xref: /openbmc/linux/drivers/dma/at_xdmac.c (revision 71de0a05)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
4  *
5  * Copyright (C) 2014 Atmel Corporation
6  *
7  * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
8  */
9 
10 #include <asm/barrier.h>
11 #include <dt-bindings/dma/at91.h>
12 #include <linux/clk.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 
26 #include "dmaengine.h"
27 
28 /* Global registers */
29 #define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
30 #define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
31 #define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
32 #define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
33 #define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
34 #define		AT_XDMAC_WRHP(i)		(((i) & 0xF) << 4)
35 #define		AT_XDMAC_WRMP(i)		(((i) & 0xF) << 8)
36 #define		AT_XDMAC_WRLP(i)		(((i) & 0xF) << 12)
37 #define		AT_XDMAC_RDHP(i)		(((i) & 0xF) << 16)
38 #define		AT_XDMAC_RDMP(i)		(((i) & 0xF) << 20)
39 #define		AT_XDMAC_RDLP(i)		(((i) & 0xF) << 24)
40 #define		AT_XDMAC_RDSG(i)		(((i) & 0xF) << 28)
41 #define AT_XDMAC_GCFG_M2M	(AT_XDMAC_RDLP(0xF) | AT_XDMAC_WRLP(0xF))
42 #define AT_XDMAC_GCFG_P2M	(AT_XDMAC_RDSG(0x1) | AT_XDMAC_RDHP(0x3) | \
43 				AT_XDMAC_WRHP(0x5))
44 #define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
45 #define		AT_XDMAC_PW0(i)		(((i) & 0xF) << 0)
46 #define		AT_XDMAC_PW1(i)		(((i) & 0xF) << 4)
47 #define		AT_XDMAC_PW2(i)		(((i) & 0xF) << 8)
48 #define		AT_XDMAC_PW3(i)		(((i) & 0xF) << 12)
49 #define AT_XDMAC_GWAC_M2M	0
50 #define AT_XDMAC_GWAC_P2M	(AT_XDMAC_PW0(0xF) | AT_XDMAC_PW2(0xF))
51 
52 #define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
53 #define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
54 #define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
55 #define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
56 #define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
57 #define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
58 #define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
59 #define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */
60 
61 /* Channel relative registers offsets */
62 #define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
63 #define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
64 #define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
65 #define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
66 #define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
67 #define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
68 #define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
69 #define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
70 #define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
71 #define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
72 #define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
73 #define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
74 #define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
75 #define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
76 #define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
77 #define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
78 #define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
79 #define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
80 #define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
81 #define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
82 #define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
83 #define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
84 #define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
85 #define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
86 #define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
87 #define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
88 #define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
89 #define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
90 #define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
91 #define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
92 #define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
93 #define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
94 #define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
95 #define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
96 #define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
97 #define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
98 #define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
99 #define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
100 #define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
101 #define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
102 #define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
103 #define		AT_XDMAC_CNDC_NDVIEW_MASK	GENMASK(28, 27)
104 #define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
105 #define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
106 #define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
107 #define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
108 #define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
109 #define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
110 #define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
111 #define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
112 #define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
113 #define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
114 #define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
115 #define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
116 #define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
117 #define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
118 #define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
119 #define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
120 #define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
121 #define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
122 #define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
123 #define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
124 #define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
125 #define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
126 #define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
127 #define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
128 #define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
129 #define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
130 #define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
131 #define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
132 #define		AT_XDMAC_CC_DWIDTH_OFFSET	11
133 #define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
134 #define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
135 #define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
136 #define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
137 #define			AT_XDMAC_CC_DWIDTH_WORD		0x2
138 #define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
139 #define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
140 #define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
141 #define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
142 #define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
143 #define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
144 #define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
145 #define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
146 #define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
147 #define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
148 #define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
149 #define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
150 #define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
151 #define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
152 #define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
153 #define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
154 #define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
155 #define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
156 #define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
157 #define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
158 #define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
159 #define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
160 #define		AT_XDMAC_CC_PERID(i)	((0x7f & (i)) << 24)	/* Channel Peripheral Identifier */
161 #define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
162 #define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
163 #define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */
164 
165 /* Microblock control members */
166 #define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
167 #define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
168 #define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
169 #define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
170 #define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
171 #define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
172 #define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
173 #define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */
174 
175 #define AT_XDMAC_MAX_CHAN	0x20
176 #define AT_XDMAC_MAX_CSIZE	16	/* 16 data */
177 #define AT_XDMAC_MAX_DWIDTH	8	/* 64 bits */
178 #define AT_XDMAC_RESIDUE_MAX_RETRIES	5
179 
180 #define AT_XDMAC_DMA_BUSWIDTHS\
181 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
182 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
183 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
184 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
185 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
186 
187 enum atc_status {
188 	AT_XDMAC_CHAN_IS_CYCLIC = 0,
189 	AT_XDMAC_CHAN_IS_PAUSED,
190 };
191 
192 struct at_xdmac_layout {
193 	/* Global Channel Read Suspend Register */
194 	u8				grs;
195 	/* Global Write Suspend Register */
196 	u8				gws;
197 	/* Global Channel Read Write Suspend Register */
198 	u8				grws;
199 	/* Global Channel Read Write Resume Register */
200 	u8				grwr;
201 	/* Global Channel Software Request Register */
202 	u8				gswr;
203 	/* Global channel Software Request Status Register */
204 	u8				gsws;
205 	/* Global Channel Software Flush Request Register */
206 	u8				gswf;
207 	/* Channel reg base */
208 	u8				chan_cc_reg_base;
209 	/* Source/Destination Interface must be specified or not */
210 	bool				sdif;
211 	/* AXI queue priority configuration supported */
212 	bool				axi_config;
213 };
214 
215 /* ----- Channels ----- */
216 struct at_xdmac_chan {
217 	struct dma_chan			chan;
218 	void __iomem			*ch_regs;
219 	u32				mask;		/* Channel Mask */
220 	u32				cfg;		/* Channel Configuration Register */
221 	u8				perid;		/* Peripheral ID */
222 	u8				perif;		/* Peripheral Interface */
223 	u8				memif;		/* Memory Interface */
224 	u32				save_cc;
225 	u32				save_cim;
226 	u32				save_cnda;
227 	u32				save_cndc;
228 	u32				irq_status;
229 	unsigned long			status;
230 	struct tasklet_struct		tasklet;
231 	struct dma_slave_config		sconfig;
232 
233 	spinlock_t			lock;
234 
235 	struct list_head		xfers_list;
236 	struct list_head		free_descs_list;
237 };
238 
239 
240 /* ----- Controller ----- */
241 struct at_xdmac {
242 	struct dma_device	dma;
243 	void __iomem		*regs;
244 	struct device		*dev;
245 	int			irq;
246 	struct clk		*clk;
247 	u32			save_gim;
248 	struct dma_pool		*at_xdmac_desc_pool;
249 	const struct at_xdmac_layout	*layout;
250 	struct at_xdmac_chan	chan[];
251 };
252 
253 
254 /* ----- Descriptors ----- */
255 
256 /* Linked List Descriptor */
257 struct at_xdmac_lld {
258 	u32 mbr_nda;	/* Next Descriptor Member */
259 	u32 mbr_ubc;	/* Microblock Control Member */
260 	u32 mbr_sa;	/* Source Address Member */
261 	u32 mbr_da;	/* Destination Address Member */
262 	u32 mbr_cfg;	/* Configuration Register */
263 	u32 mbr_bc;	/* Block Control Register */
264 	u32 mbr_ds;	/* Data Stride Register */
265 	u32 mbr_sus;	/* Source Microblock Stride Register */
266 	u32 mbr_dus;	/* Destination Microblock Stride Register */
267 };
268 
269 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
270 struct at_xdmac_desc {
271 	struct at_xdmac_lld		lld;
272 	enum dma_transfer_direction	direction;
273 	struct dma_async_tx_descriptor	tx_dma_desc;
274 	struct list_head		desc_node;
275 	/* Following members are only used by the first descriptor */
276 	bool				active_xfer;
277 	unsigned int			xfer_size;
278 	struct list_head		descs_list;
279 	struct list_head		xfer_node;
280 } __aligned(sizeof(u64));
281 
282 static const struct at_xdmac_layout at_xdmac_sama5d4_layout = {
283 	.grs = 0x28,
284 	.gws = 0x2C,
285 	.grws = 0x30,
286 	.grwr = 0x34,
287 	.gswr = 0x38,
288 	.gsws = 0x3C,
289 	.gswf = 0x40,
290 	.chan_cc_reg_base = 0x50,
291 	.sdif = true,
292 	.axi_config = false,
293 };
294 
295 static const struct at_xdmac_layout at_xdmac_sama7g5_layout = {
296 	.grs = 0x30,
297 	.gws = 0x38,
298 	.grws = 0x40,
299 	.grwr = 0x44,
300 	.gswr = 0x48,
301 	.gsws = 0x4C,
302 	.gswf = 0x50,
303 	.chan_cc_reg_base = 0x60,
304 	.sdif = false,
305 	.axi_config = true,
306 };
307 
308 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
309 {
310 	return atxdmac->regs + (atxdmac->layout->chan_cc_reg_base + chan_nb * 0x40);
311 }
312 
313 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
314 #define at_xdmac_write(atxdmac, reg, value) \
315 	writel_relaxed((value), (atxdmac)->regs + (reg))
316 
317 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
318 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
319 
320 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
321 {
322 	return container_of(dchan, struct at_xdmac_chan, chan);
323 }
324 
325 static struct device *chan2dev(struct dma_chan *chan)
326 {
327 	return &chan->dev->device;
328 }
329 
330 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
331 {
332 	return container_of(ddev, struct at_xdmac, dma);
333 }
334 
335 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
336 {
337 	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
338 }
339 
340 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
341 {
342 	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
343 }
344 
345 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
346 {
347 	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
348 }
349 
350 static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg)
351 {
352 	return cfg & AT_XDMAC_CC_TYPE_PER_TRAN;
353 }
354 
355 static inline u8 at_xdmac_get_dwidth(u32 cfg)
356 {
357 	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
358 };
359 
360 static unsigned int init_nr_desc_per_channel = 64;
361 module_param(init_nr_desc_per_channel, uint, 0644);
362 MODULE_PARM_DESC(init_nr_desc_per_channel,
363 		 "initial descriptors per channel (default: 64)");
364 
365 
366 static void at_xdmac_runtime_suspend_descriptors(struct at_xdmac_chan *atchan)
367 {
368 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
369 	struct at_xdmac_desc	*desc, *_desc;
370 
371 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) {
372 		if (!desc->active_xfer)
373 			continue;
374 
375 		pm_runtime_mark_last_busy(atxdmac->dev);
376 		pm_runtime_put_autosuspend(atxdmac->dev);
377 	}
378 }
379 
380 static int at_xdmac_runtime_resume_descriptors(struct at_xdmac_chan *atchan)
381 {
382 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
383 	struct at_xdmac_desc	*desc, *_desc;
384 	int			ret;
385 
386 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) {
387 		if (!desc->active_xfer)
388 			continue;
389 
390 		ret = pm_runtime_resume_and_get(atxdmac->dev);
391 		if (ret < 0)
392 			return ret;
393 	}
394 
395 	return 0;
396 }
397 
398 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
399 {
400 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
401 	int			ret;
402 
403 	ret = pm_runtime_resume_and_get(atxdmac->dev);
404 	if (ret < 0)
405 		return false;
406 
407 	ret = !!(at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask);
408 
409 	pm_runtime_mark_last_busy(atxdmac->dev);
410 	pm_runtime_put_autosuspend(atxdmac->dev);
411 
412 	return ret;
413 }
414 
415 static void at_xdmac_off(struct at_xdmac *atxdmac)
416 {
417 	struct dma_chan		*chan, *_chan;
418 	struct at_xdmac_chan	*atchan;
419 	int			ret;
420 
421 	ret = pm_runtime_resume_and_get(atxdmac->dev);
422 	if (ret < 0)
423 		return;
424 
425 	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
426 
427 	/* Wait that all chans are disabled. */
428 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
429 		cpu_relax();
430 
431 	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
432 
433 	/* Decrement runtime PM ref counter for each active descriptor. */
434 	if (!list_empty(&atxdmac->dma.channels)) {
435 		list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels,
436 					 device_node) {
437 			atchan = to_at_xdmac_chan(chan);
438 			at_xdmac_runtime_suspend_descriptors(atchan);
439 		}
440 	}
441 
442 	pm_runtime_mark_last_busy(atxdmac->dev);
443 	pm_runtime_put_autosuspend(atxdmac->dev);
444 }
445 
446 /* Call with lock hold. */
447 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
448 				struct at_xdmac_desc *first)
449 {
450 	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
451 	u32		reg;
452 	int		ret;
453 
454 	ret = pm_runtime_resume_and_get(atxdmac->dev);
455 	if (ret < 0)
456 		return;
457 
458 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
459 
460 	/* Set transfer as active to not try to start it again. */
461 	first->active_xfer = true;
462 
463 	/* Tell xdmac where to get the first descriptor. */
464 	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys);
465 	if (atxdmac->layout->sdif)
466 		reg |= AT_XDMAC_CNDA_NDAIF(atchan->memif);
467 
468 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
469 
470 	/*
471 	 * When doing non cyclic transfer we need to use the next
472 	 * descriptor view 2 since some fields of the configuration register
473 	 * depend on transfer size and src/dest addresses.
474 	 */
475 	if (at_xdmac_chan_is_cyclic(atchan))
476 		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
477 	else if ((first->lld.mbr_ubc &
478 		  AT_XDMAC_CNDC_NDVIEW_MASK) == AT_XDMAC_MBR_UBC_NDV3)
479 		reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
480 	else
481 		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
482 	/*
483 	 * Even if the register will be updated from the configuration in the
484 	 * descriptor when using view 2 or higher, the PROT bit won't be set
485 	 * properly. This bit can be modified only by using the channel
486 	 * configuration register.
487 	 */
488 	at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
489 
490 	reg |= AT_XDMAC_CNDC_NDDUP
491 	       | AT_XDMAC_CNDC_NDSUP
492 	       | AT_XDMAC_CNDC_NDE;
493 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
494 
495 	dev_vdbg(chan2dev(&atchan->chan),
496 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
497 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
498 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
499 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
500 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
501 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
502 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
503 
504 	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
505 	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE;
506 	/*
507 	 * Request Overflow Error is only for peripheral synchronized transfers
508 	 */
509 	if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg))
510 		reg |= AT_XDMAC_CIE_ROIE;
511 
512 	/*
513 	 * There is no end of list when doing cyclic dma, we need to get
514 	 * an interrupt after each periods.
515 	 */
516 	if (at_xdmac_chan_is_cyclic(atchan))
517 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
518 				    reg | AT_XDMAC_CIE_BIE);
519 	else
520 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
521 				    reg | AT_XDMAC_CIE_LIE);
522 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
523 	dev_vdbg(chan2dev(&atchan->chan),
524 		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
525 	wmb();
526 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
527 
528 	dev_vdbg(chan2dev(&atchan->chan),
529 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
530 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
531 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
532 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
533 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
534 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
535 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
536 }
537 
538 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
539 {
540 	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
541 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
542 	dma_cookie_t		cookie;
543 	unsigned long		irqflags;
544 
545 	spin_lock_irqsave(&atchan->lock, irqflags);
546 	cookie = dma_cookie_assign(tx);
547 
548 	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
549 	spin_unlock_irqrestore(&atchan->lock, irqflags);
550 
551 	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
552 		 __func__, atchan, desc);
553 
554 	return cookie;
555 }
556 
557 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
558 						 gfp_t gfp_flags)
559 {
560 	struct at_xdmac_desc	*desc;
561 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
562 	dma_addr_t		phys;
563 
564 	desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
565 	if (desc) {
566 		INIT_LIST_HEAD(&desc->descs_list);
567 		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
568 		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
569 		desc->tx_dma_desc.phys = phys;
570 	}
571 
572 	return desc;
573 }
574 
575 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
576 {
577 	memset(&desc->lld, 0, sizeof(desc->lld));
578 	INIT_LIST_HEAD(&desc->descs_list);
579 	desc->direction = DMA_TRANS_NONE;
580 	desc->xfer_size = 0;
581 	desc->active_xfer = false;
582 }
583 
584 /* Call must be protected by lock. */
585 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
586 {
587 	struct at_xdmac_desc *desc;
588 
589 	if (list_empty(&atchan->free_descs_list)) {
590 		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
591 	} else {
592 		desc = list_first_entry(&atchan->free_descs_list,
593 					struct at_xdmac_desc, desc_node);
594 		list_del(&desc->desc_node);
595 		at_xdmac_init_used_desc(desc);
596 	}
597 
598 	return desc;
599 }
600 
601 static void at_xdmac_queue_desc(struct dma_chan *chan,
602 				struct at_xdmac_desc *prev,
603 				struct at_xdmac_desc *desc)
604 {
605 	if (!prev || !desc)
606 		return;
607 
608 	prev->lld.mbr_nda = desc->tx_dma_desc.phys;
609 	prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
610 
611 	dev_dbg(chan2dev(chan),	"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
612 		__func__, prev, &prev->lld.mbr_nda);
613 }
614 
615 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
616 						  struct at_xdmac_desc *desc)
617 {
618 	if (!desc)
619 		return;
620 
621 	desc->lld.mbr_bc++;
622 
623 	dev_dbg(chan2dev(chan),
624 		"%s: incrementing the block count of the desc 0x%p\n",
625 		__func__, desc);
626 }
627 
628 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
629 				       struct of_dma *of_dma)
630 {
631 	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
632 	struct at_xdmac_chan	*atchan;
633 	struct dma_chan		*chan;
634 	struct device		*dev = atxdmac->dma.dev;
635 
636 	if (dma_spec->args_count != 1) {
637 		dev_err(dev, "dma phandler args: bad number of args\n");
638 		return NULL;
639 	}
640 
641 	chan = dma_get_any_slave_channel(&atxdmac->dma);
642 	if (!chan) {
643 		dev_err(dev, "can't get a dma channel\n");
644 		return NULL;
645 	}
646 
647 	atchan = to_at_xdmac_chan(chan);
648 	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
649 	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
650 	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
651 	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
652 		 atchan->memif, atchan->perif, atchan->perid);
653 
654 	return chan;
655 }
656 
657 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
658 				      enum dma_transfer_direction direction)
659 {
660 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
661 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
662 	int			csize, dwidth;
663 
664 	if (direction == DMA_DEV_TO_MEM) {
665 		atchan->cfg =
666 			AT91_XDMAC_DT_PERID(atchan->perid)
667 			| AT_XDMAC_CC_DAM_INCREMENTED_AM
668 			| AT_XDMAC_CC_SAM_FIXED_AM
669 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
670 			| AT_XDMAC_CC_DSYNC_PER2MEM
671 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
672 			| AT_XDMAC_CC_TYPE_PER_TRAN;
673 		if (atxdmac->layout->sdif)
674 			atchan->cfg |= AT_XDMAC_CC_DIF(atchan->memif) |
675 				       AT_XDMAC_CC_SIF(atchan->perif);
676 
677 		csize = ffs(atchan->sconfig.src_maxburst) - 1;
678 		if (csize < 0) {
679 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
680 			return -EINVAL;
681 		}
682 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
683 		dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
684 		if (dwidth < 0) {
685 			dev_err(chan2dev(chan), "invalid src addr width value\n");
686 			return -EINVAL;
687 		}
688 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
689 	} else if (direction == DMA_MEM_TO_DEV) {
690 		atchan->cfg =
691 			AT91_XDMAC_DT_PERID(atchan->perid)
692 			| AT_XDMAC_CC_DAM_FIXED_AM
693 			| AT_XDMAC_CC_SAM_INCREMENTED_AM
694 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
695 			| AT_XDMAC_CC_DSYNC_MEM2PER
696 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
697 			| AT_XDMAC_CC_TYPE_PER_TRAN;
698 		if (atxdmac->layout->sdif)
699 			atchan->cfg |= AT_XDMAC_CC_DIF(atchan->perif) |
700 				       AT_XDMAC_CC_SIF(atchan->memif);
701 
702 		csize = ffs(atchan->sconfig.dst_maxburst) - 1;
703 		if (csize < 0) {
704 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
705 			return -EINVAL;
706 		}
707 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
708 		dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
709 		if (dwidth < 0) {
710 			dev_err(chan2dev(chan), "invalid dst addr width value\n");
711 			return -EINVAL;
712 		}
713 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
714 	}
715 
716 	dev_dbg(chan2dev(chan),	"%s: cfg=0x%08x\n", __func__, atchan->cfg);
717 
718 	return 0;
719 }
720 
721 /*
722  * Only check that maxburst and addr width values are supported by
723  * the controller but not that the configuration is good to perform the
724  * transfer since we don't know the direction at this stage.
725  */
726 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
727 {
728 	if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
729 	    || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
730 		return -EINVAL;
731 
732 	if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
733 	    || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
734 		return -EINVAL;
735 
736 	return 0;
737 }
738 
739 static int at_xdmac_set_slave_config(struct dma_chan *chan,
740 				      struct dma_slave_config *sconfig)
741 {
742 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
743 
744 	if (at_xdmac_check_slave_config(sconfig)) {
745 		dev_err(chan2dev(chan), "invalid slave configuration\n");
746 		return -EINVAL;
747 	}
748 
749 	memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
750 
751 	return 0;
752 }
753 
754 static struct dma_async_tx_descriptor *
755 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
756 		       unsigned int sg_len, enum dma_transfer_direction direction,
757 		       unsigned long flags, void *context)
758 {
759 	struct at_xdmac_chan		*atchan = to_at_xdmac_chan(chan);
760 	struct at_xdmac_desc		*first = NULL, *prev = NULL;
761 	struct scatterlist		*sg;
762 	int				i;
763 	unsigned int			xfer_size = 0;
764 	unsigned long			irqflags;
765 	struct dma_async_tx_descriptor	*ret = NULL;
766 
767 	if (!sgl)
768 		return NULL;
769 
770 	if (!is_slave_direction(direction)) {
771 		dev_err(chan2dev(chan), "invalid DMA direction\n");
772 		return NULL;
773 	}
774 
775 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
776 		 __func__, sg_len,
777 		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
778 		 flags);
779 
780 	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
781 	spin_lock_irqsave(&atchan->lock, irqflags);
782 
783 	if (at_xdmac_compute_chan_conf(chan, direction))
784 		goto spin_unlock;
785 
786 	/* Prepare descriptors. */
787 	for_each_sg(sgl, sg, sg_len, i) {
788 		struct at_xdmac_desc	*desc = NULL;
789 		u32			len, mem, dwidth, fixed_dwidth;
790 
791 		len = sg_dma_len(sg);
792 		mem = sg_dma_address(sg);
793 		if (unlikely(!len)) {
794 			dev_err(chan2dev(chan), "sg data length is zero\n");
795 			goto spin_unlock;
796 		}
797 		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
798 			 __func__, i, len, mem);
799 
800 		desc = at_xdmac_get_desc(atchan);
801 		if (!desc) {
802 			dev_err(chan2dev(chan), "can't get descriptor\n");
803 			if (first)
804 				list_splice_tail_init(&first->descs_list,
805 						      &atchan->free_descs_list);
806 			goto spin_unlock;
807 		}
808 
809 		/* Linked list descriptor setup. */
810 		if (direction == DMA_DEV_TO_MEM) {
811 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
812 			desc->lld.mbr_da = mem;
813 		} else {
814 			desc->lld.mbr_sa = mem;
815 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
816 		}
817 		dwidth = at_xdmac_get_dwidth(atchan->cfg);
818 		fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
819 			       ? dwidth
820 			       : AT_XDMAC_CC_DWIDTH_BYTE;
821 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2			/* next descriptor view */
822 			| AT_XDMAC_MBR_UBC_NDEN					/* next descriptor dst parameter update */
823 			| AT_XDMAC_MBR_UBC_NSEN					/* next descriptor src parameter update */
824 			| (len >> fixed_dwidth);				/* microblock length */
825 		desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
826 				    AT_XDMAC_CC_DWIDTH(fixed_dwidth);
827 		dev_dbg(chan2dev(chan),
828 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
829 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
830 
831 		/* Chain lld. */
832 		if (prev)
833 			at_xdmac_queue_desc(chan, prev, desc);
834 
835 		prev = desc;
836 		if (!first)
837 			first = desc;
838 
839 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
840 			 __func__, desc, first);
841 		list_add_tail(&desc->desc_node, &first->descs_list);
842 		xfer_size += len;
843 	}
844 
845 
846 	first->tx_dma_desc.flags = flags;
847 	first->xfer_size = xfer_size;
848 	first->direction = direction;
849 	ret = &first->tx_dma_desc;
850 
851 spin_unlock:
852 	spin_unlock_irqrestore(&atchan->lock, irqflags);
853 	return ret;
854 }
855 
856 static struct dma_async_tx_descriptor *
857 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
858 			 size_t buf_len, size_t period_len,
859 			 enum dma_transfer_direction direction,
860 			 unsigned long flags)
861 {
862 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
863 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
864 	unsigned int		periods = buf_len / period_len;
865 	int			i;
866 	unsigned long		irqflags;
867 
868 	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
869 		__func__, &buf_addr, buf_len, period_len,
870 		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
871 
872 	if (!is_slave_direction(direction)) {
873 		dev_err(chan2dev(chan), "invalid DMA direction\n");
874 		return NULL;
875 	}
876 
877 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
878 		dev_err(chan2dev(chan), "channel currently used\n");
879 		return NULL;
880 	}
881 
882 	if (at_xdmac_compute_chan_conf(chan, direction))
883 		return NULL;
884 
885 	for (i = 0; i < periods; i++) {
886 		struct at_xdmac_desc	*desc = NULL;
887 
888 		spin_lock_irqsave(&atchan->lock, irqflags);
889 		desc = at_xdmac_get_desc(atchan);
890 		if (!desc) {
891 			dev_err(chan2dev(chan), "can't get descriptor\n");
892 			if (first)
893 				list_splice_tail_init(&first->descs_list,
894 						      &atchan->free_descs_list);
895 			spin_unlock_irqrestore(&atchan->lock, irqflags);
896 			return NULL;
897 		}
898 		spin_unlock_irqrestore(&atchan->lock, irqflags);
899 		dev_dbg(chan2dev(chan),
900 			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
901 			__func__, desc, &desc->tx_dma_desc.phys);
902 
903 		if (direction == DMA_DEV_TO_MEM) {
904 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
905 			desc->lld.mbr_da = buf_addr + i * period_len;
906 		} else {
907 			desc->lld.mbr_sa = buf_addr + i * period_len;
908 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
909 		}
910 		desc->lld.mbr_cfg = atchan->cfg;
911 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
912 			| AT_XDMAC_MBR_UBC_NDEN
913 			| AT_XDMAC_MBR_UBC_NSEN
914 			| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
915 
916 		dev_dbg(chan2dev(chan),
917 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
918 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
919 
920 		/* Chain lld. */
921 		if (prev)
922 			at_xdmac_queue_desc(chan, prev, desc);
923 
924 		prev = desc;
925 		if (!first)
926 			first = desc;
927 
928 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
929 			 __func__, desc, first);
930 		list_add_tail(&desc->desc_node, &first->descs_list);
931 	}
932 
933 	at_xdmac_queue_desc(chan, prev, first);
934 	first->tx_dma_desc.flags = flags;
935 	first->xfer_size = buf_len;
936 	first->direction = direction;
937 
938 	return &first->tx_dma_desc;
939 }
940 
941 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
942 {
943 	u32 width;
944 
945 	/*
946 	 * Check address alignment to select the greater data width we
947 	 * can use.
948 	 *
949 	 * Some XDMAC implementations don't provide dword transfer, in
950 	 * this case selecting dword has the same behavior as
951 	 * selecting word transfers.
952 	 */
953 	if (!(addr & 7)) {
954 		width = AT_XDMAC_CC_DWIDTH_DWORD;
955 		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
956 	} else if (!(addr & 3)) {
957 		width = AT_XDMAC_CC_DWIDTH_WORD;
958 		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
959 	} else if (!(addr & 1)) {
960 		width = AT_XDMAC_CC_DWIDTH_HALFWORD;
961 		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
962 	} else {
963 		width = AT_XDMAC_CC_DWIDTH_BYTE;
964 		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
965 	}
966 
967 	return width;
968 }
969 
970 static struct at_xdmac_desc *
971 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
972 				struct at_xdmac_chan *atchan,
973 				struct at_xdmac_desc *prev,
974 				dma_addr_t src, dma_addr_t dst,
975 				struct dma_interleaved_template *xt,
976 				struct data_chunk *chunk)
977 {
978 	struct at_xdmac_desc	*desc;
979 	u32			dwidth;
980 	unsigned long		flags;
981 	size_t			ublen;
982 	/*
983 	 * WARNING: The channel configuration is set here since there is no
984 	 * dmaengine_slave_config call in this case. Moreover we don't know the
985 	 * direction, it involves we can't dynamically set the source and dest
986 	 * interface so we have to use the same one. Only interface 0 allows EBI
987 	 * access. Hopefully we can access DDR through both ports (at least on
988 	 * SAMA5D4x), so we can use the same interface for source and dest,
989 	 * that solves the fact we don't know the direction.
990 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
991 	 * match the one of another channel. If not, it could lead to spurious
992 	 * flag status.
993 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
994 	 * Thus, no need to have the SIF/DIF interfaces here.
995 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
996 	 * zero.
997 	 */
998 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
999 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1000 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1001 
1002 	dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
1003 	if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1004 		dev_dbg(chan2dev(chan),
1005 			"%s: chunk too big (%zu, max size %lu)...\n",
1006 			__func__, chunk->size,
1007 			AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
1008 		return NULL;
1009 	}
1010 
1011 	if (prev)
1012 		dev_dbg(chan2dev(chan),
1013 			"Adding items at the end of desc 0x%p\n", prev);
1014 
1015 	if (xt->src_inc) {
1016 		if (xt->src_sgl)
1017 			chan_cc |=  AT_XDMAC_CC_SAM_UBS_AM;
1018 		else
1019 			chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
1020 	}
1021 
1022 	if (xt->dst_inc) {
1023 		if (xt->dst_sgl)
1024 			chan_cc |=  AT_XDMAC_CC_DAM_UBS_AM;
1025 		else
1026 			chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
1027 	}
1028 
1029 	spin_lock_irqsave(&atchan->lock, flags);
1030 	desc = at_xdmac_get_desc(atchan);
1031 	spin_unlock_irqrestore(&atchan->lock, flags);
1032 	if (!desc) {
1033 		dev_err(chan2dev(chan), "can't get descriptor\n");
1034 		return NULL;
1035 	}
1036 
1037 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1038 
1039 	ublen = chunk->size >> dwidth;
1040 
1041 	desc->lld.mbr_sa = src;
1042 	desc->lld.mbr_da = dst;
1043 	desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
1044 	desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
1045 
1046 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1047 		| AT_XDMAC_MBR_UBC_NDEN
1048 		| AT_XDMAC_MBR_UBC_NSEN
1049 		| ublen;
1050 	desc->lld.mbr_cfg = chan_cc;
1051 
1052 	dev_dbg(chan2dev(chan),
1053 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1054 		__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
1055 		desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1056 
1057 	/* Chain lld. */
1058 	if (prev)
1059 		at_xdmac_queue_desc(chan, prev, desc);
1060 
1061 	return desc;
1062 }
1063 
1064 static struct dma_async_tx_descriptor *
1065 at_xdmac_prep_interleaved(struct dma_chan *chan,
1066 			  struct dma_interleaved_template *xt,
1067 			  unsigned long flags)
1068 {
1069 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1070 	struct at_xdmac_desc	*prev = NULL, *first = NULL;
1071 	dma_addr_t		dst_addr, src_addr;
1072 	size_t			src_skip = 0, dst_skip = 0, len = 0;
1073 	struct data_chunk	*chunk;
1074 	int			i;
1075 
1076 	if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
1077 		return NULL;
1078 
1079 	/*
1080 	 * TODO: Handle the case where we have to repeat a chain of
1081 	 * descriptors...
1082 	 */
1083 	if ((xt->numf > 1) && (xt->frame_size > 1))
1084 		return NULL;
1085 
1086 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
1087 		__func__, &xt->src_start, &xt->dst_start,	xt->numf,
1088 		xt->frame_size, flags);
1089 
1090 	src_addr = xt->src_start;
1091 	dst_addr = xt->dst_start;
1092 
1093 	if (xt->numf > 1) {
1094 		first = at_xdmac_interleaved_queue_desc(chan, atchan,
1095 							NULL,
1096 							src_addr, dst_addr,
1097 							xt, xt->sgl);
1098 
1099 		/* Length of the block is (BLEN+1) microblocks. */
1100 		for (i = 0; i < xt->numf - 1; i++)
1101 			at_xdmac_increment_block_count(chan, first);
1102 
1103 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1104 			__func__, first, first);
1105 		list_add_tail(&first->desc_node, &first->descs_list);
1106 	} else {
1107 		for (i = 0; i < xt->frame_size; i++) {
1108 			size_t src_icg = 0, dst_icg = 0;
1109 			struct at_xdmac_desc *desc;
1110 
1111 			chunk = xt->sgl + i;
1112 
1113 			dst_icg = dmaengine_get_dst_icg(xt, chunk);
1114 			src_icg = dmaengine_get_src_icg(xt, chunk);
1115 
1116 			src_skip = chunk->size + src_icg;
1117 			dst_skip = chunk->size + dst_icg;
1118 
1119 			dev_dbg(chan2dev(chan),
1120 				"%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
1121 				__func__, chunk->size, src_icg, dst_icg);
1122 
1123 			desc = at_xdmac_interleaved_queue_desc(chan, atchan,
1124 							       prev,
1125 							       src_addr, dst_addr,
1126 							       xt, chunk);
1127 			if (!desc) {
1128 				list_splice_tail_init(&first->descs_list,
1129 						      &atchan->free_descs_list);
1130 				return NULL;
1131 			}
1132 
1133 			if (!first)
1134 				first = desc;
1135 
1136 			dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1137 				__func__, desc, first);
1138 			list_add_tail(&desc->desc_node, &first->descs_list);
1139 
1140 			if (xt->src_sgl)
1141 				src_addr += src_skip;
1142 
1143 			if (xt->dst_sgl)
1144 				dst_addr += dst_skip;
1145 
1146 			len += chunk->size;
1147 			prev = desc;
1148 		}
1149 	}
1150 
1151 	first->tx_dma_desc.cookie = -EBUSY;
1152 	first->tx_dma_desc.flags = flags;
1153 	first->xfer_size = len;
1154 
1155 	return &first->tx_dma_desc;
1156 }
1157 
1158 static struct dma_async_tx_descriptor *
1159 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1160 			 size_t len, unsigned long flags)
1161 {
1162 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1163 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
1164 	size_t			remaining_size = len, xfer_size = 0, ublen;
1165 	dma_addr_t		src_addr = src, dst_addr = dest;
1166 	u32			dwidth;
1167 	/*
1168 	 * WARNING: We don't know the direction, it involves we can't
1169 	 * dynamically set the source and dest interface so we have to use the
1170 	 * same one. Only interface 0 allows EBI access. Hopefully we can
1171 	 * access DDR through both ports (at least on SAMA5D4x), so we can use
1172 	 * the same interface for source and dest, that solves the fact we
1173 	 * don't know the direction.
1174 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1175 	 * match the one of another channel. If not, it could lead to spurious
1176 	 * flag status.
1177 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1178 	 * Thus, no need to have the SIF/DIF interfaces here.
1179 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1180 	 * zero.
1181 	 */
1182 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1183 					| AT_XDMAC_CC_DAM_INCREMENTED_AM
1184 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1185 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1186 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1187 	unsigned long		irqflags;
1188 
1189 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1190 		__func__, &src, &dest, len, flags);
1191 
1192 	if (unlikely(!len))
1193 		return NULL;
1194 
1195 	dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1196 
1197 	/* Prepare descriptors. */
1198 	while (remaining_size) {
1199 		struct at_xdmac_desc	*desc = NULL;
1200 
1201 		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1202 
1203 		spin_lock_irqsave(&atchan->lock, irqflags);
1204 		desc = at_xdmac_get_desc(atchan);
1205 		spin_unlock_irqrestore(&atchan->lock, irqflags);
1206 		if (!desc) {
1207 			dev_err(chan2dev(chan), "can't get descriptor\n");
1208 			if (first)
1209 				list_splice_tail_init(&first->descs_list,
1210 						      &atchan->free_descs_list);
1211 			return NULL;
1212 		}
1213 
1214 		/* Update src and dest addresses. */
1215 		src_addr += xfer_size;
1216 		dst_addr += xfer_size;
1217 
1218 		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1219 			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1220 		else
1221 			xfer_size = remaining_size;
1222 
1223 		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1224 
1225 		/* Check remaining length and change data width if needed. */
1226 		dwidth = at_xdmac_align_width(chan,
1227 					      src_addr | dst_addr | xfer_size);
1228 		chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1229 		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1230 
1231 		ublen = xfer_size >> dwidth;
1232 		remaining_size -= xfer_size;
1233 
1234 		desc->lld.mbr_sa = src_addr;
1235 		desc->lld.mbr_da = dst_addr;
1236 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1237 			| AT_XDMAC_MBR_UBC_NDEN
1238 			| AT_XDMAC_MBR_UBC_NSEN
1239 			| ublen;
1240 		desc->lld.mbr_cfg = chan_cc;
1241 
1242 		dev_dbg(chan2dev(chan),
1243 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1244 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1245 
1246 		/* Chain lld. */
1247 		if (prev)
1248 			at_xdmac_queue_desc(chan, prev, desc);
1249 
1250 		prev = desc;
1251 		if (!first)
1252 			first = desc;
1253 
1254 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1255 			 __func__, desc, first);
1256 		list_add_tail(&desc->desc_node, &first->descs_list);
1257 	}
1258 
1259 	first->tx_dma_desc.flags = flags;
1260 	first->xfer_size = len;
1261 
1262 	return &first->tx_dma_desc;
1263 }
1264 
1265 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1266 							 struct at_xdmac_chan *atchan,
1267 							 dma_addr_t dst_addr,
1268 							 size_t len,
1269 							 int value)
1270 {
1271 	struct at_xdmac_desc	*desc;
1272 	unsigned long		flags;
1273 	size_t			ublen;
1274 	u32			dwidth;
1275 	char			pattern;
1276 	/*
1277 	 * WARNING: The channel configuration is set here since there is no
1278 	 * dmaengine_slave_config call in this case. Moreover we don't know the
1279 	 * direction, it involves we can't dynamically set the source and dest
1280 	 * interface so we have to use the same one. Only interface 0 allows EBI
1281 	 * access. Hopefully we can access DDR through both ports (at least on
1282 	 * SAMA5D4x), so we can use the same interface for source and dest,
1283 	 * that solves the fact we don't know the direction.
1284 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1285 	 * match the one of another channel. If not, it could lead to spurious
1286 	 * flag status.
1287 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1288 	 * Thus, no need to have the SIF/DIF interfaces here.
1289 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1290 	 * zero.
1291 	 */
1292 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1293 					| AT_XDMAC_CC_DAM_UBS_AM
1294 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1295 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1296 					| AT_XDMAC_CC_MEMSET_HW_MODE
1297 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1298 
1299 	dwidth = at_xdmac_align_width(chan, dst_addr);
1300 
1301 	if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1302 		dev_err(chan2dev(chan),
1303 			"%s: Transfer too large, aborting...\n",
1304 			__func__);
1305 		return NULL;
1306 	}
1307 
1308 	spin_lock_irqsave(&atchan->lock, flags);
1309 	desc = at_xdmac_get_desc(atchan);
1310 	spin_unlock_irqrestore(&atchan->lock, flags);
1311 	if (!desc) {
1312 		dev_err(chan2dev(chan), "can't get descriptor\n");
1313 		return NULL;
1314 	}
1315 
1316 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1317 
1318 	/* Only the first byte of value is to be used according to dmaengine */
1319 	pattern = (char)value;
1320 
1321 	ublen = len >> dwidth;
1322 
1323 	desc->lld.mbr_da = dst_addr;
1324 	desc->lld.mbr_ds = (pattern << 24) |
1325 			   (pattern << 16) |
1326 			   (pattern << 8) |
1327 			   pattern;
1328 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1329 		| AT_XDMAC_MBR_UBC_NDEN
1330 		| AT_XDMAC_MBR_UBC_NSEN
1331 		| ublen;
1332 	desc->lld.mbr_cfg = chan_cc;
1333 
1334 	dev_dbg(chan2dev(chan),
1335 		"%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1336 		__func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1337 		desc->lld.mbr_cfg);
1338 
1339 	return desc;
1340 }
1341 
1342 static struct dma_async_tx_descriptor *
1343 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1344 			 size_t len, unsigned long flags)
1345 {
1346 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1347 	struct at_xdmac_desc	*desc;
1348 
1349 	dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1350 		__func__, &dest, len, value, flags);
1351 
1352 	if (unlikely(!len))
1353 		return NULL;
1354 
1355 	desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1356 	list_add_tail(&desc->desc_node, &desc->descs_list);
1357 
1358 	desc->tx_dma_desc.cookie = -EBUSY;
1359 	desc->tx_dma_desc.flags = flags;
1360 	desc->xfer_size = len;
1361 
1362 	return &desc->tx_dma_desc;
1363 }
1364 
1365 static struct dma_async_tx_descriptor *
1366 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1367 			    unsigned int sg_len, int value,
1368 			    unsigned long flags)
1369 {
1370 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1371 	struct at_xdmac_desc	*desc, *pdesc = NULL,
1372 				*ppdesc = NULL, *first = NULL;
1373 	struct scatterlist	*sg, *psg = NULL, *ppsg = NULL;
1374 	size_t			stride = 0, pstride = 0, len = 0;
1375 	int			i;
1376 
1377 	if (!sgl)
1378 		return NULL;
1379 
1380 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1381 		__func__, sg_len, value, flags);
1382 
1383 	/* Prepare descriptors. */
1384 	for_each_sg(sgl, sg, sg_len, i) {
1385 		dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1386 			__func__, &sg_dma_address(sg), sg_dma_len(sg),
1387 			value, flags);
1388 		desc = at_xdmac_memset_create_desc(chan, atchan,
1389 						   sg_dma_address(sg),
1390 						   sg_dma_len(sg),
1391 						   value);
1392 		if (!desc && first)
1393 			list_splice_tail_init(&first->descs_list,
1394 					      &atchan->free_descs_list);
1395 
1396 		if (!first)
1397 			first = desc;
1398 
1399 		/* Update our strides */
1400 		pstride = stride;
1401 		if (psg)
1402 			stride = sg_dma_address(sg) -
1403 				(sg_dma_address(psg) + sg_dma_len(psg));
1404 
1405 		/*
1406 		 * The scatterlist API gives us only the address and
1407 		 * length of each elements.
1408 		 *
1409 		 * Unfortunately, we don't have the stride, which we
1410 		 * will need to compute.
1411 		 *
1412 		 * That make us end up in a situation like this one:
1413 		 *    len    stride    len    stride    len
1414 		 * +-------+        +-------+        +-------+
1415 		 * |  N-2  |        |  N-1  |        |   N   |
1416 		 * +-------+        +-------+        +-------+
1417 		 *
1418 		 * We need all these three elements (N-2, N-1 and N)
1419 		 * to actually take the decision on whether we need to
1420 		 * queue N-1 or reuse N-2.
1421 		 *
1422 		 * We will only consider N if it is the last element.
1423 		 */
1424 		if (ppdesc && pdesc) {
1425 			if ((stride == pstride) &&
1426 			    (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1427 				dev_dbg(chan2dev(chan),
1428 					"%s: desc 0x%p can be merged with desc 0x%p\n",
1429 					__func__, pdesc, ppdesc);
1430 
1431 				/*
1432 				 * Increment the block count of the
1433 				 * N-2 descriptor
1434 				 */
1435 				at_xdmac_increment_block_count(chan, ppdesc);
1436 				ppdesc->lld.mbr_dus = stride;
1437 
1438 				/*
1439 				 * Put back the N-1 descriptor in the
1440 				 * free descriptor list
1441 				 */
1442 				list_add_tail(&pdesc->desc_node,
1443 					      &atchan->free_descs_list);
1444 
1445 				/*
1446 				 * Make our N-1 descriptor pointer
1447 				 * point to the N-2 since they were
1448 				 * actually merged.
1449 				 */
1450 				pdesc = ppdesc;
1451 
1452 			/*
1453 			 * Rule out the case where we don't have
1454 			 * pstride computed yet (our second sg
1455 			 * element)
1456 			 *
1457 			 * We also want to catch the case where there
1458 			 * would be a negative stride,
1459 			 */
1460 			} else if (pstride ||
1461 				   sg_dma_address(sg) < sg_dma_address(psg)) {
1462 				/*
1463 				 * Queue the N-1 descriptor after the
1464 				 * N-2
1465 				 */
1466 				at_xdmac_queue_desc(chan, ppdesc, pdesc);
1467 
1468 				/*
1469 				 * Add the N-1 descriptor to the list
1470 				 * of the descriptors used for this
1471 				 * transfer
1472 				 */
1473 				list_add_tail(&desc->desc_node,
1474 					      &first->descs_list);
1475 				dev_dbg(chan2dev(chan),
1476 					"%s: add desc 0x%p to descs_list 0x%p\n",
1477 					__func__, desc, first);
1478 			}
1479 		}
1480 
1481 		/*
1482 		 * If we are the last element, just see if we have the
1483 		 * same size than the previous element.
1484 		 *
1485 		 * If so, we can merge it with the previous descriptor
1486 		 * since we don't care about the stride anymore.
1487 		 */
1488 		if ((i == (sg_len - 1)) &&
1489 		    sg_dma_len(psg) == sg_dma_len(sg)) {
1490 			dev_dbg(chan2dev(chan),
1491 				"%s: desc 0x%p can be merged with desc 0x%p\n",
1492 				__func__, desc, pdesc);
1493 
1494 			/*
1495 			 * Increment the block count of the N-1
1496 			 * descriptor
1497 			 */
1498 			at_xdmac_increment_block_count(chan, pdesc);
1499 			pdesc->lld.mbr_dus = stride;
1500 
1501 			/*
1502 			 * Put back the N descriptor in the free
1503 			 * descriptor list
1504 			 */
1505 			list_add_tail(&desc->desc_node,
1506 				      &atchan->free_descs_list);
1507 		}
1508 
1509 		/* Update our descriptors */
1510 		ppdesc = pdesc;
1511 		pdesc = desc;
1512 
1513 		/* Update our scatter pointers */
1514 		ppsg = psg;
1515 		psg = sg;
1516 
1517 		len += sg_dma_len(sg);
1518 	}
1519 
1520 	first->tx_dma_desc.cookie = -EBUSY;
1521 	first->tx_dma_desc.flags = flags;
1522 	first->xfer_size = len;
1523 
1524 	return &first->tx_dma_desc;
1525 }
1526 
1527 static enum dma_status
1528 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1529 		   struct dma_tx_state *txstate)
1530 {
1531 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1532 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1533 	struct at_xdmac_desc	*desc, *_desc, *iter;
1534 	struct list_head	*descs_list;
1535 	enum dma_status		ret;
1536 	int			residue, retry, pm_status;
1537 	u32			cur_nda, check_nda, cur_ubc, mask, value;
1538 	u8			dwidth = 0;
1539 	unsigned long		flags;
1540 	bool			initd;
1541 
1542 	ret = dma_cookie_status(chan, cookie, txstate);
1543 	if (ret == DMA_COMPLETE || !txstate)
1544 		return ret;
1545 
1546 	pm_status = pm_runtime_resume_and_get(atxdmac->dev);
1547 	if (pm_status < 0)
1548 		return DMA_ERROR;
1549 
1550 	spin_lock_irqsave(&atchan->lock, flags);
1551 
1552 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1553 
1554 	/*
1555 	 * If the transfer has not been started yet, don't need to compute the
1556 	 * residue, it's the transfer length.
1557 	 */
1558 	if (!desc->active_xfer) {
1559 		dma_set_residue(txstate, desc->xfer_size);
1560 		goto spin_unlock;
1561 	}
1562 
1563 	residue = desc->xfer_size;
1564 	/*
1565 	 * Flush FIFO: only relevant when the transfer is source peripheral
1566 	 * synchronized. Flush is needed before reading CUBC because data in
1567 	 * the FIFO are not reported by CUBC. Reporting a residue of the
1568 	 * transfer length while we have data in FIFO can cause issue.
1569 	 * Usecase: atmel USART has a timeout which means I have received
1570 	 * characters but there is no more character received for a while. On
1571 	 * timeout, it requests the residue. If the data are in the DMA FIFO,
1572 	 * we will return a residue of the transfer length. It means no data
1573 	 * received. If an application is waiting for these data, it will hang
1574 	 * since we won't have another USART timeout without receiving new
1575 	 * data.
1576 	 */
1577 	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1578 	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1579 	if ((desc->lld.mbr_cfg & mask) == value) {
1580 		at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1581 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1582 			cpu_relax();
1583 	}
1584 
1585 	/*
1586 	 * The easiest way to compute the residue should be to pause the DMA
1587 	 * but doing this can lead to miss some data as some devices don't
1588 	 * have FIFO.
1589 	 * We need to read several registers because:
1590 	 * - DMA is running therefore a descriptor change is possible while
1591 	 * reading these registers
1592 	 * - When the block transfer is done, the value of the CUBC register
1593 	 * is set to its initial value until the fetch of the next descriptor.
1594 	 * This value will corrupt the residue calculation so we have to skip
1595 	 * it.
1596 	 *
1597 	 * INITD --------                    ------------
1598 	 *              |____________________|
1599 	 *       _______________________  _______________
1600 	 * NDA       @desc2             \/   @desc3
1601 	 *       _______________________/\_______________
1602 	 *       __________  ___________  _______________
1603 	 * CUBC       0    \/ MAX desc1 \/  MAX desc2
1604 	 *       __________/\___________/\_______________
1605 	 *
1606 	 * Since descriptors are aligned on 64 bits, we can assume that
1607 	 * the update of NDA and CUBC is atomic.
1608 	 * Memory barriers are used to ensure the read order of the registers.
1609 	 * A max number of retries is set because unlikely it could never ends.
1610 	 */
1611 	for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1612 		check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1613 		rmb();
1614 		cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1615 		rmb();
1616 		initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1617 		rmb();
1618 		cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1619 		rmb();
1620 
1621 		if ((check_nda == cur_nda) && initd)
1622 			break;
1623 	}
1624 
1625 	if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1626 		ret = DMA_ERROR;
1627 		goto spin_unlock;
1628 	}
1629 
1630 	/*
1631 	 * Flush FIFO: only relevant when the transfer is source peripheral
1632 	 * synchronized. Another flush is needed here because CUBC is updated
1633 	 * when the controller sends the data write command. It can lead to
1634 	 * report data that are not written in the memory or the device. The
1635 	 * FIFO flush ensures that data are really written.
1636 	 */
1637 	if ((desc->lld.mbr_cfg & mask) == value) {
1638 		at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1639 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1640 			cpu_relax();
1641 	}
1642 
1643 	/*
1644 	 * Remove size of all microblocks already transferred and the current
1645 	 * one. Then add the remaining size to transfer of the current
1646 	 * microblock.
1647 	 */
1648 	descs_list = &desc->descs_list;
1649 	list_for_each_entry_safe(iter, _desc, descs_list, desc_node) {
1650 		dwidth = at_xdmac_get_dwidth(iter->lld.mbr_cfg);
1651 		residue -= (iter->lld.mbr_ubc & 0xffffff) << dwidth;
1652 		if ((iter->lld.mbr_nda & 0xfffffffc) == cur_nda) {
1653 			desc = iter;
1654 			break;
1655 		}
1656 	}
1657 	residue += cur_ubc << dwidth;
1658 
1659 	dma_set_residue(txstate, residue);
1660 
1661 	dev_dbg(chan2dev(chan),
1662 		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1663 		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1664 
1665 spin_unlock:
1666 	spin_unlock_irqrestore(&atchan->lock, flags);
1667 	pm_runtime_mark_last_busy(atxdmac->dev);
1668 	pm_runtime_put_autosuspend(atxdmac->dev);
1669 	return ret;
1670 }
1671 
1672 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1673 {
1674 	struct at_xdmac_desc	*desc;
1675 
1676 	/*
1677 	 * If channel is enabled, do nothing, advance_work will be triggered
1678 	 * after the interruption.
1679 	 */
1680 	if (at_xdmac_chan_is_enabled(atchan) || list_empty(&atchan->xfers_list))
1681 		return;
1682 
1683 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1684 				xfer_node);
1685 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1686 	if (!desc->active_xfer)
1687 		at_xdmac_start_xfer(atchan, desc);
1688 }
1689 
1690 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1691 {
1692 	struct at_xdmac_desc		*desc;
1693 	struct dma_async_tx_descriptor	*txd;
1694 
1695 	spin_lock_irq(&atchan->lock);
1696 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1697 		__func__, atchan->irq_status);
1698 	if (list_empty(&atchan->xfers_list)) {
1699 		spin_unlock_irq(&atchan->lock);
1700 		return;
1701 	}
1702 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1703 				xfer_node);
1704 	spin_unlock_irq(&atchan->lock);
1705 	txd = &desc->tx_dma_desc;
1706 	if (txd->flags & DMA_PREP_INTERRUPT)
1707 		dmaengine_desc_get_callback_invoke(txd, NULL);
1708 }
1709 
1710 /* Called with atchan->lock held. */
1711 static void at_xdmac_handle_error(struct at_xdmac_chan *atchan)
1712 {
1713 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1714 	struct at_xdmac_desc	*bad_desc;
1715 	int			ret;
1716 
1717 	ret = pm_runtime_resume_and_get(atxdmac->dev);
1718 	if (ret < 0)
1719 		return;
1720 
1721 	/*
1722 	 * The descriptor currently at the head of the active list is
1723 	 * broken. Since we don't have any way to report errors, we'll
1724 	 * just have to scream loudly and try to continue with other
1725 	 * descriptors queued (if any).
1726 	 */
1727 	if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
1728 		dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1729 	if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
1730 		dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1731 	if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
1732 		dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1733 
1734 	/* Channel must be disabled first as it's not done automatically */
1735 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1736 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1737 		cpu_relax();
1738 
1739 	bad_desc = list_first_entry(&atchan->xfers_list,
1740 				    struct at_xdmac_desc,
1741 				    xfer_node);
1742 
1743 	/* Print bad descriptor's details if needed */
1744 	dev_dbg(chan2dev(&atchan->chan),
1745 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
1746 		__func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da,
1747 		bad_desc->lld.mbr_ubc);
1748 
1749 	pm_runtime_mark_last_busy(atxdmac->dev);
1750 	pm_runtime_put_autosuspend(atxdmac->dev);
1751 
1752 	/* Then continue with usual descriptor management */
1753 }
1754 
1755 static void at_xdmac_tasklet(struct tasklet_struct *t)
1756 {
1757 	struct at_xdmac_chan	*atchan = from_tasklet(atchan, t, tasklet);
1758 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1759 	struct at_xdmac_desc	*desc;
1760 	struct dma_async_tx_descriptor *txd;
1761 	u32			error_mask;
1762 
1763 	if (at_xdmac_chan_is_cyclic(atchan))
1764 		return at_xdmac_handle_cyclic(atchan);
1765 
1766 	error_mask = AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS |
1767 		AT_XDMAC_CIS_ROIS;
1768 
1769 	spin_lock_irq(&atchan->lock);
1770 
1771 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1772 		__func__, atchan->irq_status);
1773 
1774 	if (!(atchan->irq_status & AT_XDMAC_CIS_LIS) &&
1775 	    !(atchan->irq_status & error_mask)) {
1776 		spin_unlock_irq(&atchan->lock);
1777 		return;
1778 	}
1779 
1780 	if (atchan->irq_status & error_mask)
1781 		at_xdmac_handle_error(atchan);
1782 
1783 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1784 				xfer_node);
1785 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1786 	if (!desc->active_xfer) {
1787 		dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting");
1788 		spin_unlock_irq(&atchan->lock);
1789 		return;
1790 	}
1791 
1792 	txd = &desc->tx_dma_desc;
1793 	dma_cookie_complete(txd);
1794 	/* Remove the transfer from the transfer list. */
1795 	list_del(&desc->xfer_node);
1796 	spin_unlock_irq(&atchan->lock);
1797 
1798 	if (txd->flags & DMA_PREP_INTERRUPT)
1799 		dmaengine_desc_get_callback_invoke(txd, NULL);
1800 
1801 	dma_run_dependencies(txd);
1802 
1803 	spin_lock_irq(&atchan->lock);
1804 	/* Move the xfer descriptors into the free descriptors list. */
1805 	list_splice_tail_init(&desc->descs_list, &atchan->free_descs_list);
1806 	at_xdmac_advance_work(atchan);
1807 	spin_unlock_irq(&atchan->lock);
1808 
1809 	/*
1810 	 * Decrement runtime PM ref counter incremented in
1811 	 * at_xdmac_start_xfer().
1812 	 */
1813 	pm_runtime_mark_last_busy(atxdmac->dev);
1814 	pm_runtime_put_autosuspend(atxdmac->dev);
1815 }
1816 
1817 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1818 {
1819 	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
1820 	struct at_xdmac_chan	*atchan;
1821 	u32			imr, status, pending;
1822 	u32			chan_imr, chan_status;
1823 	int			i, ret = IRQ_NONE;
1824 
1825 	do {
1826 		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1827 		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1828 		pending = status & imr;
1829 
1830 		dev_vdbg(atxdmac->dma.dev,
1831 			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1832 			 __func__, status, imr, pending);
1833 
1834 		if (!pending)
1835 			break;
1836 
1837 		/* We have to find which channel has generated the interrupt. */
1838 		for (i = 0; i < atxdmac->dma.chancnt; i++) {
1839 			if (!((1 << i) & pending))
1840 				continue;
1841 
1842 			atchan = &atxdmac->chan[i];
1843 			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1844 			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1845 			atchan->irq_status = chan_status & chan_imr;
1846 			dev_vdbg(atxdmac->dma.dev,
1847 				 "%s: chan%d: imr=0x%x, status=0x%x\n",
1848 				 __func__, i, chan_imr, chan_status);
1849 			dev_vdbg(chan2dev(&atchan->chan),
1850 				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1851 				 __func__,
1852 				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1853 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1854 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1855 				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1856 				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1857 				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1858 
1859 			if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1860 				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1861 
1862 			tasklet_schedule(&atchan->tasklet);
1863 			ret = IRQ_HANDLED;
1864 		}
1865 
1866 	} while (pending);
1867 
1868 	return ret;
1869 }
1870 
1871 static void at_xdmac_issue_pending(struct dma_chan *chan)
1872 {
1873 	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1874 	unsigned long flags;
1875 
1876 	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1877 
1878 	spin_lock_irqsave(&atchan->lock, flags);
1879 	at_xdmac_advance_work(atchan);
1880 	spin_unlock_irqrestore(&atchan->lock, flags);
1881 
1882 	return;
1883 }
1884 
1885 static int at_xdmac_device_config(struct dma_chan *chan,
1886 				  struct dma_slave_config *config)
1887 {
1888 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1889 	int ret;
1890 	unsigned long		flags;
1891 
1892 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1893 
1894 	spin_lock_irqsave(&atchan->lock, flags);
1895 	ret = at_xdmac_set_slave_config(chan, config);
1896 	spin_unlock_irqrestore(&atchan->lock, flags);
1897 
1898 	return ret;
1899 }
1900 
1901 static int at_xdmac_device_pause(struct dma_chan *chan)
1902 {
1903 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1904 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1905 	unsigned long		flags;
1906 	int			ret;
1907 
1908 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1909 
1910 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1911 		return 0;
1912 
1913 	ret = pm_runtime_resume_and_get(atxdmac->dev);
1914 	if (ret < 0)
1915 		return ret;
1916 
1917 	spin_lock_irqsave(&atchan->lock, flags);
1918 	at_xdmac_write(atxdmac, atxdmac->layout->grws, atchan->mask);
1919 	while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1920 	       & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1921 		cpu_relax();
1922 
1923 	/* Decrement runtime PM ref counter for each active descriptor. */
1924 	at_xdmac_runtime_suspend_descriptors(atchan);
1925 
1926 	spin_unlock_irqrestore(&atchan->lock, flags);
1927 
1928 	pm_runtime_mark_last_busy(atxdmac->dev);
1929 	pm_runtime_put_autosuspend(atxdmac->dev);
1930 
1931 	return 0;
1932 }
1933 
1934 static int at_xdmac_device_resume(struct dma_chan *chan)
1935 {
1936 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1937 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1938 	unsigned long		flags;
1939 	int			ret;
1940 
1941 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1942 
1943 	ret = pm_runtime_resume_and_get(atxdmac->dev);
1944 	if (ret < 0)
1945 		return ret;
1946 
1947 	spin_lock_irqsave(&atchan->lock, flags);
1948 	if (!at_xdmac_chan_is_paused(atchan))
1949 		goto unlock;
1950 
1951 	/* Increment runtime PM ref counter for each active descriptor. */
1952 	ret = at_xdmac_runtime_resume_descriptors(atchan);
1953 	if (ret < 0)
1954 		goto unlock;
1955 
1956 	at_xdmac_write(atxdmac, atxdmac->layout->grwr, atchan->mask);
1957 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1958 
1959 unlock:
1960 	spin_unlock_irqrestore(&atchan->lock, flags);
1961 	pm_runtime_mark_last_busy(atxdmac->dev);
1962 	pm_runtime_put_autosuspend(atxdmac->dev);
1963 
1964 	return ret;
1965 }
1966 
1967 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1968 {
1969 	struct at_xdmac_desc	*desc, *_desc;
1970 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1971 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1972 	unsigned long		flags;
1973 	int			ret;
1974 
1975 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1976 
1977 	ret = pm_runtime_resume_and_get(atxdmac->dev);
1978 	if (ret < 0)
1979 		return ret;
1980 
1981 	spin_lock_irqsave(&atchan->lock, flags);
1982 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1983 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1984 		cpu_relax();
1985 
1986 	/* Cancel all pending transfers. */
1987 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) {
1988 		list_del(&desc->xfer_node);
1989 		list_splice_tail_init(&desc->descs_list,
1990 				      &atchan->free_descs_list);
1991 		/*
1992 		 * We incremented the runtime PM reference count on
1993 		 * at_xdmac_start_xfer() for this descriptor. Now it's time
1994 		 * to release it.
1995 		 */
1996 		if (desc->active_xfer) {
1997 			pm_runtime_put_autosuspend(atxdmac->dev);
1998 			pm_runtime_mark_last_busy(atxdmac->dev);
1999 		}
2000 	}
2001 
2002 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
2003 	clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
2004 	spin_unlock_irqrestore(&atchan->lock, flags);
2005 
2006 	pm_runtime_mark_last_busy(atxdmac->dev);
2007 	pm_runtime_put_autosuspend(atxdmac->dev);
2008 
2009 	return 0;
2010 }
2011 
2012 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
2013 {
2014 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2015 	struct at_xdmac_desc	*desc;
2016 	int			i;
2017 
2018 	if (at_xdmac_chan_is_enabled(atchan)) {
2019 		dev_err(chan2dev(chan),
2020 			"can't allocate channel resources (channel enabled)\n");
2021 		return -EIO;
2022 	}
2023 
2024 	if (!list_empty(&atchan->free_descs_list)) {
2025 		dev_err(chan2dev(chan),
2026 			"can't allocate channel resources (channel not free from a previous use)\n");
2027 		return -EIO;
2028 	}
2029 
2030 	for (i = 0; i < init_nr_desc_per_channel; i++) {
2031 		desc = at_xdmac_alloc_desc(chan, GFP_KERNEL);
2032 		if (!desc) {
2033 			if (i == 0) {
2034 				dev_warn(chan2dev(chan),
2035 					 "can't allocate any descriptors\n");
2036 				return -EIO;
2037 			}
2038 			dev_warn(chan2dev(chan),
2039 				"only %d descriptors have been allocated\n", i);
2040 			break;
2041 		}
2042 		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
2043 	}
2044 
2045 	dma_cookie_init(chan);
2046 
2047 	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
2048 
2049 	return i;
2050 }
2051 
2052 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
2053 {
2054 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2055 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
2056 	struct at_xdmac_desc	*desc, *_desc;
2057 
2058 	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
2059 		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
2060 		list_del(&desc->desc_node);
2061 		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
2062 	}
2063 
2064 	return;
2065 }
2066 
2067 static void at_xdmac_axi_config(struct platform_device *pdev)
2068 {
2069 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2070 	bool dev_m2m = false;
2071 	u32 dma_requests;
2072 
2073 	if (!atxdmac->layout->axi_config)
2074 		return; /* Not supported */
2075 
2076 	if (!of_property_read_u32(pdev->dev.of_node, "dma-requests",
2077 				  &dma_requests)) {
2078 		dev_info(&pdev->dev, "controller in mem2mem mode.\n");
2079 		dev_m2m = true;
2080 	}
2081 
2082 	if (dev_m2m) {
2083 		at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_M2M);
2084 		at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_M2M);
2085 	} else {
2086 		at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_P2M);
2087 		at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_P2M);
2088 	}
2089 }
2090 
2091 static int __maybe_unused atmel_xdmac_prepare(struct device *dev)
2092 {
2093 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
2094 	struct dma_chan		*chan, *_chan;
2095 
2096 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
2097 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2098 
2099 		/* Wait for transfer completion, except in cyclic case. */
2100 		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
2101 			return -EAGAIN;
2102 	}
2103 	return 0;
2104 }
2105 
2106 static int __maybe_unused atmel_xdmac_suspend(struct device *dev)
2107 {
2108 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
2109 	struct dma_chan		*chan, *_chan;
2110 	int			ret;
2111 
2112 	ret = pm_runtime_resume_and_get(atxdmac->dev);
2113 	if (ret < 0)
2114 		return ret;
2115 
2116 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
2117 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2118 
2119 		atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
2120 		if (at_xdmac_chan_is_cyclic(atchan)) {
2121 			if (!at_xdmac_chan_is_paused(atchan))
2122 				at_xdmac_device_pause(chan);
2123 			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
2124 			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
2125 			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
2126 		}
2127 
2128 		at_xdmac_runtime_suspend_descriptors(atchan);
2129 	}
2130 	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
2131 
2132 	at_xdmac_off(atxdmac);
2133 	return pm_runtime_force_suspend(atxdmac->dev);
2134 }
2135 
2136 static int __maybe_unused atmel_xdmac_resume(struct device *dev)
2137 {
2138 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
2139 	struct at_xdmac_chan	*atchan;
2140 	struct dma_chan		*chan, *_chan;
2141 	struct platform_device	*pdev = container_of(dev, struct platform_device, dev);
2142 	int			i;
2143 	int ret;
2144 
2145 	ret = pm_runtime_force_resume(atxdmac->dev);
2146 	if (ret < 0)
2147 		return ret;
2148 
2149 	at_xdmac_axi_config(pdev);
2150 
2151 	/* Clear pending interrupts. */
2152 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2153 		atchan = &atxdmac->chan[i];
2154 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2155 			cpu_relax();
2156 	}
2157 
2158 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
2159 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
2160 		atchan = to_at_xdmac_chan(chan);
2161 
2162 		ret = at_xdmac_runtime_resume_descriptors(atchan);
2163 		if (ret < 0)
2164 			return ret;
2165 
2166 		at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
2167 		if (at_xdmac_chan_is_cyclic(atchan)) {
2168 			if (at_xdmac_chan_is_paused(atchan))
2169 				at_xdmac_device_resume(chan);
2170 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
2171 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
2172 			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
2173 			wmb();
2174 			at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
2175 		}
2176 	}
2177 
2178 	pm_runtime_mark_last_busy(atxdmac->dev);
2179 	pm_runtime_put_autosuspend(atxdmac->dev);
2180 
2181 	return 0;
2182 }
2183 
2184 static int __maybe_unused atmel_xdmac_runtime_suspend(struct device *dev)
2185 {
2186 	struct at_xdmac *atxdmac = dev_get_drvdata(dev);
2187 
2188 	clk_disable(atxdmac->clk);
2189 
2190 	return 0;
2191 }
2192 
2193 static int __maybe_unused atmel_xdmac_runtime_resume(struct device *dev)
2194 {
2195 	struct at_xdmac *atxdmac = dev_get_drvdata(dev);
2196 
2197 	return clk_enable(atxdmac->clk);
2198 }
2199 
2200 static int at_xdmac_probe(struct platform_device *pdev)
2201 {
2202 	struct at_xdmac	*atxdmac;
2203 	int		irq, nr_channels, i, ret;
2204 	void __iomem	*base;
2205 	u32		reg;
2206 
2207 	irq = platform_get_irq(pdev, 0);
2208 	if (irq < 0)
2209 		return irq;
2210 
2211 	base = devm_platform_ioremap_resource(pdev, 0);
2212 	if (IS_ERR(base))
2213 		return PTR_ERR(base);
2214 
2215 	/*
2216 	 * Read number of xdmac channels, read helper function can't be used
2217 	 * since atxdmac is not yet allocated and we need to know the number
2218 	 * of channels to do the allocation.
2219 	 */
2220 	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
2221 	nr_channels = AT_XDMAC_NB_CH(reg);
2222 	if (nr_channels > AT_XDMAC_MAX_CHAN) {
2223 		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
2224 			nr_channels);
2225 		return -EINVAL;
2226 	}
2227 
2228 	atxdmac = devm_kzalloc(&pdev->dev,
2229 			       struct_size(atxdmac, chan, nr_channels),
2230 			       GFP_KERNEL);
2231 	if (!atxdmac) {
2232 		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
2233 		return -ENOMEM;
2234 	}
2235 
2236 	atxdmac->regs = base;
2237 	atxdmac->irq = irq;
2238 	atxdmac->dev = &pdev->dev;
2239 
2240 	atxdmac->layout = of_device_get_match_data(&pdev->dev);
2241 	if (!atxdmac->layout)
2242 		return -ENODEV;
2243 
2244 	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
2245 	if (IS_ERR(atxdmac->clk)) {
2246 		dev_err(&pdev->dev, "can't get dma_clk\n");
2247 		return PTR_ERR(atxdmac->clk);
2248 	}
2249 
2250 	/* Do not use dev res to prevent races with tasklet */
2251 	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
2252 	if (ret) {
2253 		dev_err(&pdev->dev, "can't request irq\n");
2254 		return ret;
2255 	}
2256 
2257 	ret = clk_prepare_enable(atxdmac->clk);
2258 	if (ret) {
2259 		dev_err(&pdev->dev, "can't prepare or enable clock\n");
2260 		goto err_free_irq;
2261 	}
2262 
2263 	atxdmac->at_xdmac_desc_pool =
2264 		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
2265 				sizeof(struct at_xdmac_desc), 4, 0);
2266 	if (!atxdmac->at_xdmac_desc_pool) {
2267 		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
2268 		ret = -ENOMEM;
2269 		goto err_clk_disable;
2270 	}
2271 
2272 	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
2273 	dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
2274 	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
2275 	dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
2276 	dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
2277 	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
2278 	/*
2279 	 * Without DMA_PRIVATE the driver is not able to allocate more than
2280 	 * one channel, second allocation fails in private_candidate.
2281 	 */
2282 	dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2283 	atxdmac->dma.dev				= &pdev->dev;
2284 	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
2285 	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
2286 	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
2287 	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
2288 	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
2289 	atxdmac->dma.device_prep_interleaved_dma	= at_xdmac_prep_interleaved;
2290 	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
2291 	atxdmac->dma.device_prep_dma_memset		= at_xdmac_prep_dma_memset;
2292 	atxdmac->dma.device_prep_dma_memset_sg		= at_xdmac_prep_dma_memset_sg;
2293 	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
2294 	atxdmac->dma.device_config			= at_xdmac_device_config;
2295 	atxdmac->dma.device_pause			= at_xdmac_device_pause;
2296 	atxdmac->dma.device_resume			= at_xdmac_device_resume;
2297 	atxdmac->dma.device_terminate_all		= at_xdmac_device_terminate_all;
2298 	atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2299 	atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2300 	atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2301 	atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2302 
2303 	platform_set_drvdata(pdev, atxdmac);
2304 
2305 	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2306 	pm_runtime_use_autosuspend(&pdev->dev);
2307 	pm_runtime_set_active(&pdev->dev);
2308 	pm_runtime_enable(&pdev->dev);
2309 	pm_runtime_get_noresume(&pdev->dev);
2310 
2311 	/* Init channels. */
2312 	INIT_LIST_HEAD(&atxdmac->dma.channels);
2313 
2314 	/* Disable all chans and interrupts. */
2315 	at_xdmac_off(atxdmac);
2316 
2317 	for (i = 0; i < nr_channels; i++) {
2318 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2319 
2320 		atchan->chan.device = &atxdmac->dma;
2321 		list_add_tail(&atchan->chan.device_node,
2322 			      &atxdmac->dma.channels);
2323 
2324 		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2325 		atchan->mask = 1 << i;
2326 
2327 		spin_lock_init(&atchan->lock);
2328 		INIT_LIST_HEAD(&atchan->xfers_list);
2329 		INIT_LIST_HEAD(&atchan->free_descs_list);
2330 		tasklet_setup(&atchan->tasklet, at_xdmac_tasklet);
2331 
2332 		/* Clear pending interrupts. */
2333 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2334 			cpu_relax();
2335 	}
2336 
2337 	ret = dma_async_device_register(&atxdmac->dma);
2338 	if (ret) {
2339 		dev_err(&pdev->dev, "fail to register DMA engine device\n");
2340 		goto err_pm_disable;
2341 	}
2342 
2343 	ret = of_dma_controller_register(pdev->dev.of_node,
2344 					 at_xdmac_xlate, atxdmac);
2345 	if (ret) {
2346 		dev_err(&pdev->dev, "could not register of dma controller\n");
2347 		goto err_dma_unregister;
2348 	}
2349 
2350 	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2351 		 nr_channels, atxdmac->regs);
2352 
2353 	at_xdmac_axi_config(pdev);
2354 
2355 	pm_runtime_mark_last_busy(&pdev->dev);
2356 	pm_runtime_put_autosuspend(&pdev->dev);
2357 
2358 	return 0;
2359 
2360 err_dma_unregister:
2361 	dma_async_device_unregister(&atxdmac->dma);
2362 err_pm_disable:
2363 	pm_runtime_put_noidle(&pdev->dev);
2364 	pm_runtime_disable(&pdev->dev);
2365 	pm_runtime_set_suspended(&pdev->dev);
2366 	pm_runtime_dont_use_autosuspend(&pdev->dev);
2367 err_clk_disable:
2368 	clk_disable_unprepare(atxdmac->clk);
2369 err_free_irq:
2370 	free_irq(atxdmac->irq, atxdmac);
2371 	return ret;
2372 }
2373 
2374 static int at_xdmac_remove(struct platform_device *pdev)
2375 {
2376 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2377 	int		i;
2378 
2379 	at_xdmac_off(atxdmac);
2380 	of_dma_controller_free(pdev->dev.of_node);
2381 	dma_async_device_unregister(&atxdmac->dma);
2382 	pm_runtime_disable(atxdmac->dev);
2383 	pm_runtime_set_suspended(&pdev->dev);
2384 	pm_runtime_dont_use_autosuspend(&pdev->dev);
2385 	clk_disable_unprepare(atxdmac->clk);
2386 
2387 	free_irq(atxdmac->irq, atxdmac);
2388 
2389 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2390 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2391 
2392 		tasklet_kill(&atchan->tasklet);
2393 		at_xdmac_free_chan_resources(&atchan->chan);
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 static const struct dev_pm_ops __maybe_unused atmel_xdmac_dev_pm_ops = {
2400 	.prepare	= atmel_xdmac_prepare,
2401 	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2402 	SET_RUNTIME_PM_OPS(atmel_xdmac_runtime_suspend,
2403 			   atmel_xdmac_runtime_resume, NULL)
2404 };
2405 
2406 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2407 	{
2408 		.compatible = "atmel,sama5d4-dma",
2409 		.data = &at_xdmac_sama5d4_layout,
2410 	}, {
2411 		.compatible = "microchip,sama7g5-dma",
2412 		.data = &at_xdmac_sama7g5_layout,
2413 	}, {
2414 		/* sentinel */
2415 	}
2416 };
2417 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2418 
2419 static struct platform_driver at_xdmac_driver = {
2420 	.probe		= at_xdmac_probe,
2421 	.remove		= at_xdmac_remove,
2422 	.driver = {
2423 		.name		= "at_xdmac",
2424 		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
2425 		.pm		= pm_ptr(&atmel_xdmac_dev_pm_ops),
2426 	}
2427 };
2428 
2429 static int __init at_xdmac_init(void)
2430 {
2431 	return platform_driver_register(&at_xdmac_driver);
2432 }
2433 subsys_initcall(at_xdmac_init);
2434 
2435 static void __exit at_xdmac_exit(void)
2436 {
2437 	platform_driver_unregister(&at_xdmac_driver);
2438 }
2439 module_exit(at_xdmac_exit);
2440 
2441 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2442 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2443 MODULE_LICENSE("GPL");
2444