1 /* 2 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems) 3 * 4 * Copyright (C) 2014 Atmel Corporation 5 * 6 * Author: Ludovic Desroches <ludovic.desroches@atmel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 * 17 * You should have received a copy of the GNU General Public License along with 18 * this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <asm/barrier.h> 22 #include <dt-bindings/dma/at91.h> 23 #include <linux/clk.h> 24 #include <linux/dmaengine.h> 25 #include <linux/dmapool.h> 26 #include <linux/interrupt.h> 27 #include <linux/irq.h> 28 #include <linux/kernel.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/of_dma.h> 32 #include <linux/of_platform.h> 33 #include <linux/platform_device.h> 34 #include <linux/pm.h> 35 36 #include "dmaengine.h" 37 38 /* Global registers */ 39 #define AT_XDMAC_GTYPE 0x00 /* Global Type Register */ 40 #define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */ 41 #define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */ 42 #define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */ 43 #define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */ 44 #define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */ 45 #define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */ 46 #define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */ 47 #define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */ 48 #define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */ 49 #define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */ 50 #define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */ 51 #define AT_XDMAC_GS 0x24 /* Global Channel Status Register */ 52 #define AT_XDMAC_GRS 0x28 /* Global Channel Read Suspend Register */ 53 #define AT_XDMAC_GWS 0x2C /* Global Write Suspend Register */ 54 #define AT_XDMAC_GRWS 0x30 /* Global Channel Read Write Suspend Register */ 55 #define AT_XDMAC_GRWR 0x34 /* Global Channel Read Write Resume Register */ 56 #define AT_XDMAC_GSWR 0x38 /* Global Channel Software Request Register */ 57 #define AT_XDMAC_GSWS 0x3C /* Global channel Software Request Status Register */ 58 #define AT_XDMAC_GSWF 0x40 /* Global Channel Software Flush Request Register */ 59 #define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */ 60 61 /* Channel relative registers offsets */ 62 #define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */ 63 #define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */ 64 #define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */ 65 #define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */ 66 #define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */ 67 #define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */ 68 #define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */ 69 #define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */ 70 #define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */ 71 #define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */ 72 #define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */ 73 #define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */ 74 #define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */ 75 #define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */ 76 #define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */ 77 #define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */ 78 #define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */ 79 #define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */ 80 #define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */ 81 #define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */ 82 #define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */ 83 #define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */ 84 #define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */ 85 #define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */ 86 #define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */ 87 #define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */ 88 #define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */ 89 #define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */ 90 #define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */ 91 #define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */ 92 #define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */ 93 #define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */ 94 #define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */ 95 #define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */ 96 #define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */ 97 #define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */ 98 #define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */ 99 #define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */ 100 #define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */ 101 #define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */ 102 #define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */ 103 #define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */ 104 #define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */ 105 #define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */ 106 #define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */ 107 #define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */ 108 #define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */ 109 #define AT_XDMAC_CC 0x28 /* Channel Configuration Register */ 110 #define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */ 111 #define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */ 112 #define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */ 113 #define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1) 114 #define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1) 115 #define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1) 116 #define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1) 117 #define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1) 118 #define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */ 119 #define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4) 120 #define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4) 121 #define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */ 122 #define AT_XDMAC_CC_PROT_SEC (0x0 << 5) 123 #define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5) 124 #define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */ 125 #define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6) 126 #define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6) 127 #define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */ 128 #define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7) 129 #define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7) 130 #define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */ 131 #define AT_XDMAC_CC_DWIDTH_OFFSET 11 132 #define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET) 133 #define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */ 134 #define AT_XDMAC_CC_DWIDTH_BYTE 0x0 135 #define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1 136 #define AT_XDMAC_CC_DWIDTH_WORD 0x2 137 #define AT_XDMAC_CC_DWIDTH_DWORD 0x3 138 #define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */ 139 #define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */ 140 #define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */ 141 #define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16) 142 #define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16) 143 #define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16) 144 #define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16) 145 #define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */ 146 #define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18) 147 #define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18) 148 #define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18) 149 #define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18) 150 #define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */ 151 #define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21) 152 #define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21) 153 #define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */ 154 #define AT_XDMAC_CC_RDIP_DONE (0x0 << 22) 155 #define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22) 156 #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */ 157 #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23) 158 #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23) 159 #define AT_XDMAC_CC_PERID(i) (0x7f & (h) << 24) /* Channel Peripheral Identifier */ 160 #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */ 161 #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */ 162 #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */ 163 164 #define AT_XDMAC_CHAN_REG_BASE 0x50 /* Channel registers base address */ 165 166 /* Microblock control members */ 167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */ 168 #define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */ 169 #define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */ 170 #define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */ 171 #define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */ 172 #define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */ 173 #define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */ 174 #define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */ 175 176 #define AT_XDMAC_MAX_CHAN 0x20 177 178 #define AT_XDMAC_DMA_BUSWIDTHS\ 179 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 180 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 181 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 182 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\ 183 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 184 185 enum atc_status { 186 AT_XDMAC_CHAN_IS_CYCLIC = 0, 187 AT_XDMAC_CHAN_IS_PAUSED, 188 }; 189 190 /* ----- Channels ----- */ 191 struct at_xdmac_chan { 192 struct dma_chan chan; 193 void __iomem *ch_regs; 194 u32 mask; /* Channel Mask */ 195 u32 cfg[2]; /* Channel Configuration Register */ 196 #define AT_XDMAC_DEV_TO_MEM_CFG 0 /* Predifined dev to mem channel conf */ 197 #define AT_XDMAC_MEM_TO_DEV_CFG 1 /* Predifined mem to dev channel conf */ 198 u8 perid; /* Peripheral ID */ 199 u8 perif; /* Peripheral Interface */ 200 u8 memif; /* Memory Interface */ 201 u32 per_src_addr; 202 u32 per_dst_addr; 203 u32 save_cc; 204 u32 save_cim; 205 u32 save_cnda; 206 u32 save_cndc; 207 unsigned long status; 208 struct tasklet_struct tasklet; 209 210 spinlock_t lock; 211 212 struct list_head xfers_list; 213 struct list_head free_descs_list; 214 }; 215 216 217 /* ----- Controller ----- */ 218 struct at_xdmac { 219 struct dma_device dma; 220 void __iomem *regs; 221 int irq; 222 struct clk *clk; 223 u32 save_gim; 224 u32 save_gs; 225 struct dma_pool *at_xdmac_desc_pool; 226 struct at_xdmac_chan chan[0]; 227 }; 228 229 230 /* ----- Descriptors ----- */ 231 232 /* Linked List Descriptor */ 233 struct at_xdmac_lld { 234 dma_addr_t mbr_nda; /* Next Descriptor Member */ 235 u32 mbr_ubc; /* Microblock Control Member */ 236 dma_addr_t mbr_sa; /* Source Address Member */ 237 dma_addr_t mbr_da; /* Destination Address Member */ 238 u32 mbr_cfg; /* Configuration Register */ 239 }; 240 241 242 struct at_xdmac_desc { 243 struct at_xdmac_lld lld; 244 enum dma_transfer_direction direction; 245 struct dma_async_tx_descriptor tx_dma_desc; 246 struct list_head desc_node; 247 /* Following members are only used by the first descriptor */ 248 bool active_xfer; 249 unsigned int xfer_size; 250 struct list_head descs_list; 251 struct list_head xfer_node; 252 }; 253 254 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb) 255 { 256 return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40); 257 } 258 259 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg)) 260 #define at_xdmac_write(atxdmac, reg, value) \ 261 writel_relaxed((value), (atxdmac)->regs + (reg)) 262 263 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg)) 264 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg)) 265 266 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan) 267 { 268 return container_of(dchan, struct at_xdmac_chan, chan); 269 } 270 271 static struct device *chan2dev(struct dma_chan *chan) 272 { 273 return &chan->dev->device; 274 } 275 276 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev) 277 { 278 return container_of(ddev, struct at_xdmac, dma); 279 } 280 281 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd) 282 { 283 return container_of(txd, struct at_xdmac_desc, tx_dma_desc); 284 } 285 286 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan) 287 { 288 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 289 } 290 291 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan) 292 { 293 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 294 } 295 296 static inline int at_xdmac_csize(u32 maxburst) 297 { 298 int csize; 299 300 csize = ffs(maxburst) - 1; 301 if (csize > 4) 302 csize = -EINVAL; 303 304 return csize; 305 }; 306 307 static inline u8 at_xdmac_get_dwidth(u32 cfg) 308 { 309 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET; 310 }; 311 312 static unsigned int init_nr_desc_per_channel = 64; 313 module_param(init_nr_desc_per_channel, uint, 0644); 314 MODULE_PARM_DESC(init_nr_desc_per_channel, 315 "initial descriptors per channel (default: 64)"); 316 317 318 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan) 319 { 320 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask; 321 } 322 323 static void at_xdmac_off(struct at_xdmac *atxdmac) 324 { 325 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L); 326 327 /* Wait that all chans are disabled. */ 328 while (at_xdmac_read(atxdmac, AT_XDMAC_GS)) 329 cpu_relax(); 330 331 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L); 332 } 333 334 /* Call with lock hold. */ 335 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan, 336 struct at_xdmac_desc *first) 337 { 338 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 339 u32 reg; 340 341 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first); 342 343 if (at_xdmac_chan_is_enabled(atchan)) 344 return; 345 346 /* Set transfer as active to not try to start it again. */ 347 first->active_xfer = true; 348 349 /* Tell xdmac where to get the first descriptor. */ 350 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys) 351 | AT_XDMAC_CNDA_NDAIF(atchan->memif); 352 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg); 353 354 /* 355 * When doing non cyclic transfer we need to use the next 356 * descriptor view 2 since some fields of the configuration register 357 * depend on transfer size and src/dest addresses. 358 */ 359 if (at_xdmac_chan_is_cyclic(atchan)) { 360 reg = AT_XDMAC_CNDC_NDVIEW_NDV1; 361 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg); 362 } else { 363 /* 364 * No need to write AT_XDMAC_CC reg, it will be done when the 365 * descriptor is fecthed. 366 */ 367 reg = AT_XDMAC_CNDC_NDVIEW_NDV2; 368 } 369 370 reg |= AT_XDMAC_CNDC_NDDUP 371 | AT_XDMAC_CNDC_NDSUP 372 | AT_XDMAC_CNDC_NDE; 373 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg); 374 375 dev_vdbg(chan2dev(&atchan->chan), 376 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 377 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 378 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 379 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 380 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 381 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 382 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 383 384 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff); 385 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE; 386 /* 387 * There is no end of list when doing cyclic dma, we need to get 388 * an interrupt after each periods. 389 */ 390 if (at_xdmac_chan_is_cyclic(atchan)) 391 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 392 reg | AT_XDMAC_CIE_BIE); 393 else 394 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 395 reg | AT_XDMAC_CIE_LIE); 396 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask); 397 dev_vdbg(chan2dev(&atchan->chan), 398 "%s: enable channel (0x%08x)\n", __func__, atchan->mask); 399 wmb(); 400 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 401 402 dev_vdbg(chan2dev(&atchan->chan), 403 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 404 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 405 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 406 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 407 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 408 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 409 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 410 411 } 412 413 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx) 414 { 415 struct at_xdmac_desc *desc = txd_to_at_desc(tx); 416 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan); 417 dma_cookie_t cookie; 418 419 spin_lock_bh(&atchan->lock); 420 cookie = dma_cookie_assign(tx); 421 422 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n", 423 __func__, atchan, desc); 424 list_add_tail(&desc->xfer_node, &atchan->xfers_list); 425 if (list_is_singular(&atchan->xfers_list)) 426 at_xdmac_start_xfer(atchan, desc); 427 428 spin_unlock_bh(&atchan->lock); 429 return cookie; 430 } 431 432 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan, 433 gfp_t gfp_flags) 434 { 435 struct at_xdmac_desc *desc; 436 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 437 dma_addr_t phys; 438 439 desc = dma_pool_alloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys); 440 if (desc) { 441 memset(desc, 0, sizeof(*desc)); 442 INIT_LIST_HEAD(&desc->descs_list); 443 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan); 444 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit; 445 desc->tx_dma_desc.phys = phys; 446 } 447 448 return desc; 449 } 450 451 /* Call must be protected by lock. */ 452 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan) 453 { 454 struct at_xdmac_desc *desc; 455 456 if (list_empty(&atchan->free_descs_list)) { 457 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT); 458 } else { 459 desc = list_first_entry(&atchan->free_descs_list, 460 struct at_xdmac_desc, desc_node); 461 list_del(&desc->desc_node); 462 desc->active_xfer = false; 463 } 464 465 return desc; 466 } 467 468 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec, 469 struct of_dma *of_dma) 470 { 471 struct at_xdmac *atxdmac = of_dma->of_dma_data; 472 struct at_xdmac_chan *atchan; 473 struct dma_chan *chan; 474 struct device *dev = atxdmac->dma.dev; 475 476 if (dma_spec->args_count != 1) { 477 dev_err(dev, "dma phandler args: bad number of args\n"); 478 return NULL; 479 } 480 481 chan = dma_get_any_slave_channel(&atxdmac->dma); 482 if (!chan) { 483 dev_err(dev, "can't get a dma channel\n"); 484 return NULL; 485 } 486 487 atchan = to_at_xdmac_chan(chan); 488 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]); 489 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]); 490 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]); 491 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n", 492 atchan->memif, atchan->perif, atchan->perid); 493 494 return chan; 495 } 496 497 static int at_xdmac_set_slave_config(struct dma_chan *chan, 498 struct dma_slave_config *sconfig) 499 { 500 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 501 u8 dwidth; 502 int csize; 503 504 atchan->cfg[AT_XDMAC_DEV_TO_MEM_CFG] = 505 AT91_XDMAC_DT_PERID(atchan->perid) 506 | AT_XDMAC_CC_DAM_INCREMENTED_AM 507 | AT_XDMAC_CC_SAM_FIXED_AM 508 | AT_XDMAC_CC_DIF(atchan->memif) 509 | AT_XDMAC_CC_SIF(atchan->perif) 510 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 511 | AT_XDMAC_CC_DSYNC_PER2MEM 512 | AT_XDMAC_CC_MBSIZE_SIXTEEN 513 | AT_XDMAC_CC_TYPE_PER_TRAN; 514 csize = at_xdmac_csize(sconfig->src_maxburst); 515 if (csize < 0) { 516 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 517 return -EINVAL; 518 } 519 atchan->cfg[AT_XDMAC_DEV_TO_MEM_CFG] |= AT_XDMAC_CC_CSIZE(csize); 520 dwidth = ffs(sconfig->src_addr_width) - 1; 521 atchan->cfg[AT_XDMAC_DEV_TO_MEM_CFG] |= AT_XDMAC_CC_DWIDTH(dwidth); 522 523 524 atchan->cfg[AT_XDMAC_MEM_TO_DEV_CFG] = 525 AT91_XDMAC_DT_PERID(atchan->perid) 526 | AT_XDMAC_CC_DAM_FIXED_AM 527 | AT_XDMAC_CC_SAM_INCREMENTED_AM 528 | AT_XDMAC_CC_DIF(atchan->perif) 529 | AT_XDMAC_CC_SIF(atchan->memif) 530 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 531 | AT_XDMAC_CC_DSYNC_MEM2PER 532 | AT_XDMAC_CC_MBSIZE_SIXTEEN 533 | AT_XDMAC_CC_TYPE_PER_TRAN; 534 csize = at_xdmac_csize(sconfig->dst_maxburst); 535 if (csize < 0) { 536 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 537 return -EINVAL; 538 } 539 atchan->cfg[AT_XDMAC_MEM_TO_DEV_CFG] |= AT_XDMAC_CC_CSIZE(csize); 540 dwidth = ffs(sconfig->dst_addr_width) - 1; 541 atchan->cfg[AT_XDMAC_MEM_TO_DEV_CFG] |= AT_XDMAC_CC_DWIDTH(dwidth); 542 543 /* Src and dst addr are needed to configure the link list descriptor. */ 544 atchan->per_src_addr = sconfig->src_addr; 545 atchan->per_dst_addr = sconfig->dst_addr; 546 547 dev_dbg(chan2dev(chan), 548 "%s: cfg[dev2mem]=0x%08x, cfg[mem2dev]=0x%08x, per_src_addr=0x%08x, per_dst_addr=0x%08x\n", 549 __func__, atchan->cfg[AT_XDMAC_DEV_TO_MEM_CFG], 550 atchan->cfg[AT_XDMAC_MEM_TO_DEV_CFG], 551 atchan->per_src_addr, atchan->per_dst_addr); 552 553 return 0; 554 } 555 556 static struct dma_async_tx_descriptor * 557 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 558 unsigned int sg_len, enum dma_transfer_direction direction, 559 unsigned long flags, void *context) 560 { 561 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 562 struct at_xdmac_desc *first = NULL, *prev = NULL; 563 struct scatterlist *sg; 564 int i; 565 unsigned int xfer_size = 0; 566 567 if (!sgl) 568 return NULL; 569 570 if (!is_slave_direction(direction)) { 571 dev_err(chan2dev(chan), "invalid DMA direction\n"); 572 return NULL; 573 } 574 575 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n", 576 __func__, sg_len, 577 direction == DMA_MEM_TO_DEV ? "to device" : "from device", 578 flags); 579 580 /* Protect dma_sconfig field that can be modified by set_slave_conf. */ 581 spin_lock_bh(&atchan->lock); 582 583 /* Prepare descriptors. */ 584 for_each_sg(sgl, sg, sg_len, i) { 585 struct at_xdmac_desc *desc = NULL; 586 u32 len, mem, dwidth, fixed_dwidth; 587 588 len = sg_dma_len(sg); 589 mem = sg_dma_address(sg); 590 if (unlikely(!len)) { 591 dev_err(chan2dev(chan), "sg data length is zero\n"); 592 spin_unlock_bh(&atchan->lock); 593 return NULL; 594 } 595 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n", 596 __func__, i, len, mem); 597 598 desc = at_xdmac_get_desc(atchan); 599 if (!desc) { 600 dev_err(chan2dev(chan), "can't get descriptor\n"); 601 if (first) 602 list_splice_init(&first->descs_list, &atchan->free_descs_list); 603 spin_unlock_bh(&atchan->lock); 604 return NULL; 605 } 606 607 /* Linked list descriptor setup. */ 608 if (direction == DMA_DEV_TO_MEM) { 609 desc->lld.mbr_sa = atchan->per_src_addr; 610 desc->lld.mbr_da = mem; 611 desc->lld.mbr_cfg = atchan->cfg[AT_XDMAC_DEV_TO_MEM_CFG]; 612 } else { 613 desc->lld.mbr_sa = mem; 614 desc->lld.mbr_da = atchan->per_dst_addr; 615 desc->lld.mbr_cfg = atchan->cfg[AT_XDMAC_MEM_TO_DEV_CFG]; 616 } 617 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg); 618 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth) 619 ? at_xdmac_get_dwidth(desc->lld.mbr_cfg) 620 : AT_XDMAC_CC_DWIDTH_BYTE; 621 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */ 622 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */ 623 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */ 624 | (i == sg_len - 1 ? 0 : AT_XDMAC_MBR_UBC_NDE) /* descriptor fetch */ 625 | (len >> fixed_dwidth); /* microblock length */ 626 dev_dbg(chan2dev(chan), 627 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 628 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 629 630 /* Chain lld. */ 631 if (prev) { 632 prev->lld.mbr_nda = desc->tx_dma_desc.phys; 633 dev_dbg(chan2dev(chan), 634 "%s: chain lld: prev=0x%p, mbr_nda=%pad\n", 635 __func__, prev, &prev->lld.mbr_nda); 636 } 637 638 prev = desc; 639 if (!first) 640 first = desc; 641 642 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 643 __func__, desc, first); 644 list_add_tail(&desc->desc_node, &first->descs_list); 645 xfer_size += len; 646 } 647 648 spin_unlock_bh(&atchan->lock); 649 650 first->tx_dma_desc.flags = flags; 651 first->xfer_size = xfer_size; 652 first->direction = direction; 653 654 return &first->tx_dma_desc; 655 } 656 657 static struct dma_async_tx_descriptor * 658 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, 659 size_t buf_len, size_t period_len, 660 enum dma_transfer_direction direction, 661 unsigned long flags) 662 { 663 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 664 struct at_xdmac_desc *first = NULL, *prev = NULL; 665 unsigned int periods = buf_len / period_len; 666 int i; 667 668 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n", 669 __func__, &buf_addr, buf_len, period_len, 670 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags); 671 672 if (!is_slave_direction(direction)) { 673 dev_err(chan2dev(chan), "invalid DMA direction\n"); 674 return NULL; 675 } 676 677 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) { 678 dev_err(chan2dev(chan), "channel currently used\n"); 679 return NULL; 680 } 681 682 for (i = 0; i < periods; i++) { 683 struct at_xdmac_desc *desc = NULL; 684 685 spin_lock_bh(&atchan->lock); 686 desc = at_xdmac_get_desc(atchan); 687 if (!desc) { 688 dev_err(chan2dev(chan), "can't get descriptor\n"); 689 if (first) 690 list_splice_init(&first->descs_list, &atchan->free_descs_list); 691 spin_unlock_bh(&atchan->lock); 692 return NULL; 693 } 694 spin_unlock_bh(&atchan->lock); 695 dev_dbg(chan2dev(chan), 696 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n", 697 __func__, desc, &desc->tx_dma_desc.phys); 698 699 if (direction == DMA_DEV_TO_MEM) { 700 desc->lld.mbr_sa = atchan->per_src_addr; 701 desc->lld.mbr_da = buf_addr + i * period_len; 702 desc->lld.mbr_cfg = atchan->cfg[AT_XDMAC_DEV_TO_MEM_CFG]; 703 } else { 704 desc->lld.mbr_sa = buf_addr + i * period_len; 705 desc->lld.mbr_da = atchan->per_dst_addr; 706 desc->lld.mbr_cfg = atchan->cfg[AT_XDMAC_MEM_TO_DEV_CFG]; 707 } 708 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1 709 | AT_XDMAC_MBR_UBC_NDEN 710 | AT_XDMAC_MBR_UBC_NSEN 711 | AT_XDMAC_MBR_UBC_NDE 712 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg); 713 714 dev_dbg(chan2dev(chan), 715 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 716 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 717 718 /* Chain lld. */ 719 if (prev) { 720 prev->lld.mbr_nda = desc->tx_dma_desc.phys; 721 dev_dbg(chan2dev(chan), 722 "%s: chain lld: prev=0x%p, mbr_nda=%pad\n", 723 __func__, prev, &prev->lld.mbr_nda); 724 } 725 726 prev = desc; 727 if (!first) 728 first = desc; 729 730 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 731 __func__, desc, first); 732 list_add_tail(&desc->desc_node, &first->descs_list); 733 } 734 735 prev->lld.mbr_nda = first->tx_dma_desc.phys; 736 dev_dbg(chan2dev(chan), 737 "%s: chain lld: prev=0x%p, mbr_nda=%pad\n", 738 __func__, prev, &prev->lld.mbr_nda); 739 first->tx_dma_desc.flags = flags; 740 first->xfer_size = buf_len; 741 first->direction = direction; 742 743 return &first->tx_dma_desc; 744 } 745 746 static struct dma_async_tx_descriptor * 747 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 748 size_t len, unsigned long flags) 749 { 750 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 751 struct at_xdmac_desc *first = NULL, *prev = NULL; 752 size_t remaining_size = len, xfer_size = 0, ublen; 753 dma_addr_t src_addr = src, dst_addr = dest; 754 u32 dwidth; 755 /* 756 * WARNING: We don't know the direction, it involves we can't 757 * dynamically set the source and dest interface so we have to use the 758 * same one. Only interface 0 allows EBI access. Hopefully we can 759 * access DDR through both ports (at least on SAMA5D4x), so we can use 760 * the same interface for source and dest, that solves the fact we 761 * don't know the direction. 762 */ 763 u32 chan_cc = AT_XDMAC_CC_DAM_INCREMENTED_AM 764 | AT_XDMAC_CC_SAM_INCREMENTED_AM 765 | AT_XDMAC_CC_DIF(0) 766 | AT_XDMAC_CC_SIF(0) 767 | AT_XDMAC_CC_MBSIZE_SIXTEEN 768 | AT_XDMAC_CC_TYPE_MEM_TRAN; 769 770 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n", 771 __func__, &src, &dest, len, flags); 772 773 if (unlikely(!len)) 774 return NULL; 775 776 /* 777 * Check address alignment to select the greater data width we can use. 778 * Some XDMAC implementations don't provide dword transfer, in this 779 * case selecting dword has the same behavior as selecting word transfers. 780 */ 781 if (!((src_addr | dst_addr) & 7)) { 782 dwidth = AT_XDMAC_CC_DWIDTH_DWORD; 783 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__); 784 } else if (!((src_addr | dst_addr) & 3)) { 785 dwidth = AT_XDMAC_CC_DWIDTH_WORD; 786 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__); 787 } else if (!((src_addr | dst_addr) & 1)) { 788 dwidth = AT_XDMAC_CC_DWIDTH_HALFWORD; 789 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__); 790 } else { 791 dwidth = AT_XDMAC_CC_DWIDTH_BYTE; 792 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__); 793 } 794 795 /* Prepare descriptors. */ 796 while (remaining_size) { 797 struct at_xdmac_desc *desc = NULL; 798 799 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size); 800 801 spin_lock_bh(&atchan->lock); 802 desc = at_xdmac_get_desc(atchan); 803 spin_unlock_bh(&atchan->lock); 804 if (!desc) { 805 dev_err(chan2dev(chan), "can't get descriptor\n"); 806 if (first) 807 list_splice_init(&first->descs_list, &atchan->free_descs_list); 808 return NULL; 809 } 810 811 /* Update src and dest addresses. */ 812 src_addr += xfer_size; 813 dst_addr += xfer_size; 814 815 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth) 816 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth; 817 else 818 xfer_size = remaining_size; 819 820 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size); 821 822 /* Check remaining length and change data width if needed. */ 823 if (!((src_addr | dst_addr | xfer_size) & 7)) { 824 dwidth = AT_XDMAC_CC_DWIDTH_DWORD; 825 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__); 826 } else if (!((src_addr | dst_addr | xfer_size) & 3)) { 827 dwidth = AT_XDMAC_CC_DWIDTH_WORD; 828 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__); 829 } else if (!((src_addr | dst_addr | xfer_size) & 1)) { 830 dwidth = AT_XDMAC_CC_DWIDTH_HALFWORD; 831 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__); 832 } else if ((src_addr | dst_addr | xfer_size) & 1) { 833 dwidth = AT_XDMAC_CC_DWIDTH_BYTE; 834 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__); 835 } 836 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 837 838 ublen = xfer_size >> dwidth; 839 remaining_size -= xfer_size; 840 841 desc->lld.mbr_sa = src_addr; 842 desc->lld.mbr_da = dst_addr; 843 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 844 | AT_XDMAC_MBR_UBC_NDEN 845 | AT_XDMAC_MBR_UBC_NSEN 846 | (remaining_size ? AT_XDMAC_MBR_UBC_NDE : 0) 847 | ublen; 848 desc->lld.mbr_cfg = chan_cc; 849 850 dev_dbg(chan2dev(chan), 851 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 852 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg); 853 854 /* Chain lld. */ 855 if (prev) { 856 prev->lld.mbr_nda = desc->tx_dma_desc.phys; 857 dev_dbg(chan2dev(chan), 858 "%s: chain lld: prev=0x%p, mbr_nda=0x%08x\n", 859 __func__, prev, prev->lld.mbr_nda); 860 } 861 862 prev = desc; 863 if (!first) 864 first = desc; 865 866 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 867 __func__, desc, first); 868 list_add_tail(&desc->desc_node, &first->descs_list); 869 } 870 871 first->tx_dma_desc.flags = flags; 872 first->xfer_size = len; 873 874 return &first->tx_dma_desc; 875 } 876 877 static enum dma_status 878 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 879 struct dma_tx_state *txstate) 880 { 881 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 882 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 883 struct at_xdmac_desc *desc, *_desc; 884 struct list_head *descs_list; 885 enum dma_status ret; 886 int residue; 887 u32 cur_nda, mask, value; 888 u8 dwidth = 0; 889 890 ret = dma_cookie_status(chan, cookie, txstate); 891 if (ret == DMA_COMPLETE) 892 return ret; 893 894 if (!txstate) 895 return ret; 896 897 spin_lock_bh(&atchan->lock); 898 899 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 900 901 /* 902 * If the transfer has not been started yet, don't need to compute the 903 * residue, it's the transfer length. 904 */ 905 if (!desc->active_xfer) { 906 dma_set_residue(txstate, desc->xfer_size); 907 spin_unlock_bh(&atchan->lock); 908 return ret; 909 } 910 911 residue = desc->xfer_size; 912 /* 913 * Flush FIFO: only relevant when the transfer is source peripheral 914 * synchronized. 915 */ 916 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC; 917 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM; 918 if ((desc->lld.mbr_cfg & mask) == value) { 919 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask); 920 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS)) 921 cpu_relax(); 922 } 923 924 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 925 /* 926 * Remove size of all microblocks already transferred and the current 927 * one. Then add the remaining size to transfer of the current 928 * microblock. 929 */ 930 descs_list = &desc->descs_list; 931 list_for_each_entry_safe(desc, _desc, descs_list, desc_node) { 932 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg); 933 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth; 934 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda) 935 break; 936 } 937 residue += at_xdmac_chan_read(atchan, AT_XDMAC_CUBC) << dwidth; 938 939 spin_unlock_bh(&atchan->lock); 940 941 dma_set_residue(txstate, residue); 942 943 dev_dbg(chan2dev(chan), 944 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n", 945 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue); 946 947 return ret; 948 } 949 950 /* Call must be protected by lock. */ 951 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan, 952 struct at_xdmac_desc *desc) 953 { 954 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 955 956 /* 957 * Remove the transfer from the transfer list then move the transfer 958 * descriptors into the free descriptors list. 959 */ 960 list_del(&desc->xfer_node); 961 list_splice_init(&desc->descs_list, &atchan->free_descs_list); 962 } 963 964 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan) 965 { 966 struct at_xdmac_desc *desc; 967 968 spin_lock_bh(&atchan->lock); 969 970 /* 971 * If channel is enabled, do nothing, advance_work will be triggered 972 * after the interruption. 973 */ 974 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) { 975 desc = list_first_entry(&atchan->xfers_list, 976 struct at_xdmac_desc, 977 xfer_node); 978 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 979 if (!desc->active_xfer) 980 at_xdmac_start_xfer(atchan, desc); 981 } 982 983 spin_unlock_bh(&atchan->lock); 984 } 985 986 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan) 987 { 988 struct at_xdmac_desc *desc; 989 struct dma_async_tx_descriptor *txd; 990 991 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 992 txd = &desc->tx_dma_desc; 993 994 if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT)) 995 txd->callback(txd->callback_param); 996 } 997 998 static void at_xdmac_tasklet(unsigned long data) 999 { 1000 struct at_xdmac_chan *atchan = (struct at_xdmac_chan *)data; 1001 struct at_xdmac_desc *desc; 1002 u32 error_mask; 1003 1004 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n", 1005 __func__, atchan->status); 1006 1007 error_mask = AT_XDMAC_CIS_RBEIS 1008 | AT_XDMAC_CIS_WBEIS 1009 | AT_XDMAC_CIS_ROIS; 1010 1011 if (at_xdmac_chan_is_cyclic(atchan)) { 1012 at_xdmac_handle_cyclic(atchan); 1013 } else if ((atchan->status & AT_XDMAC_CIS_LIS) 1014 || (atchan->status & error_mask)) { 1015 struct dma_async_tx_descriptor *txd; 1016 1017 if (atchan->status & AT_XDMAC_CIS_RBEIS) 1018 dev_err(chan2dev(&atchan->chan), "read bus error!!!"); 1019 if (atchan->status & AT_XDMAC_CIS_WBEIS) 1020 dev_err(chan2dev(&atchan->chan), "write bus error!!!"); 1021 if (atchan->status & AT_XDMAC_CIS_ROIS) 1022 dev_err(chan2dev(&atchan->chan), "request overflow error!!!"); 1023 1024 spin_lock_bh(&atchan->lock); 1025 desc = list_first_entry(&atchan->xfers_list, 1026 struct at_xdmac_desc, 1027 xfer_node); 1028 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1029 BUG_ON(!desc->active_xfer); 1030 1031 txd = &desc->tx_dma_desc; 1032 1033 at_xdmac_remove_xfer(atchan, desc); 1034 spin_unlock_bh(&atchan->lock); 1035 1036 if (!at_xdmac_chan_is_cyclic(atchan)) { 1037 dma_cookie_complete(txd); 1038 if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT)) 1039 txd->callback(txd->callback_param); 1040 } 1041 1042 dma_run_dependencies(txd); 1043 1044 at_xdmac_advance_work(atchan); 1045 } 1046 } 1047 1048 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id) 1049 { 1050 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id; 1051 struct at_xdmac_chan *atchan; 1052 u32 imr, status, pending; 1053 u32 chan_imr, chan_status; 1054 int i, ret = IRQ_NONE; 1055 1056 do { 1057 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1058 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS); 1059 pending = status & imr; 1060 1061 dev_vdbg(atxdmac->dma.dev, 1062 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n", 1063 __func__, status, imr, pending); 1064 1065 if (!pending) 1066 break; 1067 1068 /* We have to find which channel has generated the interrupt. */ 1069 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1070 if (!((1 << i) & pending)) 1071 continue; 1072 1073 atchan = &atxdmac->chan[i]; 1074 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1075 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS); 1076 atchan->status = chan_status & chan_imr; 1077 dev_vdbg(atxdmac->dma.dev, 1078 "%s: chan%d: imr=0x%x, status=0x%x\n", 1079 __func__, i, chan_imr, chan_status); 1080 dev_vdbg(chan2dev(&atchan->chan), 1081 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 1082 __func__, 1083 at_xdmac_chan_read(atchan, AT_XDMAC_CC), 1084 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 1085 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 1086 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 1087 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 1088 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 1089 1090 if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS)) 1091 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1092 1093 tasklet_schedule(&atchan->tasklet); 1094 ret = IRQ_HANDLED; 1095 } 1096 1097 } while (pending); 1098 1099 return ret; 1100 } 1101 1102 static void at_xdmac_issue_pending(struct dma_chan *chan) 1103 { 1104 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1105 1106 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__); 1107 1108 if (!at_xdmac_chan_is_cyclic(atchan)) 1109 at_xdmac_advance_work(atchan); 1110 1111 return; 1112 } 1113 1114 static int at_xdmac_device_config(struct dma_chan *chan, 1115 struct dma_slave_config *config) 1116 { 1117 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1118 int ret; 1119 1120 dev_dbg(chan2dev(chan), "%s\n", __func__); 1121 1122 spin_lock_bh(&atchan->lock); 1123 ret = at_xdmac_set_slave_config(chan, config); 1124 spin_unlock_bh(&atchan->lock); 1125 1126 return ret; 1127 } 1128 1129 static int at_xdmac_device_pause(struct dma_chan *chan) 1130 { 1131 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1132 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1133 1134 dev_dbg(chan2dev(chan), "%s\n", __func__); 1135 1136 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status)) 1137 return 0; 1138 1139 spin_lock_bh(&atchan->lock); 1140 at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask); 1141 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC) 1142 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP)) 1143 cpu_relax(); 1144 spin_unlock_bh(&atchan->lock); 1145 1146 return 0; 1147 } 1148 1149 static int at_xdmac_device_resume(struct dma_chan *chan) 1150 { 1151 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1152 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1153 1154 dev_dbg(chan2dev(chan), "%s\n", __func__); 1155 1156 spin_lock_bh(&atchan->lock); 1157 if (!at_xdmac_chan_is_paused(atchan)) { 1158 spin_unlock_bh(&atchan->lock); 1159 return 0; 1160 } 1161 1162 at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask); 1163 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1164 spin_unlock_bh(&atchan->lock); 1165 1166 return 0; 1167 } 1168 1169 static int at_xdmac_device_terminate_all(struct dma_chan *chan) 1170 { 1171 struct at_xdmac_desc *desc, *_desc; 1172 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1173 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1174 1175 dev_dbg(chan2dev(chan), "%s\n", __func__); 1176 1177 spin_lock_bh(&atchan->lock); 1178 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1179 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask) 1180 cpu_relax(); 1181 1182 /* Cancel all pending transfers. */ 1183 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) 1184 at_xdmac_remove_xfer(atchan, desc); 1185 1186 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 1187 spin_unlock_bh(&atchan->lock); 1188 1189 return 0; 1190 } 1191 1192 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan) 1193 { 1194 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1195 struct at_xdmac_desc *desc; 1196 int i; 1197 1198 spin_lock_bh(&atchan->lock); 1199 1200 if (at_xdmac_chan_is_enabled(atchan)) { 1201 dev_err(chan2dev(chan), 1202 "can't allocate channel resources (channel enabled)\n"); 1203 i = -EIO; 1204 goto spin_unlock; 1205 } 1206 1207 if (!list_empty(&atchan->free_descs_list)) { 1208 dev_err(chan2dev(chan), 1209 "can't allocate channel resources (channel not free from a previous use)\n"); 1210 i = -EIO; 1211 goto spin_unlock; 1212 } 1213 1214 for (i = 0; i < init_nr_desc_per_channel; i++) { 1215 desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC); 1216 if (!desc) { 1217 dev_warn(chan2dev(chan), 1218 "only %d descriptors have been allocated\n", i); 1219 break; 1220 } 1221 list_add_tail(&desc->desc_node, &atchan->free_descs_list); 1222 } 1223 1224 dma_cookie_init(chan); 1225 1226 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i); 1227 1228 spin_unlock: 1229 spin_unlock_bh(&atchan->lock); 1230 return i; 1231 } 1232 1233 static void at_xdmac_free_chan_resources(struct dma_chan *chan) 1234 { 1235 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1236 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 1237 struct at_xdmac_desc *desc, *_desc; 1238 1239 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) { 1240 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc); 1241 list_del(&desc->desc_node); 1242 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys); 1243 } 1244 1245 return; 1246 } 1247 1248 #ifdef CONFIG_PM 1249 static int atmel_xdmac_prepare(struct device *dev) 1250 { 1251 struct platform_device *pdev = to_platform_device(dev); 1252 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1253 struct dma_chan *chan, *_chan; 1254 1255 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1256 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1257 1258 /* Wait for transfer completion, except in cyclic case. */ 1259 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan)) 1260 return -EAGAIN; 1261 } 1262 return 0; 1263 } 1264 #else 1265 # define atmel_xdmac_prepare NULL 1266 #endif 1267 1268 #ifdef CONFIG_PM_SLEEP 1269 static int atmel_xdmac_suspend(struct device *dev) 1270 { 1271 struct platform_device *pdev = to_platform_device(dev); 1272 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1273 struct dma_chan *chan, *_chan; 1274 1275 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1276 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1277 1278 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC); 1279 if (at_xdmac_chan_is_cyclic(atchan)) { 1280 if (!at_xdmac_chan_is_paused(atchan)) 1281 at_xdmac_device_pause(chan); 1282 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1283 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA); 1284 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC); 1285 } 1286 } 1287 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1288 1289 at_xdmac_off(atxdmac); 1290 clk_disable_unprepare(atxdmac->clk); 1291 return 0; 1292 } 1293 1294 static int atmel_xdmac_resume(struct device *dev) 1295 { 1296 struct platform_device *pdev = to_platform_device(dev); 1297 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1298 struct at_xdmac_chan *atchan; 1299 struct dma_chan *chan, *_chan; 1300 int i; 1301 1302 clk_prepare_enable(atxdmac->clk); 1303 1304 /* Clear pending interrupts. */ 1305 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1306 atchan = &atxdmac->chan[i]; 1307 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 1308 cpu_relax(); 1309 } 1310 1311 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim); 1312 at_xdmac_write(atxdmac, AT_XDMAC_GE, atxdmac->save_gs); 1313 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1314 atchan = to_at_xdmac_chan(chan); 1315 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc); 1316 if (at_xdmac_chan_is_cyclic(atchan)) { 1317 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda); 1318 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc); 1319 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim); 1320 wmb(); 1321 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 1322 } 1323 } 1324 return 0; 1325 } 1326 #endif /* CONFIG_PM_SLEEP */ 1327 1328 static int at_xdmac_probe(struct platform_device *pdev) 1329 { 1330 struct resource *res; 1331 struct at_xdmac *atxdmac; 1332 int irq, size, nr_channels, i, ret; 1333 void __iomem *base; 1334 u32 reg; 1335 1336 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1337 if (!res) 1338 return -EINVAL; 1339 1340 irq = platform_get_irq(pdev, 0); 1341 if (irq < 0) 1342 return irq; 1343 1344 base = devm_ioremap_resource(&pdev->dev, res); 1345 if (IS_ERR(base)) 1346 return PTR_ERR(base); 1347 1348 /* 1349 * Read number of xdmac channels, read helper function can't be used 1350 * since atxdmac is not yet allocated and we need to know the number 1351 * of channels to do the allocation. 1352 */ 1353 reg = readl_relaxed(base + AT_XDMAC_GTYPE); 1354 nr_channels = AT_XDMAC_NB_CH(reg); 1355 if (nr_channels > AT_XDMAC_MAX_CHAN) { 1356 dev_err(&pdev->dev, "invalid number of channels (%u)\n", 1357 nr_channels); 1358 return -EINVAL; 1359 } 1360 1361 size = sizeof(*atxdmac); 1362 size += nr_channels * sizeof(struct at_xdmac_chan); 1363 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); 1364 if (!atxdmac) { 1365 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n"); 1366 return -ENOMEM; 1367 } 1368 1369 atxdmac->regs = base; 1370 atxdmac->irq = irq; 1371 1372 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk"); 1373 if (IS_ERR(atxdmac->clk)) { 1374 dev_err(&pdev->dev, "can't get dma_clk\n"); 1375 return PTR_ERR(atxdmac->clk); 1376 } 1377 1378 /* Do not use dev res to prevent races with tasklet */ 1379 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac); 1380 if (ret) { 1381 dev_err(&pdev->dev, "can't request irq\n"); 1382 return ret; 1383 } 1384 1385 ret = clk_prepare_enable(atxdmac->clk); 1386 if (ret) { 1387 dev_err(&pdev->dev, "can't prepare or enable clock\n"); 1388 goto err_free_irq; 1389 } 1390 1391 atxdmac->at_xdmac_desc_pool = 1392 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev, 1393 sizeof(struct at_xdmac_desc), 4, 0); 1394 if (!atxdmac->at_xdmac_desc_pool) { 1395 dev_err(&pdev->dev, "no memory for descriptors dma pool\n"); 1396 ret = -ENOMEM; 1397 goto err_clk_disable; 1398 } 1399 1400 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask); 1401 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask); 1402 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask); 1403 /* 1404 * Without DMA_PRIVATE the driver is not able to allocate more than 1405 * one channel, second allocation fails in private_candidate. 1406 */ 1407 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask); 1408 atxdmac->dma.dev = &pdev->dev; 1409 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources; 1410 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources; 1411 atxdmac->dma.device_tx_status = at_xdmac_tx_status; 1412 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending; 1413 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic; 1414 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy; 1415 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg; 1416 atxdmac->dma.device_config = at_xdmac_device_config; 1417 atxdmac->dma.device_pause = at_xdmac_device_pause; 1418 atxdmac->dma.device_resume = at_xdmac_device_resume; 1419 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all; 1420 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 1421 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 1422 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1423 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1424 1425 /* Disable all chans and interrupts. */ 1426 at_xdmac_off(atxdmac); 1427 1428 /* Init channels. */ 1429 INIT_LIST_HEAD(&atxdmac->dma.channels); 1430 for (i = 0; i < nr_channels; i++) { 1431 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 1432 1433 atchan->chan.device = &atxdmac->dma; 1434 list_add_tail(&atchan->chan.device_node, 1435 &atxdmac->dma.channels); 1436 1437 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i); 1438 atchan->mask = 1 << i; 1439 1440 spin_lock_init(&atchan->lock); 1441 INIT_LIST_HEAD(&atchan->xfers_list); 1442 INIT_LIST_HEAD(&atchan->free_descs_list); 1443 tasklet_init(&atchan->tasklet, at_xdmac_tasklet, 1444 (unsigned long)atchan); 1445 1446 /* Clear pending interrupts. */ 1447 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 1448 cpu_relax(); 1449 } 1450 platform_set_drvdata(pdev, atxdmac); 1451 1452 ret = dma_async_device_register(&atxdmac->dma); 1453 if (ret) { 1454 dev_err(&pdev->dev, "fail to register DMA engine device\n"); 1455 goto err_clk_disable; 1456 } 1457 1458 ret = of_dma_controller_register(pdev->dev.of_node, 1459 at_xdmac_xlate, atxdmac); 1460 if (ret) { 1461 dev_err(&pdev->dev, "could not register of dma controller\n"); 1462 goto err_dma_unregister; 1463 } 1464 1465 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n", 1466 nr_channels, atxdmac->regs); 1467 1468 return 0; 1469 1470 err_dma_unregister: 1471 dma_async_device_unregister(&atxdmac->dma); 1472 err_clk_disable: 1473 clk_disable_unprepare(atxdmac->clk); 1474 err_free_irq: 1475 free_irq(atxdmac->irq, atxdmac->dma.dev); 1476 return ret; 1477 } 1478 1479 static int at_xdmac_remove(struct platform_device *pdev) 1480 { 1481 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev); 1482 int i; 1483 1484 at_xdmac_off(atxdmac); 1485 of_dma_controller_free(pdev->dev.of_node); 1486 dma_async_device_unregister(&atxdmac->dma); 1487 clk_disable_unprepare(atxdmac->clk); 1488 1489 synchronize_irq(atxdmac->irq); 1490 1491 free_irq(atxdmac->irq, atxdmac->dma.dev); 1492 1493 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1494 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 1495 1496 tasklet_kill(&atchan->tasklet); 1497 at_xdmac_free_chan_resources(&atchan->chan); 1498 } 1499 1500 return 0; 1501 } 1502 1503 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = { 1504 .prepare = atmel_xdmac_prepare, 1505 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume) 1506 }; 1507 1508 static const struct of_device_id atmel_xdmac_dt_ids[] = { 1509 { 1510 .compatible = "atmel,sama5d4-dma", 1511 }, { 1512 /* sentinel */ 1513 } 1514 }; 1515 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids); 1516 1517 static struct platform_driver at_xdmac_driver = { 1518 .probe = at_xdmac_probe, 1519 .remove = at_xdmac_remove, 1520 .driver = { 1521 .name = "at_xdmac", 1522 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids), 1523 .pm = &atmel_xdmac_dev_pm_ops, 1524 } 1525 }; 1526 1527 static int __init at_xdmac_init(void) 1528 { 1529 return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe); 1530 } 1531 subsys_initcall(at_xdmac_init); 1532 1533 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver"); 1534 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>"); 1535 MODULE_LICENSE("GPL"); 1536