1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems) 4 * 5 * Copyright (C) 2014 Atmel Corporation 6 * 7 * Author: Ludovic Desroches <ludovic.desroches@atmel.com> 8 */ 9 10 #include <asm/barrier.h> 11 #include <dt-bindings/dma/at91.h> 12 #include <linux/clk.h> 13 #include <linux/dmaengine.h> 14 #include <linux/dmapool.h> 15 #include <linux/interrupt.h> 16 #include <linux/irq.h> 17 #include <linux/kernel.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/of_dma.h> 21 #include <linux/of_platform.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm.h> 24 25 #include "dmaengine.h" 26 27 /* Global registers */ 28 #define AT_XDMAC_GTYPE 0x00 /* Global Type Register */ 29 #define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */ 30 #define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */ 31 #define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */ 32 #define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */ 33 #define AT_XDMAC_WRHP(i) (((i) & 0xF) << 4) 34 #define AT_XDMAC_WRMP(i) (((i) & 0xF) << 8) 35 #define AT_XDMAC_WRLP(i) (((i) & 0xF) << 12) 36 #define AT_XDMAC_RDHP(i) (((i) & 0xF) << 16) 37 #define AT_XDMAC_RDMP(i) (((i) & 0xF) << 20) 38 #define AT_XDMAC_RDLP(i) (((i) & 0xF) << 24) 39 #define AT_XDMAC_RDSG(i) (((i) & 0xF) << 28) 40 #define AT_XDMAC_GCFG_M2M (AT_XDMAC_RDLP(0xF) | AT_XDMAC_WRLP(0xF)) 41 #define AT_XDMAC_GCFG_P2M (AT_XDMAC_RDSG(0x1) | AT_XDMAC_RDHP(0x3) | \ 42 AT_XDMAC_WRHP(0x5)) 43 #define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */ 44 #define AT_XDMAC_PW0(i) (((i) & 0xF) << 0) 45 #define AT_XDMAC_PW1(i) (((i) & 0xF) << 4) 46 #define AT_XDMAC_PW2(i) (((i) & 0xF) << 8) 47 #define AT_XDMAC_PW3(i) (((i) & 0xF) << 12) 48 #define AT_XDMAC_GWAC_M2M 0 49 #define AT_XDMAC_GWAC_P2M (AT_XDMAC_PW0(0xF) | AT_XDMAC_PW2(0xF)) 50 51 #define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */ 52 #define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */ 53 #define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */ 54 #define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */ 55 #define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */ 56 #define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */ 57 #define AT_XDMAC_GS 0x24 /* Global Channel Status Register */ 58 #define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */ 59 60 /* Channel relative registers offsets */ 61 #define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */ 62 #define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */ 63 #define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */ 64 #define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */ 65 #define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */ 66 #define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */ 67 #define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */ 68 #define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */ 69 #define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */ 70 #define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */ 71 #define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */ 72 #define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */ 73 #define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */ 74 #define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */ 75 #define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */ 76 #define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */ 77 #define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */ 78 #define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */ 79 #define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */ 80 #define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */ 81 #define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */ 82 #define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */ 83 #define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */ 84 #define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */ 85 #define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */ 86 #define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */ 87 #define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */ 88 #define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */ 89 #define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */ 90 #define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */ 91 #define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */ 92 #define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */ 93 #define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */ 94 #define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */ 95 #define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */ 96 #define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */ 97 #define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */ 98 #define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */ 99 #define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */ 100 #define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */ 101 #define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */ 102 #define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */ 103 #define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */ 104 #define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */ 105 #define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */ 106 #define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */ 107 #define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */ 108 #define AT_XDMAC_CC 0x28 /* Channel Configuration Register */ 109 #define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */ 110 #define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */ 111 #define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */ 112 #define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1) 113 #define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1) 114 #define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1) 115 #define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1) 116 #define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1) 117 #define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */ 118 #define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4) 119 #define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4) 120 #define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */ 121 #define AT_XDMAC_CC_PROT_SEC (0x0 << 5) 122 #define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5) 123 #define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */ 124 #define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6) 125 #define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6) 126 #define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */ 127 #define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7) 128 #define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7) 129 #define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */ 130 #define AT_XDMAC_CC_DWIDTH_OFFSET 11 131 #define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET) 132 #define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */ 133 #define AT_XDMAC_CC_DWIDTH_BYTE 0x0 134 #define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1 135 #define AT_XDMAC_CC_DWIDTH_WORD 0x2 136 #define AT_XDMAC_CC_DWIDTH_DWORD 0x3 137 #define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */ 138 #define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */ 139 #define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */ 140 #define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16) 141 #define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16) 142 #define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16) 143 #define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16) 144 #define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */ 145 #define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18) 146 #define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18) 147 #define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18) 148 #define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18) 149 #define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */ 150 #define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21) 151 #define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21) 152 #define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */ 153 #define AT_XDMAC_CC_RDIP_DONE (0x0 << 22) 154 #define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22) 155 #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */ 156 #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23) 157 #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23) 158 #define AT_XDMAC_CC_PERID(i) (0x7f & (i) << 24) /* Channel Peripheral Identifier */ 159 #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */ 160 #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */ 161 #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */ 162 163 /* Microblock control members */ 164 #define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */ 165 #define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */ 166 #define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */ 167 #define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */ 168 #define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */ 169 #define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */ 170 #define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */ 171 #define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */ 172 173 #define AT_XDMAC_MAX_CHAN 0x20 174 #define AT_XDMAC_MAX_CSIZE 16 /* 16 data */ 175 #define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */ 176 #define AT_XDMAC_RESIDUE_MAX_RETRIES 5 177 178 #define AT_XDMAC_DMA_BUSWIDTHS\ 179 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 180 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 181 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 182 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\ 183 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 184 185 enum atc_status { 186 AT_XDMAC_CHAN_IS_CYCLIC = 0, 187 AT_XDMAC_CHAN_IS_PAUSED, 188 }; 189 190 struct at_xdmac_layout { 191 /* Global Channel Read Suspend Register */ 192 u8 grs; 193 /* Global Write Suspend Register */ 194 u8 gws; 195 /* Global Channel Read Write Suspend Register */ 196 u8 grws; 197 /* Global Channel Read Write Resume Register */ 198 u8 grwr; 199 /* Global Channel Software Request Register */ 200 u8 gswr; 201 /* Global channel Software Request Status Register */ 202 u8 gsws; 203 /* Global Channel Software Flush Request Register */ 204 u8 gswf; 205 /* Channel reg base */ 206 u8 chan_cc_reg_base; 207 /* Source/Destination Interface must be specified or not */ 208 bool sdif; 209 /* AXI queue priority configuration supported */ 210 bool axi_config; 211 }; 212 213 /* ----- Channels ----- */ 214 struct at_xdmac_chan { 215 struct dma_chan chan; 216 void __iomem *ch_regs; 217 u32 mask; /* Channel Mask */ 218 u32 cfg; /* Channel Configuration Register */ 219 u8 perid; /* Peripheral ID */ 220 u8 perif; /* Peripheral Interface */ 221 u8 memif; /* Memory Interface */ 222 u32 save_cc; 223 u32 save_cim; 224 u32 save_cnda; 225 u32 save_cndc; 226 u32 irq_status; 227 unsigned long status; 228 struct tasklet_struct tasklet; 229 struct dma_slave_config sconfig; 230 231 spinlock_t lock; 232 233 struct list_head xfers_list; 234 struct list_head free_descs_list; 235 }; 236 237 238 /* ----- Controller ----- */ 239 struct at_xdmac { 240 struct dma_device dma; 241 void __iomem *regs; 242 int irq; 243 struct clk *clk; 244 u32 save_gim; 245 struct dma_pool *at_xdmac_desc_pool; 246 const struct at_xdmac_layout *layout; 247 struct at_xdmac_chan chan[]; 248 }; 249 250 251 /* ----- Descriptors ----- */ 252 253 /* Linked List Descriptor */ 254 struct at_xdmac_lld { 255 dma_addr_t mbr_nda; /* Next Descriptor Member */ 256 u32 mbr_ubc; /* Microblock Control Member */ 257 dma_addr_t mbr_sa; /* Source Address Member */ 258 dma_addr_t mbr_da; /* Destination Address Member */ 259 u32 mbr_cfg; /* Configuration Register */ 260 u32 mbr_bc; /* Block Control Register */ 261 u32 mbr_ds; /* Data Stride Register */ 262 u32 mbr_sus; /* Source Microblock Stride Register */ 263 u32 mbr_dus; /* Destination Microblock Stride Register */ 264 }; 265 266 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */ 267 struct at_xdmac_desc { 268 struct at_xdmac_lld lld; 269 enum dma_transfer_direction direction; 270 struct dma_async_tx_descriptor tx_dma_desc; 271 struct list_head desc_node; 272 /* Following members are only used by the first descriptor */ 273 bool active_xfer; 274 unsigned int xfer_size; 275 struct list_head descs_list; 276 struct list_head xfer_node; 277 } __aligned(sizeof(u64)); 278 279 static const struct at_xdmac_layout at_xdmac_sama5d4_layout = { 280 .grs = 0x28, 281 .gws = 0x2C, 282 .grws = 0x30, 283 .grwr = 0x34, 284 .gswr = 0x38, 285 .gsws = 0x3C, 286 .gswf = 0x40, 287 .chan_cc_reg_base = 0x50, 288 .sdif = true, 289 .axi_config = false, 290 }; 291 292 static const struct at_xdmac_layout at_xdmac_sama7g5_layout = { 293 .grs = 0x30, 294 .gws = 0x38, 295 .grws = 0x40, 296 .grwr = 0x44, 297 .gswr = 0x48, 298 .gsws = 0x4C, 299 .gswf = 0x50, 300 .chan_cc_reg_base = 0x60, 301 .sdif = false, 302 .axi_config = true, 303 }; 304 305 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb) 306 { 307 return atxdmac->regs + (atxdmac->layout->chan_cc_reg_base + chan_nb * 0x40); 308 } 309 310 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg)) 311 #define at_xdmac_write(atxdmac, reg, value) \ 312 writel_relaxed((value), (atxdmac)->regs + (reg)) 313 314 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg)) 315 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg)) 316 317 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan) 318 { 319 return container_of(dchan, struct at_xdmac_chan, chan); 320 } 321 322 static struct device *chan2dev(struct dma_chan *chan) 323 { 324 return &chan->dev->device; 325 } 326 327 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev) 328 { 329 return container_of(ddev, struct at_xdmac, dma); 330 } 331 332 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd) 333 { 334 return container_of(txd, struct at_xdmac_desc, tx_dma_desc); 335 } 336 337 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan) 338 { 339 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 340 } 341 342 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan) 343 { 344 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 345 } 346 347 static inline int at_xdmac_csize(u32 maxburst) 348 { 349 int csize; 350 351 csize = ffs(maxburst) - 1; 352 if (csize > 4) 353 csize = -EINVAL; 354 355 return csize; 356 }; 357 358 static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg) 359 { 360 return cfg & AT_XDMAC_CC_TYPE_PER_TRAN; 361 } 362 363 static inline u8 at_xdmac_get_dwidth(u32 cfg) 364 { 365 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET; 366 }; 367 368 static unsigned int init_nr_desc_per_channel = 64; 369 module_param(init_nr_desc_per_channel, uint, 0644); 370 MODULE_PARM_DESC(init_nr_desc_per_channel, 371 "initial descriptors per channel (default: 64)"); 372 373 374 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan) 375 { 376 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask; 377 } 378 379 static void at_xdmac_off(struct at_xdmac *atxdmac) 380 { 381 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L); 382 383 /* Wait that all chans are disabled. */ 384 while (at_xdmac_read(atxdmac, AT_XDMAC_GS)) 385 cpu_relax(); 386 387 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L); 388 } 389 390 /* Call with lock hold. */ 391 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan, 392 struct at_xdmac_desc *first) 393 { 394 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 395 u32 reg; 396 397 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first); 398 399 if (at_xdmac_chan_is_enabled(atchan)) 400 return; 401 402 /* Set transfer as active to not try to start it again. */ 403 first->active_xfer = true; 404 405 /* Tell xdmac where to get the first descriptor. */ 406 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys); 407 if (atxdmac->layout->sdif) 408 reg |= AT_XDMAC_CNDA_NDAIF(atchan->memif); 409 410 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg); 411 412 /* 413 * When doing non cyclic transfer we need to use the next 414 * descriptor view 2 since some fields of the configuration register 415 * depend on transfer size and src/dest addresses. 416 */ 417 if (at_xdmac_chan_is_cyclic(atchan)) 418 reg = AT_XDMAC_CNDC_NDVIEW_NDV1; 419 else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3) 420 reg = AT_XDMAC_CNDC_NDVIEW_NDV3; 421 else 422 reg = AT_XDMAC_CNDC_NDVIEW_NDV2; 423 /* 424 * Even if the register will be updated from the configuration in the 425 * descriptor when using view 2 or higher, the PROT bit won't be set 426 * properly. This bit can be modified only by using the channel 427 * configuration register. 428 */ 429 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg); 430 431 reg |= AT_XDMAC_CNDC_NDDUP 432 | AT_XDMAC_CNDC_NDSUP 433 | AT_XDMAC_CNDC_NDE; 434 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg); 435 436 dev_vdbg(chan2dev(&atchan->chan), 437 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 438 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 439 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 440 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 441 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 442 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 443 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 444 445 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff); 446 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE; 447 /* 448 * Request Overflow Error is only for peripheral synchronized transfers 449 */ 450 if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg)) 451 reg |= AT_XDMAC_CIE_ROIE; 452 453 /* 454 * There is no end of list when doing cyclic dma, we need to get 455 * an interrupt after each periods. 456 */ 457 if (at_xdmac_chan_is_cyclic(atchan)) 458 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 459 reg | AT_XDMAC_CIE_BIE); 460 else 461 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 462 reg | AT_XDMAC_CIE_LIE); 463 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask); 464 dev_vdbg(chan2dev(&atchan->chan), 465 "%s: enable channel (0x%08x)\n", __func__, atchan->mask); 466 wmb(); 467 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 468 469 dev_vdbg(chan2dev(&atchan->chan), 470 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 471 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 472 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 473 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 474 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 475 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 476 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 477 478 } 479 480 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx) 481 { 482 struct at_xdmac_desc *desc = txd_to_at_desc(tx); 483 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan); 484 dma_cookie_t cookie; 485 unsigned long irqflags; 486 487 spin_lock_irqsave(&atchan->lock, irqflags); 488 cookie = dma_cookie_assign(tx); 489 490 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n", 491 __func__, atchan, desc); 492 list_add_tail(&desc->xfer_node, &atchan->xfers_list); 493 if (list_is_singular(&atchan->xfers_list)) 494 at_xdmac_start_xfer(atchan, desc); 495 496 spin_unlock_irqrestore(&atchan->lock, irqflags); 497 return cookie; 498 } 499 500 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan, 501 gfp_t gfp_flags) 502 { 503 struct at_xdmac_desc *desc; 504 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 505 dma_addr_t phys; 506 507 desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys); 508 if (desc) { 509 INIT_LIST_HEAD(&desc->descs_list); 510 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan); 511 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit; 512 desc->tx_dma_desc.phys = phys; 513 } 514 515 return desc; 516 } 517 518 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc) 519 { 520 memset(&desc->lld, 0, sizeof(desc->lld)); 521 INIT_LIST_HEAD(&desc->descs_list); 522 desc->direction = DMA_TRANS_NONE; 523 desc->xfer_size = 0; 524 desc->active_xfer = false; 525 } 526 527 /* Call must be protected by lock. */ 528 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan) 529 { 530 struct at_xdmac_desc *desc; 531 532 if (list_empty(&atchan->free_descs_list)) { 533 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT); 534 } else { 535 desc = list_first_entry(&atchan->free_descs_list, 536 struct at_xdmac_desc, desc_node); 537 list_del(&desc->desc_node); 538 at_xdmac_init_used_desc(desc); 539 } 540 541 return desc; 542 } 543 544 static void at_xdmac_queue_desc(struct dma_chan *chan, 545 struct at_xdmac_desc *prev, 546 struct at_xdmac_desc *desc) 547 { 548 if (!prev || !desc) 549 return; 550 551 prev->lld.mbr_nda = desc->tx_dma_desc.phys; 552 prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE; 553 554 dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n", 555 __func__, prev, &prev->lld.mbr_nda); 556 } 557 558 static inline void at_xdmac_increment_block_count(struct dma_chan *chan, 559 struct at_xdmac_desc *desc) 560 { 561 if (!desc) 562 return; 563 564 desc->lld.mbr_bc++; 565 566 dev_dbg(chan2dev(chan), 567 "%s: incrementing the block count of the desc 0x%p\n", 568 __func__, desc); 569 } 570 571 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec, 572 struct of_dma *of_dma) 573 { 574 struct at_xdmac *atxdmac = of_dma->of_dma_data; 575 struct at_xdmac_chan *atchan; 576 struct dma_chan *chan; 577 struct device *dev = atxdmac->dma.dev; 578 579 if (dma_spec->args_count != 1) { 580 dev_err(dev, "dma phandler args: bad number of args\n"); 581 return NULL; 582 } 583 584 chan = dma_get_any_slave_channel(&atxdmac->dma); 585 if (!chan) { 586 dev_err(dev, "can't get a dma channel\n"); 587 return NULL; 588 } 589 590 atchan = to_at_xdmac_chan(chan); 591 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]); 592 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]); 593 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]); 594 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n", 595 atchan->memif, atchan->perif, atchan->perid); 596 597 return chan; 598 } 599 600 static int at_xdmac_compute_chan_conf(struct dma_chan *chan, 601 enum dma_transfer_direction direction) 602 { 603 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 604 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 605 int csize, dwidth; 606 607 if (direction == DMA_DEV_TO_MEM) { 608 atchan->cfg = 609 AT91_XDMAC_DT_PERID(atchan->perid) 610 | AT_XDMAC_CC_DAM_INCREMENTED_AM 611 | AT_XDMAC_CC_SAM_FIXED_AM 612 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 613 | AT_XDMAC_CC_DSYNC_PER2MEM 614 | AT_XDMAC_CC_MBSIZE_SIXTEEN 615 | AT_XDMAC_CC_TYPE_PER_TRAN; 616 if (atxdmac->layout->sdif) 617 atchan->cfg |= AT_XDMAC_CC_DIF(atchan->memif) | 618 AT_XDMAC_CC_SIF(atchan->perif); 619 620 csize = ffs(atchan->sconfig.src_maxburst) - 1; 621 if (csize < 0) { 622 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 623 return -EINVAL; 624 } 625 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 626 dwidth = ffs(atchan->sconfig.src_addr_width) - 1; 627 if (dwidth < 0) { 628 dev_err(chan2dev(chan), "invalid src addr width value\n"); 629 return -EINVAL; 630 } 631 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 632 } else if (direction == DMA_MEM_TO_DEV) { 633 atchan->cfg = 634 AT91_XDMAC_DT_PERID(atchan->perid) 635 | AT_XDMAC_CC_DAM_FIXED_AM 636 | AT_XDMAC_CC_SAM_INCREMENTED_AM 637 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 638 | AT_XDMAC_CC_DSYNC_MEM2PER 639 | AT_XDMAC_CC_MBSIZE_SIXTEEN 640 | AT_XDMAC_CC_TYPE_PER_TRAN; 641 if (atxdmac->layout->sdif) 642 atchan->cfg |= AT_XDMAC_CC_DIF(atchan->perif) | 643 AT_XDMAC_CC_SIF(atchan->memif); 644 645 csize = ffs(atchan->sconfig.dst_maxburst) - 1; 646 if (csize < 0) { 647 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 648 return -EINVAL; 649 } 650 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 651 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1; 652 if (dwidth < 0) { 653 dev_err(chan2dev(chan), "invalid dst addr width value\n"); 654 return -EINVAL; 655 } 656 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 657 } 658 659 dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg); 660 661 return 0; 662 } 663 664 /* 665 * Only check that maxburst and addr width values are supported by the 666 * the controller but not that the configuration is good to perform the 667 * transfer since we don't know the direction at this stage. 668 */ 669 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig) 670 { 671 if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE) 672 || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE)) 673 return -EINVAL; 674 675 if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH) 676 || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH)) 677 return -EINVAL; 678 679 return 0; 680 } 681 682 static int at_xdmac_set_slave_config(struct dma_chan *chan, 683 struct dma_slave_config *sconfig) 684 { 685 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 686 687 if (at_xdmac_check_slave_config(sconfig)) { 688 dev_err(chan2dev(chan), "invalid slave configuration\n"); 689 return -EINVAL; 690 } 691 692 memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig)); 693 694 return 0; 695 } 696 697 static struct dma_async_tx_descriptor * 698 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 699 unsigned int sg_len, enum dma_transfer_direction direction, 700 unsigned long flags, void *context) 701 { 702 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 703 struct at_xdmac_desc *first = NULL, *prev = NULL; 704 struct scatterlist *sg; 705 int i; 706 unsigned int xfer_size = 0; 707 unsigned long irqflags; 708 struct dma_async_tx_descriptor *ret = NULL; 709 710 if (!sgl) 711 return NULL; 712 713 if (!is_slave_direction(direction)) { 714 dev_err(chan2dev(chan), "invalid DMA direction\n"); 715 return NULL; 716 } 717 718 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n", 719 __func__, sg_len, 720 direction == DMA_MEM_TO_DEV ? "to device" : "from device", 721 flags); 722 723 /* Protect dma_sconfig field that can be modified by set_slave_conf. */ 724 spin_lock_irqsave(&atchan->lock, irqflags); 725 726 if (at_xdmac_compute_chan_conf(chan, direction)) 727 goto spin_unlock; 728 729 /* Prepare descriptors. */ 730 for_each_sg(sgl, sg, sg_len, i) { 731 struct at_xdmac_desc *desc = NULL; 732 u32 len, mem, dwidth, fixed_dwidth; 733 734 len = sg_dma_len(sg); 735 mem = sg_dma_address(sg); 736 if (unlikely(!len)) { 737 dev_err(chan2dev(chan), "sg data length is zero\n"); 738 goto spin_unlock; 739 } 740 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n", 741 __func__, i, len, mem); 742 743 desc = at_xdmac_get_desc(atchan); 744 if (!desc) { 745 dev_err(chan2dev(chan), "can't get descriptor\n"); 746 if (first) 747 list_splice_init(&first->descs_list, &atchan->free_descs_list); 748 goto spin_unlock; 749 } 750 751 /* Linked list descriptor setup. */ 752 if (direction == DMA_DEV_TO_MEM) { 753 desc->lld.mbr_sa = atchan->sconfig.src_addr; 754 desc->lld.mbr_da = mem; 755 } else { 756 desc->lld.mbr_sa = mem; 757 desc->lld.mbr_da = atchan->sconfig.dst_addr; 758 } 759 dwidth = at_xdmac_get_dwidth(atchan->cfg); 760 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth) 761 ? dwidth 762 : AT_XDMAC_CC_DWIDTH_BYTE; 763 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */ 764 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */ 765 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */ 766 | (len >> fixed_dwidth); /* microblock length */ 767 desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) | 768 AT_XDMAC_CC_DWIDTH(fixed_dwidth); 769 dev_dbg(chan2dev(chan), 770 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 771 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 772 773 /* Chain lld. */ 774 if (prev) 775 at_xdmac_queue_desc(chan, prev, desc); 776 777 prev = desc; 778 if (!first) 779 first = desc; 780 781 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 782 __func__, desc, first); 783 list_add_tail(&desc->desc_node, &first->descs_list); 784 xfer_size += len; 785 } 786 787 788 first->tx_dma_desc.flags = flags; 789 first->xfer_size = xfer_size; 790 first->direction = direction; 791 ret = &first->tx_dma_desc; 792 793 spin_unlock: 794 spin_unlock_irqrestore(&atchan->lock, irqflags); 795 return ret; 796 } 797 798 static struct dma_async_tx_descriptor * 799 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, 800 size_t buf_len, size_t period_len, 801 enum dma_transfer_direction direction, 802 unsigned long flags) 803 { 804 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 805 struct at_xdmac_desc *first = NULL, *prev = NULL; 806 unsigned int periods = buf_len / period_len; 807 int i; 808 unsigned long irqflags; 809 810 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n", 811 __func__, &buf_addr, buf_len, period_len, 812 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags); 813 814 if (!is_slave_direction(direction)) { 815 dev_err(chan2dev(chan), "invalid DMA direction\n"); 816 return NULL; 817 } 818 819 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) { 820 dev_err(chan2dev(chan), "channel currently used\n"); 821 return NULL; 822 } 823 824 if (at_xdmac_compute_chan_conf(chan, direction)) 825 return NULL; 826 827 for (i = 0; i < periods; i++) { 828 struct at_xdmac_desc *desc = NULL; 829 830 spin_lock_irqsave(&atchan->lock, irqflags); 831 desc = at_xdmac_get_desc(atchan); 832 if (!desc) { 833 dev_err(chan2dev(chan), "can't get descriptor\n"); 834 if (first) 835 list_splice_init(&first->descs_list, &atchan->free_descs_list); 836 spin_unlock_irqrestore(&atchan->lock, irqflags); 837 return NULL; 838 } 839 spin_unlock_irqrestore(&atchan->lock, irqflags); 840 dev_dbg(chan2dev(chan), 841 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n", 842 __func__, desc, &desc->tx_dma_desc.phys); 843 844 if (direction == DMA_DEV_TO_MEM) { 845 desc->lld.mbr_sa = atchan->sconfig.src_addr; 846 desc->lld.mbr_da = buf_addr + i * period_len; 847 } else { 848 desc->lld.mbr_sa = buf_addr + i * period_len; 849 desc->lld.mbr_da = atchan->sconfig.dst_addr; 850 } 851 desc->lld.mbr_cfg = atchan->cfg; 852 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1 853 | AT_XDMAC_MBR_UBC_NDEN 854 | AT_XDMAC_MBR_UBC_NSEN 855 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg); 856 857 dev_dbg(chan2dev(chan), 858 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 859 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 860 861 /* Chain lld. */ 862 if (prev) 863 at_xdmac_queue_desc(chan, prev, desc); 864 865 prev = desc; 866 if (!first) 867 first = desc; 868 869 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 870 __func__, desc, first); 871 list_add_tail(&desc->desc_node, &first->descs_list); 872 } 873 874 at_xdmac_queue_desc(chan, prev, first); 875 first->tx_dma_desc.flags = flags; 876 first->xfer_size = buf_len; 877 first->direction = direction; 878 879 return &first->tx_dma_desc; 880 } 881 882 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr) 883 { 884 u32 width; 885 886 /* 887 * Check address alignment to select the greater data width we 888 * can use. 889 * 890 * Some XDMAC implementations don't provide dword transfer, in 891 * this case selecting dword has the same behavior as 892 * selecting word transfers. 893 */ 894 if (!(addr & 7)) { 895 width = AT_XDMAC_CC_DWIDTH_DWORD; 896 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__); 897 } else if (!(addr & 3)) { 898 width = AT_XDMAC_CC_DWIDTH_WORD; 899 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__); 900 } else if (!(addr & 1)) { 901 width = AT_XDMAC_CC_DWIDTH_HALFWORD; 902 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__); 903 } else { 904 width = AT_XDMAC_CC_DWIDTH_BYTE; 905 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__); 906 } 907 908 return width; 909 } 910 911 static struct at_xdmac_desc * 912 at_xdmac_interleaved_queue_desc(struct dma_chan *chan, 913 struct at_xdmac_chan *atchan, 914 struct at_xdmac_desc *prev, 915 dma_addr_t src, dma_addr_t dst, 916 struct dma_interleaved_template *xt, 917 struct data_chunk *chunk) 918 { 919 struct at_xdmac_desc *desc; 920 u32 dwidth; 921 unsigned long flags; 922 size_t ublen; 923 /* 924 * WARNING: The channel configuration is set here since there is no 925 * dmaengine_slave_config call in this case. Moreover we don't know the 926 * direction, it involves we can't dynamically set the source and dest 927 * interface so we have to use the same one. Only interface 0 allows EBI 928 * access. Hopefully we can access DDR through both ports (at least on 929 * SAMA5D4x), so we can use the same interface for source and dest, 930 * that solves the fact we don't know the direction. 931 * ERRATA: Even if useless for memory transfers, the PERID has to not 932 * match the one of another channel. If not, it could lead to spurious 933 * flag status. 934 * For SAMA7G5x case, the SIF and DIF fields are no longer used. 935 * Thus, no need to have the SIF/DIF interfaces here. 936 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as 937 * zero. 938 */ 939 u32 chan_cc = AT_XDMAC_CC_PERID(0x7f) 940 | AT_XDMAC_CC_MBSIZE_SIXTEEN 941 | AT_XDMAC_CC_TYPE_MEM_TRAN; 942 943 dwidth = at_xdmac_align_width(chan, src | dst | chunk->size); 944 if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 945 dev_dbg(chan2dev(chan), 946 "%s: chunk too big (%zu, max size %lu)...\n", 947 __func__, chunk->size, 948 AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth); 949 return NULL; 950 } 951 952 if (prev) 953 dev_dbg(chan2dev(chan), 954 "Adding items at the end of desc 0x%p\n", prev); 955 956 if (xt->src_inc) { 957 if (xt->src_sgl) 958 chan_cc |= AT_XDMAC_CC_SAM_UBS_AM; 959 else 960 chan_cc |= AT_XDMAC_CC_SAM_INCREMENTED_AM; 961 } 962 963 if (xt->dst_inc) { 964 if (xt->dst_sgl) 965 chan_cc |= AT_XDMAC_CC_DAM_UBS_AM; 966 else 967 chan_cc |= AT_XDMAC_CC_DAM_INCREMENTED_AM; 968 } 969 970 spin_lock_irqsave(&atchan->lock, flags); 971 desc = at_xdmac_get_desc(atchan); 972 spin_unlock_irqrestore(&atchan->lock, flags); 973 if (!desc) { 974 dev_err(chan2dev(chan), "can't get descriptor\n"); 975 return NULL; 976 } 977 978 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 979 980 ublen = chunk->size >> dwidth; 981 982 desc->lld.mbr_sa = src; 983 desc->lld.mbr_da = dst; 984 desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk); 985 desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk); 986 987 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 988 | AT_XDMAC_MBR_UBC_NDEN 989 | AT_XDMAC_MBR_UBC_NSEN 990 | ublen; 991 desc->lld.mbr_cfg = chan_cc; 992 993 dev_dbg(chan2dev(chan), 994 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 995 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, 996 desc->lld.mbr_ubc, desc->lld.mbr_cfg); 997 998 /* Chain lld. */ 999 if (prev) 1000 at_xdmac_queue_desc(chan, prev, desc); 1001 1002 return desc; 1003 } 1004 1005 static struct dma_async_tx_descriptor * 1006 at_xdmac_prep_interleaved(struct dma_chan *chan, 1007 struct dma_interleaved_template *xt, 1008 unsigned long flags) 1009 { 1010 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1011 struct at_xdmac_desc *prev = NULL, *first = NULL; 1012 dma_addr_t dst_addr, src_addr; 1013 size_t src_skip = 0, dst_skip = 0, len = 0; 1014 struct data_chunk *chunk; 1015 int i; 1016 1017 if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM)) 1018 return NULL; 1019 1020 /* 1021 * TODO: Handle the case where we have to repeat a chain of 1022 * descriptors... 1023 */ 1024 if ((xt->numf > 1) && (xt->frame_size > 1)) 1025 return NULL; 1026 1027 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n", 1028 __func__, &xt->src_start, &xt->dst_start, xt->numf, 1029 xt->frame_size, flags); 1030 1031 src_addr = xt->src_start; 1032 dst_addr = xt->dst_start; 1033 1034 if (xt->numf > 1) { 1035 first = at_xdmac_interleaved_queue_desc(chan, atchan, 1036 NULL, 1037 src_addr, dst_addr, 1038 xt, xt->sgl); 1039 1040 /* Length of the block is (BLEN+1) microblocks. */ 1041 for (i = 0; i < xt->numf - 1; i++) 1042 at_xdmac_increment_block_count(chan, first); 1043 1044 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1045 __func__, first, first); 1046 list_add_tail(&first->desc_node, &first->descs_list); 1047 } else { 1048 for (i = 0; i < xt->frame_size; i++) { 1049 size_t src_icg = 0, dst_icg = 0; 1050 struct at_xdmac_desc *desc; 1051 1052 chunk = xt->sgl + i; 1053 1054 dst_icg = dmaengine_get_dst_icg(xt, chunk); 1055 src_icg = dmaengine_get_src_icg(xt, chunk); 1056 1057 src_skip = chunk->size + src_icg; 1058 dst_skip = chunk->size + dst_icg; 1059 1060 dev_dbg(chan2dev(chan), 1061 "%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n", 1062 __func__, chunk->size, src_icg, dst_icg); 1063 1064 desc = at_xdmac_interleaved_queue_desc(chan, atchan, 1065 prev, 1066 src_addr, dst_addr, 1067 xt, chunk); 1068 if (!desc) { 1069 list_splice_init(&first->descs_list, 1070 &atchan->free_descs_list); 1071 return NULL; 1072 } 1073 1074 if (!first) 1075 first = desc; 1076 1077 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1078 __func__, desc, first); 1079 list_add_tail(&desc->desc_node, &first->descs_list); 1080 1081 if (xt->src_sgl) 1082 src_addr += src_skip; 1083 1084 if (xt->dst_sgl) 1085 dst_addr += dst_skip; 1086 1087 len += chunk->size; 1088 prev = desc; 1089 } 1090 } 1091 1092 first->tx_dma_desc.cookie = -EBUSY; 1093 first->tx_dma_desc.flags = flags; 1094 first->xfer_size = len; 1095 1096 return &first->tx_dma_desc; 1097 } 1098 1099 static struct dma_async_tx_descriptor * 1100 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1101 size_t len, unsigned long flags) 1102 { 1103 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1104 struct at_xdmac_desc *first = NULL, *prev = NULL; 1105 size_t remaining_size = len, xfer_size = 0, ublen; 1106 dma_addr_t src_addr = src, dst_addr = dest; 1107 u32 dwidth; 1108 /* 1109 * WARNING: We don't know the direction, it involves we can't 1110 * dynamically set the source and dest interface so we have to use the 1111 * same one. Only interface 0 allows EBI access. Hopefully we can 1112 * access DDR through both ports (at least on SAMA5D4x), so we can use 1113 * the same interface for source and dest, that solves the fact we 1114 * don't know the direction. 1115 * ERRATA: Even if useless for memory transfers, the PERID has to not 1116 * match the one of another channel. If not, it could lead to spurious 1117 * flag status. 1118 * For SAMA7G5x case, the SIF and DIF fields are no longer used. 1119 * Thus, no need to have the SIF/DIF interfaces here. 1120 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as 1121 * zero. 1122 */ 1123 u32 chan_cc = AT_XDMAC_CC_PERID(0x7f) 1124 | AT_XDMAC_CC_DAM_INCREMENTED_AM 1125 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1126 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1127 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1128 unsigned long irqflags; 1129 1130 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n", 1131 __func__, &src, &dest, len, flags); 1132 1133 if (unlikely(!len)) 1134 return NULL; 1135 1136 dwidth = at_xdmac_align_width(chan, src_addr | dst_addr); 1137 1138 /* Prepare descriptors. */ 1139 while (remaining_size) { 1140 struct at_xdmac_desc *desc = NULL; 1141 1142 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size); 1143 1144 spin_lock_irqsave(&atchan->lock, irqflags); 1145 desc = at_xdmac_get_desc(atchan); 1146 spin_unlock_irqrestore(&atchan->lock, irqflags); 1147 if (!desc) { 1148 dev_err(chan2dev(chan), "can't get descriptor\n"); 1149 if (first) 1150 list_splice_init(&first->descs_list, &atchan->free_descs_list); 1151 return NULL; 1152 } 1153 1154 /* Update src and dest addresses. */ 1155 src_addr += xfer_size; 1156 dst_addr += xfer_size; 1157 1158 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth) 1159 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth; 1160 else 1161 xfer_size = remaining_size; 1162 1163 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size); 1164 1165 /* Check remaining length and change data width if needed. */ 1166 dwidth = at_xdmac_align_width(chan, 1167 src_addr | dst_addr | xfer_size); 1168 chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK; 1169 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1170 1171 ublen = xfer_size >> dwidth; 1172 remaining_size -= xfer_size; 1173 1174 desc->lld.mbr_sa = src_addr; 1175 desc->lld.mbr_da = dst_addr; 1176 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 1177 | AT_XDMAC_MBR_UBC_NDEN 1178 | AT_XDMAC_MBR_UBC_NSEN 1179 | ublen; 1180 desc->lld.mbr_cfg = chan_cc; 1181 1182 dev_dbg(chan2dev(chan), 1183 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1184 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg); 1185 1186 /* Chain lld. */ 1187 if (prev) 1188 at_xdmac_queue_desc(chan, prev, desc); 1189 1190 prev = desc; 1191 if (!first) 1192 first = desc; 1193 1194 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1195 __func__, desc, first); 1196 list_add_tail(&desc->desc_node, &first->descs_list); 1197 } 1198 1199 first->tx_dma_desc.flags = flags; 1200 first->xfer_size = len; 1201 1202 return &first->tx_dma_desc; 1203 } 1204 1205 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan, 1206 struct at_xdmac_chan *atchan, 1207 dma_addr_t dst_addr, 1208 size_t len, 1209 int value) 1210 { 1211 struct at_xdmac_desc *desc; 1212 unsigned long flags; 1213 size_t ublen; 1214 u32 dwidth; 1215 /* 1216 * WARNING: The channel configuration is set here since there is no 1217 * dmaengine_slave_config call in this case. Moreover we don't know the 1218 * direction, it involves we can't dynamically set the source and dest 1219 * interface so we have to use the same one. Only interface 0 allows EBI 1220 * access. Hopefully we can access DDR through both ports (at least on 1221 * SAMA5D4x), so we can use the same interface for source and dest, 1222 * that solves the fact we don't know the direction. 1223 * ERRATA: Even if useless for memory transfers, the PERID has to not 1224 * match the one of another channel. If not, it could lead to spurious 1225 * flag status. 1226 * For SAMA7G5x case, the SIF and DIF fields are no longer used. 1227 * Thus, no need to have the SIF/DIF interfaces here. 1228 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as 1229 * zero. 1230 */ 1231 u32 chan_cc = AT_XDMAC_CC_PERID(0x7f) 1232 | AT_XDMAC_CC_DAM_UBS_AM 1233 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1234 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1235 | AT_XDMAC_CC_MEMSET_HW_MODE 1236 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1237 1238 dwidth = at_xdmac_align_width(chan, dst_addr); 1239 1240 if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 1241 dev_err(chan2dev(chan), 1242 "%s: Transfer too large, aborting...\n", 1243 __func__); 1244 return NULL; 1245 } 1246 1247 spin_lock_irqsave(&atchan->lock, flags); 1248 desc = at_xdmac_get_desc(atchan); 1249 spin_unlock_irqrestore(&atchan->lock, flags); 1250 if (!desc) { 1251 dev_err(chan2dev(chan), "can't get descriptor\n"); 1252 return NULL; 1253 } 1254 1255 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1256 1257 ublen = len >> dwidth; 1258 1259 desc->lld.mbr_da = dst_addr; 1260 desc->lld.mbr_ds = value; 1261 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 1262 | AT_XDMAC_MBR_UBC_NDEN 1263 | AT_XDMAC_MBR_UBC_NSEN 1264 | ublen; 1265 desc->lld.mbr_cfg = chan_cc; 1266 1267 dev_dbg(chan2dev(chan), 1268 "%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1269 __func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc, 1270 desc->lld.mbr_cfg); 1271 1272 return desc; 1273 } 1274 1275 static struct dma_async_tx_descriptor * 1276 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 1277 size_t len, unsigned long flags) 1278 { 1279 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1280 struct at_xdmac_desc *desc; 1281 1282 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n", 1283 __func__, &dest, len, value, flags); 1284 1285 if (unlikely(!len)) 1286 return NULL; 1287 1288 desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value); 1289 list_add_tail(&desc->desc_node, &desc->descs_list); 1290 1291 desc->tx_dma_desc.cookie = -EBUSY; 1292 desc->tx_dma_desc.flags = flags; 1293 desc->xfer_size = len; 1294 1295 return &desc->tx_dma_desc; 1296 } 1297 1298 static struct dma_async_tx_descriptor * 1299 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl, 1300 unsigned int sg_len, int value, 1301 unsigned long flags) 1302 { 1303 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1304 struct at_xdmac_desc *desc, *pdesc = NULL, 1305 *ppdesc = NULL, *first = NULL; 1306 struct scatterlist *sg, *psg = NULL, *ppsg = NULL; 1307 size_t stride = 0, pstride = 0, len = 0; 1308 int i; 1309 1310 if (!sgl) 1311 return NULL; 1312 1313 dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n", 1314 __func__, sg_len, value, flags); 1315 1316 /* Prepare descriptors. */ 1317 for_each_sg(sgl, sg, sg_len, i) { 1318 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n", 1319 __func__, &sg_dma_address(sg), sg_dma_len(sg), 1320 value, flags); 1321 desc = at_xdmac_memset_create_desc(chan, atchan, 1322 sg_dma_address(sg), 1323 sg_dma_len(sg), 1324 value); 1325 if (!desc && first) 1326 list_splice_init(&first->descs_list, 1327 &atchan->free_descs_list); 1328 1329 if (!first) 1330 first = desc; 1331 1332 /* Update our strides */ 1333 pstride = stride; 1334 if (psg) 1335 stride = sg_dma_address(sg) - 1336 (sg_dma_address(psg) + sg_dma_len(psg)); 1337 1338 /* 1339 * The scatterlist API gives us only the address and 1340 * length of each elements. 1341 * 1342 * Unfortunately, we don't have the stride, which we 1343 * will need to compute. 1344 * 1345 * That make us end up in a situation like this one: 1346 * len stride len stride len 1347 * +-------+ +-------+ +-------+ 1348 * | N-2 | | N-1 | | N | 1349 * +-------+ +-------+ +-------+ 1350 * 1351 * We need all these three elements (N-2, N-1 and N) 1352 * to actually take the decision on whether we need to 1353 * queue N-1 or reuse N-2. 1354 * 1355 * We will only consider N if it is the last element. 1356 */ 1357 if (ppdesc && pdesc) { 1358 if ((stride == pstride) && 1359 (sg_dma_len(ppsg) == sg_dma_len(psg))) { 1360 dev_dbg(chan2dev(chan), 1361 "%s: desc 0x%p can be merged with desc 0x%p\n", 1362 __func__, pdesc, ppdesc); 1363 1364 /* 1365 * Increment the block count of the 1366 * N-2 descriptor 1367 */ 1368 at_xdmac_increment_block_count(chan, ppdesc); 1369 ppdesc->lld.mbr_dus = stride; 1370 1371 /* 1372 * Put back the N-1 descriptor in the 1373 * free descriptor list 1374 */ 1375 list_add_tail(&pdesc->desc_node, 1376 &atchan->free_descs_list); 1377 1378 /* 1379 * Make our N-1 descriptor pointer 1380 * point to the N-2 since they were 1381 * actually merged. 1382 */ 1383 pdesc = ppdesc; 1384 1385 /* 1386 * Rule out the case where we don't have 1387 * pstride computed yet (our second sg 1388 * element) 1389 * 1390 * We also want to catch the case where there 1391 * would be a negative stride, 1392 */ 1393 } else if (pstride || 1394 sg_dma_address(sg) < sg_dma_address(psg)) { 1395 /* 1396 * Queue the N-1 descriptor after the 1397 * N-2 1398 */ 1399 at_xdmac_queue_desc(chan, ppdesc, pdesc); 1400 1401 /* 1402 * Add the N-1 descriptor to the list 1403 * of the descriptors used for this 1404 * transfer 1405 */ 1406 list_add_tail(&desc->desc_node, 1407 &first->descs_list); 1408 dev_dbg(chan2dev(chan), 1409 "%s: add desc 0x%p to descs_list 0x%p\n", 1410 __func__, desc, first); 1411 } 1412 } 1413 1414 /* 1415 * If we are the last element, just see if we have the 1416 * same size than the previous element. 1417 * 1418 * If so, we can merge it with the previous descriptor 1419 * since we don't care about the stride anymore. 1420 */ 1421 if ((i == (sg_len - 1)) && 1422 sg_dma_len(psg) == sg_dma_len(sg)) { 1423 dev_dbg(chan2dev(chan), 1424 "%s: desc 0x%p can be merged with desc 0x%p\n", 1425 __func__, desc, pdesc); 1426 1427 /* 1428 * Increment the block count of the N-1 1429 * descriptor 1430 */ 1431 at_xdmac_increment_block_count(chan, pdesc); 1432 pdesc->lld.mbr_dus = stride; 1433 1434 /* 1435 * Put back the N descriptor in the free 1436 * descriptor list 1437 */ 1438 list_add_tail(&desc->desc_node, 1439 &atchan->free_descs_list); 1440 } 1441 1442 /* Update our descriptors */ 1443 ppdesc = pdesc; 1444 pdesc = desc; 1445 1446 /* Update our scatter pointers */ 1447 ppsg = psg; 1448 psg = sg; 1449 1450 len += sg_dma_len(sg); 1451 } 1452 1453 first->tx_dma_desc.cookie = -EBUSY; 1454 first->tx_dma_desc.flags = flags; 1455 first->xfer_size = len; 1456 1457 return &first->tx_dma_desc; 1458 } 1459 1460 static enum dma_status 1461 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 1462 struct dma_tx_state *txstate) 1463 { 1464 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1465 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1466 struct at_xdmac_desc *desc, *_desc; 1467 struct list_head *descs_list; 1468 enum dma_status ret; 1469 int residue, retry; 1470 u32 cur_nda, check_nda, cur_ubc, mask, value; 1471 u8 dwidth = 0; 1472 unsigned long flags; 1473 bool initd; 1474 1475 ret = dma_cookie_status(chan, cookie, txstate); 1476 if (ret == DMA_COMPLETE) 1477 return ret; 1478 1479 if (!txstate) 1480 return ret; 1481 1482 spin_lock_irqsave(&atchan->lock, flags); 1483 1484 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 1485 1486 /* 1487 * If the transfer has not been started yet, don't need to compute the 1488 * residue, it's the transfer length. 1489 */ 1490 if (!desc->active_xfer) { 1491 dma_set_residue(txstate, desc->xfer_size); 1492 goto spin_unlock; 1493 } 1494 1495 residue = desc->xfer_size; 1496 /* 1497 * Flush FIFO: only relevant when the transfer is source peripheral 1498 * synchronized. Flush is needed before reading CUBC because data in 1499 * the FIFO are not reported by CUBC. Reporting a residue of the 1500 * transfer length while we have data in FIFO can cause issue. 1501 * Usecase: atmel USART has a timeout which means I have received 1502 * characters but there is no more character received for a while. On 1503 * timeout, it requests the residue. If the data are in the DMA FIFO, 1504 * we will return a residue of the transfer length. It means no data 1505 * received. If an application is waiting for these data, it will hang 1506 * since we won't have another USART timeout without receiving new 1507 * data. 1508 */ 1509 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC; 1510 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM; 1511 if ((desc->lld.mbr_cfg & mask) == value) { 1512 at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask); 1513 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS)) 1514 cpu_relax(); 1515 } 1516 1517 /* 1518 * The easiest way to compute the residue should be to pause the DMA 1519 * but doing this can lead to miss some data as some devices don't 1520 * have FIFO. 1521 * We need to read several registers because: 1522 * - DMA is running therefore a descriptor change is possible while 1523 * reading these registers 1524 * - When the block transfer is done, the value of the CUBC register 1525 * is set to its initial value until the fetch of the next descriptor. 1526 * This value will corrupt the residue calculation so we have to skip 1527 * it. 1528 * 1529 * INITD -------- ------------ 1530 * |____________________| 1531 * _______________________ _______________ 1532 * NDA @desc2 \/ @desc3 1533 * _______________________/\_______________ 1534 * __________ ___________ _______________ 1535 * CUBC 0 \/ MAX desc1 \/ MAX desc2 1536 * __________/\___________/\_______________ 1537 * 1538 * Since descriptors are aligned on 64 bits, we can assume that 1539 * the update of NDA and CUBC is atomic. 1540 * Memory barriers are used to ensure the read order of the registers. 1541 * A max number of retries is set because unlikely it could never ends. 1542 */ 1543 for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) { 1544 check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 1545 rmb(); 1546 cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC); 1547 rmb(); 1548 initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD); 1549 rmb(); 1550 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 1551 rmb(); 1552 1553 if ((check_nda == cur_nda) && initd) 1554 break; 1555 } 1556 1557 if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) { 1558 ret = DMA_ERROR; 1559 goto spin_unlock; 1560 } 1561 1562 /* 1563 * Flush FIFO: only relevant when the transfer is source peripheral 1564 * synchronized. Another flush is needed here because CUBC is updated 1565 * when the controller sends the data write command. It can lead to 1566 * report data that are not written in the memory or the device. The 1567 * FIFO flush ensures that data are really written. 1568 */ 1569 if ((desc->lld.mbr_cfg & mask) == value) { 1570 at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask); 1571 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS)) 1572 cpu_relax(); 1573 } 1574 1575 /* 1576 * Remove size of all microblocks already transferred and the current 1577 * one. Then add the remaining size to transfer of the current 1578 * microblock. 1579 */ 1580 descs_list = &desc->descs_list; 1581 list_for_each_entry_safe(desc, _desc, descs_list, desc_node) { 1582 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg); 1583 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth; 1584 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda) 1585 break; 1586 } 1587 residue += cur_ubc << dwidth; 1588 1589 dma_set_residue(txstate, residue); 1590 1591 dev_dbg(chan2dev(chan), 1592 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n", 1593 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue); 1594 1595 spin_unlock: 1596 spin_unlock_irqrestore(&atchan->lock, flags); 1597 return ret; 1598 } 1599 1600 /* Call must be protected by lock. */ 1601 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan, 1602 struct at_xdmac_desc *desc) 1603 { 1604 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1605 1606 /* 1607 * Remove the transfer from the transfer list then move the transfer 1608 * descriptors into the free descriptors list. 1609 */ 1610 list_del(&desc->xfer_node); 1611 list_splice_init(&desc->descs_list, &atchan->free_descs_list); 1612 } 1613 1614 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan) 1615 { 1616 struct at_xdmac_desc *desc; 1617 1618 /* 1619 * If channel is enabled, do nothing, advance_work will be triggered 1620 * after the interruption. 1621 */ 1622 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) { 1623 desc = list_first_entry(&atchan->xfers_list, 1624 struct at_xdmac_desc, 1625 xfer_node); 1626 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1627 if (!desc->active_xfer) 1628 at_xdmac_start_xfer(atchan, desc); 1629 } 1630 } 1631 1632 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan) 1633 { 1634 struct at_xdmac_desc *desc; 1635 struct dma_async_tx_descriptor *txd; 1636 1637 if (!list_empty(&atchan->xfers_list)) { 1638 desc = list_first_entry(&atchan->xfers_list, 1639 struct at_xdmac_desc, xfer_node); 1640 txd = &desc->tx_dma_desc; 1641 1642 if (txd->flags & DMA_PREP_INTERRUPT) 1643 dmaengine_desc_get_callback_invoke(txd, NULL); 1644 } 1645 } 1646 1647 static void at_xdmac_handle_error(struct at_xdmac_chan *atchan) 1648 { 1649 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1650 struct at_xdmac_desc *bad_desc; 1651 1652 /* 1653 * The descriptor currently at the head of the active list is 1654 * broken. Since we don't have any way to report errors, we'll 1655 * just have to scream loudly and try to continue with other 1656 * descriptors queued (if any). 1657 */ 1658 if (atchan->irq_status & AT_XDMAC_CIS_RBEIS) 1659 dev_err(chan2dev(&atchan->chan), "read bus error!!!"); 1660 if (atchan->irq_status & AT_XDMAC_CIS_WBEIS) 1661 dev_err(chan2dev(&atchan->chan), "write bus error!!!"); 1662 if (atchan->irq_status & AT_XDMAC_CIS_ROIS) 1663 dev_err(chan2dev(&atchan->chan), "request overflow error!!!"); 1664 1665 spin_lock_irq(&atchan->lock); 1666 1667 /* Channel must be disabled first as it's not done automatically */ 1668 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1669 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask) 1670 cpu_relax(); 1671 1672 bad_desc = list_first_entry(&atchan->xfers_list, 1673 struct at_xdmac_desc, 1674 xfer_node); 1675 1676 spin_unlock_irq(&atchan->lock); 1677 1678 /* Print bad descriptor's details if needed */ 1679 dev_dbg(chan2dev(&atchan->chan), 1680 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 1681 __func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da, 1682 bad_desc->lld.mbr_ubc); 1683 1684 /* Then continue with usual descriptor management */ 1685 } 1686 1687 static void at_xdmac_tasklet(struct tasklet_struct *t) 1688 { 1689 struct at_xdmac_chan *atchan = from_tasklet(atchan, t, tasklet); 1690 struct at_xdmac_desc *desc; 1691 u32 error_mask; 1692 1693 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n", 1694 __func__, atchan->irq_status); 1695 1696 error_mask = AT_XDMAC_CIS_RBEIS 1697 | AT_XDMAC_CIS_WBEIS 1698 | AT_XDMAC_CIS_ROIS; 1699 1700 if (at_xdmac_chan_is_cyclic(atchan)) { 1701 at_xdmac_handle_cyclic(atchan); 1702 } else if ((atchan->irq_status & AT_XDMAC_CIS_LIS) 1703 || (atchan->irq_status & error_mask)) { 1704 struct dma_async_tx_descriptor *txd; 1705 1706 if (atchan->irq_status & error_mask) 1707 at_xdmac_handle_error(atchan); 1708 1709 spin_lock_irq(&atchan->lock); 1710 desc = list_first_entry(&atchan->xfers_list, 1711 struct at_xdmac_desc, 1712 xfer_node); 1713 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1714 if (!desc->active_xfer) { 1715 dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting"); 1716 spin_unlock_irq(&atchan->lock); 1717 return; 1718 } 1719 1720 txd = &desc->tx_dma_desc; 1721 1722 at_xdmac_remove_xfer(atchan, desc); 1723 spin_unlock_irq(&atchan->lock); 1724 1725 dma_cookie_complete(txd); 1726 if (txd->flags & DMA_PREP_INTERRUPT) 1727 dmaengine_desc_get_callback_invoke(txd, NULL); 1728 1729 dma_run_dependencies(txd); 1730 1731 spin_lock_irq(&atchan->lock); 1732 at_xdmac_advance_work(atchan); 1733 spin_unlock_irq(&atchan->lock); 1734 } 1735 } 1736 1737 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id) 1738 { 1739 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id; 1740 struct at_xdmac_chan *atchan; 1741 u32 imr, status, pending; 1742 u32 chan_imr, chan_status; 1743 int i, ret = IRQ_NONE; 1744 1745 do { 1746 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1747 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS); 1748 pending = status & imr; 1749 1750 dev_vdbg(atxdmac->dma.dev, 1751 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n", 1752 __func__, status, imr, pending); 1753 1754 if (!pending) 1755 break; 1756 1757 /* We have to find which channel has generated the interrupt. */ 1758 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1759 if (!((1 << i) & pending)) 1760 continue; 1761 1762 atchan = &atxdmac->chan[i]; 1763 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1764 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS); 1765 atchan->irq_status = chan_status & chan_imr; 1766 dev_vdbg(atxdmac->dma.dev, 1767 "%s: chan%d: imr=0x%x, status=0x%x\n", 1768 __func__, i, chan_imr, chan_status); 1769 dev_vdbg(chan2dev(&atchan->chan), 1770 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 1771 __func__, 1772 at_xdmac_chan_read(atchan, AT_XDMAC_CC), 1773 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 1774 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 1775 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 1776 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 1777 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 1778 1779 if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS)) 1780 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1781 1782 tasklet_schedule(&atchan->tasklet); 1783 ret = IRQ_HANDLED; 1784 } 1785 1786 } while (pending); 1787 1788 return ret; 1789 } 1790 1791 static void at_xdmac_issue_pending(struct dma_chan *chan) 1792 { 1793 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1794 unsigned long flags; 1795 1796 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__); 1797 1798 if (!at_xdmac_chan_is_cyclic(atchan)) { 1799 spin_lock_irqsave(&atchan->lock, flags); 1800 at_xdmac_advance_work(atchan); 1801 spin_unlock_irqrestore(&atchan->lock, flags); 1802 } 1803 1804 return; 1805 } 1806 1807 static int at_xdmac_device_config(struct dma_chan *chan, 1808 struct dma_slave_config *config) 1809 { 1810 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1811 int ret; 1812 unsigned long flags; 1813 1814 dev_dbg(chan2dev(chan), "%s\n", __func__); 1815 1816 spin_lock_irqsave(&atchan->lock, flags); 1817 ret = at_xdmac_set_slave_config(chan, config); 1818 spin_unlock_irqrestore(&atchan->lock, flags); 1819 1820 return ret; 1821 } 1822 1823 static int at_xdmac_device_pause(struct dma_chan *chan) 1824 { 1825 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1826 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1827 unsigned long flags; 1828 1829 dev_dbg(chan2dev(chan), "%s\n", __func__); 1830 1831 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status)) 1832 return 0; 1833 1834 spin_lock_irqsave(&atchan->lock, flags); 1835 at_xdmac_write(atxdmac, atxdmac->layout->grws, atchan->mask); 1836 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC) 1837 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP)) 1838 cpu_relax(); 1839 spin_unlock_irqrestore(&atchan->lock, flags); 1840 1841 return 0; 1842 } 1843 1844 static int at_xdmac_device_resume(struct dma_chan *chan) 1845 { 1846 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1847 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1848 unsigned long flags; 1849 1850 dev_dbg(chan2dev(chan), "%s\n", __func__); 1851 1852 spin_lock_irqsave(&atchan->lock, flags); 1853 if (!at_xdmac_chan_is_paused(atchan)) { 1854 spin_unlock_irqrestore(&atchan->lock, flags); 1855 return 0; 1856 } 1857 1858 at_xdmac_write(atxdmac, atxdmac->layout->grwr, atchan->mask); 1859 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1860 spin_unlock_irqrestore(&atchan->lock, flags); 1861 1862 return 0; 1863 } 1864 1865 static int at_xdmac_device_terminate_all(struct dma_chan *chan) 1866 { 1867 struct at_xdmac_desc *desc, *_desc; 1868 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1869 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1870 unsigned long flags; 1871 1872 dev_dbg(chan2dev(chan), "%s\n", __func__); 1873 1874 spin_lock_irqsave(&atchan->lock, flags); 1875 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1876 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask) 1877 cpu_relax(); 1878 1879 /* Cancel all pending transfers. */ 1880 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) 1881 at_xdmac_remove_xfer(atchan, desc); 1882 1883 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1884 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 1885 spin_unlock_irqrestore(&atchan->lock, flags); 1886 1887 return 0; 1888 } 1889 1890 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan) 1891 { 1892 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1893 struct at_xdmac_desc *desc; 1894 int i; 1895 1896 if (at_xdmac_chan_is_enabled(atchan)) { 1897 dev_err(chan2dev(chan), 1898 "can't allocate channel resources (channel enabled)\n"); 1899 return -EIO; 1900 } 1901 1902 if (!list_empty(&atchan->free_descs_list)) { 1903 dev_err(chan2dev(chan), 1904 "can't allocate channel resources (channel not free from a previous use)\n"); 1905 return -EIO; 1906 } 1907 1908 for (i = 0; i < init_nr_desc_per_channel; i++) { 1909 desc = at_xdmac_alloc_desc(chan, GFP_KERNEL); 1910 if (!desc) { 1911 dev_warn(chan2dev(chan), 1912 "only %d descriptors have been allocated\n", i); 1913 break; 1914 } 1915 list_add_tail(&desc->desc_node, &atchan->free_descs_list); 1916 } 1917 1918 dma_cookie_init(chan); 1919 1920 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i); 1921 1922 return i; 1923 } 1924 1925 static void at_xdmac_free_chan_resources(struct dma_chan *chan) 1926 { 1927 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1928 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 1929 struct at_xdmac_desc *desc, *_desc; 1930 1931 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) { 1932 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc); 1933 list_del(&desc->desc_node); 1934 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys); 1935 } 1936 1937 return; 1938 } 1939 1940 #ifdef CONFIG_PM 1941 static int atmel_xdmac_prepare(struct device *dev) 1942 { 1943 struct at_xdmac *atxdmac = dev_get_drvdata(dev); 1944 struct dma_chan *chan, *_chan; 1945 1946 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1947 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1948 1949 /* Wait for transfer completion, except in cyclic case. */ 1950 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan)) 1951 return -EAGAIN; 1952 } 1953 return 0; 1954 } 1955 #else 1956 # define atmel_xdmac_prepare NULL 1957 #endif 1958 1959 #ifdef CONFIG_PM_SLEEP 1960 static int atmel_xdmac_suspend(struct device *dev) 1961 { 1962 struct at_xdmac *atxdmac = dev_get_drvdata(dev); 1963 struct dma_chan *chan, *_chan; 1964 1965 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1966 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1967 1968 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC); 1969 if (at_xdmac_chan_is_cyclic(atchan)) { 1970 if (!at_xdmac_chan_is_paused(atchan)) 1971 at_xdmac_device_pause(chan); 1972 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1973 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA); 1974 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC); 1975 } 1976 } 1977 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1978 1979 at_xdmac_off(atxdmac); 1980 clk_disable_unprepare(atxdmac->clk); 1981 return 0; 1982 } 1983 1984 static int atmel_xdmac_resume(struct device *dev) 1985 { 1986 struct at_xdmac *atxdmac = dev_get_drvdata(dev); 1987 struct at_xdmac_chan *atchan; 1988 struct dma_chan *chan, *_chan; 1989 int i; 1990 int ret; 1991 1992 ret = clk_prepare_enable(atxdmac->clk); 1993 if (ret) 1994 return ret; 1995 1996 /* Clear pending interrupts. */ 1997 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1998 atchan = &atxdmac->chan[i]; 1999 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 2000 cpu_relax(); 2001 } 2002 2003 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim); 2004 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 2005 atchan = to_at_xdmac_chan(chan); 2006 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc); 2007 if (at_xdmac_chan_is_cyclic(atchan)) { 2008 if (at_xdmac_chan_is_paused(atchan)) 2009 at_xdmac_device_resume(chan); 2010 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda); 2011 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc); 2012 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim); 2013 wmb(); 2014 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 2015 } 2016 } 2017 return 0; 2018 } 2019 #endif /* CONFIG_PM_SLEEP */ 2020 2021 static void at_xdmac_axi_config(struct platform_device *pdev) 2022 { 2023 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev); 2024 bool dev_m2m = false; 2025 u32 dma_requests; 2026 2027 if (!atxdmac->layout->axi_config) 2028 return; /* Not supported */ 2029 2030 if (!of_property_read_u32(pdev->dev.of_node, "dma-requests", 2031 &dma_requests)) { 2032 dev_info(&pdev->dev, "controller in mem2mem mode.\n"); 2033 dev_m2m = true; 2034 } 2035 2036 if (dev_m2m) { 2037 at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_M2M); 2038 at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_M2M); 2039 } else { 2040 at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_P2M); 2041 at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_P2M); 2042 } 2043 } 2044 2045 static int at_xdmac_probe(struct platform_device *pdev) 2046 { 2047 struct at_xdmac *atxdmac; 2048 int irq, size, nr_channels, i, ret; 2049 void __iomem *base; 2050 u32 reg; 2051 2052 irq = platform_get_irq(pdev, 0); 2053 if (irq < 0) 2054 return irq; 2055 2056 base = devm_platform_ioremap_resource(pdev, 0); 2057 if (IS_ERR(base)) 2058 return PTR_ERR(base); 2059 2060 /* 2061 * Read number of xdmac channels, read helper function can't be used 2062 * since atxdmac is not yet allocated and we need to know the number 2063 * of channels to do the allocation. 2064 */ 2065 reg = readl_relaxed(base + AT_XDMAC_GTYPE); 2066 nr_channels = AT_XDMAC_NB_CH(reg); 2067 if (nr_channels > AT_XDMAC_MAX_CHAN) { 2068 dev_err(&pdev->dev, "invalid number of channels (%u)\n", 2069 nr_channels); 2070 return -EINVAL; 2071 } 2072 2073 size = sizeof(*atxdmac); 2074 size += nr_channels * sizeof(struct at_xdmac_chan); 2075 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); 2076 if (!atxdmac) { 2077 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n"); 2078 return -ENOMEM; 2079 } 2080 2081 atxdmac->regs = base; 2082 atxdmac->irq = irq; 2083 2084 atxdmac->layout = of_device_get_match_data(&pdev->dev); 2085 if (!atxdmac->layout) 2086 return -ENODEV; 2087 2088 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk"); 2089 if (IS_ERR(atxdmac->clk)) { 2090 dev_err(&pdev->dev, "can't get dma_clk\n"); 2091 return PTR_ERR(atxdmac->clk); 2092 } 2093 2094 /* Do not use dev res to prevent races with tasklet */ 2095 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac); 2096 if (ret) { 2097 dev_err(&pdev->dev, "can't request irq\n"); 2098 return ret; 2099 } 2100 2101 ret = clk_prepare_enable(atxdmac->clk); 2102 if (ret) { 2103 dev_err(&pdev->dev, "can't prepare or enable clock\n"); 2104 goto err_free_irq; 2105 } 2106 2107 atxdmac->at_xdmac_desc_pool = 2108 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev, 2109 sizeof(struct at_xdmac_desc), 4, 0); 2110 if (!atxdmac->at_xdmac_desc_pool) { 2111 dev_err(&pdev->dev, "no memory for descriptors dma pool\n"); 2112 ret = -ENOMEM; 2113 goto err_clk_disable; 2114 } 2115 2116 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask); 2117 dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask); 2118 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask); 2119 dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask); 2120 dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask); 2121 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask); 2122 /* 2123 * Without DMA_PRIVATE the driver is not able to allocate more than 2124 * one channel, second allocation fails in private_candidate. 2125 */ 2126 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask); 2127 atxdmac->dma.dev = &pdev->dev; 2128 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources; 2129 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources; 2130 atxdmac->dma.device_tx_status = at_xdmac_tx_status; 2131 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending; 2132 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic; 2133 atxdmac->dma.device_prep_interleaved_dma = at_xdmac_prep_interleaved; 2134 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy; 2135 atxdmac->dma.device_prep_dma_memset = at_xdmac_prep_dma_memset; 2136 atxdmac->dma.device_prep_dma_memset_sg = at_xdmac_prep_dma_memset_sg; 2137 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg; 2138 atxdmac->dma.device_config = at_xdmac_device_config; 2139 atxdmac->dma.device_pause = at_xdmac_device_pause; 2140 atxdmac->dma.device_resume = at_xdmac_device_resume; 2141 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all; 2142 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 2143 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 2144 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2145 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2146 2147 /* Disable all chans and interrupts. */ 2148 at_xdmac_off(atxdmac); 2149 2150 /* Init channels. */ 2151 INIT_LIST_HEAD(&atxdmac->dma.channels); 2152 for (i = 0; i < nr_channels; i++) { 2153 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 2154 2155 atchan->chan.device = &atxdmac->dma; 2156 list_add_tail(&atchan->chan.device_node, 2157 &atxdmac->dma.channels); 2158 2159 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i); 2160 atchan->mask = 1 << i; 2161 2162 spin_lock_init(&atchan->lock); 2163 INIT_LIST_HEAD(&atchan->xfers_list); 2164 INIT_LIST_HEAD(&atchan->free_descs_list); 2165 tasklet_setup(&atchan->tasklet, at_xdmac_tasklet); 2166 2167 /* Clear pending interrupts. */ 2168 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 2169 cpu_relax(); 2170 } 2171 platform_set_drvdata(pdev, atxdmac); 2172 2173 ret = dma_async_device_register(&atxdmac->dma); 2174 if (ret) { 2175 dev_err(&pdev->dev, "fail to register DMA engine device\n"); 2176 goto err_clk_disable; 2177 } 2178 2179 ret = of_dma_controller_register(pdev->dev.of_node, 2180 at_xdmac_xlate, atxdmac); 2181 if (ret) { 2182 dev_err(&pdev->dev, "could not register of dma controller\n"); 2183 goto err_dma_unregister; 2184 } 2185 2186 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n", 2187 nr_channels, atxdmac->regs); 2188 2189 at_xdmac_axi_config(pdev); 2190 2191 return 0; 2192 2193 err_dma_unregister: 2194 dma_async_device_unregister(&atxdmac->dma); 2195 err_clk_disable: 2196 clk_disable_unprepare(atxdmac->clk); 2197 err_free_irq: 2198 free_irq(atxdmac->irq, atxdmac); 2199 return ret; 2200 } 2201 2202 static int at_xdmac_remove(struct platform_device *pdev) 2203 { 2204 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev); 2205 int i; 2206 2207 at_xdmac_off(atxdmac); 2208 of_dma_controller_free(pdev->dev.of_node); 2209 dma_async_device_unregister(&atxdmac->dma); 2210 clk_disable_unprepare(atxdmac->clk); 2211 2212 free_irq(atxdmac->irq, atxdmac); 2213 2214 for (i = 0; i < atxdmac->dma.chancnt; i++) { 2215 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 2216 2217 tasklet_kill(&atchan->tasklet); 2218 at_xdmac_free_chan_resources(&atchan->chan); 2219 } 2220 2221 return 0; 2222 } 2223 2224 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = { 2225 .prepare = atmel_xdmac_prepare, 2226 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume) 2227 }; 2228 2229 static const struct of_device_id atmel_xdmac_dt_ids[] = { 2230 { 2231 .compatible = "atmel,sama5d4-dma", 2232 .data = &at_xdmac_sama5d4_layout, 2233 }, { 2234 .compatible = "microchip,sama7g5-dma", 2235 .data = &at_xdmac_sama7g5_layout, 2236 }, { 2237 /* sentinel */ 2238 } 2239 }; 2240 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids); 2241 2242 static struct platform_driver at_xdmac_driver = { 2243 .probe = at_xdmac_probe, 2244 .remove = at_xdmac_remove, 2245 .driver = { 2246 .name = "at_xdmac", 2247 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids), 2248 .pm = &atmel_xdmac_dev_pm_ops, 2249 } 2250 }; 2251 2252 static int __init at_xdmac_init(void) 2253 { 2254 return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe); 2255 } 2256 subsys_initcall(at_xdmac_init); 2257 2258 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver"); 2259 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>"); 2260 MODULE_LICENSE("GPL"); 2261