xref: /openbmc/linux/drivers/dma/at_xdmac.c (revision 82003e04)
1 /*
2  * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
3  *
4  * Copyright (C) 2014 Atmel Corporation
5  *
6  * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <asm/barrier.h>
22 #include <dt-bindings/dma/at91.h>
23 #include <linux/clk.h>
24 #include <linux/dmaengine.h>
25 #include <linux/dmapool.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of_dma.h>
32 #include <linux/of_platform.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm.h>
35 
36 #include "dmaengine.h"
37 
38 /* Global registers */
39 #define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
40 #define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
41 #define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
42 #define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
43 #define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
44 #define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
45 #define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
46 #define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
47 #define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
48 #define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
49 #define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
50 #define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
51 #define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
52 #define AT_XDMAC_GRS		0x28	/* Global Channel Read Suspend Register */
53 #define AT_XDMAC_GWS		0x2C	/* Global Write Suspend Register */
54 #define AT_XDMAC_GRWS		0x30	/* Global Channel Read Write Suspend Register */
55 #define AT_XDMAC_GRWR		0x34	/* Global Channel Read Write Resume Register */
56 #define AT_XDMAC_GSWR		0x38	/* Global Channel Software Request Register */
57 #define AT_XDMAC_GSWS		0x3C	/* Global channel Software Request Status Register */
58 #define AT_XDMAC_GSWF		0x40	/* Global Channel Software Flush Request Register */
59 #define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */
60 
61 /* Channel relative registers offsets */
62 #define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
63 #define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
64 #define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
65 #define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
66 #define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
67 #define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
68 #define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
69 #define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
70 #define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
71 #define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
72 #define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
73 #define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
74 #define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
75 #define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
76 #define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
77 #define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
78 #define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
79 #define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
80 #define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
81 #define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
82 #define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
83 #define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
84 #define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
85 #define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
86 #define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
87 #define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
88 #define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
89 #define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
90 #define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
91 #define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
92 #define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
93 #define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
94 #define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
95 #define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
96 #define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
97 #define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
98 #define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
99 #define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
100 #define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
101 #define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
102 #define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
103 #define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
104 #define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
105 #define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
106 #define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
107 #define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
108 #define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
109 #define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
110 #define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
111 #define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
112 #define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
113 #define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
114 #define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
115 #define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
116 #define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
117 #define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
118 #define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
119 #define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
120 #define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
121 #define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
122 #define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
123 #define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
124 #define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
125 #define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
126 #define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
127 #define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
128 #define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
129 #define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
130 #define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
131 #define		AT_XDMAC_CC_DWIDTH_OFFSET	11
132 #define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
133 #define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
134 #define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
135 #define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
136 #define			AT_XDMAC_CC_DWIDTH_WORD		0x2
137 #define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
138 #define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
139 #define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
140 #define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
141 #define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
142 #define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
143 #define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
144 #define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
145 #define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
146 #define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
147 #define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
148 #define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
149 #define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
150 #define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
151 #define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
152 #define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
153 #define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
154 #define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
155 #define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
156 #define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
157 #define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
158 #define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
159 #define		AT_XDMAC_CC_PERID(i)	(0x7f & (i) << 24)	/* Channel Peripheral Identifier */
160 #define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
161 #define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
162 #define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */
163 
164 #define AT_XDMAC_CHAN_REG_BASE	0x50	/* Channel registers base address */
165 
166 /* Microblock control members */
167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
168 #define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
169 #define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
170 #define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
171 #define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
172 #define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
173 #define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
174 #define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */
175 
176 #define AT_XDMAC_MAX_CHAN	0x20
177 #define AT_XDMAC_MAX_CSIZE	16	/* 16 data */
178 #define AT_XDMAC_MAX_DWIDTH	8	/* 64 bits */
179 #define AT_XDMAC_RESIDUE_MAX_RETRIES	5
180 
181 #define AT_XDMAC_DMA_BUSWIDTHS\
182 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
183 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
184 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
185 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
186 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
187 
188 enum atc_status {
189 	AT_XDMAC_CHAN_IS_CYCLIC = 0,
190 	AT_XDMAC_CHAN_IS_PAUSED,
191 };
192 
193 /* ----- Channels ----- */
194 struct at_xdmac_chan {
195 	struct dma_chan			chan;
196 	void __iomem			*ch_regs;
197 	u32				mask;		/* Channel Mask */
198 	u32				cfg;		/* Channel Configuration Register */
199 	u8				perid;		/* Peripheral ID */
200 	u8				perif;		/* Peripheral Interface */
201 	u8				memif;		/* Memory Interface */
202 	u32				save_cc;
203 	u32				save_cim;
204 	u32				save_cnda;
205 	u32				save_cndc;
206 	unsigned long			status;
207 	struct tasklet_struct		tasklet;
208 	struct dma_slave_config		sconfig;
209 
210 	spinlock_t			lock;
211 
212 	struct list_head		xfers_list;
213 	struct list_head		free_descs_list;
214 };
215 
216 
217 /* ----- Controller ----- */
218 struct at_xdmac {
219 	struct dma_device	dma;
220 	void __iomem		*regs;
221 	int			irq;
222 	struct clk		*clk;
223 	u32			save_gim;
224 	u32			save_gs;
225 	struct dma_pool		*at_xdmac_desc_pool;
226 	struct at_xdmac_chan	chan[0];
227 };
228 
229 
230 /* ----- Descriptors ----- */
231 
232 /* Linked List Descriptor */
233 struct at_xdmac_lld {
234 	dma_addr_t	mbr_nda;	/* Next Descriptor Member */
235 	u32		mbr_ubc;	/* Microblock Control Member */
236 	dma_addr_t	mbr_sa;		/* Source Address Member */
237 	dma_addr_t	mbr_da;		/* Destination Address Member */
238 	u32		mbr_cfg;	/* Configuration Register */
239 	u32		mbr_bc;		/* Block Control Register */
240 	u32		mbr_ds;		/* Data Stride Register */
241 	u32		mbr_sus;	/* Source Microblock Stride Register */
242 	u32		mbr_dus;	/* Destination Microblock Stride Register */
243 };
244 
245 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
246 struct at_xdmac_desc {
247 	struct at_xdmac_lld		lld;
248 	enum dma_transfer_direction	direction;
249 	struct dma_async_tx_descriptor	tx_dma_desc;
250 	struct list_head		desc_node;
251 	/* Following members are only used by the first descriptor */
252 	bool				active_xfer;
253 	unsigned int			xfer_size;
254 	struct list_head		descs_list;
255 	struct list_head		xfer_node;
256 } __aligned(sizeof(u64));
257 
258 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
259 {
260 	return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
261 }
262 
263 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
264 #define at_xdmac_write(atxdmac, reg, value) \
265 	writel_relaxed((value), (atxdmac)->regs + (reg))
266 
267 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
268 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
269 
270 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
271 {
272 	return container_of(dchan, struct at_xdmac_chan, chan);
273 }
274 
275 static struct device *chan2dev(struct dma_chan *chan)
276 {
277 	return &chan->dev->device;
278 }
279 
280 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
281 {
282 	return container_of(ddev, struct at_xdmac, dma);
283 }
284 
285 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
286 {
287 	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
288 }
289 
290 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
291 {
292 	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
293 }
294 
295 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
296 {
297 	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
298 }
299 
300 static inline int at_xdmac_csize(u32 maxburst)
301 {
302 	int csize;
303 
304 	csize = ffs(maxburst) - 1;
305 	if (csize > 4)
306 		csize = -EINVAL;
307 
308 	return csize;
309 };
310 
311 static inline u8 at_xdmac_get_dwidth(u32 cfg)
312 {
313 	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
314 };
315 
316 static unsigned int init_nr_desc_per_channel = 64;
317 module_param(init_nr_desc_per_channel, uint, 0644);
318 MODULE_PARM_DESC(init_nr_desc_per_channel,
319 		 "initial descriptors per channel (default: 64)");
320 
321 
322 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
323 {
324 	return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
325 }
326 
327 static void at_xdmac_off(struct at_xdmac *atxdmac)
328 {
329 	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
330 
331 	/* Wait that all chans are disabled. */
332 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
333 		cpu_relax();
334 
335 	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
336 }
337 
338 /* Call with lock hold. */
339 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
340 				struct at_xdmac_desc *first)
341 {
342 	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
343 	u32		reg;
344 
345 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
346 
347 	if (at_xdmac_chan_is_enabled(atchan))
348 		return;
349 
350 	/* Set transfer as active to not try to start it again. */
351 	first->active_xfer = true;
352 
353 	/* Tell xdmac where to get the first descriptor. */
354 	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
355 	      | AT_XDMAC_CNDA_NDAIF(atchan->memif);
356 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
357 
358 	/*
359 	 * When doing non cyclic transfer we need to use the next
360 	 * descriptor view 2 since some fields of the configuration register
361 	 * depend on transfer size and src/dest addresses.
362 	 */
363 	if (at_xdmac_chan_is_cyclic(atchan))
364 		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
365 	else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3)
366 		reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
367 	else
368 		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
369 	/*
370 	 * Even if the register will be updated from the configuration in the
371 	 * descriptor when using view 2 or higher, the PROT bit won't be set
372 	 * properly. This bit can be modified only by using the channel
373 	 * configuration register.
374 	 */
375 	at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
376 
377 	reg |= AT_XDMAC_CNDC_NDDUP
378 	       | AT_XDMAC_CNDC_NDSUP
379 	       | AT_XDMAC_CNDC_NDE;
380 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
381 
382 	dev_vdbg(chan2dev(&atchan->chan),
383 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
384 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
385 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
386 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
387 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
388 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
389 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
390 
391 	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
392 	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE;
393 	/*
394 	 * There is no end of list when doing cyclic dma, we need to get
395 	 * an interrupt after each periods.
396 	 */
397 	if (at_xdmac_chan_is_cyclic(atchan))
398 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
399 				    reg | AT_XDMAC_CIE_BIE);
400 	else
401 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
402 				    reg | AT_XDMAC_CIE_LIE);
403 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
404 	dev_vdbg(chan2dev(&atchan->chan),
405 		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
406 	wmb();
407 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
408 
409 	dev_vdbg(chan2dev(&atchan->chan),
410 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
411 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
412 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
413 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
414 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
415 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
416 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
417 
418 }
419 
420 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
421 {
422 	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
423 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
424 	dma_cookie_t		cookie;
425 	unsigned long		irqflags;
426 
427 	spin_lock_irqsave(&atchan->lock, irqflags);
428 	cookie = dma_cookie_assign(tx);
429 
430 	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
431 		 __func__, atchan, desc);
432 	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
433 	if (list_is_singular(&atchan->xfers_list))
434 		at_xdmac_start_xfer(atchan, desc);
435 
436 	spin_unlock_irqrestore(&atchan->lock, irqflags);
437 	return cookie;
438 }
439 
440 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
441 						 gfp_t gfp_flags)
442 {
443 	struct at_xdmac_desc	*desc;
444 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
445 	dma_addr_t		phys;
446 
447 	desc = dma_pool_alloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
448 	if (desc) {
449 		memset(desc, 0, sizeof(*desc));
450 		INIT_LIST_HEAD(&desc->descs_list);
451 		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
452 		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
453 		desc->tx_dma_desc.phys = phys;
454 	}
455 
456 	return desc;
457 }
458 
459 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
460 {
461 	memset(&desc->lld, 0, sizeof(desc->lld));
462 	INIT_LIST_HEAD(&desc->descs_list);
463 	desc->direction = DMA_TRANS_NONE;
464 	desc->xfer_size = 0;
465 	desc->active_xfer = false;
466 }
467 
468 /* Call must be protected by lock. */
469 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
470 {
471 	struct at_xdmac_desc *desc;
472 
473 	if (list_empty(&atchan->free_descs_list)) {
474 		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
475 	} else {
476 		desc = list_first_entry(&atchan->free_descs_list,
477 					struct at_xdmac_desc, desc_node);
478 		list_del(&desc->desc_node);
479 		at_xdmac_init_used_desc(desc);
480 	}
481 
482 	return desc;
483 }
484 
485 static void at_xdmac_queue_desc(struct dma_chan *chan,
486 				struct at_xdmac_desc *prev,
487 				struct at_xdmac_desc *desc)
488 {
489 	if (!prev || !desc)
490 		return;
491 
492 	prev->lld.mbr_nda = desc->tx_dma_desc.phys;
493 	prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
494 
495 	dev_dbg(chan2dev(chan),	"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
496 		__func__, prev, &prev->lld.mbr_nda);
497 }
498 
499 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
500 						  struct at_xdmac_desc *desc)
501 {
502 	if (!desc)
503 		return;
504 
505 	desc->lld.mbr_bc++;
506 
507 	dev_dbg(chan2dev(chan),
508 		"%s: incrementing the block count of the desc 0x%p\n",
509 		__func__, desc);
510 }
511 
512 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
513 				       struct of_dma *of_dma)
514 {
515 	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
516 	struct at_xdmac_chan	*atchan;
517 	struct dma_chan		*chan;
518 	struct device		*dev = atxdmac->dma.dev;
519 
520 	if (dma_spec->args_count != 1) {
521 		dev_err(dev, "dma phandler args: bad number of args\n");
522 		return NULL;
523 	}
524 
525 	chan = dma_get_any_slave_channel(&atxdmac->dma);
526 	if (!chan) {
527 		dev_err(dev, "can't get a dma channel\n");
528 		return NULL;
529 	}
530 
531 	atchan = to_at_xdmac_chan(chan);
532 	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
533 	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
534 	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
535 	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
536 		 atchan->memif, atchan->perif, atchan->perid);
537 
538 	return chan;
539 }
540 
541 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
542 				      enum dma_transfer_direction direction)
543 {
544 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
545 	int			csize, dwidth;
546 
547 	if (direction == DMA_DEV_TO_MEM) {
548 		atchan->cfg =
549 			AT91_XDMAC_DT_PERID(atchan->perid)
550 			| AT_XDMAC_CC_DAM_INCREMENTED_AM
551 			| AT_XDMAC_CC_SAM_FIXED_AM
552 			| AT_XDMAC_CC_DIF(atchan->memif)
553 			| AT_XDMAC_CC_SIF(atchan->perif)
554 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
555 			| AT_XDMAC_CC_DSYNC_PER2MEM
556 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
557 			| AT_XDMAC_CC_TYPE_PER_TRAN;
558 		csize = ffs(atchan->sconfig.src_maxburst) - 1;
559 		if (csize < 0) {
560 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
561 			return -EINVAL;
562 		}
563 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
564 		dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
565 		if (dwidth < 0) {
566 			dev_err(chan2dev(chan), "invalid src addr width value\n");
567 			return -EINVAL;
568 		}
569 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
570 	} else if (direction == DMA_MEM_TO_DEV) {
571 		atchan->cfg =
572 			AT91_XDMAC_DT_PERID(atchan->perid)
573 			| AT_XDMAC_CC_DAM_FIXED_AM
574 			| AT_XDMAC_CC_SAM_INCREMENTED_AM
575 			| AT_XDMAC_CC_DIF(atchan->perif)
576 			| AT_XDMAC_CC_SIF(atchan->memif)
577 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
578 			| AT_XDMAC_CC_DSYNC_MEM2PER
579 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
580 			| AT_XDMAC_CC_TYPE_PER_TRAN;
581 		csize = ffs(atchan->sconfig.dst_maxburst) - 1;
582 		if (csize < 0) {
583 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
584 			return -EINVAL;
585 		}
586 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
587 		dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
588 		if (dwidth < 0) {
589 			dev_err(chan2dev(chan), "invalid dst addr width value\n");
590 			return -EINVAL;
591 		}
592 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
593 	}
594 
595 	dev_dbg(chan2dev(chan),	"%s: cfg=0x%08x\n", __func__, atchan->cfg);
596 
597 	return 0;
598 }
599 
600 /*
601  * Only check that maxburst and addr width values are supported by the
602  * the controller but not that the configuration is good to perform the
603  * transfer since we don't know the direction at this stage.
604  */
605 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
606 {
607 	if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
608 	    || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
609 		return -EINVAL;
610 
611 	if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
612 	    || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
613 		return -EINVAL;
614 
615 	return 0;
616 }
617 
618 static int at_xdmac_set_slave_config(struct dma_chan *chan,
619 				      struct dma_slave_config *sconfig)
620 {
621 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
622 
623 	if (at_xdmac_check_slave_config(sconfig)) {
624 		dev_err(chan2dev(chan), "invalid slave configuration\n");
625 		return -EINVAL;
626 	}
627 
628 	memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
629 
630 	return 0;
631 }
632 
633 static struct dma_async_tx_descriptor *
634 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
635 		       unsigned int sg_len, enum dma_transfer_direction direction,
636 		       unsigned long flags, void *context)
637 {
638 	struct at_xdmac_chan		*atchan = to_at_xdmac_chan(chan);
639 	struct at_xdmac_desc		*first = NULL, *prev = NULL;
640 	struct scatterlist		*sg;
641 	int				i;
642 	unsigned int			xfer_size = 0;
643 	unsigned long			irqflags;
644 	struct dma_async_tx_descriptor	*ret = NULL;
645 
646 	if (!sgl)
647 		return NULL;
648 
649 	if (!is_slave_direction(direction)) {
650 		dev_err(chan2dev(chan), "invalid DMA direction\n");
651 		return NULL;
652 	}
653 
654 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
655 		 __func__, sg_len,
656 		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
657 		 flags);
658 
659 	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
660 	spin_lock_irqsave(&atchan->lock, irqflags);
661 
662 	if (at_xdmac_compute_chan_conf(chan, direction))
663 		goto spin_unlock;
664 
665 	/* Prepare descriptors. */
666 	for_each_sg(sgl, sg, sg_len, i) {
667 		struct at_xdmac_desc	*desc = NULL;
668 		u32			len, mem, dwidth, fixed_dwidth;
669 
670 		len = sg_dma_len(sg);
671 		mem = sg_dma_address(sg);
672 		if (unlikely(!len)) {
673 			dev_err(chan2dev(chan), "sg data length is zero\n");
674 			goto spin_unlock;
675 		}
676 		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
677 			 __func__, i, len, mem);
678 
679 		desc = at_xdmac_get_desc(atchan);
680 		if (!desc) {
681 			dev_err(chan2dev(chan), "can't get descriptor\n");
682 			if (first)
683 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
684 			goto spin_unlock;
685 		}
686 
687 		/* Linked list descriptor setup. */
688 		if (direction == DMA_DEV_TO_MEM) {
689 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
690 			desc->lld.mbr_da = mem;
691 		} else {
692 			desc->lld.mbr_sa = mem;
693 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
694 		}
695 		dwidth = at_xdmac_get_dwidth(atchan->cfg);
696 		fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
697 			       ? dwidth
698 			       : AT_XDMAC_CC_DWIDTH_BYTE;
699 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2			/* next descriptor view */
700 			| AT_XDMAC_MBR_UBC_NDEN					/* next descriptor dst parameter update */
701 			| AT_XDMAC_MBR_UBC_NSEN					/* next descriptor src parameter update */
702 			| (len >> fixed_dwidth);				/* microblock length */
703 		desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
704 				    AT_XDMAC_CC_DWIDTH(fixed_dwidth);
705 		dev_dbg(chan2dev(chan),
706 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
707 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
708 
709 		/* Chain lld. */
710 		if (prev)
711 			at_xdmac_queue_desc(chan, prev, desc);
712 
713 		prev = desc;
714 		if (!first)
715 			first = desc;
716 
717 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
718 			 __func__, desc, first);
719 		list_add_tail(&desc->desc_node, &first->descs_list);
720 		xfer_size += len;
721 	}
722 
723 
724 	first->tx_dma_desc.flags = flags;
725 	first->xfer_size = xfer_size;
726 	first->direction = direction;
727 	ret = &first->tx_dma_desc;
728 
729 spin_unlock:
730 	spin_unlock_irqrestore(&atchan->lock, irqflags);
731 	return ret;
732 }
733 
734 static struct dma_async_tx_descriptor *
735 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
736 			 size_t buf_len, size_t period_len,
737 			 enum dma_transfer_direction direction,
738 			 unsigned long flags)
739 {
740 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
741 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
742 	unsigned int		periods = buf_len / period_len;
743 	int			i;
744 	unsigned long		irqflags;
745 
746 	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
747 		__func__, &buf_addr, buf_len, period_len,
748 		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
749 
750 	if (!is_slave_direction(direction)) {
751 		dev_err(chan2dev(chan), "invalid DMA direction\n");
752 		return NULL;
753 	}
754 
755 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
756 		dev_err(chan2dev(chan), "channel currently used\n");
757 		return NULL;
758 	}
759 
760 	if (at_xdmac_compute_chan_conf(chan, direction))
761 		return NULL;
762 
763 	for (i = 0; i < periods; i++) {
764 		struct at_xdmac_desc	*desc = NULL;
765 
766 		spin_lock_irqsave(&atchan->lock, irqflags);
767 		desc = at_xdmac_get_desc(atchan);
768 		if (!desc) {
769 			dev_err(chan2dev(chan), "can't get descriptor\n");
770 			if (first)
771 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
772 			spin_unlock_irqrestore(&atchan->lock, irqflags);
773 			return NULL;
774 		}
775 		spin_unlock_irqrestore(&atchan->lock, irqflags);
776 		dev_dbg(chan2dev(chan),
777 			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
778 			__func__, desc, &desc->tx_dma_desc.phys);
779 
780 		if (direction == DMA_DEV_TO_MEM) {
781 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
782 			desc->lld.mbr_da = buf_addr + i * period_len;
783 		} else {
784 			desc->lld.mbr_sa = buf_addr + i * period_len;
785 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
786 		}
787 		desc->lld.mbr_cfg = atchan->cfg;
788 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
789 			| AT_XDMAC_MBR_UBC_NDEN
790 			| AT_XDMAC_MBR_UBC_NSEN
791 			| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
792 
793 		dev_dbg(chan2dev(chan),
794 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
795 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
796 
797 		/* Chain lld. */
798 		if (prev)
799 			at_xdmac_queue_desc(chan, prev, desc);
800 
801 		prev = desc;
802 		if (!first)
803 			first = desc;
804 
805 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
806 			 __func__, desc, first);
807 		list_add_tail(&desc->desc_node, &first->descs_list);
808 	}
809 
810 	at_xdmac_queue_desc(chan, prev, first);
811 	first->tx_dma_desc.flags = flags;
812 	first->xfer_size = buf_len;
813 	first->direction = direction;
814 
815 	return &first->tx_dma_desc;
816 }
817 
818 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
819 {
820 	u32 width;
821 
822 	/*
823 	 * Check address alignment to select the greater data width we
824 	 * can use.
825 	 *
826 	 * Some XDMAC implementations don't provide dword transfer, in
827 	 * this case selecting dword has the same behavior as
828 	 * selecting word transfers.
829 	 */
830 	if (!(addr & 7)) {
831 		width = AT_XDMAC_CC_DWIDTH_DWORD;
832 		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
833 	} else if (!(addr & 3)) {
834 		width = AT_XDMAC_CC_DWIDTH_WORD;
835 		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
836 	} else if (!(addr & 1)) {
837 		width = AT_XDMAC_CC_DWIDTH_HALFWORD;
838 		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
839 	} else {
840 		width = AT_XDMAC_CC_DWIDTH_BYTE;
841 		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
842 	}
843 
844 	return width;
845 }
846 
847 static struct at_xdmac_desc *
848 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
849 				struct at_xdmac_chan *atchan,
850 				struct at_xdmac_desc *prev,
851 				dma_addr_t src, dma_addr_t dst,
852 				struct dma_interleaved_template *xt,
853 				struct data_chunk *chunk)
854 {
855 	struct at_xdmac_desc	*desc;
856 	u32			dwidth;
857 	unsigned long		flags;
858 	size_t			ublen;
859 	/*
860 	 * WARNING: The channel configuration is set here since there is no
861 	 * dmaengine_slave_config call in this case. Moreover we don't know the
862 	 * direction, it involves we can't dynamically set the source and dest
863 	 * interface so we have to use the same one. Only interface 0 allows EBI
864 	 * access. Hopefully we can access DDR through both ports (at least on
865 	 * SAMA5D4x), so we can use the same interface for source and dest,
866 	 * that solves the fact we don't know the direction.
867 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
868 	 * match the one of another channel. If not, it could lead to spurious
869 	 * flag status.
870 	 */
871 	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
872 					| AT_XDMAC_CC_DIF(0)
873 					| AT_XDMAC_CC_SIF(0)
874 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
875 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
876 
877 	dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
878 	if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
879 		dev_dbg(chan2dev(chan),
880 			"%s: chunk too big (%d, max size %lu)...\n",
881 			__func__, chunk->size,
882 			AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
883 		return NULL;
884 	}
885 
886 	if (prev)
887 		dev_dbg(chan2dev(chan),
888 			"Adding items at the end of desc 0x%p\n", prev);
889 
890 	if (xt->src_inc) {
891 		if (xt->src_sgl)
892 			chan_cc |=  AT_XDMAC_CC_SAM_UBS_AM;
893 		else
894 			chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
895 	}
896 
897 	if (xt->dst_inc) {
898 		if (xt->dst_sgl)
899 			chan_cc |=  AT_XDMAC_CC_DAM_UBS_AM;
900 		else
901 			chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
902 	}
903 
904 	spin_lock_irqsave(&atchan->lock, flags);
905 	desc = at_xdmac_get_desc(atchan);
906 	spin_unlock_irqrestore(&atchan->lock, flags);
907 	if (!desc) {
908 		dev_err(chan2dev(chan), "can't get descriptor\n");
909 		return NULL;
910 	}
911 
912 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
913 
914 	ublen = chunk->size >> dwidth;
915 
916 	desc->lld.mbr_sa = src;
917 	desc->lld.mbr_da = dst;
918 	desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
919 	desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
920 
921 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
922 		| AT_XDMAC_MBR_UBC_NDEN
923 		| AT_XDMAC_MBR_UBC_NSEN
924 		| ublen;
925 	desc->lld.mbr_cfg = chan_cc;
926 
927 	dev_dbg(chan2dev(chan),
928 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
929 		__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
930 		desc->lld.mbr_ubc, desc->lld.mbr_cfg);
931 
932 	/* Chain lld. */
933 	if (prev)
934 		at_xdmac_queue_desc(chan, prev, desc);
935 
936 	return desc;
937 }
938 
939 static struct dma_async_tx_descriptor *
940 at_xdmac_prep_interleaved(struct dma_chan *chan,
941 			  struct dma_interleaved_template *xt,
942 			  unsigned long flags)
943 {
944 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
945 	struct at_xdmac_desc	*prev = NULL, *first = NULL;
946 	dma_addr_t		dst_addr, src_addr;
947 	size_t			src_skip = 0, dst_skip = 0, len = 0;
948 	struct data_chunk	*chunk;
949 	int			i;
950 
951 	if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
952 		return NULL;
953 
954 	/*
955 	 * TODO: Handle the case where we have to repeat a chain of
956 	 * descriptors...
957 	 */
958 	if ((xt->numf > 1) && (xt->frame_size > 1))
959 		return NULL;
960 
961 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
962 		__func__, &xt->src_start, &xt->dst_start,	xt->numf,
963 		xt->frame_size, flags);
964 
965 	src_addr = xt->src_start;
966 	dst_addr = xt->dst_start;
967 
968 	if (xt->numf > 1) {
969 		first = at_xdmac_interleaved_queue_desc(chan, atchan,
970 							NULL,
971 							src_addr, dst_addr,
972 							xt, xt->sgl);
973 
974 		/* Length of the block is (BLEN+1) microblocks. */
975 		for (i = 0; i < xt->numf - 1; i++)
976 			at_xdmac_increment_block_count(chan, first);
977 
978 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
979 			__func__, first, first);
980 		list_add_tail(&first->desc_node, &first->descs_list);
981 	} else {
982 		for (i = 0; i < xt->frame_size; i++) {
983 			size_t src_icg = 0, dst_icg = 0;
984 			struct at_xdmac_desc *desc;
985 
986 			chunk = xt->sgl + i;
987 
988 			dst_icg = dmaengine_get_dst_icg(xt, chunk);
989 			src_icg = dmaengine_get_src_icg(xt, chunk);
990 
991 			src_skip = chunk->size + src_icg;
992 			dst_skip = chunk->size + dst_icg;
993 
994 			dev_dbg(chan2dev(chan),
995 				"%s: chunk size=%d, src icg=%d, dst icg=%d\n",
996 				__func__, chunk->size, src_icg, dst_icg);
997 
998 			desc = at_xdmac_interleaved_queue_desc(chan, atchan,
999 							       prev,
1000 							       src_addr, dst_addr,
1001 							       xt, chunk);
1002 			if (!desc) {
1003 				list_splice_init(&first->descs_list,
1004 						 &atchan->free_descs_list);
1005 				return NULL;
1006 			}
1007 
1008 			if (!first)
1009 				first = desc;
1010 
1011 			dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1012 				__func__, desc, first);
1013 			list_add_tail(&desc->desc_node, &first->descs_list);
1014 
1015 			if (xt->src_sgl)
1016 				src_addr += src_skip;
1017 
1018 			if (xt->dst_sgl)
1019 				dst_addr += dst_skip;
1020 
1021 			len += chunk->size;
1022 			prev = desc;
1023 		}
1024 	}
1025 
1026 	first->tx_dma_desc.cookie = -EBUSY;
1027 	first->tx_dma_desc.flags = flags;
1028 	first->xfer_size = len;
1029 
1030 	return &first->tx_dma_desc;
1031 }
1032 
1033 static struct dma_async_tx_descriptor *
1034 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1035 			 size_t len, unsigned long flags)
1036 {
1037 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1038 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
1039 	size_t			remaining_size = len, xfer_size = 0, ublen;
1040 	dma_addr_t		src_addr = src, dst_addr = dest;
1041 	u32			dwidth;
1042 	/*
1043 	 * WARNING: We don't know the direction, it involves we can't
1044 	 * dynamically set the source and dest interface so we have to use the
1045 	 * same one. Only interface 0 allows EBI access. Hopefully we can
1046 	 * access DDR through both ports (at least on SAMA5D4x), so we can use
1047 	 * the same interface for source and dest, that solves the fact we
1048 	 * don't know the direction.
1049 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1050 	 * match the one of another channel. If not, it could lead to spurious
1051 	 * flag status.
1052 	 */
1053 	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
1054 					| AT_XDMAC_CC_DAM_INCREMENTED_AM
1055 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1056 					| AT_XDMAC_CC_DIF(0)
1057 					| AT_XDMAC_CC_SIF(0)
1058 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1059 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1060 	unsigned long		irqflags;
1061 
1062 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1063 		__func__, &src, &dest, len, flags);
1064 
1065 	if (unlikely(!len))
1066 		return NULL;
1067 
1068 	dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1069 
1070 	/* Prepare descriptors. */
1071 	while (remaining_size) {
1072 		struct at_xdmac_desc	*desc = NULL;
1073 
1074 		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1075 
1076 		spin_lock_irqsave(&atchan->lock, irqflags);
1077 		desc = at_xdmac_get_desc(atchan);
1078 		spin_unlock_irqrestore(&atchan->lock, irqflags);
1079 		if (!desc) {
1080 			dev_err(chan2dev(chan), "can't get descriptor\n");
1081 			if (first)
1082 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
1083 			return NULL;
1084 		}
1085 
1086 		/* Update src and dest addresses. */
1087 		src_addr += xfer_size;
1088 		dst_addr += xfer_size;
1089 
1090 		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1091 			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1092 		else
1093 			xfer_size = remaining_size;
1094 
1095 		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1096 
1097 		/* Check remaining length and change data width if needed. */
1098 		dwidth = at_xdmac_align_width(chan,
1099 					      src_addr | dst_addr | xfer_size);
1100 		chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1101 		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1102 
1103 		ublen = xfer_size >> dwidth;
1104 		remaining_size -= xfer_size;
1105 
1106 		desc->lld.mbr_sa = src_addr;
1107 		desc->lld.mbr_da = dst_addr;
1108 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1109 			| AT_XDMAC_MBR_UBC_NDEN
1110 			| AT_XDMAC_MBR_UBC_NSEN
1111 			| ublen;
1112 		desc->lld.mbr_cfg = chan_cc;
1113 
1114 		dev_dbg(chan2dev(chan),
1115 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1116 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1117 
1118 		/* Chain lld. */
1119 		if (prev)
1120 			at_xdmac_queue_desc(chan, prev, desc);
1121 
1122 		prev = desc;
1123 		if (!first)
1124 			first = desc;
1125 
1126 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1127 			 __func__, desc, first);
1128 		list_add_tail(&desc->desc_node, &first->descs_list);
1129 	}
1130 
1131 	first->tx_dma_desc.flags = flags;
1132 	first->xfer_size = len;
1133 
1134 	return &first->tx_dma_desc;
1135 }
1136 
1137 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1138 							 struct at_xdmac_chan *atchan,
1139 							 dma_addr_t dst_addr,
1140 							 size_t len,
1141 							 int value)
1142 {
1143 	struct at_xdmac_desc	*desc;
1144 	unsigned long		flags;
1145 	size_t			ublen;
1146 	u32			dwidth;
1147 	/*
1148 	 * WARNING: The channel configuration is set here since there is no
1149 	 * dmaengine_slave_config call in this case. Moreover we don't know the
1150 	 * direction, it involves we can't dynamically set the source and dest
1151 	 * interface so we have to use the same one. Only interface 0 allows EBI
1152 	 * access. Hopefully we can access DDR through both ports (at least on
1153 	 * SAMA5D4x), so we can use the same interface for source and dest,
1154 	 * that solves the fact we don't know the direction.
1155 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1156 	 * match the one of another channel. If not, it could lead to spurious
1157 	 * flag status.
1158 	 */
1159 	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
1160 					| AT_XDMAC_CC_DAM_UBS_AM
1161 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1162 					| AT_XDMAC_CC_DIF(0)
1163 					| AT_XDMAC_CC_SIF(0)
1164 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1165 					| AT_XDMAC_CC_MEMSET_HW_MODE
1166 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1167 
1168 	dwidth = at_xdmac_align_width(chan, dst_addr);
1169 
1170 	if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1171 		dev_err(chan2dev(chan),
1172 			"%s: Transfer too large, aborting...\n",
1173 			__func__);
1174 		return NULL;
1175 	}
1176 
1177 	spin_lock_irqsave(&atchan->lock, flags);
1178 	desc = at_xdmac_get_desc(atchan);
1179 	spin_unlock_irqrestore(&atchan->lock, flags);
1180 	if (!desc) {
1181 		dev_err(chan2dev(chan), "can't get descriptor\n");
1182 		return NULL;
1183 	}
1184 
1185 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1186 
1187 	ublen = len >> dwidth;
1188 
1189 	desc->lld.mbr_da = dst_addr;
1190 	desc->lld.mbr_ds = value;
1191 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1192 		| AT_XDMAC_MBR_UBC_NDEN
1193 		| AT_XDMAC_MBR_UBC_NSEN
1194 		| ublen;
1195 	desc->lld.mbr_cfg = chan_cc;
1196 
1197 	dev_dbg(chan2dev(chan),
1198 		"%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1199 		__func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1200 		desc->lld.mbr_cfg);
1201 
1202 	return desc;
1203 }
1204 
1205 static struct dma_async_tx_descriptor *
1206 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1207 			 size_t len, unsigned long flags)
1208 {
1209 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1210 	struct at_xdmac_desc	*desc;
1211 
1212 	dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1213 		__func__, &dest, len, value, flags);
1214 
1215 	if (unlikely(!len))
1216 		return NULL;
1217 
1218 	desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1219 	list_add_tail(&desc->desc_node, &desc->descs_list);
1220 
1221 	desc->tx_dma_desc.cookie = -EBUSY;
1222 	desc->tx_dma_desc.flags = flags;
1223 	desc->xfer_size = len;
1224 
1225 	return &desc->tx_dma_desc;
1226 }
1227 
1228 static struct dma_async_tx_descriptor *
1229 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1230 			    unsigned int sg_len, int value,
1231 			    unsigned long flags)
1232 {
1233 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1234 	struct at_xdmac_desc	*desc, *pdesc = NULL,
1235 				*ppdesc = NULL, *first = NULL;
1236 	struct scatterlist	*sg, *psg = NULL, *ppsg = NULL;
1237 	size_t			stride = 0, pstride = 0, len = 0;
1238 	int			i;
1239 
1240 	if (!sgl)
1241 		return NULL;
1242 
1243 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1244 		__func__, sg_len, value, flags);
1245 
1246 	/* Prepare descriptors. */
1247 	for_each_sg(sgl, sg, sg_len, i) {
1248 		dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1249 			__func__, &sg_dma_address(sg), sg_dma_len(sg),
1250 			value, flags);
1251 		desc = at_xdmac_memset_create_desc(chan, atchan,
1252 						   sg_dma_address(sg),
1253 						   sg_dma_len(sg),
1254 						   value);
1255 		if (!desc && first)
1256 			list_splice_init(&first->descs_list,
1257 					 &atchan->free_descs_list);
1258 
1259 		if (!first)
1260 			first = desc;
1261 
1262 		/* Update our strides */
1263 		pstride = stride;
1264 		if (psg)
1265 			stride = sg_dma_address(sg) -
1266 				(sg_dma_address(psg) + sg_dma_len(psg));
1267 
1268 		/*
1269 		 * The scatterlist API gives us only the address and
1270 		 * length of each elements.
1271 		 *
1272 		 * Unfortunately, we don't have the stride, which we
1273 		 * will need to compute.
1274 		 *
1275 		 * That make us end up in a situation like this one:
1276 		 *    len    stride    len    stride    len
1277 		 * +-------+        +-------+        +-------+
1278 		 * |  N-2  |        |  N-1  |        |   N   |
1279 		 * +-------+        +-------+        +-------+
1280 		 *
1281 		 * We need all these three elements (N-2, N-1 and N)
1282 		 * to actually take the decision on whether we need to
1283 		 * queue N-1 or reuse N-2.
1284 		 *
1285 		 * We will only consider N if it is the last element.
1286 		 */
1287 		if (ppdesc && pdesc) {
1288 			if ((stride == pstride) &&
1289 			    (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1290 				dev_dbg(chan2dev(chan),
1291 					"%s: desc 0x%p can be merged with desc 0x%p\n",
1292 					__func__, pdesc, ppdesc);
1293 
1294 				/*
1295 				 * Increment the block count of the
1296 				 * N-2 descriptor
1297 				 */
1298 				at_xdmac_increment_block_count(chan, ppdesc);
1299 				ppdesc->lld.mbr_dus = stride;
1300 
1301 				/*
1302 				 * Put back the N-1 descriptor in the
1303 				 * free descriptor list
1304 				 */
1305 				list_add_tail(&pdesc->desc_node,
1306 					      &atchan->free_descs_list);
1307 
1308 				/*
1309 				 * Make our N-1 descriptor pointer
1310 				 * point to the N-2 since they were
1311 				 * actually merged.
1312 				 */
1313 				pdesc = ppdesc;
1314 
1315 			/*
1316 			 * Rule out the case where we don't have
1317 			 * pstride computed yet (our second sg
1318 			 * element)
1319 			 *
1320 			 * We also want to catch the case where there
1321 			 * would be a negative stride,
1322 			 */
1323 			} else if (pstride ||
1324 				   sg_dma_address(sg) < sg_dma_address(psg)) {
1325 				/*
1326 				 * Queue the N-1 descriptor after the
1327 				 * N-2
1328 				 */
1329 				at_xdmac_queue_desc(chan, ppdesc, pdesc);
1330 
1331 				/*
1332 				 * Add the N-1 descriptor to the list
1333 				 * of the descriptors used for this
1334 				 * transfer
1335 				 */
1336 				list_add_tail(&desc->desc_node,
1337 					      &first->descs_list);
1338 				dev_dbg(chan2dev(chan),
1339 					"%s: add desc 0x%p to descs_list 0x%p\n",
1340 					__func__, desc, first);
1341 			}
1342 		}
1343 
1344 		/*
1345 		 * If we are the last element, just see if we have the
1346 		 * same size than the previous element.
1347 		 *
1348 		 * If so, we can merge it with the previous descriptor
1349 		 * since we don't care about the stride anymore.
1350 		 */
1351 		if ((i == (sg_len - 1)) &&
1352 		    sg_dma_len(psg) == sg_dma_len(sg)) {
1353 			dev_dbg(chan2dev(chan),
1354 				"%s: desc 0x%p can be merged with desc 0x%p\n",
1355 				__func__, desc, pdesc);
1356 
1357 			/*
1358 			 * Increment the block count of the N-1
1359 			 * descriptor
1360 			 */
1361 			at_xdmac_increment_block_count(chan, pdesc);
1362 			pdesc->lld.mbr_dus = stride;
1363 
1364 			/*
1365 			 * Put back the N descriptor in the free
1366 			 * descriptor list
1367 			 */
1368 			list_add_tail(&desc->desc_node,
1369 				      &atchan->free_descs_list);
1370 		}
1371 
1372 		/* Update our descriptors */
1373 		ppdesc = pdesc;
1374 		pdesc = desc;
1375 
1376 		/* Update our scatter pointers */
1377 		ppsg = psg;
1378 		psg = sg;
1379 
1380 		len += sg_dma_len(sg);
1381 	}
1382 
1383 	first->tx_dma_desc.cookie = -EBUSY;
1384 	first->tx_dma_desc.flags = flags;
1385 	first->xfer_size = len;
1386 
1387 	return &first->tx_dma_desc;
1388 }
1389 
1390 static enum dma_status
1391 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1392 		struct dma_tx_state *txstate)
1393 {
1394 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1395 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1396 	struct at_xdmac_desc	*desc, *_desc;
1397 	struct list_head	*descs_list;
1398 	enum dma_status		ret;
1399 	int			residue, retry;
1400 	u32			cur_nda, check_nda, cur_ubc, mask, value;
1401 	u8			dwidth = 0;
1402 	unsigned long		flags;
1403 	bool			initd;
1404 
1405 	ret = dma_cookie_status(chan, cookie, txstate);
1406 	if (ret == DMA_COMPLETE)
1407 		return ret;
1408 
1409 	if (!txstate)
1410 		return ret;
1411 
1412 	spin_lock_irqsave(&atchan->lock, flags);
1413 
1414 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1415 
1416 	/*
1417 	 * If the transfer has not been started yet, don't need to compute the
1418 	 * residue, it's the transfer length.
1419 	 */
1420 	if (!desc->active_xfer) {
1421 		dma_set_residue(txstate, desc->xfer_size);
1422 		goto spin_unlock;
1423 	}
1424 
1425 	residue = desc->xfer_size;
1426 	/*
1427 	 * Flush FIFO: only relevant when the transfer is source peripheral
1428 	 * synchronized. Flush is needed before reading CUBC because data in
1429 	 * the FIFO are not reported by CUBC. Reporting a residue of the
1430 	 * transfer length while we have data in FIFO can cause issue.
1431 	 * Usecase: atmel USART has a timeout which means I have received
1432 	 * characters but there is no more character received for a while. On
1433 	 * timeout, it requests the residue. If the data are in the DMA FIFO,
1434 	 * we will return a residue of the transfer length. It means no data
1435 	 * received. If an application is waiting for these data, it will hang
1436 	 * since we won't have another USART timeout without receiving new
1437 	 * data.
1438 	 */
1439 	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1440 	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1441 	if ((desc->lld.mbr_cfg & mask) == value) {
1442 		at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1443 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1444 			cpu_relax();
1445 	}
1446 
1447 	/*
1448 	 * The easiest way to compute the residue should be to pause the DMA
1449 	 * but doing this can lead to miss some data as some devices don't
1450 	 * have FIFO.
1451 	 * We need to read several registers because:
1452 	 * - DMA is running therefore a descriptor change is possible while
1453 	 * reading these registers
1454 	 * - When the block transfer is done, the value of the CUBC register
1455 	 * is set to its initial value until the fetch of the next descriptor.
1456 	 * This value will corrupt the residue calculation so we have to skip
1457 	 * it.
1458 	 *
1459 	 * INITD --------                    ------------
1460 	 *              |____________________|
1461 	 *       _______________________  _______________
1462 	 * NDA       @desc2             \/   @desc3
1463 	 *       _______________________/\_______________
1464 	 *       __________  ___________  _______________
1465 	 * CUBC       0    \/ MAX desc1 \/  MAX desc2
1466 	 *       __________/\___________/\_______________
1467 	 *
1468 	 * Since descriptors are aligned on 64 bits, we can assume that
1469 	 * the update of NDA and CUBC is atomic.
1470 	 * Memory barriers are used to ensure the read order of the registers.
1471 	 * A max number of retries is set because unlikely it could never ends.
1472 	 */
1473 	for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1474 		check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1475 		rmb();
1476 		initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1477 		rmb();
1478 		cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1479 		rmb();
1480 		cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1481 		rmb();
1482 
1483 		if ((check_nda == cur_nda) && initd)
1484 			break;
1485 	}
1486 
1487 	if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1488 		ret = DMA_ERROR;
1489 		goto spin_unlock;
1490 	}
1491 
1492 	/*
1493 	 * Flush FIFO: only relevant when the transfer is source peripheral
1494 	 * synchronized. Another flush is needed here because CUBC is updated
1495 	 * when the controller sends the data write command. It can lead to
1496 	 * report data that are not written in the memory or the device. The
1497 	 * FIFO flush ensures that data are really written.
1498 	 */
1499 	if ((desc->lld.mbr_cfg & mask) == value) {
1500 		at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1501 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1502 			cpu_relax();
1503 	}
1504 
1505 	/*
1506 	 * Remove size of all microblocks already transferred and the current
1507 	 * one. Then add the remaining size to transfer of the current
1508 	 * microblock.
1509 	 */
1510 	descs_list = &desc->descs_list;
1511 	list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
1512 		dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg);
1513 		residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
1514 		if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
1515 			break;
1516 	}
1517 	residue += cur_ubc << dwidth;
1518 
1519 	dma_set_residue(txstate, residue);
1520 
1521 	dev_dbg(chan2dev(chan),
1522 		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1523 		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1524 
1525 spin_unlock:
1526 	spin_unlock_irqrestore(&atchan->lock, flags);
1527 	return ret;
1528 }
1529 
1530 /* Call must be protected by lock. */
1531 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1532 				    struct at_xdmac_desc *desc)
1533 {
1534 	dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1535 
1536 	/*
1537 	 * Remove the transfer from the transfer list then move the transfer
1538 	 * descriptors into the free descriptors list.
1539 	 */
1540 	list_del(&desc->xfer_node);
1541 	list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1542 }
1543 
1544 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1545 {
1546 	struct at_xdmac_desc	*desc;
1547 	unsigned long		flags;
1548 
1549 	spin_lock_irqsave(&atchan->lock, flags);
1550 
1551 	/*
1552 	 * If channel is enabled, do nothing, advance_work will be triggered
1553 	 * after the interruption.
1554 	 */
1555 	if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1556 		desc = list_first_entry(&atchan->xfers_list,
1557 					struct at_xdmac_desc,
1558 					xfer_node);
1559 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1560 		if (!desc->active_xfer)
1561 			at_xdmac_start_xfer(atchan, desc);
1562 	}
1563 
1564 	spin_unlock_irqrestore(&atchan->lock, flags);
1565 }
1566 
1567 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1568 {
1569 	struct at_xdmac_desc		*desc;
1570 	struct dma_async_tx_descriptor	*txd;
1571 
1572 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1573 	txd = &desc->tx_dma_desc;
1574 
1575 	if (txd->flags & DMA_PREP_INTERRUPT)
1576 		dmaengine_desc_get_callback_invoke(txd, NULL);
1577 }
1578 
1579 static void at_xdmac_tasklet(unsigned long data)
1580 {
1581 	struct at_xdmac_chan	*atchan = (struct at_xdmac_chan *)data;
1582 	struct at_xdmac_desc	*desc;
1583 	u32			error_mask;
1584 
1585 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n",
1586 		 __func__, atchan->status);
1587 
1588 	error_mask = AT_XDMAC_CIS_RBEIS
1589 		     | AT_XDMAC_CIS_WBEIS
1590 		     | AT_XDMAC_CIS_ROIS;
1591 
1592 	if (at_xdmac_chan_is_cyclic(atchan)) {
1593 		at_xdmac_handle_cyclic(atchan);
1594 	} else if ((atchan->status & AT_XDMAC_CIS_LIS)
1595 		   || (atchan->status & error_mask)) {
1596 		struct dma_async_tx_descriptor  *txd;
1597 
1598 		if (atchan->status & AT_XDMAC_CIS_RBEIS)
1599 			dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1600 		if (atchan->status & AT_XDMAC_CIS_WBEIS)
1601 			dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1602 		if (atchan->status & AT_XDMAC_CIS_ROIS)
1603 			dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1604 
1605 		spin_lock_bh(&atchan->lock);
1606 		desc = list_first_entry(&atchan->xfers_list,
1607 					struct at_xdmac_desc,
1608 					xfer_node);
1609 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1610 		BUG_ON(!desc->active_xfer);
1611 
1612 		txd = &desc->tx_dma_desc;
1613 
1614 		at_xdmac_remove_xfer(atchan, desc);
1615 		spin_unlock_bh(&atchan->lock);
1616 
1617 		if (!at_xdmac_chan_is_cyclic(atchan)) {
1618 			dma_cookie_complete(txd);
1619 			if (txd->flags & DMA_PREP_INTERRUPT)
1620 				dmaengine_desc_get_callback_invoke(txd, NULL);
1621 		}
1622 
1623 		dma_run_dependencies(txd);
1624 
1625 		at_xdmac_advance_work(atchan);
1626 	}
1627 }
1628 
1629 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1630 {
1631 	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
1632 	struct at_xdmac_chan	*atchan;
1633 	u32			imr, status, pending;
1634 	u32			chan_imr, chan_status;
1635 	int			i, ret = IRQ_NONE;
1636 
1637 	do {
1638 		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1639 		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1640 		pending = status & imr;
1641 
1642 		dev_vdbg(atxdmac->dma.dev,
1643 			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1644 			 __func__, status, imr, pending);
1645 
1646 		if (!pending)
1647 			break;
1648 
1649 		/* We have to find which channel has generated the interrupt. */
1650 		for (i = 0; i < atxdmac->dma.chancnt; i++) {
1651 			if (!((1 << i) & pending))
1652 				continue;
1653 
1654 			atchan = &atxdmac->chan[i];
1655 			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1656 			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1657 			atchan->status = chan_status & chan_imr;
1658 			dev_vdbg(atxdmac->dma.dev,
1659 				 "%s: chan%d: imr=0x%x, status=0x%x\n",
1660 				 __func__, i, chan_imr, chan_status);
1661 			dev_vdbg(chan2dev(&atchan->chan),
1662 				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1663 				 __func__,
1664 				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1665 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1666 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1667 				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1668 				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1669 				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1670 
1671 			if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1672 				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1673 
1674 			tasklet_schedule(&atchan->tasklet);
1675 			ret = IRQ_HANDLED;
1676 		}
1677 
1678 	} while (pending);
1679 
1680 	return ret;
1681 }
1682 
1683 static void at_xdmac_issue_pending(struct dma_chan *chan)
1684 {
1685 	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1686 
1687 	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1688 
1689 	if (!at_xdmac_chan_is_cyclic(atchan))
1690 		at_xdmac_advance_work(atchan);
1691 
1692 	return;
1693 }
1694 
1695 static int at_xdmac_device_config(struct dma_chan *chan,
1696 				  struct dma_slave_config *config)
1697 {
1698 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1699 	int ret;
1700 	unsigned long		flags;
1701 
1702 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1703 
1704 	spin_lock_irqsave(&atchan->lock, flags);
1705 	ret = at_xdmac_set_slave_config(chan, config);
1706 	spin_unlock_irqrestore(&atchan->lock, flags);
1707 
1708 	return ret;
1709 }
1710 
1711 static int at_xdmac_device_pause(struct dma_chan *chan)
1712 {
1713 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1714 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1715 	unsigned long		flags;
1716 
1717 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1718 
1719 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1720 		return 0;
1721 
1722 	spin_lock_irqsave(&atchan->lock, flags);
1723 	at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
1724 	while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1725 	       & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1726 		cpu_relax();
1727 	spin_unlock_irqrestore(&atchan->lock, flags);
1728 
1729 	return 0;
1730 }
1731 
1732 static int at_xdmac_device_resume(struct dma_chan *chan)
1733 {
1734 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1735 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1736 	unsigned long		flags;
1737 
1738 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1739 
1740 	spin_lock_irqsave(&atchan->lock, flags);
1741 	if (!at_xdmac_chan_is_paused(atchan)) {
1742 		spin_unlock_irqrestore(&atchan->lock, flags);
1743 		return 0;
1744 	}
1745 
1746 	at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
1747 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1748 	spin_unlock_irqrestore(&atchan->lock, flags);
1749 
1750 	return 0;
1751 }
1752 
1753 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1754 {
1755 	struct at_xdmac_desc	*desc, *_desc;
1756 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1757 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1758 	unsigned long		flags;
1759 
1760 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1761 
1762 	spin_lock_irqsave(&atchan->lock, flags);
1763 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1764 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1765 		cpu_relax();
1766 
1767 	/* Cancel all pending transfers. */
1768 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1769 		at_xdmac_remove_xfer(atchan, desc);
1770 
1771 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1772 	clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1773 	spin_unlock_irqrestore(&atchan->lock, flags);
1774 
1775 	return 0;
1776 }
1777 
1778 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1779 {
1780 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1781 	struct at_xdmac_desc	*desc;
1782 	int			i;
1783 	unsigned long		flags;
1784 
1785 	spin_lock_irqsave(&atchan->lock, flags);
1786 
1787 	if (at_xdmac_chan_is_enabled(atchan)) {
1788 		dev_err(chan2dev(chan),
1789 			"can't allocate channel resources (channel enabled)\n");
1790 		i = -EIO;
1791 		goto spin_unlock;
1792 	}
1793 
1794 	if (!list_empty(&atchan->free_descs_list)) {
1795 		dev_err(chan2dev(chan),
1796 			"can't allocate channel resources (channel not free from a previous use)\n");
1797 		i = -EIO;
1798 		goto spin_unlock;
1799 	}
1800 
1801 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1802 		desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC);
1803 		if (!desc) {
1804 			dev_warn(chan2dev(chan),
1805 				"only %d descriptors have been allocated\n", i);
1806 			break;
1807 		}
1808 		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1809 	}
1810 
1811 	dma_cookie_init(chan);
1812 
1813 	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1814 
1815 spin_unlock:
1816 	spin_unlock_irqrestore(&atchan->lock, flags);
1817 	return i;
1818 }
1819 
1820 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1821 {
1822 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1823 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
1824 	struct at_xdmac_desc	*desc, *_desc;
1825 
1826 	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1827 		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1828 		list_del(&desc->desc_node);
1829 		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1830 	}
1831 
1832 	return;
1833 }
1834 
1835 #ifdef CONFIG_PM
1836 static int atmel_xdmac_prepare(struct device *dev)
1837 {
1838 	struct platform_device	*pdev = to_platform_device(dev);
1839 	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1840 	struct dma_chan		*chan, *_chan;
1841 
1842 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1843 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1844 
1845 		/* Wait for transfer completion, except in cyclic case. */
1846 		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1847 			return -EAGAIN;
1848 	}
1849 	return 0;
1850 }
1851 #else
1852 #	define atmel_xdmac_prepare NULL
1853 #endif
1854 
1855 #ifdef CONFIG_PM_SLEEP
1856 static int atmel_xdmac_suspend(struct device *dev)
1857 {
1858 	struct platform_device	*pdev = to_platform_device(dev);
1859 	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1860 	struct dma_chan		*chan, *_chan;
1861 
1862 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1863 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1864 
1865 		atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1866 		if (at_xdmac_chan_is_cyclic(atchan)) {
1867 			if (!at_xdmac_chan_is_paused(atchan))
1868 				at_xdmac_device_pause(chan);
1869 			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1870 			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1871 			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1872 		}
1873 	}
1874 	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1875 
1876 	at_xdmac_off(atxdmac);
1877 	clk_disable_unprepare(atxdmac->clk);
1878 	return 0;
1879 }
1880 
1881 static int atmel_xdmac_resume(struct device *dev)
1882 {
1883 	struct platform_device	*pdev = to_platform_device(dev);
1884 	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1885 	struct at_xdmac_chan	*atchan;
1886 	struct dma_chan		*chan, *_chan;
1887 	int			i;
1888 
1889 	clk_prepare_enable(atxdmac->clk);
1890 
1891 	/* Clear pending interrupts. */
1892 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
1893 		atchan = &atxdmac->chan[i];
1894 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1895 			cpu_relax();
1896 	}
1897 
1898 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1899 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atxdmac->save_gs);
1900 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1901 		atchan = to_at_xdmac_chan(chan);
1902 		at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1903 		if (at_xdmac_chan_is_cyclic(atchan)) {
1904 			if (at_xdmac_chan_is_paused(atchan))
1905 				at_xdmac_device_resume(chan);
1906 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
1907 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
1908 			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
1909 			wmb();
1910 			at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
1911 		}
1912 	}
1913 	return 0;
1914 }
1915 #endif /* CONFIG_PM_SLEEP */
1916 
1917 static int at_xdmac_probe(struct platform_device *pdev)
1918 {
1919 	struct resource	*res;
1920 	struct at_xdmac	*atxdmac;
1921 	int		irq, size, nr_channels, i, ret;
1922 	void __iomem	*base;
1923 	u32		reg;
1924 
1925 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1926 	if (!res)
1927 		return -EINVAL;
1928 
1929 	irq = platform_get_irq(pdev, 0);
1930 	if (irq < 0)
1931 		return irq;
1932 
1933 	base = devm_ioremap_resource(&pdev->dev, res);
1934 	if (IS_ERR(base))
1935 		return PTR_ERR(base);
1936 
1937 	/*
1938 	 * Read number of xdmac channels, read helper function can't be used
1939 	 * since atxdmac is not yet allocated and we need to know the number
1940 	 * of channels to do the allocation.
1941 	 */
1942 	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
1943 	nr_channels = AT_XDMAC_NB_CH(reg);
1944 	if (nr_channels > AT_XDMAC_MAX_CHAN) {
1945 		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
1946 			nr_channels);
1947 		return -EINVAL;
1948 	}
1949 
1950 	size = sizeof(*atxdmac);
1951 	size += nr_channels * sizeof(struct at_xdmac_chan);
1952 	atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1953 	if (!atxdmac) {
1954 		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
1955 		return -ENOMEM;
1956 	}
1957 
1958 	atxdmac->regs = base;
1959 	atxdmac->irq = irq;
1960 
1961 	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
1962 	if (IS_ERR(atxdmac->clk)) {
1963 		dev_err(&pdev->dev, "can't get dma_clk\n");
1964 		return PTR_ERR(atxdmac->clk);
1965 	}
1966 
1967 	/* Do not use dev res to prevent races with tasklet */
1968 	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
1969 	if (ret) {
1970 		dev_err(&pdev->dev, "can't request irq\n");
1971 		return ret;
1972 	}
1973 
1974 	ret = clk_prepare_enable(atxdmac->clk);
1975 	if (ret) {
1976 		dev_err(&pdev->dev, "can't prepare or enable clock\n");
1977 		goto err_free_irq;
1978 	}
1979 
1980 	atxdmac->at_xdmac_desc_pool =
1981 		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
1982 				sizeof(struct at_xdmac_desc), 4, 0);
1983 	if (!atxdmac->at_xdmac_desc_pool) {
1984 		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
1985 		ret = -ENOMEM;
1986 		goto err_clk_disable;
1987 	}
1988 
1989 	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
1990 	dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
1991 	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
1992 	dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
1993 	dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
1994 	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
1995 	/*
1996 	 * Without DMA_PRIVATE the driver is not able to allocate more than
1997 	 * one channel, second allocation fails in private_candidate.
1998 	 */
1999 	dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2000 	atxdmac->dma.dev				= &pdev->dev;
2001 	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
2002 	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
2003 	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
2004 	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
2005 	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
2006 	atxdmac->dma.device_prep_interleaved_dma	= at_xdmac_prep_interleaved;
2007 	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
2008 	atxdmac->dma.device_prep_dma_memset		= at_xdmac_prep_dma_memset;
2009 	atxdmac->dma.device_prep_dma_memset_sg		= at_xdmac_prep_dma_memset_sg;
2010 	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
2011 	atxdmac->dma.device_config			= at_xdmac_device_config;
2012 	atxdmac->dma.device_pause			= at_xdmac_device_pause;
2013 	atxdmac->dma.device_resume			= at_xdmac_device_resume;
2014 	atxdmac->dma.device_terminate_all		= at_xdmac_device_terminate_all;
2015 	atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2016 	atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2017 	atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2018 	atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2019 
2020 	/* Disable all chans and interrupts. */
2021 	at_xdmac_off(atxdmac);
2022 
2023 	/* Init channels. */
2024 	INIT_LIST_HEAD(&atxdmac->dma.channels);
2025 	for (i = 0; i < nr_channels; i++) {
2026 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2027 
2028 		atchan->chan.device = &atxdmac->dma;
2029 		list_add_tail(&atchan->chan.device_node,
2030 			      &atxdmac->dma.channels);
2031 
2032 		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2033 		atchan->mask = 1 << i;
2034 
2035 		spin_lock_init(&atchan->lock);
2036 		INIT_LIST_HEAD(&atchan->xfers_list);
2037 		INIT_LIST_HEAD(&atchan->free_descs_list);
2038 		tasklet_init(&atchan->tasklet, at_xdmac_tasklet,
2039 			     (unsigned long)atchan);
2040 
2041 		/* Clear pending interrupts. */
2042 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2043 			cpu_relax();
2044 	}
2045 	platform_set_drvdata(pdev, atxdmac);
2046 
2047 	ret = dma_async_device_register(&atxdmac->dma);
2048 	if (ret) {
2049 		dev_err(&pdev->dev, "fail to register DMA engine device\n");
2050 		goto err_clk_disable;
2051 	}
2052 
2053 	ret = of_dma_controller_register(pdev->dev.of_node,
2054 					 at_xdmac_xlate, atxdmac);
2055 	if (ret) {
2056 		dev_err(&pdev->dev, "could not register of dma controller\n");
2057 		goto err_dma_unregister;
2058 	}
2059 
2060 	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2061 		 nr_channels, atxdmac->regs);
2062 
2063 	return 0;
2064 
2065 err_dma_unregister:
2066 	dma_async_device_unregister(&atxdmac->dma);
2067 err_clk_disable:
2068 	clk_disable_unprepare(atxdmac->clk);
2069 err_free_irq:
2070 	free_irq(atxdmac->irq, atxdmac);
2071 	return ret;
2072 }
2073 
2074 static int at_xdmac_remove(struct platform_device *pdev)
2075 {
2076 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2077 	int		i;
2078 
2079 	at_xdmac_off(atxdmac);
2080 	of_dma_controller_free(pdev->dev.of_node);
2081 	dma_async_device_unregister(&atxdmac->dma);
2082 	clk_disable_unprepare(atxdmac->clk);
2083 
2084 	free_irq(atxdmac->irq, atxdmac);
2085 
2086 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2087 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2088 
2089 		tasklet_kill(&atchan->tasklet);
2090 		at_xdmac_free_chan_resources(&atchan->chan);
2091 	}
2092 
2093 	return 0;
2094 }
2095 
2096 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2097 	.prepare	= atmel_xdmac_prepare,
2098 	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2099 };
2100 
2101 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2102 	{
2103 		.compatible = "atmel,sama5d4-dma",
2104 	}, {
2105 		/* sentinel */
2106 	}
2107 };
2108 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2109 
2110 static struct platform_driver at_xdmac_driver = {
2111 	.probe		= at_xdmac_probe,
2112 	.remove		= at_xdmac_remove,
2113 	.driver = {
2114 		.name		= "at_xdmac",
2115 		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
2116 		.pm		= &atmel_xdmac_dev_pm_ops,
2117 	}
2118 };
2119 
2120 static int __init at_xdmac_init(void)
2121 {
2122 	return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
2123 }
2124 subsys_initcall(at_xdmac_init);
2125 
2126 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2127 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2128 MODULE_LICENSE("GPL");
2129