xref: /openbmc/linux/drivers/dma/at_xdmac.c (revision 8b235f2f)
1 /*
2  * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
3  *
4  * Copyright (C) 2014 Atmel Corporation
5  *
6  * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <asm/barrier.h>
22 #include <dt-bindings/dma/at91.h>
23 #include <linux/clk.h>
24 #include <linux/dmaengine.h>
25 #include <linux/dmapool.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of_dma.h>
32 #include <linux/of_platform.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm.h>
35 
36 #include "dmaengine.h"
37 
38 /* Global registers */
39 #define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
40 #define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
41 #define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
42 #define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
43 #define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
44 #define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
45 #define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
46 #define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
47 #define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
48 #define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
49 #define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
50 #define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
51 #define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
52 #define AT_XDMAC_GRS		0x28	/* Global Channel Read Suspend Register */
53 #define AT_XDMAC_GWS		0x2C	/* Global Write Suspend Register */
54 #define AT_XDMAC_GRWS		0x30	/* Global Channel Read Write Suspend Register */
55 #define AT_XDMAC_GRWR		0x34	/* Global Channel Read Write Resume Register */
56 #define AT_XDMAC_GSWR		0x38	/* Global Channel Software Request Register */
57 #define AT_XDMAC_GSWS		0x3C	/* Global channel Software Request Status Register */
58 #define AT_XDMAC_GSWF		0x40	/* Global Channel Software Flush Request Register */
59 #define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */
60 
61 /* Channel relative registers offsets */
62 #define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
63 #define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
64 #define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
65 #define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
66 #define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
67 #define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
68 #define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
69 #define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
70 #define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
71 #define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
72 #define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
73 #define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
74 #define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
75 #define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
76 #define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
77 #define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
78 #define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
79 #define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
80 #define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
81 #define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
82 #define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
83 #define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
84 #define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
85 #define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
86 #define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
87 #define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
88 #define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
89 #define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
90 #define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
91 #define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
92 #define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
93 #define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
94 #define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
95 #define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
96 #define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
97 #define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
98 #define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
99 #define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
100 #define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
101 #define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
102 #define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
103 #define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
104 #define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
105 #define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
106 #define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
107 #define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
108 #define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
109 #define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
110 #define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
111 #define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
112 #define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
113 #define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
114 #define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
115 #define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
116 #define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
117 #define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
118 #define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
119 #define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
120 #define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
121 #define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
122 #define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
123 #define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
124 #define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
125 #define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
126 #define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
127 #define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
128 #define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
129 #define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
130 #define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
131 #define		AT_XDMAC_CC_DWIDTH_OFFSET	11
132 #define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
133 #define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
134 #define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
135 #define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
136 #define			AT_XDMAC_CC_DWIDTH_WORD		0x2
137 #define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
138 #define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
139 #define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
140 #define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
141 #define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
142 #define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
143 #define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
144 #define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
145 #define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
146 #define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
147 #define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
148 #define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
149 #define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
150 #define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
151 #define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
152 #define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
153 #define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
154 #define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
155 #define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
156 #define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
157 #define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
158 #define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
159 #define		AT_XDMAC_CC_PERID(i)	(0x7f & (h) << 24)	/* Channel Peripheral Identifier */
160 #define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
161 #define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
162 #define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */
163 
164 #define AT_XDMAC_CHAN_REG_BASE	0x50	/* Channel registers base address */
165 
166 /* Microblock control members */
167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
168 #define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
169 #define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
170 #define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
171 #define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
172 #define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
173 #define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
174 #define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */
175 
176 #define AT_XDMAC_MAX_CHAN	0x20
177 #define AT_XDMAC_MAX_CSIZE	16	/* 16 data */
178 #define AT_XDMAC_MAX_DWIDTH	8	/* 64 bits */
179 
180 #define AT_XDMAC_DMA_BUSWIDTHS\
181 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
182 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
183 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
184 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
185 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
186 
187 enum atc_status {
188 	AT_XDMAC_CHAN_IS_CYCLIC = 0,
189 	AT_XDMAC_CHAN_IS_PAUSED,
190 };
191 
192 /* ----- Channels ----- */
193 struct at_xdmac_chan {
194 	struct dma_chan			chan;
195 	void __iomem			*ch_regs;
196 	u32				mask;		/* Channel Mask */
197 	u32				cfg;		/* Channel Configuration Register */
198 	u8				perid;		/* Peripheral ID */
199 	u8				perif;		/* Peripheral Interface */
200 	u8				memif;		/* Memory Interface */
201 	u32				save_cc;
202 	u32				save_cim;
203 	u32				save_cnda;
204 	u32				save_cndc;
205 	unsigned long			status;
206 	struct tasklet_struct		tasklet;
207 	struct dma_slave_config		sconfig;
208 
209 	spinlock_t			lock;
210 
211 	struct list_head		xfers_list;
212 	struct list_head		free_descs_list;
213 };
214 
215 
216 /* ----- Controller ----- */
217 struct at_xdmac {
218 	struct dma_device	dma;
219 	void __iomem		*regs;
220 	int			irq;
221 	struct clk		*clk;
222 	u32			save_gim;
223 	u32			save_gs;
224 	struct dma_pool		*at_xdmac_desc_pool;
225 	struct at_xdmac_chan	chan[0];
226 };
227 
228 
229 /* ----- Descriptors ----- */
230 
231 /* Linked List Descriptor */
232 struct at_xdmac_lld {
233 	dma_addr_t	mbr_nda;	/* Next Descriptor Member */
234 	u32		mbr_ubc;	/* Microblock Control Member */
235 	dma_addr_t	mbr_sa;		/* Source Address Member */
236 	dma_addr_t	mbr_da;		/* Destination Address Member */
237 	u32		mbr_cfg;	/* Configuration Register */
238 	u32		mbr_bc;		/* Block Control Register */
239 	u32		mbr_ds;		/* Data Stride Register */
240 	u32		mbr_sus;	/* Source Microblock Stride Register */
241 	u32		mbr_dus;	/* Destination Microblock Stride Register */
242 };
243 
244 
245 struct at_xdmac_desc {
246 	struct at_xdmac_lld		lld;
247 	enum dma_transfer_direction	direction;
248 	struct dma_async_tx_descriptor	tx_dma_desc;
249 	struct list_head		desc_node;
250 	/* Following members are only used by the first descriptor */
251 	bool				active_xfer;
252 	unsigned int			xfer_size;
253 	struct list_head		descs_list;
254 	struct list_head		xfer_node;
255 };
256 
257 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
258 {
259 	return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
260 }
261 
262 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
263 #define at_xdmac_write(atxdmac, reg, value) \
264 	writel_relaxed((value), (atxdmac)->regs + (reg))
265 
266 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
267 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
268 
269 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
270 {
271 	return container_of(dchan, struct at_xdmac_chan, chan);
272 }
273 
274 static struct device *chan2dev(struct dma_chan *chan)
275 {
276 	return &chan->dev->device;
277 }
278 
279 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
280 {
281 	return container_of(ddev, struct at_xdmac, dma);
282 }
283 
284 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
285 {
286 	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
287 }
288 
289 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
290 {
291 	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
292 }
293 
294 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
295 {
296 	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
297 }
298 
299 static inline int at_xdmac_csize(u32 maxburst)
300 {
301 	int csize;
302 
303 	csize = ffs(maxburst) - 1;
304 	if (csize > 4)
305 		csize = -EINVAL;
306 
307 	return csize;
308 };
309 
310 static inline u8 at_xdmac_get_dwidth(u32 cfg)
311 {
312 	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
313 };
314 
315 static unsigned int init_nr_desc_per_channel = 64;
316 module_param(init_nr_desc_per_channel, uint, 0644);
317 MODULE_PARM_DESC(init_nr_desc_per_channel,
318 		 "initial descriptors per channel (default: 64)");
319 
320 
321 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
322 {
323 	return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
324 }
325 
326 static void at_xdmac_off(struct at_xdmac *atxdmac)
327 {
328 	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
329 
330 	/* Wait that all chans are disabled. */
331 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
332 		cpu_relax();
333 
334 	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
335 }
336 
337 /* Call with lock hold. */
338 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
339 				struct at_xdmac_desc *first)
340 {
341 	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
342 	u32		reg;
343 
344 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
345 
346 	if (at_xdmac_chan_is_enabled(atchan))
347 		return;
348 
349 	/* Set transfer as active to not try to start it again. */
350 	first->active_xfer = true;
351 
352 	/* Tell xdmac where to get the first descriptor. */
353 	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
354 	      | AT_XDMAC_CNDA_NDAIF(atchan->memif);
355 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
356 
357 	/*
358 	 * When doing non cyclic transfer we need to use the next
359 	 * descriptor view 2 since some fields of the configuration register
360 	 * depend on transfer size and src/dest addresses.
361 	 */
362 	if (at_xdmac_chan_is_cyclic(atchan))
363 		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
364 	else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3)
365 		reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
366 	else
367 		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
368 	/*
369 	 * Even if the register will be updated from the configuration in the
370 	 * descriptor when using view 2 or higher, the PROT bit won't be set
371 	 * properly. This bit can be modified only by using the channel
372 	 * configuration register.
373 	 */
374 	at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
375 
376 	reg |= AT_XDMAC_CNDC_NDDUP
377 	       | AT_XDMAC_CNDC_NDSUP
378 	       | AT_XDMAC_CNDC_NDE;
379 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
380 
381 	dev_vdbg(chan2dev(&atchan->chan),
382 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
383 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
384 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
385 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
386 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
387 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
388 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
389 
390 	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
391 	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE;
392 	/*
393 	 * There is no end of list when doing cyclic dma, we need to get
394 	 * an interrupt after each periods.
395 	 */
396 	if (at_xdmac_chan_is_cyclic(atchan))
397 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
398 				    reg | AT_XDMAC_CIE_BIE);
399 	else
400 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
401 				    reg | AT_XDMAC_CIE_LIE);
402 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
403 	dev_vdbg(chan2dev(&atchan->chan),
404 		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
405 	wmb();
406 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
407 
408 	dev_vdbg(chan2dev(&atchan->chan),
409 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
410 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
411 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
412 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
413 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
414 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
415 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
416 
417 }
418 
419 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
420 {
421 	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
422 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
423 	dma_cookie_t		cookie;
424 	unsigned long		irqflags;
425 
426 	spin_lock_irqsave(&atchan->lock, irqflags);
427 	cookie = dma_cookie_assign(tx);
428 
429 	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
430 		 __func__, atchan, desc);
431 	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
432 	if (list_is_singular(&atchan->xfers_list))
433 		at_xdmac_start_xfer(atchan, desc);
434 
435 	spin_unlock_irqrestore(&atchan->lock, irqflags);
436 	return cookie;
437 }
438 
439 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
440 						 gfp_t gfp_flags)
441 {
442 	struct at_xdmac_desc	*desc;
443 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
444 	dma_addr_t		phys;
445 
446 	desc = dma_pool_alloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
447 	if (desc) {
448 		memset(desc, 0, sizeof(*desc));
449 		INIT_LIST_HEAD(&desc->descs_list);
450 		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
451 		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
452 		desc->tx_dma_desc.phys = phys;
453 	}
454 
455 	return desc;
456 }
457 
458 /* Call must be protected by lock. */
459 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
460 {
461 	struct at_xdmac_desc *desc;
462 
463 	if (list_empty(&atchan->free_descs_list)) {
464 		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
465 	} else {
466 		desc = list_first_entry(&atchan->free_descs_list,
467 					struct at_xdmac_desc, desc_node);
468 		list_del(&desc->desc_node);
469 		desc->active_xfer = false;
470 	}
471 
472 	return desc;
473 }
474 
475 static void at_xdmac_queue_desc(struct dma_chan *chan,
476 				struct at_xdmac_desc *prev,
477 				struct at_xdmac_desc *desc)
478 {
479 	if (!prev || !desc)
480 		return;
481 
482 	prev->lld.mbr_nda = desc->tx_dma_desc.phys;
483 	prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
484 
485 	dev_dbg(chan2dev(chan),	"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
486 		__func__, prev, &prev->lld.mbr_nda);
487 }
488 
489 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
490 						  struct at_xdmac_desc *desc)
491 {
492 	if (!desc)
493 		return;
494 
495 	desc->lld.mbr_bc++;
496 
497 	dev_dbg(chan2dev(chan),
498 		"%s: incrementing the block count of the desc 0x%p\n",
499 		__func__, desc);
500 }
501 
502 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
503 				       struct of_dma *of_dma)
504 {
505 	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
506 	struct at_xdmac_chan	*atchan;
507 	struct dma_chan		*chan;
508 	struct device		*dev = atxdmac->dma.dev;
509 
510 	if (dma_spec->args_count != 1) {
511 		dev_err(dev, "dma phandler args: bad number of args\n");
512 		return NULL;
513 	}
514 
515 	chan = dma_get_any_slave_channel(&atxdmac->dma);
516 	if (!chan) {
517 		dev_err(dev, "can't get a dma channel\n");
518 		return NULL;
519 	}
520 
521 	atchan = to_at_xdmac_chan(chan);
522 	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
523 	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
524 	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
525 	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
526 		 atchan->memif, atchan->perif, atchan->perid);
527 
528 	return chan;
529 }
530 
531 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
532 				      enum dma_transfer_direction direction)
533 {
534 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
535 	int			csize, dwidth;
536 
537 	if (direction == DMA_DEV_TO_MEM) {
538 		atchan->cfg =
539 			AT91_XDMAC_DT_PERID(atchan->perid)
540 			| AT_XDMAC_CC_DAM_INCREMENTED_AM
541 			| AT_XDMAC_CC_SAM_FIXED_AM
542 			| AT_XDMAC_CC_DIF(atchan->memif)
543 			| AT_XDMAC_CC_SIF(atchan->perif)
544 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
545 			| AT_XDMAC_CC_DSYNC_PER2MEM
546 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
547 			| AT_XDMAC_CC_TYPE_PER_TRAN;
548 		csize = ffs(atchan->sconfig.src_maxburst) - 1;
549 		if (csize < 0) {
550 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
551 			return -EINVAL;
552 		}
553 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
554 		dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
555 		if (dwidth < 0) {
556 			dev_err(chan2dev(chan), "invalid src addr width value\n");
557 			return -EINVAL;
558 		}
559 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
560 	} else if (direction == DMA_MEM_TO_DEV) {
561 		atchan->cfg =
562 			AT91_XDMAC_DT_PERID(atchan->perid)
563 			| AT_XDMAC_CC_DAM_FIXED_AM
564 			| AT_XDMAC_CC_SAM_INCREMENTED_AM
565 			| AT_XDMAC_CC_DIF(atchan->perif)
566 			| AT_XDMAC_CC_SIF(atchan->memif)
567 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
568 			| AT_XDMAC_CC_DSYNC_MEM2PER
569 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
570 			| AT_XDMAC_CC_TYPE_PER_TRAN;
571 		csize = ffs(atchan->sconfig.dst_maxburst) - 1;
572 		if (csize < 0) {
573 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
574 			return -EINVAL;
575 		}
576 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
577 		dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
578 		if (dwidth < 0) {
579 			dev_err(chan2dev(chan), "invalid dst addr width value\n");
580 			return -EINVAL;
581 		}
582 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
583 	}
584 
585 	dev_dbg(chan2dev(chan),	"%s: cfg=0x%08x\n", __func__, atchan->cfg);
586 
587 	return 0;
588 }
589 
590 /*
591  * Only check that maxburst and addr width values are supported by the
592  * the controller but not that the configuration is good to perform the
593  * transfer since we don't know the direction at this stage.
594  */
595 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
596 {
597 	if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
598 	    || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
599 		return -EINVAL;
600 
601 	if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
602 	    || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
603 		return -EINVAL;
604 
605 	return 0;
606 }
607 
608 static int at_xdmac_set_slave_config(struct dma_chan *chan,
609 				      struct dma_slave_config *sconfig)
610 {
611 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
612 
613 	if (at_xdmac_check_slave_config(sconfig)) {
614 		dev_err(chan2dev(chan), "invalid slave configuration\n");
615 		return -EINVAL;
616 	}
617 
618 	memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
619 
620 	return 0;
621 }
622 
623 static struct dma_async_tx_descriptor *
624 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
625 		       unsigned int sg_len, enum dma_transfer_direction direction,
626 		       unsigned long flags, void *context)
627 {
628 	struct at_xdmac_chan		*atchan = to_at_xdmac_chan(chan);
629 	struct at_xdmac_desc		*first = NULL, *prev = NULL;
630 	struct scatterlist		*sg;
631 	int				i;
632 	unsigned int			xfer_size = 0;
633 	unsigned long			irqflags;
634 	struct dma_async_tx_descriptor	*ret = NULL;
635 
636 	if (!sgl)
637 		return NULL;
638 
639 	if (!is_slave_direction(direction)) {
640 		dev_err(chan2dev(chan), "invalid DMA direction\n");
641 		return NULL;
642 	}
643 
644 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
645 		 __func__, sg_len,
646 		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
647 		 flags);
648 
649 	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
650 	spin_lock_irqsave(&atchan->lock, irqflags);
651 
652 	if (at_xdmac_compute_chan_conf(chan, direction))
653 		goto spin_unlock;
654 
655 	/* Prepare descriptors. */
656 	for_each_sg(sgl, sg, sg_len, i) {
657 		struct at_xdmac_desc	*desc = NULL;
658 		u32			len, mem, dwidth, fixed_dwidth;
659 
660 		len = sg_dma_len(sg);
661 		mem = sg_dma_address(sg);
662 		if (unlikely(!len)) {
663 			dev_err(chan2dev(chan), "sg data length is zero\n");
664 			goto spin_unlock;
665 		}
666 		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
667 			 __func__, i, len, mem);
668 
669 		desc = at_xdmac_get_desc(atchan);
670 		if (!desc) {
671 			dev_err(chan2dev(chan), "can't get descriptor\n");
672 			if (first)
673 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
674 			goto spin_unlock;
675 		}
676 
677 		/* Linked list descriptor setup. */
678 		if (direction == DMA_DEV_TO_MEM) {
679 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
680 			desc->lld.mbr_da = mem;
681 		} else {
682 			desc->lld.mbr_sa = mem;
683 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
684 		}
685 		dwidth = at_xdmac_get_dwidth(atchan->cfg);
686 		fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
687 			       ? dwidth
688 			       : AT_XDMAC_CC_DWIDTH_BYTE;
689 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2			/* next descriptor view */
690 			| AT_XDMAC_MBR_UBC_NDEN					/* next descriptor dst parameter update */
691 			| AT_XDMAC_MBR_UBC_NSEN					/* next descriptor src parameter update */
692 			| (len >> fixed_dwidth);				/* microblock length */
693 		desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
694 				    AT_XDMAC_CC_DWIDTH(fixed_dwidth);
695 		dev_dbg(chan2dev(chan),
696 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
697 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
698 
699 		/* Chain lld. */
700 		if (prev)
701 			at_xdmac_queue_desc(chan, prev, desc);
702 
703 		prev = desc;
704 		if (!first)
705 			first = desc;
706 
707 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
708 			 __func__, desc, first);
709 		list_add_tail(&desc->desc_node, &first->descs_list);
710 		xfer_size += len;
711 	}
712 
713 
714 	first->tx_dma_desc.flags = flags;
715 	first->xfer_size = xfer_size;
716 	first->direction = direction;
717 	ret = &first->tx_dma_desc;
718 
719 spin_unlock:
720 	spin_unlock_irqrestore(&atchan->lock, irqflags);
721 	return ret;
722 }
723 
724 static struct dma_async_tx_descriptor *
725 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
726 			 size_t buf_len, size_t period_len,
727 			 enum dma_transfer_direction direction,
728 			 unsigned long flags)
729 {
730 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
731 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
732 	unsigned int		periods = buf_len / period_len;
733 	int			i;
734 	unsigned long		irqflags;
735 
736 	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
737 		__func__, &buf_addr, buf_len, period_len,
738 		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
739 
740 	if (!is_slave_direction(direction)) {
741 		dev_err(chan2dev(chan), "invalid DMA direction\n");
742 		return NULL;
743 	}
744 
745 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
746 		dev_err(chan2dev(chan), "channel currently used\n");
747 		return NULL;
748 	}
749 
750 	if (at_xdmac_compute_chan_conf(chan, direction))
751 		return NULL;
752 
753 	for (i = 0; i < periods; i++) {
754 		struct at_xdmac_desc	*desc = NULL;
755 
756 		spin_lock_irqsave(&atchan->lock, irqflags);
757 		desc = at_xdmac_get_desc(atchan);
758 		if (!desc) {
759 			dev_err(chan2dev(chan), "can't get descriptor\n");
760 			if (first)
761 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
762 			spin_unlock_irqrestore(&atchan->lock, irqflags);
763 			return NULL;
764 		}
765 		spin_unlock_irqrestore(&atchan->lock, irqflags);
766 		dev_dbg(chan2dev(chan),
767 			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
768 			__func__, desc, &desc->tx_dma_desc.phys);
769 
770 		if (direction == DMA_DEV_TO_MEM) {
771 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
772 			desc->lld.mbr_da = buf_addr + i * period_len;
773 		} else {
774 			desc->lld.mbr_sa = buf_addr + i * period_len;
775 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
776 		}
777 		desc->lld.mbr_cfg = atchan->cfg;
778 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
779 			| AT_XDMAC_MBR_UBC_NDEN
780 			| AT_XDMAC_MBR_UBC_NSEN
781 			| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
782 
783 		dev_dbg(chan2dev(chan),
784 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
785 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
786 
787 		/* Chain lld. */
788 		if (prev)
789 			at_xdmac_queue_desc(chan, prev, desc);
790 
791 		prev = desc;
792 		if (!first)
793 			first = desc;
794 
795 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
796 			 __func__, desc, first);
797 		list_add_tail(&desc->desc_node, &first->descs_list);
798 	}
799 
800 	at_xdmac_queue_desc(chan, prev, first);
801 	first->tx_dma_desc.flags = flags;
802 	first->xfer_size = buf_len;
803 	first->direction = direction;
804 
805 	return &first->tx_dma_desc;
806 }
807 
808 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
809 {
810 	u32 width;
811 
812 	/*
813 	 * Check address alignment to select the greater data width we
814 	 * can use.
815 	 *
816 	 * Some XDMAC implementations don't provide dword transfer, in
817 	 * this case selecting dword has the same behavior as
818 	 * selecting word transfers.
819 	 */
820 	if (!(addr & 7)) {
821 		width = AT_XDMAC_CC_DWIDTH_DWORD;
822 		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
823 	} else if (!(addr & 3)) {
824 		width = AT_XDMAC_CC_DWIDTH_WORD;
825 		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
826 	} else if (!(addr & 1)) {
827 		width = AT_XDMAC_CC_DWIDTH_HALFWORD;
828 		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
829 	} else {
830 		width = AT_XDMAC_CC_DWIDTH_BYTE;
831 		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
832 	}
833 
834 	return width;
835 }
836 
837 static struct at_xdmac_desc *
838 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
839 				struct at_xdmac_chan *atchan,
840 				struct at_xdmac_desc *prev,
841 				dma_addr_t src, dma_addr_t dst,
842 				struct dma_interleaved_template *xt,
843 				struct data_chunk *chunk)
844 {
845 	struct at_xdmac_desc	*desc;
846 	u32			dwidth;
847 	unsigned long		flags;
848 	size_t			ublen;
849 	/*
850 	 * WARNING: The channel configuration is set here since there is no
851 	 * dmaengine_slave_config call in this case. Moreover we don't know the
852 	 * direction, it involves we can't dynamically set the source and dest
853 	 * interface so we have to use the same one. Only interface 0 allows EBI
854 	 * access. Hopefully we can access DDR through both ports (at least on
855 	 * SAMA5D4x), so we can use the same interface for source and dest,
856 	 * that solves the fact we don't know the direction.
857 	 */
858 	u32			chan_cc = AT_XDMAC_CC_DIF(0)
859 					| AT_XDMAC_CC_SIF(0)
860 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
861 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
862 
863 	dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
864 	if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
865 		dev_dbg(chan2dev(chan),
866 			"%s: chunk too big (%d, max size %lu)...\n",
867 			__func__, chunk->size,
868 			AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
869 		return NULL;
870 	}
871 
872 	if (prev)
873 		dev_dbg(chan2dev(chan),
874 			"Adding items at the end of desc 0x%p\n", prev);
875 
876 	if (xt->src_inc) {
877 		if (xt->src_sgl)
878 			chan_cc |=  AT_XDMAC_CC_SAM_UBS_DS_AM;
879 		else
880 			chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
881 	}
882 
883 	if (xt->dst_inc) {
884 		if (xt->dst_sgl)
885 			chan_cc |=  AT_XDMAC_CC_DAM_UBS_DS_AM;
886 		else
887 			chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
888 	}
889 
890 	spin_lock_irqsave(&atchan->lock, flags);
891 	desc = at_xdmac_get_desc(atchan);
892 	spin_unlock_irqrestore(&atchan->lock, flags);
893 	if (!desc) {
894 		dev_err(chan2dev(chan), "can't get descriptor\n");
895 		return NULL;
896 	}
897 
898 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
899 
900 	ublen = chunk->size >> dwidth;
901 
902 	desc->lld.mbr_sa = src;
903 	desc->lld.mbr_da = dst;
904 	desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
905 	desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
906 
907 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
908 		| AT_XDMAC_MBR_UBC_NDEN
909 		| AT_XDMAC_MBR_UBC_NSEN
910 		| ublen;
911 	desc->lld.mbr_cfg = chan_cc;
912 
913 	dev_dbg(chan2dev(chan),
914 		"%s: lld: mbr_sa=0x%08x, mbr_da=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
915 		__func__, desc->lld.mbr_sa, desc->lld.mbr_da,
916 		desc->lld.mbr_ubc, desc->lld.mbr_cfg);
917 
918 	/* Chain lld. */
919 	if (prev)
920 		at_xdmac_queue_desc(chan, prev, desc);
921 
922 	return desc;
923 }
924 
925 static struct dma_async_tx_descriptor *
926 at_xdmac_prep_interleaved(struct dma_chan *chan,
927 			  struct dma_interleaved_template *xt,
928 			  unsigned long flags)
929 {
930 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
931 	struct at_xdmac_desc	*prev = NULL, *first = NULL;
932 	struct data_chunk	*chunk, *prev_chunk = NULL;
933 	dma_addr_t		dst_addr, src_addr;
934 	size_t			dst_skip, src_skip, len = 0;
935 	size_t			prev_dst_icg = 0, prev_src_icg = 0;
936 	int			i;
937 
938 	if (!xt || (xt->numf != 1) || (xt->dir != DMA_MEM_TO_MEM))
939 		return NULL;
940 
941 	dev_dbg(chan2dev(chan), "%s: src=0x%08x, dest=0x%08x, numf=%d, frame_size=%d, flags=0x%lx\n",
942 		__func__, xt->src_start, xt->dst_start,	xt->numf,
943 		xt->frame_size, flags);
944 
945 	src_addr = xt->src_start;
946 	dst_addr = xt->dst_start;
947 
948 	for (i = 0; i < xt->frame_size; i++) {
949 		struct at_xdmac_desc *desc;
950 		size_t src_icg, dst_icg;
951 
952 		chunk = xt->sgl + i;
953 
954 		dst_icg = dmaengine_get_dst_icg(xt, chunk);
955 		src_icg = dmaengine_get_src_icg(xt, chunk);
956 
957 		src_skip = chunk->size + src_icg;
958 		dst_skip = chunk->size + dst_icg;
959 
960 		dev_dbg(chan2dev(chan),
961 			"%s: chunk size=%d, src icg=%d, dst icg=%d\n",
962 			__func__, chunk->size, src_icg, dst_icg);
963 
964 		/*
965 		 * Handle the case where we just have the same
966 		 * transfer to setup, we can just increase the
967 		 * block number and reuse the same descriptor.
968 		 */
969 		if (prev_chunk && prev &&
970 		    (prev_chunk->size == chunk->size) &&
971 		    (prev_src_icg == src_icg) &&
972 		    (prev_dst_icg == dst_icg)) {
973 			dev_dbg(chan2dev(chan),
974 				"%s: same configuration that the previous chunk, merging the descriptors...\n",
975 				__func__);
976 			at_xdmac_increment_block_count(chan, prev);
977 			continue;
978 		}
979 
980 		desc = at_xdmac_interleaved_queue_desc(chan, atchan,
981 						       prev,
982 						       src_addr, dst_addr,
983 						       xt, chunk);
984 		if (!desc) {
985 			list_splice_init(&first->descs_list,
986 					 &atchan->free_descs_list);
987 			return NULL;
988 		}
989 
990 		if (!first)
991 			first = desc;
992 
993 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
994 			__func__, desc, first);
995 		list_add_tail(&desc->desc_node, &first->descs_list);
996 
997 		if (xt->src_sgl)
998 			src_addr += src_skip;
999 
1000 		if (xt->dst_sgl)
1001 			dst_addr += dst_skip;
1002 
1003 		len += chunk->size;
1004 		prev_chunk = chunk;
1005 		prev_dst_icg = dst_icg;
1006 		prev_src_icg = src_icg;
1007 		prev = desc;
1008 	}
1009 
1010 	first->tx_dma_desc.cookie = -EBUSY;
1011 	first->tx_dma_desc.flags = flags;
1012 	first->xfer_size = len;
1013 
1014 	return &first->tx_dma_desc;
1015 }
1016 
1017 static struct dma_async_tx_descriptor *
1018 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1019 			 size_t len, unsigned long flags)
1020 {
1021 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1022 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
1023 	size_t			remaining_size = len, xfer_size = 0, ublen;
1024 	dma_addr_t		src_addr = src, dst_addr = dest;
1025 	u32			dwidth;
1026 	/*
1027 	 * WARNING: We don't know the direction, it involves we can't
1028 	 * dynamically set the source and dest interface so we have to use the
1029 	 * same one. Only interface 0 allows EBI access. Hopefully we can
1030 	 * access DDR through both ports (at least on SAMA5D4x), so we can use
1031 	 * the same interface for source and dest, that solves the fact we
1032 	 * don't know the direction.
1033 	 */
1034 	u32			chan_cc = AT_XDMAC_CC_DAM_INCREMENTED_AM
1035 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1036 					| AT_XDMAC_CC_DIF(0)
1037 					| AT_XDMAC_CC_SIF(0)
1038 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1039 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1040 	unsigned long		irqflags;
1041 
1042 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1043 		__func__, &src, &dest, len, flags);
1044 
1045 	if (unlikely(!len))
1046 		return NULL;
1047 
1048 	dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1049 
1050 	/* Prepare descriptors. */
1051 	while (remaining_size) {
1052 		struct at_xdmac_desc	*desc = NULL;
1053 
1054 		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1055 
1056 		spin_lock_irqsave(&atchan->lock, irqflags);
1057 		desc = at_xdmac_get_desc(atchan);
1058 		spin_unlock_irqrestore(&atchan->lock, irqflags);
1059 		if (!desc) {
1060 			dev_err(chan2dev(chan), "can't get descriptor\n");
1061 			if (first)
1062 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
1063 			return NULL;
1064 		}
1065 
1066 		/* Update src and dest addresses. */
1067 		src_addr += xfer_size;
1068 		dst_addr += xfer_size;
1069 
1070 		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1071 			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1072 		else
1073 			xfer_size = remaining_size;
1074 
1075 		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1076 
1077 		/* Check remaining length and change data width if needed. */
1078 		dwidth = at_xdmac_align_width(chan,
1079 					      src_addr | dst_addr | xfer_size);
1080 		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1081 
1082 		ublen = xfer_size >> dwidth;
1083 		remaining_size -= xfer_size;
1084 
1085 		desc->lld.mbr_sa = src_addr;
1086 		desc->lld.mbr_da = dst_addr;
1087 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1088 			| AT_XDMAC_MBR_UBC_NDEN
1089 			| AT_XDMAC_MBR_UBC_NSEN
1090 			| ublen;
1091 		desc->lld.mbr_cfg = chan_cc;
1092 
1093 		dev_dbg(chan2dev(chan),
1094 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1095 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1096 
1097 		/* Chain lld. */
1098 		if (prev)
1099 			at_xdmac_queue_desc(chan, prev, desc);
1100 
1101 		prev = desc;
1102 		if (!first)
1103 			first = desc;
1104 
1105 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1106 			 __func__, desc, first);
1107 		list_add_tail(&desc->desc_node, &first->descs_list);
1108 	}
1109 
1110 	first->tx_dma_desc.flags = flags;
1111 	first->xfer_size = len;
1112 
1113 	return &first->tx_dma_desc;
1114 }
1115 
1116 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1117 							 struct at_xdmac_chan *atchan,
1118 							 dma_addr_t dst_addr,
1119 							 size_t len,
1120 							 int value)
1121 {
1122 	struct at_xdmac_desc	*desc;
1123 	unsigned long		flags;
1124 	size_t			ublen;
1125 	u32			dwidth;
1126 	/*
1127 	 * WARNING: The channel configuration is set here since there is no
1128 	 * dmaengine_slave_config call in this case. Moreover we don't know the
1129 	 * direction, it involves we can't dynamically set the source and dest
1130 	 * interface so we have to use the same one. Only interface 0 allows EBI
1131 	 * access. Hopefully we can access DDR through both ports (at least on
1132 	 * SAMA5D4x), so we can use the same interface for source and dest,
1133 	 * that solves the fact we don't know the direction.
1134 	 */
1135 	u32			chan_cc = AT_XDMAC_CC_DAM_UBS_AM
1136 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1137 					| AT_XDMAC_CC_DIF(0)
1138 					| AT_XDMAC_CC_SIF(0)
1139 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1140 					| AT_XDMAC_CC_MEMSET_HW_MODE
1141 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1142 
1143 	dwidth = at_xdmac_align_width(chan, dst_addr);
1144 
1145 	if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1146 		dev_err(chan2dev(chan),
1147 			"%s: Transfer too large, aborting...\n",
1148 			__func__);
1149 		return NULL;
1150 	}
1151 
1152 	spin_lock_irqsave(&atchan->lock, flags);
1153 	desc = at_xdmac_get_desc(atchan);
1154 	spin_unlock_irqrestore(&atchan->lock, flags);
1155 	if (!desc) {
1156 		dev_err(chan2dev(chan), "can't get descriptor\n");
1157 		return NULL;
1158 	}
1159 
1160 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1161 
1162 	ublen = len >> dwidth;
1163 
1164 	desc->lld.mbr_da = dst_addr;
1165 	desc->lld.mbr_ds = value;
1166 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1167 		| AT_XDMAC_MBR_UBC_NDEN
1168 		| AT_XDMAC_MBR_UBC_NSEN
1169 		| ublen;
1170 	desc->lld.mbr_cfg = chan_cc;
1171 
1172 	dev_dbg(chan2dev(chan),
1173 		"%s: lld: mbr_da=0x%08x, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1174 		__func__, desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1175 		desc->lld.mbr_cfg);
1176 
1177 	return desc;
1178 }
1179 
1180 struct dma_async_tx_descriptor *
1181 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1182 			 size_t len, unsigned long flags)
1183 {
1184 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1185 	struct at_xdmac_desc	*desc;
1186 
1187 	dev_dbg(chan2dev(chan), "%s: dest=0x%08x, len=%d, pattern=0x%x, flags=0x%lx\n",
1188 		__func__, dest, len, value, flags);
1189 
1190 	if (unlikely(!len))
1191 		return NULL;
1192 
1193 	desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1194 	list_add_tail(&desc->desc_node, &desc->descs_list);
1195 
1196 	desc->tx_dma_desc.cookie = -EBUSY;
1197 	desc->tx_dma_desc.flags = flags;
1198 	desc->xfer_size = len;
1199 
1200 	return &desc->tx_dma_desc;
1201 }
1202 
1203 static struct dma_async_tx_descriptor *
1204 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1205 			    unsigned int sg_len, int value,
1206 			    unsigned long flags)
1207 {
1208 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1209 	struct at_xdmac_desc	*desc, *pdesc = NULL,
1210 				*ppdesc = NULL, *first = NULL;
1211 	struct scatterlist	*sg, *psg = NULL, *ppsg = NULL;
1212 	size_t			stride = 0, pstride = 0, len = 0;
1213 	int			i;
1214 
1215 	if (!sgl)
1216 		return NULL;
1217 
1218 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1219 		__func__, sg_len, value, flags);
1220 
1221 	/* Prepare descriptors. */
1222 	for_each_sg(sgl, sg, sg_len, i) {
1223 		dev_dbg(chan2dev(chan), "%s: dest=0x%08x, len=%d, pattern=0x%x, flags=0x%lx\n",
1224 			__func__, sg_dma_address(sg), sg_dma_len(sg),
1225 			value, flags);
1226 		desc = at_xdmac_memset_create_desc(chan, atchan,
1227 						   sg_dma_address(sg),
1228 						   sg_dma_len(sg),
1229 						   value);
1230 		if (!desc && first)
1231 			list_splice_init(&first->descs_list,
1232 					 &atchan->free_descs_list);
1233 
1234 		if (!first)
1235 			first = desc;
1236 
1237 		/* Update our strides */
1238 		pstride = stride;
1239 		if (psg)
1240 			stride = sg_dma_address(sg) -
1241 				(sg_dma_address(psg) + sg_dma_len(psg));
1242 
1243 		/*
1244 		 * The scatterlist API gives us only the address and
1245 		 * length of each elements.
1246 		 *
1247 		 * Unfortunately, we don't have the stride, which we
1248 		 * will need to compute.
1249 		 *
1250 		 * That make us end up in a situation like this one:
1251 		 *    len    stride    len    stride    len
1252 		 * +-------+        +-------+        +-------+
1253 		 * |  N-2  |        |  N-1  |        |   N   |
1254 		 * +-------+        +-------+        +-------+
1255 		 *
1256 		 * We need all these three elements (N-2, N-1 and N)
1257 		 * to actually take the decision on whether we need to
1258 		 * queue N-1 or reuse N-2.
1259 		 *
1260 		 * We will only consider N if it is the last element.
1261 		 */
1262 		if (ppdesc && pdesc) {
1263 			if ((stride == pstride) &&
1264 			    (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1265 				dev_dbg(chan2dev(chan),
1266 					"%s: desc 0x%p can be merged with desc 0x%p\n",
1267 					__func__, pdesc, ppdesc);
1268 
1269 				/*
1270 				 * Increment the block count of the
1271 				 * N-2 descriptor
1272 				 */
1273 				at_xdmac_increment_block_count(chan, ppdesc);
1274 				ppdesc->lld.mbr_dus = stride;
1275 
1276 				/*
1277 				 * Put back the N-1 descriptor in the
1278 				 * free descriptor list
1279 				 */
1280 				list_add_tail(&pdesc->desc_node,
1281 					      &atchan->free_descs_list);
1282 
1283 				/*
1284 				 * Make our N-1 descriptor pointer
1285 				 * point to the N-2 since they were
1286 				 * actually merged.
1287 				 */
1288 				pdesc = ppdesc;
1289 
1290 			/*
1291 			 * Rule out the case where we don't have
1292 			 * pstride computed yet (our second sg
1293 			 * element)
1294 			 *
1295 			 * We also want to catch the case where there
1296 			 * would be a negative stride,
1297 			 */
1298 			} else if (pstride ||
1299 				   sg_dma_address(sg) < sg_dma_address(psg)) {
1300 				/*
1301 				 * Queue the N-1 descriptor after the
1302 				 * N-2
1303 				 */
1304 				at_xdmac_queue_desc(chan, ppdesc, pdesc);
1305 
1306 				/*
1307 				 * Add the N-1 descriptor to the list
1308 				 * of the descriptors used for this
1309 				 * transfer
1310 				 */
1311 				list_add_tail(&desc->desc_node,
1312 					      &first->descs_list);
1313 				dev_dbg(chan2dev(chan),
1314 					"%s: add desc 0x%p to descs_list 0x%p\n",
1315 					__func__, desc, first);
1316 			}
1317 		}
1318 
1319 		/*
1320 		 * If we are the last element, just see if we have the
1321 		 * same size than the previous element.
1322 		 *
1323 		 * If so, we can merge it with the previous descriptor
1324 		 * since we don't care about the stride anymore.
1325 		 */
1326 		if ((i == (sg_len - 1)) &&
1327 		    sg_dma_len(ppsg) == sg_dma_len(psg)) {
1328 			dev_dbg(chan2dev(chan),
1329 				"%s: desc 0x%p can be merged with desc 0x%p\n",
1330 				__func__, desc, pdesc);
1331 
1332 			/*
1333 			 * Increment the block count of the N-1
1334 			 * descriptor
1335 			 */
1336 			at_xdmac_increment_block_count(chan, pdesc);
1337 			pdesc->lld.mbr_dus = stride;
1338 
1339 			/*
1340 			 * Put back the N descriptor in the free
1341 			 * descriptor list
1342 			 */
1343 			list_add_tail(&desc->desc_node,
1344 				      &atchan->free_descs_list);
1345 		}
1346 
1347 		/* Update our descriptors */
1348 		ppdesc = pdesc;
1349 		pdesc = desc;
1350 
1351 		/* Update our scatter pointers */
1352 		ppsg = psg;
1353 		psg = sg;
1354 
1355 		len += sg_dma_len(sg);
1356 	}
1357 
1358 	first->tx_dma_desc.cookie = -EBUSY;
1359 	first->tx_dma_desc.flags = flags;
1360 	first->xfer_size = len;
1361 
1362 	return &first->tx_dma_desc;
1363 }
1364 
1365 static enum dma_status
1366 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1367 		struct dma_tx_state *txstate)
1368 {
1369 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1370 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1371 	struct at_xdmac_desc	*desc, *_desc;
1372 	struct list_head	*descs_list;
1373 	enum dma_status		ret;
1374 	int			residue;
1375 	u32			cur_nda, mask, value;
1376 	u8			dwidth = 0;
1377 	unsigned long		flags;
1378 
1379 	ret = dma_cookie_status(chan, cookie, txstate);
1380 	if (ret == DMA_COMPLETE)
1381 		return ret;
1382 
1383 	if (!txstate)
1384 		return ret;
1385 
1386 	spin_lock_irqsave(&atchan->lock, flags);
1387 
1388 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1389 
1390 	/*
1391 	 * If the transfer has not been started yet, don't need to compute the
1392 	 * residue, it's the transfer length.
1393 	 */
1394 	if (!desc->active_xfer) {
1395 		dma_set_residue(txstate, desc->xfer_size);
1396 		goto spin_unlock;
1397 	}
1398 
1399 	residue = desc->xfer_size;
1400 	/*
1401 	 * Flush FIFO: only relevant when the transfer is source peripheral
1402 	 * synchronized.
1403 	 */
1404 	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1405 	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1406 	if ((desc->lld.mbr_cfg & mask) == value) {
1407 		at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1408 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1409 			cpu_relax();
1410 	}
1411 
1412 	cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1413 	/*
1414 	 * Remove size of all microblocks already transferred and the current
1415 	 * one. Then add the remaining size to transfer of the current
1416 	 * microblock.
1417 	 */
1418 	descs_list = &desc->descs_list;
1419 	list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
1420 		dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg);
1421 		residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
1422 		if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
1423 			break;
1424 	}
1425 	residue += at_xdmac_chan_read(atchan, AT_XDMAC_CUBC) << dwidth;
1426 
1427 	dma_set_residue(txstate, residue);
1428 
1429 	dev_dbg(chan2dev(chan),
1430 		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1431 		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1432 
1433 spin_unlock:
1434 	spin_unlock_irqrestore(&atchan->lock, flags);
1435 	return ret;
1436 }
1437 
1438 /* Call must be protected by lock. */
1439 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1440 				    struct at_xdmac_desc *desc)
1441 {
1442 	dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1443 
1444 	/*
1445 	 * Remove the transfer from the transfer list then move the transfer
1446 	 * descriptors into the free descriptors list.
1447 	 */
1448 	list_del(&desc->xfer_node);
1449 	list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1450 }
1451 
1452 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1453 {
1454 	struct at_xdmac_desc	*desc;
1455 	unsigned long		flags;
1456 
1457 	spin_lock_irqsave(&atchan->lock, flags);
1458 
1459 	/*
1460 	 * If channel is enabled, do nothing, advance_work will be triggered
1461 	 * after the interruption.
1462 	 */
1463 	if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1464 		desc = list_first_entry(&atchan->xfers_list,
1465 					struct at_xdmac_desc,
1466 					xfer_node);
1467 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1468 		if (!desc->active_xfer)
1469 			at_xdmac_start_xfer(atchan, desc);
1470 	}
1471 
1472 	spin_unlock_irqrestore(&atchan->lock, flags);
1473 }
1474 
1475 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1476 {
1477 	struct at_xdmac_desc		*desc;
1478 	struct dma_async_tx_descriptor	*txd;
1479 
1480 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1481 	txd = &desc->tx_dma_desc;
1482 
1483 	if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT))
1484 		txd->callback(txd->callback_param);
1485 }
1486 
1487 static void at_xdmac_tasklet(unsigned long data)
1488 {
1489 	struct at_xdmac_chan	*atchan = (struct at_xdmac_chan *)data;
1490 	struct at_xdmac_desc	*desc;
1491 	u32			error_mask;
1492 
1493 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n",
1494 		 __func__, atchan->status);
1495 
1496 	error_mask = AT_XDMAC_CIS_RBEIS
1497 		     | AT_XDMAC_CIS_WBEIS
1498 		     | AT_XDMAC_CIS_ROIS;
1499 
1500 	if (at_xdmac_chan_is_cyclic(atchan)) {
1501 		at_xdmac_handle_cyclic(atchan);
1502 	} else if ((atchan->status & AT_XDMAC_CIS_LIS)
1503 		   || (atchan->status & error_mask)) {
1504 		struct dma_async_tx_descriptor  *txd;
1505 
1506 		if (atchan->status & AT_XDMAC_CIS_RBEIS)
1507 			dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1508 		if (atchan->status & AT_XDMAC_CIS_WBEIS)
1509 			dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1510 		if (atchan->status & AT_XDMAC_CIS_ROIS)
1511 			dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1512 
1513 		spin_lock_bh(&atchan->lock);
1514 		desc = list_first_entry(&atchan->xfers_list,
1515 					struct at_xdmac_desc,
1516 					xfer_node);
1517 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1518 		BUG_ON(!desc->active_xfer);
1519 
1520 		txd = &desc->tx_dma_desc;
1521 
1522 		at_xdmac_remove_xfer(atchan, desc);
1523 		spin_unlock_bh(&atchan->lock);
1524 
1525 		if (!at_xdmac_chan_is_cyclic(atchan)) {
1526 			dma_cookie_complete(txd);
1527 			if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT))
1528 				txd->callback(txd->callback_param);
1529 		}
1530 
1531 		dma_run_dependencies(txd);
1532 
1533 		at_xdmac_advance_work(atchan);
1534 	}
1535 }
1536 
1537 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1538 {
1539 	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
1540 	struct at_xdmac_chan	*atchan;
1541 	u32			imr, status, pending;
1542 	u32			chan_imr, chan_status;
1543 	int			i, ret = IRQ_NONE;
1544 
1545 	do {
1546 		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1547 		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1548 		pending = status & imr;
1549 
1550 		dev_vdbg(atxdmac->dma.dev,
1551 			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1552 			 __func__, status, imr, pending);
1553 
1554 		if (!pending)
1555 			break;
1556 
1557 		/* We have to find which channel has generated the interrupt. */
1558 		for (i = 0; i < atxdmac->dma.chancnt; i++) {
1559 			if (!((1 << i) & pending))
1560 				continue;
1561 
1562 			atchan = &atxdmac->chan[i];
1563 			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1564 			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1565 			atchan->status = chan_status & chan_imr;
1566 			dev_vdbg(atxdmac->dma.dev,
1567 				 "%s: chan%d: imr=0x%x, status=0x%x\n",
1568 				 __func__, i, chan_imr, chan_status);
1569 			dev_vdbg(chan2dev(&atchan->chan),
1570 				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1571 				 __func__,
1572 				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1573 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1574 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1575 				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1576 				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1577 				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1578 
1579 			if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1580 				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1581 
1582 			tasklet_schedule(&atchan->tasklet);
1583 			ret = IRQ_HANDLED;
1584 		}
1585 
1586 	} while (pending);
1587 
1588 	return ret;
1589 }
1590 
1591 static void at_xdmac_issue_pending(struct dma_chan *chan)
1592 {
1593 	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1594 
1595 	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1596 
1597 	if (!at_xdmac_chan_is_cyclic(atchan))
1598 		at_xdmac_advance_work(atchan);
1599 
1600 	return;
1601 }
1602 
1603 static int at_xdmac_device_config(struct dma_chan *chan,
1604 				  struct dma_slave_config *config)
1605 {
1606 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1607 	int ret;
1608 	unsigned long		flags;
1609 
1610 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1611 
1612 	spin_lock_irqsave(&atchan->lock, flags);
1613 	ret = at_xdmac_set_slave_config(chan, config);
1614 	spin_unlock_irqrestore(&atchan->lock, flags);
1615 
1616 	return ret;
1617 }
1618 
1619 static int at_xdmac_device_pause(struct dma_chan *chan)
1620 {
1621 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1622 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1623 	unsigned long		flags;
1624 
1625 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1626 
1627 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1628 		return 0;
1629 
1630 	spin_lock_irqsave(&atchan->lock, flags);
1631 	at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
1632 	while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1633 	       & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1634 		cpu_relax();
1635 	spin_unlock_irqrestore(&atchan->lock, flags);
1636 
1637 	return 0;
1638 }
1639 
1640 static int at_xdmac_device_resume(struct dma_chan *chan)
1641 {
1642 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1643 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1644 	unsigned long		flags;
1645 
1646 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1647 
1648 	spin_lock_irqsave(&atchan->lock, flags);
1649 	if (!at_xdmac_chan_is_paused(atchan)) {
1650 		spin_unlock_irqrestore(&atchan->lock, flags);
1651 		return 0;
1652 	}
1653 
1654 	at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
1655 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1656 	spin_unlock_irqrestore(&atchan->lock, flags);
1657 
1658 	return 0;
1659 }
1660 
1661 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1662 {
1663 	struct at_xdmac_desc	*desc, *_desc;
1664 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1665 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1666 	unsigned long		flags;
1667 
1668 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1669 
1670 	spin_lock_irqsave(&atchan->lock, flags);
1671 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1672 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1673 		cpu_relax();
1674 
1675 	/* Cancel all pending transfers. */
1676 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1677 		at_xdmac_remove_xfer(atchan, desc);
1678 
1679 	clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1680 	spin_unlock_irqrestore(&atchan->lock, flags);
1681 
1682 	return 0;
1683 }
1684 
1685 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1686 {
1687 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1688 	struct at_xdmac_desc	*desc;
1689 	int			i;
1690 	unsigned long		flags;
1691 
1692 	spin_lock_irqsave(&atchan->lock, flags);
1693 
1694 	if (at_xdmac_chan_is_enabled(atchan)) {
1695 		dev_err(chan2dev(chan),
1696 			"can't allocate channel resources (channel enabled)\n");
1697 		i = -EIO;
1698 		goto spin_unlock;
1699 	}
1700 
1701 	if (!list_empty(&atchan->free_descs_list)) {
1702 		dev_err(chan2dev(chan),
1703 			"can't allocate channel resources (channel not free from a previous use)\n");
1704 		i = -EIO;
1705 		goto spin_unlock;
1706 	}
1707 
1708 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1709 		desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC);
1710 		if (!desc) {
1711 			dev_warn(chan2dev(chan),
1712 				"only %d descriptors have been allocated\n", i);
1713 			break;
1714 		}
1715 		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1716 	}
1717 
1718 	dma_cookie_init(chan);
1719 
1720 	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1721 
1722 spin_unlock:
1723 	spin_unlock_irqrestore(&atchan->lock, flags);
1724 	return i;
1725 }
1726 
1727 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1728 {
1729 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1730 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
1731 	struct at_xdmac_desc	*desc, *_desc;
1732 
1733 	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1734 		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1735 		list_del(&desc->desc_node);
1736 		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1737 	}
1738 
1739 	return;
1740 }
1741 
1742 #ifdef CONFIG_PM
1743 static int atmel_xdmac_prepare(struct device *dev)
1744 {
1745 	struct platform_device	*pdev = to_platform_device(dev);
1746 	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1747 	struct dma_chan		*chan, *_chan;
1748 
1749 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1750 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1751 
1752 		/* Wait for transfer completion, except in cyclic case. */
1753 		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1754 			return -EAGAIN;
1755 	}
1756 	return 0;
1757 }
1758 #else
1759 #	define atmel_xdmac_prepare NULL
1760 #endif
1761 
1762 #ifdef CONFIG_PM_SLEEP
1763 static int atmel_xdmac_suspend(struct device *dev)
1764 {
1765 	struct platform_device	*pdev = to_platform_device(dev);
1766 	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1767 	struct dma_chan		*chan, *_chan;
1768 
1769 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1770 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1771 
1772 		atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1773 		if (at_xdmac_chan_is_cyclic(atchan)) {
1774 			if (!at_xdmac_chan_is_paused(atchan))
1775 				at_xdmac_device_pause(chan);
1776 			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1777 			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1778 			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1779 		}
1780 	}
1781 	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1782 
1783 	at_xdmac_off(atxdmac);
1784 	clk_disable_unprepare(atxdmac->clk);
1785 	return 0;
1786 }
1787 
1788 static int atmel_xdmac_resume(struct device *dev)
1789 {
1790 	struct platform_device	*pdev = to_platform_device(dev);
1791 	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1792 	struct at_xdmac_chan	*atchan;
1793 	struct dma_chan		*chan, *_chan;
1794 	int			i;
1795 
1796 	clk_prepare_enable(atxdmac->clk);
1797 
1798 	/* Clear pending interrupts. */
1799 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
1800 		atchan = &atxdmac->chan[i];
1801 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1802 			cpu_relax();
1803 	}
1804 
1805 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1806 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atxdmac->save_gs);
1807 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1808 		atchan = to_at_xdmac_chan(chan);
1809 		at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1810 		if (at_xdmac_chan_is_cyclic(atchan)) {
1811 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
1812 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
1813 			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
1814 			wmb();
1815 			at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
1816 		}
1817 	}
1818 	return 0;
1819 }
1820 #endif /* CONFIG_PM_SLEEP */
1821 
1822 static int at_xdmac_probe(struct platform_device *pdev)
1823 {
1824 	struct resource	*res;
1825 	struct at_xdmac	*atxdmac;
1826 	int		irq, size, nr_channels, i, ret;
1827 	void __iomem	*base;
1828 	u32		reg;
1829 
1830 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1831 	if (!res)
1832 		return -EINVAL;
1833 
1834 	irq = platform_get_irq(pdev, 0);
1835 	if (irq < 0)
1836 		return irq;
1837 
1838 	base = devm_ioremap_resource(&pdev->dev, res);
1839 	if (IS_ERR(base))
1840 		return PTR_ERR(base);
1841 
1842 	/*
1843 	 * Read number of xdmac channels, read helper function can't be used
1844 	 * since atxdmac is not yet allocated and we need to know the number
1845 	 * of channels to do the allocation.
1846 	 */
1847 	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
1848 	nr_channels = AT_XDMAC_NB_CH(reg);
1849 	if (nr_channels > AT_XDMAC_MAX_CHAN) {
1850 		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
1851 			nr_channels);
1852 		return -EINVAL;
1853 	}
1854 
1855 	size = sizeof(*atxdmac);
1856 	size += nr_channels * sizeof(struct at_xdmac_chan);
1857 	atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1858 	if (!atxdmac) {
1859 		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
1860 		return -ENOMEM;
1861 	}
1862 
1863 	atxdmac->regs = base;
1864 	atxdmac->irq = irq;
1865 
1866 	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
1867 	if (IS_ERR(atxdmac->clk)) {
1868 		dev_err(&pdev->dev, "can't get dma_clk\n");
1869 		return PTR_ERR(atxdmac->clk);
1870 	}
1871 
1872 	/* Do not use dev res to prevent races with tasklet */
1873 	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
1874 	if (ret) {
1875 		dev_err(&pdev->dev, "can't request irq\n");
1876 		return ret;
1877 	}
1878 
1879 	ret = clk_prepare_enable(atxdmac->clk);
1880 	if (ret) {
1881 		dev_err(&pdev->dev, "can't prepare or enable clock\n");
1882 		goto err_free_irq;
1883 	}
1884 
1885 	atxdmac->at_xdmac_desc_pool =
1886 		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
1887 				sizeof(struct at_xdmac_desc), 4, 0);
1888 	if (!atxdmac->at_xdmac_desc_pool) {
1889 		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
1890 		ret = -ENOMEM;
1891 		goto err_clk_disable;
1892 	}
1893 
1894 	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
1895 	dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
1896 	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
1897 	dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
1898 	dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
1899 	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
1900 	/*
1901 	 * Without DMA_PRIVATE the driver is not able to allocate more than
1902 	 * one channel, second allocation fails in private_candidate.
1903 	 */
1904 	dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
1905 	atxdmac->dma.dev				= &pdev->dev;
1906 	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
1907 	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
1908 	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
1909 	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
1910 	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
1911 	atxdmac->dma.device_prep_interleaved_dma	= at_xdmac_prep_interleaved;
1912 	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
1913 	atxdmac->dma.device_prep_dma_memset		= at_xdmac_prep_dma_memset;
1914 	atxdmac->dma.device_prep_dma_memset_sg		= at_xdmac_prep_dma_memset_sg;
1915 	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
1916 	atxdmac->dma.device_config			= at_xdmac_device_config;
1917 	atxdmac->dma.device_pause			= at_xdmac_device_pause;
1918 	atxdmac->dma.device_resume			= at_xdmac_device_resume;
1919 	atxdmac->dma.device_terminate_all		= at_xdmac_device_terminate_all;
1920 	atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
1921 	atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
1922 	atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1923 	atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1924 
1925 	/* Disable all chans and interrupts. */
1926 	at_xdmac_off(atxdmac);
1927 
1928 	/* Init channels. */
1929 	INIT_LIST_HEAD(&atxdmac->dma.channels);
1930 	for (i = 0; i < nr_channels; i++) {
1931 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
1932 
1933 		atchan->chan.device = &atxdmac->dma;
1934 		list_add_tail(&atchan->chan.device_node,
1935 			      &atxdmac->dma.channels);
1936 
1937 		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
1938 		atchan->mask = 1 << i;
1939 
1940 		spin_lock_init(&atchan->lock);
1941 		INIT_LIST_HEAD(&atchan->xfers_list);
1942 		INIT_LIST_HEAD(&atchan->free_descs_list);
1943 		tasklet_init(&atchan->tasklet, at_xdmac_tasklet,
1944 			     (unsigned long)atchan);
1945 
1946 		/* Clear pending interrupts. */
1947 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1948 			cpu_relax();
1949 	}
1950 	platform_set_drvdata(pdev, atxdmac);
1951 
1952 	ret = dma_async_device_register(&atxdmac->dma);
1953 	if (ret) {
1954 		dev_err(&pdev->dev, "fail to register DMA engine device\n");
1955 		goto err_clk_disable;
1956 	}
1957 
1958 	ret = of_dma_controller_register(pdev->dev.of_node,
1959 					 at_xdmac_xlate, atxdmac);
1960 	if (ret) {
1961 		dev_err(&pdev->dev, "could not register of dma controller\n");
1962 		goto err_dma_unregister;
1963 	}
1964 
1965 	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
1966 		 nr_channels, atxdmac->regs);
1967 
1968 	return 0;
1969 
1970 err_dma_unregister:
1971 	dma_async_device_unregister(&atxdmac->dma);
1972 err_clk_disable:
1973 	clk_disable_unprepare(atxdmac->clk);
1974 err_free_irq:
1975 	free_irq(atxdmac->irq, atxdmac->dma.dev);
1976 	return ret;
1977 }
1978 
1979 static int at_xdmac_remove(struct platform_device *pdev)
1980 {
1981 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
1982 	int		i;
1983 
1984 	at_xdmac_off(atxdmac);
1985 	of_dma_controller_free(pdev->dev.of_node);
1986 	dma_async_device_unregister(&atxdmac->dma);
1987 	clk_disable_unprepare(atxdmac->clk);
1988 
1989 	synchronize_irq(atxdmac->irq);
1990 
1991 	free_irq(atxdmac->irq, atxdmac->dma.dev);
1992 
1993 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
1994 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
1995 
1996 		tasklet_kill(&atchan->tasklet);
1997 		at_xdmac_free_chan_resources(&atchan->chan);
1998 	}
1999 
2000 	return 0;
2001 }
2002 
2003 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2004 	.prepare	= atmel_xdmac_prepare,
2005 	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2006 };
2007 
2008 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2009 	{
2010 		.compatible = "atmel,sama5d4-dma",
2011 	}, {
2012 		/* sentinel */
2013 	}
2014 };
2015 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2016 
2017 static struct platform_driver at_xdmac_driver = {
2018 	.probe		= at_xdmac_probe,
2019 	.remove		= at_xdmac_remove,
2020 	.driver = {
2021 		.name		= "at_xdmac",
2022 		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
2023 		.pm		= &atmel_xdmac_dev_pm_ops,
2024 	}
2025 };
2026 
2027 static int __init at_xdmac_init(void)
2028 {
2029 	return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
2030 }
2031 subsys_initcall(at_xdmac_init);
2032 
2033 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2034 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2035 MODULE_LICENSE("GPL");
2036