 /* Cancel all pending transfers. */ 1676 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) 1677 at_xdmac_remove_xfer(atchan, desc); 1678 1679 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 1680 spin_unlock_irqrestore(&atchan->lock, flags); 1681 1682 return 0; 1683 } 1684 1685 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan) 1686 { 1687 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1688 struct at_xdmac_desc *desc; 1689 int i; 1690 unsigned long flags; 1691 1692 spin_lock_irqsave(&atchan->lock, flags); 1693 1694 if (at_xdmac_chan_is_enabled(atchan)) { 1695 dev_err(chan2dev(chan), 1696 "can't allocate channel resources (channel enabled)\n"); 1697 i = -EIO; 1698 goto spin_unlock; 1699 } 1700 1701 if (!list_empty(&atchan->free_descs_list)) { 1702 dev_err(chan2dev(chan), 1703 "can't allocate channel resources (channel not free from a previous use)\n"); 1704 i = -EIO; 1705 goto spin_unlock; 1706 } 1707 1708 for (i = 0; i < init_nr_desc_per_channel; i++) { 1709 desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC); 1710 if (!desc) { 1711 dev_warn(chan2dev(chan), 1712 "only %d descriptors have been allocated\n", i); 1713 break; 1714 } 1715 list_add_tail(&desc->desc_node, &atchan->free_descs_list); 1716 } 1717 1718 dma_cookie_init(chan); 1719 1720 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i); 1721 1722 spin_unlock: 1723 spin_unlock_irqrestore(&atchan->lock, flags); 1724 return i; 1725 } 1726 1727 static void at_xdmac_free_chan_resources(struct dma_chan *chan) 1728 { 1729 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1730 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 1731 struct at_xdmac_desc *desc, *_desc; 1732 1733 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) { 1734 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc); 1735 list_del(&desc->desc_node); 1736 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys); 1737 } 1738 1739 return; 1740 } 1741 1742 #ifdef CONFIG_PM 1743 static int atmel_xdmac_prepare(struct device *dev) 1744 { 1745 struct platform_device *pdev = to_platform_device(dev); 1746 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1747 struct dma_chan *chan, *_chan; 1748 1749 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1750 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1751 1752 /* Wait for transfer completion, except in cyclic case. */ 1753 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan)) 1754 return -EAGAIN; 1755 } 1756 return 0; 1757 } 1758 #else 1759 # define atmel_xdmac_prepare NULL 1760 #endif 1761 1762 #ifdef CONFIG_PM_SLEEP 1763 static int atmel_xdmac_suspend(struct device *dev) 1764 { 1765 struct platform_device *pdev = to_platform_device(dev); 1766 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1767 struct dma_chan *chan, *_chan; 1768 1769 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1770 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1771 1772 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC); 1773 if (at_xdmac_chan_is_cyclic(atchan)) { 1774 if (!at_xdmac_chan_is_paused(atchan)) 1775 at_xdmac_device_pause(chan); 1776 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1777 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA); 1778 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC); 1779 } 1780 } 1781 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1782 1783 at_xdmac_off(atxdmac); 1784 clk_disable_unprepare(atxdmac->clk); 1785 return 0; 1786 } 1787 1788 static int atmel_xdmac_resume(struct device *dev) 1789 { 1790 struct platform_device *pdev = to_platform_device(dev); 1791 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1792 struct at_xdmac_chan *atchan; 1793 struct dma_chan *chan, *_chan; 1794 int i; 1795 1796 clk_prepare_enable(atxdmac->clk); 1797 1798 /* Clear pending interrupts. */ 1799 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1800 atchan = &atxdmac->chan[i]; 1801 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 1802 cpu_relax(); 1803 } 1804 1805 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim); 1806 at_xdmac_write(atxdmac, AT_XDMAC_GE, atxdmac->save_gs); 1807 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1808 atchan = to_at_xdmac_chan(chan); 1809 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc); 1810 if (at_xdmac_chan_is_cyclic(atchan)) { 1811 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda); 1812 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc); 1813 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim); 1814 wmb(); 1815 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 1816 } 1817 } 1818 return 0; 1819 } 1820 #endif /* CONFIG_PM_SLEEP */ 1821 1822 static int at_xdmac_probe(struct platform_device *pdev) 1823 { 1824 struct resource *res; 1825 struct at_xdmac *atxdmac; 1826 int irq, size, nr_channels, i, ret; 1827 void __iomem *base; 1828 u32 reg; 1829 1830 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1831 if (!res) 1832 return -EINVAL; 1833 1834 irq = platform_get_irq(pdev, 0); 1835 if (irq < 0) 1836 return irq; 1837 1838 base = devm_ioremap_resource(&pdev->dev, res); 1839 if (IS_ERR(base)) 1840 return PTR_ERR(base); 1841 1842 /* 1843 * Read number of xdmac channels, read helper function can't be used 1844 * since atxdmac is not yet allocated and we need to know the number 1845 * of channels to do the allocation. 1846 */ 1847 reg = readl_relaxed(base + AT_XDMAC_GTYPE); 1848 nr_channels = AT_XDMAC_NB_CH(reg); 1849 if (nr_channels > AT_XDMAC_MAX_CHAN) { 1850 dev_err(&pdev->dev, "invalid number of channels (%u)\n", 1851 nr_channels); 1852 return -EINVAL; 1853 } 1854 1855 size = sizeof(*atxdmac); 1856 size += nr_channels * sizeof(struct at_xdmac_chan); 1857 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); 1858 if (!atxdmac) { 1859 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n"); 1860 return -ENOMEM; 1861 } 1862 1863 atxdmac->regs = base; 1864 atxdmac->irq = irq; 1865 1866 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk"); 1867 if (IS_ERR(atxdmac->clk)) { 1868 dev_err(&pdev->dev, "can't get dma_clk\n"); 1869 return PTR_ERR(atxdmac->clk); 1870 } 1871 1872 /* Do not use dev res to prevent races with tasklet */ 1873 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac); 1874 if (ret) { 1875 dev_err(&pdev->dev, "can't request irq\n"); 1876 return ret; 1877 } 1878 1879 ret = clk_prepare_enable(atxdmac->clk); 1880 if (ret) { 1881 dev_err(&pdev->dev, "can't prepare or enable clock\n"); 1882 goto err_free_irq; 1883 } 1884 1885 atxdmac->at_xdmac_desc_pool = 1886 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev, 1887 sizeof(struct at_xdmac_desc), 4, 0); 1888 if (!atxdmac->at_xdmac_desc_pool) { 1889 dev_err(&pdev->dev, "no memory for descriptors dma pool\n"); 1890 ret = -ENOMEM; 1891 goto err_clk_disable; 1892 } 1893 1894 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask); 1895 dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask); 1896 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask); 1897 dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask); 1898 dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask); 1899 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask); 1900 /* 1901 * Without DMA_PRIVATE the driver is not able to allocate more than 1902 * one channel, second allocation fails in private_candidate. 1903 */ 1904 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask); 1905 atxdmac->dma.dev = &pdev->dev; 1906 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources; 1907 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources; 1908 atxdmac->dma.device_tx_status = at_xdmac_tx_status; 1909 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending; 1910 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic; 1911 atxdmac->dma.device_prep_interleaved_dma = at_xdmac_prep_interleaved; 1912 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy; 1913 atxdmac->dma.device_prep_dma_memset = at_xdmac_prep_dma_memset; 1914 atxdmac->dma.device_prep_dma_memset_sg = at_xdmac_prep_dma_memset_sg; 1915 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg; 1916 atxdmac->dma.device_config = at_xdmac_device_config; 1917 atxdmac->dma.device_pause = at_xdmac_device_pause; 1918 atxdmac->dma.device_resume = at_xdmac_device_resume; 1919 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all; 1920 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 1921 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 1922 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1923 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1924 1925 /* Disable all chans and interrupts. */ 1926 at_xdmac_off(atxdmac); 1927 1928 /* Init channels. */ 1929 INIT_LIST_HEAD(&atxdmac->dma.channels); 1930 for (i = 0; i < nr_channels; i++) { 1931 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 1932 1933 atchan->chan.device = &atxdmac->dma; 1934 list_add_tail(&atchan->chan.device_node, 1935 &atxdmac->dma.channels); 1936 1937 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i); 1938 atchan->mask = 1 << i; 1939 1940 spin_lock_init(&atchan->lock); 1941 INIT_LIST_HEAD(&atchan->xfers_list); 1942 INIT_LIST_HEAD(&atchan->free_descs_list); 1943 tasklet_init(&atchan->tasklet, at_xdmac_tasklet, 1944 (unsigned long)atchan); 1945 1946 /* Clear pending interrupts. */ 1947 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 1948 cpu_relax(); 1949 } 1950 platform_set_drvdata(pdev, atxdmac); 1951 1952 ret = dma_async_device_register(&atxdmac->dma); 1953 if (ret) { 1954 dev_err(&pdev->dev, "fail to register DMA engine device\n"); 1955 goto err_clk_disable; 1956 } 1957 1958 ret = of_dma_controller_register(pdev->dev.of_node, 1959 at_xdmac_xlate, atxdmac); 1960 if (ret) { 1961 dev_err(&pdev->dev, "could not register of dma controller\n"); 1962 goto err_dma_unregister; 1963 } 1964 1965 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n", 1966 nr_channels, atxdmac->regs); 1967 1968 return 0; 1969 1970 err_dma_unregister: 1971 dma_async_device_unregister(&atxdmac->dma); 1972 err_clk_disable: 1973 clk_disable_unprepare(atxdmac->clk); 1974 err_free_irq: 1975 free_irq(atxdmac->irq, atxdmac->dma.dev); 1976 return ret; 1977 } 1978 1979 static int at_xdmac_remove(struct platform_device *pdev) 1980 { 1981 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev); 1982 int i; 1983 1984 at_xdmac_off(atxdmac); 1985 of_dma_controller_free(pdev->dev.of_node); 1986 dma_async_device_unregister(&atxdmac->dma); 1987 clk_disable_unprepare(atxdmac->clk); 1988 1989 synchronize_irq(atxdmac->irq); 1990 1991 free_irq(atxdmac->irq, atxdmac->dma.dev); 1992 1993 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1994 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 1995 1996 tasklet_kill(&atchan->tasklet); 1997 at_xdmac_free_chan_resources(&atchan->chan); 1998 } 1999 2000 return 0; 2001 } 2002 2003 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = { 2004 .prepare = atmel_xdmac_prepare, 2005 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume) 2006 }; 2007 2008 static const struct of_device_id atmel_xdmac_dt_ids[] = { 2009 { 2010 .compatible = "atmel,sama5d4-dma", 2011 }, { 2012 /* sentinel */ 2013 } 2014 }; 2015 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids); 2016 2017 static struct platform_driver at_xdmac_driver = { 2018 .probe = at_xdmac_probe, 2019 .remove = at_xdmac_remove, 2020 .driver = { 2021 .name = "at_xdmac", 2022 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids), 2023 .pm = &atmel_xdmac_dev_pm_ops, 2024 } 2025 }; 2026 2027 static int __init at_xdmac_init(void) 2028 { 2029 return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe); 2030 } 2031 subsys_initcall(at_xdmac_init); 2032 2033 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver"); 2034 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>"); 2035 MODULE_LICENSE("GPL"); 2036