1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 4 * 5 * Copyright (C) 2008 Atmel Corporation 6 * 7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 8 * The only Atmel DMA Controller that is not covered by this driver is the one 9 * found on AT91SAM9263. 10 */ 11 12 #include <dt-bindings/dma/at91.h> 13 #include <linux/clk.h> 14 #include <linux/dmaengine.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/dmapool.h> 17 #include <linux/interrupt.h> 18 #include <linux/module.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/of_device.h> 23 #include <linux/of_dma.h> 24 25 #include "at_hdmac_regs.h" 26 #include "dmaengine.h" 27 28 /* 29 * Glossary 30 * -------- 31 * 32 * at_hdmac : Name of the ATmel AHB DMA Controller 33 * at_dma_ / atdma : ATmel DMA controller entity related 34 * atc_ / atchan : ATmel DMA Channel entity related 35 */ 36 37 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) 38 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ 39 |ATC_DIF(AT_DMA_MEM_IF)) 40 #define ATC_DMA_BUSWIDTHS\ 41 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 42 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 43 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 44 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 45 46 #define ATC_MAX_DSCR_TRIALS 10 47 48 /* 49 * Initial number of descriptors to allocate for each channel. This could 50 * be increased during dma usage. 51 */ 52 static unsigned int init_nr_desc_per_channel = 64; 53 module_param(init_nr_desc_per_channel, uint, 0644); 54 MODULE_PARM_DESC(init_nr_desc_per_channel, 55 "initial descriptors per channel (default: 64)"); 56 57 58 /* prototypes */ 59 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); 60 static void atc_issue_pending(struct dma_chan *chan); 61 62 63 /*----------------------------------------------------------------------*/ 64 65 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 66 size_t len) 67 { 68 unsigned int width; 69 70 if (!((src | dst | len) & 3)) 71 width = 2; 72 else if (!((src | dst | len) & 1)) 73 width = 1; 74 else 75 width = 0; 76 77 return width; 78 } 79 80 static struct at_desc *atc_first_active(struct at_dma_chan *atchan) 81 { 82 return list_first_entry(&atchan->active_list, 83 struct at_desc, desc_node); 84 } 85 86 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) 87 { 88 return list_first_entry(&atchan->queue, 89 struct at_desc, desc_node); 90 } 91 92 /** 93 * atc_alloc_descriptor - allocate and return an initialized descriptor 94 * @chan: the channel to allocate descriptors for 95 * @gfp_flags: GFP allocation flags 96 * 97 * Note: The ack-bit is positioned in the descriptor flag at creation time 98 * to make initial allocation more convenient. This bit will be cleared 99 * and control will be given to client at usage time (during 100 * preparation functions). 101 */ 102 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, 103 gfp_t gfp_flags) 104 { 105 struct at_desc *desc = NULL; 106 struct at_dma *atdma = to_at_dma(chan->device); 107 dma_addr_t phys; 108 109 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys); 110 if (desc) { 111 INIT_LIST_HEAD(&desc->tx_list); 112 dma_async_tx_descriptor_init(&desc->txd, chan); 113 /* txd.flags will be overwritten in prep functions */ 114 desc->txd.flags = DMA_CTRL_ACK; 115 desc->txd.tx_submit = atc_tx_submit; 116 desc->txd.phys = phys; 117 } 118 119 return desc; 120 } 121 122 /** 123 * atc_desc_get - get an unused descriptor from free_list 124 * @atchan: channel we want a new descriptor for 125 */ 126 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) 127 { 128 struct at_desc *desc, *_desc; 129 struct at_desc *ret = NULL; 130 unsigned long flags; 131 unsigned int i = 0; 132 133 spin_lock_irqsave(&atchan->lock, flags); 134 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 135 i++; 136 if (async_tx_test_ack(&desc->txd)) { 137 list_del(&desc->desc_node); 138 ret = desc; 139 break; 140 } 141 dev_dbg(chan2dev(&atchan->chan_common), 142 "desc %p not ACKed\n", desc); 143 } 144 spin_unlock_irqrestore(&atchan->lock, flags); 145 dev_vdbg(chan2dev(&atchan->chan_common), 146 "scanned %u descriptors on freelist\n", i); 147 148 /* no more descriptor available in initial pool: create one more */ 149 if (!ret) 150 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_NOWAIT); 151 152 return ret; 153 } 154 155 /** 156 * atc_desc_put - move a descriptor, including any children, to the free list 157 * @atchan: channel we work on 158 * @desc: descriptor, at the head of a chain, to move to free list 159 */ 160 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) 161 { 162 if (desc) { 163 struct at_desc *child; 164 unsigned long flags; 165 166 spin_lock_irqsave(&atchan->lock, flags); 167 list_for_each_entry(child, &desc->tx_list, desc_node) 168 dev_vdbg(chan2dev(&atchan->chan_common), 169 "moving child desc %p to freelist\n", 170 child); 171 list_splice_init(&desc->tx_list, &atchan->free_list); 172 dev_vdbg(chan2dev(&atchan->chan_common), 173 "moving desc %p to freelist\n", desc); 174 list_add(&desc->desc_node, &atchan->free_list); 175 spin_unlock_irqrestore(&atchan->lock, flags); 176 } 177 } 178 179 /** 180 * atc_desc_chain - build chain adding a descriptor 181 * @first: address of first descriptor of the chain 182 * @prev: address of previous descriptor of the chain 183 * @desc: descriptor to queue 184 * 185 * Called from prep_* functions 186 */ 187 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, 188 struct at_desc *desc) 189 { 190 if (!(*first)) { 191 *first = desc; 192 } else { 193 /* inform the HW lli about chaining */ 194 (*prev)->lli.dscr = desc->txd.phys; 195 /* insert the link descriptor to the LD ring */ 196 list_add_tail(&desc->desc_node, 197 &(*first)->tx_list); 198 } 199 *prev = desc; 200 } 201 202 /** 203 * atc_dostart - starts the DMA engine for real 204 * @atchan: the channel we want to start 205 * @first: first descriptor in the list we want to begin with 206 * 207 * Called with atchan->lock held and bh disabled 208 */ 209 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) 210 { 211 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 212 213 /* ASSERT: channel is idle */ 214 if (atc_chan_is_enabled(atchan)) { 215 dev_err(chan2dev(&atchan->chan_common), 216 "BUG: Attempted to start non-idle channel\n"); 217 dev_err(chan2dev(&atchan->chan_common), 218 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", 219 channel_readl(atchan, SADDR), 220 channel_readl(atchan, DADDR), 221 channel_readl(atchan, CTRLA), 222 channel_readl(atchan, CTRLB), 223 channel_readl(atchan, DSCR)); 224 225 /* The tasklet will hopefully advance the queue... */ 226 return; 227 } 228 229 vdbg_dump_regs(atchan); 230 231 channel_writel(atchan, SADDR, 0); 232 channel_writel(atchan, DADDR, 0); 233 channel_writel(atchan, CTRLA, 0); 234 channel_writel(atchan, CTRLB, 0); 235 channel_writel(atchan, DSCR, first->txd.phys); 236 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | 237 ATC_SPIP_BOUNDARY(first->boundary)); 238 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | 239 ATC_DPIP_BOUNDARY(first->boundary)); 240 dma_writel(atdma, CHER, atchan->mask); 241 242 vdbg_dump_regs(atchan); 243 } 244 245 /* 246 * atc_get_desc_by_cookie - get the descriptor of a cookie 247 * @atchan: the DMA channel 248 * @cookie: the cookie to get the descriptor for 249 */ 250 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, 251 dma_cookie_t cookie) 252 { 253 struct at_desc *desc, *_desc; 254 255 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { 256 if (desc->txd.cookie == cookie) 257 return desc; 258 } 259 260 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { 261 if (desc->txd.cookie == cookie) 262 return desc; 263 } 264 265 return NULL; 266 } 267 268 /** 269 * atc_calc_bytes_left - calculates the number of bytes left according to the 270 * value read from CTRLA. 271 * 272 * @current_len: the number of bytes left before reading CTRLA 273 * @ctrla: the value of CTRLA 274 */ 275 static inline int atc_calc_bytes_left(int current_len, u32 ctrla) 276 { 277 u32 btsize = (ctrla & ATC_BTSIZE_MAX); 278 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); 279 280 /* 281 * According to the datasheet, when reading the Control A Register 282 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 283 * number of transfers completed on the Source Interface. 284 * So btsize is always a number of source width transfers. 285 */ 286 return current_len - (btsize << src_width); 287 } 288 289 /** 290 * atc_get_bytes_left - get the number of bytes residue for a cookie 291 * @chan: DMA channel 292 * @cookie: transaction identifier to check status of 293 */ 294 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) 295 { 296 struct at_dma_chan *atchan = to_at_dma_chan(chan); 297 struct at_desc *desc_first = atc_first_active(atchan); 298 struct at_desc *desc; 299 int ret; 300 u32 ctrla, dscr, trials; 301 302 /* 303 * If the cookie doesn't match to the currently running transfer then 304 * we can return the total length of the associated DMA transfer, 305 * because it is still queued. 306 */ 307 desc = atc_get_desc_by_cookie(atchan, cookie); 308 if (desc == NULL) 309 return -EINVAL; 310 else if (desc != desc_first) 311 return desc->total_len; 312 313 /* cookie matches to the currently running transfer */ 314 ret = desc_first->total_len; 315 316 if (desc_first->lli.dscr) { 317 /* hardware linked list transfer */ 318 319 /* 320 * Calculate the residue by removing the length of the child 321 * descriptors already transferred from the total length. 322 * To get the current child descriptor we can use the value of 323 * the channel's DSCR register and compare it against the value 324 * of the hardware linked list structure of each child 325 * descriptor. 326 * 327 * The CTRLA register provides us with the amount of data 328 * already read from the source for the current child 329 * descriptor. So we can compute a more accurate residue by also 330 * removing the number of bytes corresponding to this amount of 331 * data. 332 * 333 * However, the DSCR and CTRLA registers cannot be read both 334 * atomically. Hence a race condition may occur: the first read 335 * register may refer to one child descriptor whereas the second 336 * read may refer to a later child descriptor in the list 337 * because of the DMA transfer progression inbetween the two 338 * reads. 339 * 340 * One solution could have been to pause the DMA transfer, read 341 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless, 342 * this approach presents some drawbacks: 343 * - If the DMA transfer is paused, RX overruns or TX underruns 344 * are more likey to occur depending on the system latency. 345 * Taking the USART driver as an example, it uses a cyclic DMA 346 * transfer to read data from the Receive Holding Register 347 * (RHR) to avoid RX overruns since the RHR is not protected 348 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer 349 * to compute the residue would break the USART driver design. 350 * - The atc_pause() function masks interrupts but we'd rather 351 * avoid to do so for system latency purpose. 352 * 353 * Then we'd rather use another solution: the DSCR is read a 354 * first time, the CTRLA is read in turn, next the DSCR is read 355 * a second time. If the two consecutive read values of the DSCR 356 * are the same then we assume both refers to the very same 357 * child descriptor as well as the CTRLA value read inbetween 358 * does. For cyclic tranfers, the assumption is that a full loop 359 * is "not so fast". 360 * If the two DSCR values are different, we read again the CTRLA 361 * then the DSCR till two consecutive read values from DSCR are 362 * equal or till the maxium trials is reach. 363 * This algorithm is very unlikely not to find a stable value for 364 * DSCR. 365 */ 366 367 dscr = channel_readl(atchan, DSCR); 368 rmb(); /* ensure DSCR is read before CTRLA */ 369 ctrla = channel_readl(atchan, CTRLA); 370 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) { 371 u32 new_dscr; 372 373 rmb(); /* ensure DSCR is read after CTRLA */ 374 new_dscr = channel_readl(atchan, DSCR); 375 376 /* 377 * If the DSCR register value has not changed inside the 378 * DMA controller since the previous read, we assume 379 * that both the dscr and ctrla values refers to the 380 * very same descriptor. 381 */ 382 if (likely(new_dscr == dscr)) 383 break; 384 385 /* 386 * DSCR has changed inside the DMA controller, so the 387 * previouly read value of CTRLA may refer to an already 388 * processed descriptor hence could be outdated. 389 * We need to update ctrla to match the current 390 * descriptor. 391 */ 392 dscr = new_dscr; 393 rmb(); /* ensure DSCR is read before CTRLA */ 394 ctrla = channel_readl(atchan, CTRLA); 395 } 396 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS)) 397 return -ETIMEDOUT; 398 399 /* for the first descriptor we can be more accurate */ 400 if (desc_first->lli.dscr == dscr) 401 return atc_calc_bytes_left(ret, ctrla); 402 403 ret -= desc_first->len; 404 list_for_each_entry(desc, &desc_first->tx_list, desc_node) { 405 if (desc->lli.dscr == dscr) 406 break; 407 408 ret -= desc->len; 409 } 410 411 /* 412 * For the current descriptor in the chain we can calculate 413 * the remaining bytes using the channel's register. 414 */ 415 ret = atc_calc_bytes_left(ret, ctrla); 416 } else { 417 /* single transfer */ 418 ctrla = channel_readl(atchan, CTRLA); 419 ret = atc_calc_bytes_left(ret, ctrla); 420 } 421 422 return ret; 423 } 424 425 /** 426 * atc_chain_complete - finish work for one transaction chain 427 * @atchan: channel we work on 428 * @desc: descriptor at the head of the chain we want do complete 429 */ 430 static void 431 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) 432 { 433 struct dma_async_tx_descriptor *txd = &desc->txd; 434 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 435 unsigned long flags; 436 437 dev_vdbg(chan2dev(&atchan->chan_common), 438 "descriptor %u complete\n", txd->cookie); 439 440 spin_lock_irqsave(&atchan->lock, flags); 441 442 /* mark the descriptor as complete for non cyclic cases only */ 443 if (!atc_chan_is_cyclic(atchan)) 444 dma_cookie_complete(txd); 445 446 /* If the transfer was a memset, free our temporary buffer */ 447 if (desc->memset_buffer) { 448 dma_pool_free(atdma->memset_pool, desc->memset_vaddr, 449 desc->memset_paddr); 450 desc->memset_buffer = false; 451 } 452 453 /* move children to free_list */ 454 list_splice_init(&desc->tx_list, &atchan->free_list); 455 /* move myself to free_list */ 456 list_move(&desc->desc_node, &atchan->free_list); 457 458 spin_unlock_irqrestore(&atchan->lock, flags); 459 460 dma_descriptor_unmap(txd); 461 /* for cyclic transfers, 462 * no need to replay callback function while stopping */ 463 if (!atc_chan_is_cyclic(atchan)) 464 dmaengine_desc_get_callback_invoke(txd, NULL); 465 466 dma_run_dependencies(txd); 467 } 468 469 /** 470 * atc_complete_all - finish work for all transactions 471 * @atchan: channel to complete transactions for 472 * 473 * Eventually submit queued descriptors if any 474 * 475 * Assume channel is idle while calling this function 476 * Called with atchan->lock held and bh disabled 477 */ 478 static void atc_complete_all(struct at_dma_chan *atchan) 479 { 480 struct at_desc *desc, *_desc; 481 LIST_HEAD(list); 482 unsigned long flags; 483 484 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n"); 485 486 spin_lock_irqsave(&atchan->lock, flags); 487 488 /* 489 * Submit queued descriptors ASAP, i.e. before we go through 490 * the completed ones. 491 */ 492 if (!list_empty(&atchan->queue)) 493 atc_dostart(atchan, atc_first_queued(atchan)); 494 /* empty active_list now it is completed */ 495 list_splice_init(&atchan->active_list, &list); 496 /* empty queue list by moving descriptors (if any) to active_list */ 497 list_splice_init(&atchan->queue, &atchan->active_list); 498 499 spin_unlock_irqrestore(&atchan->lock, flags); 500 501 list_for_each_entry_safe(desc, _desc, &list, desc_node) 502 atc_chain_complete(atchan, desc); 503 } 504 505 /** 506 * atc_advance_work - at the end of a transaction, move forward 507 * @atchan: channel where the transaction ended 508 */ 509 static void atc_advance_work(struct at_dma_chan *atchan) 510 { 511 unsigned long flags; 512 int ret; 513 514 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); 515 516 spin_lock_irqsave(&atchan->lock, flags); 517 ret = atc_chan_is_enabled(atchan); 518 spin_unlock_irqrestore(&atchan->lock, flags); 519 if (ret) 520 return; 521 522 if (list_empty(&atchan->active_list) || 523 list_is_singular(&atchan->active_list)) 524 return atc_complete_all(atchan); 525 526 atc_chain_complete(atchan, atc_first_active(atchan)); 527 528 /* advance work */ 529 spin_lock_irqsave(&atchan->lock, flags); 530 atc_dostart(atchan, atc_first_active(atchan)); 531 spin_unlock_irqrestore(&atchan->lock, flags); 532 } 533 534 535 /** 536 * atc_handle_error - handle errors reported by DMA controller 537 * @atchan: channel where error occurs 538 */ 539 static void atc_handle_error(struct at_dma_chan *atchan) 540 { 541 struct at_desc *bad_desc; 542 struct at_desc *child; 543 unsigned long flags; 544 545 spin_lock_irqsave(&atchan->lock, flags); 546 /* 547 * The descriptor currently at the head of the active list is 548 * broked. Since we don't have any way to report errors, we'll 549 * just have to scream loudly and try to carry on. 550 */ 551 bad_desc = atc_first_active(atchan); 552 list_del_init(&bad_desc->desc_node); 553 554 /* As we are stopped, take advantage to push queued descriptors 555 * in active_list */ 556 list_splice_init(&atchan->queue, atchan->active_list.prev); 557 558 /* Try to restart the controller */ 559 if (!list_empty(&atchan->active_list)) 560 atc_dostart(atchan, atc_first_active(atchan)); 561 562 /* 563 * KERN_CRITICAL may seem harsh, but since this only happens 564 * when someone submits a bad physical address in a 565 * descriptor, we should consider ourselves lucky that the 566 * controller flagged an error instead of scribbling over 567 * random memory locations. 568 */ 569 dev_crit(chan2dev(&atchan->chan_common), 570 "Bad descriptor submitted for DMA!\n"); 571 dev_crit(chan2dev(&atchan->chan_common), 572 " cookie: %d\n", bad_desc->txd.cookie); 573 atc_dump_lli(atchan, &bad_desc->lli); 574 list_for_each_entry(child, &bad_desc->tx_list, desc_node) 575 atc_dump_lli(atchan, &child->lli); 576 577 spin_unlock_irqrestore(&atchan->lock, flags); 578 579 /* Pretend the descriptor completed successfully */ 580 atc_chain_complete(atchan, bad_desc); 581 } 582 583 /** 584 * atc_handle_cyclic - at the end of a period, run callback function 585 * @atchan: channel used for cyclic operations 586 */ 587 static void atc_handle_cyclic(struct at_dma_chan *atchan) 588 { 589 struct at_desc *first = atc_first_active(atchan); 590 struct dma_async_tx_descriptor *txd = &first->txd; 591 592 dev_vdbg(chan2dev(&atchan->chan_common), 593 "new cyclic period llp 0x%08x\n", 594 channel_readl(atchan, DSCR)); 595 596 dmaengine_desc_get_callback_invoke(txd, NULL); 597 } 598 599 /*-- IRQ & Tasklet ---------------------------------------------------*/ 600 601 static void atc_tasklet(struct tasklet_struct *t) 602 { 603 struct at_dma_chan *atchan = from_tasklet(atchan, t, tasklet); 604 605 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) 606 return atc_handle_error(atchan); 607 608 if (atc_chan_is_cyclic(atchan)) 609 return atc_handle_cyclic(atchan); 610 611 atc_advance_work(atchan); 612 } 613 614 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 615 { 616 struct at_dma *atdma = (struct at_dma *)dev_id; 617 struct at_dma_chan *atchan; 618 int i; 619 u32 status, pending, imr; 620 int ret = IRQ_NONE; 621 622 do { 623 imr = dma_readl(atdma, EBCIMR); 624 status = dma_readl(atdma, EBCISR); 625 pending = status & imr; 626 627 if (!pending) 628 break; 629 630 dev_vdbg(atdma->dma_common.dev, 631 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 632 status, imr, pending); 633 634 for (i = 0; i < atdma->dma_common.chancnt; i++) { 635 atchan = &atdma->chan[i]; 636 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { 637 if (pending & AT_DMA_ERR(i)) { 638 /* Disable channel on AHB error */ 639 dma_writel(atdma, CHDR, 640 AT_DMA_RES(i) | atchan->mask); 641 /* Give information to tasklet */ 642 set_bit(ATC_IS_ERROR, &atchan->status); 643 } 644 tasklet_schedule(&atchan->tasklet); 645 ret = IRQ_HANDLED; 646 } 647 } 648 649 } while (pending); 650 651 return ret; 652 } 653 654 655 /*-- DMA Engine API --------------------------------------------------*/ 656 657 /** 658 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine 659 * @tx: descriptor at the head of the transaction chain 660 * 661 * Queue chain if DMA engine is working already 662 * 663 * Cookie increment and adding to active_list or queue must be atomic 664 */ 665 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) 666 { 667 struct at_desc *desc = txd_to_at_desc(tx); 668 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); 669 dma_cookie_t cookie; 670 unsigned long flags; 671 672 spin_lock_irqsave(&atchan->lock, flags); 673 cookie = dma_cookie_assign(tx); 674 675 if (list_empty(&atchan->active_list)) { 676 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", 677 desc->txd.cookie); 678 atc_dostart(atchan, desc); 679 list_add_tail(&desc->desc_node, &atchan->active_list); 680 } else { 681 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", 682 desc->txd.cookie); 683 list_add_tail(&desc->desc_node, &atchan->queue); 684 } 685 686 spin_unlock_irqrestore(&atchan->lock, flags); 687 688 return cookie; 689 } 690 691 /** 692 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 693 * @chan: the channel to prepare operation on 694 * @xt: Interleaved transfer template 695 * @flags: tx descriptor status flags 696 */ 697 static struct dma_async_tx_descriptor * 698 atc_prep_dma_interleaved(struct dma_chan *chan, 699 struct dma_interleaved_template *xt, 700 unsigned long flags) 701 { 702 struct at_dma_chan *atchan = to_at_dma_chan(chan); 703 struct data_chunk *first; 704 struct at_desc *desc = NULL; 705 size_t xfer_count; 706 unsigned int dwidth; 707 u32 ctrla; 708 u32 ctrlb; 709 size_t len = 0; 710 int i; 711 712 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 713 return NULL; 714 715 first = xt->sgl; 716 717 dev_info(chan2dev(chan), 718 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", 719 __func__, &xt->src_start, &xt->dst_start, xt->numf, 720 xt->frame_size, flags); 721 722 /* 723 * The controller can only "skip" X bytes every Y bytes, so we 724 * need to make sure we are given a template that fit that 725 * description, ie a template with chunks that always have the 726 * same size, with the same ICGs. 727 */ 728 for (i = 0; i < xt->frame_size; i++) { 729 struct data_chunk *chunk = xt->sgl + i; 730 731 if ((chunk->size != xt->sgl->size) || 732 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 733 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 734 dev_err(chan2dev(chan), 735 "%s: the controller can transfer only identical chunks\n", 736 __func__); 737 return NULL; 738 } 739 740 len += chunk->size; 741 } 742 743 dwidth = atc_get_xfer_width(xt->src_start, 744 xt->dst_start, len); 745 746 xfer_count = len >> dwidth; 747 if (xfer_count > ATC_BTSIZE_MAX) { 748 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 749 return NULL; 750 } 751 752 ctrla = ATC_SRC_WIDTH(dwidth) | 753 ATC_DST_WIDTH(dwidth); 754 755 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 756 | ATC_SRC_ADDR_MODE_INCR 757 | ATC_DST_ADDR_MODE_INCR 758 | ATC_SRC_PIP 759 | ATC_DST_PIP 760 | ATC_FC_MEM2MEM; 761 762 /* create the transfer */ 763 desc = atc_desc_get(atchan); 764 if (!desc) { 765 dev_err(chan2dev(chan), 766 "%s: couldn't allocate our descriptor\n", __func__); 767 return NULL; 768 } 769 770 desc->lli.saddr = xt->src_start; 771 desc->lli.daddr = xt->dst_start; 772 desc->lli.ctrla = ctrla | xfer_count; 773 desc->lli.ctrlb = ctrlb; 774 775 desc->boundary = first->size >> dwidth; 776 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 777 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 778 779 desc->txd.cookie = -EBUSY; 780 desc->total_len = desc->len = len; 781 782 /* set end-of-link to the last link descriptor of list*/ 783 set_desc_eol(desc); 784 785 desc->txd.flags = flags; /* client is in control of this ack */ 786 787 return &desc->txd; 788 } 789 790 /** 791 * atc_prep_dma_memcpy - prepare a memcpy operation 792 * @chan: the channel to prepare operation on 793 * @dest: operation virtual destination address 794 * @src: operation virtual source address 795 * @len: operation length 796 * @flags: tx descriptor status flags 797 */ 798 static struct dma_async_tx_descriptor * 799 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 800 size_t len, unsigned long flags) 801 { 802 struct at_dma_chan *atchan = to_at_dma_chan(chan); 803 struct at_desc *desc = NULL; 804 struct at_desc *first = NULL; 805 struct at_desc *prev = NULL; 806 size_t xfer_count; 807 size_t offset; 808 unsigned int src_width; 809 unsigned int dst_width; 810 u32 ctrla; 811 u32 ctrlb; 812 813 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n", 814 &dest, &src, len, flags); 815 816 if (unlikely(!len)) { 817 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 818 return NULL; 819 } 820 821 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 822 | ATC_SRC_ADDR_MODE_INCR 823 | ATC_DST_ADDR_MODE_INCR 824 | ATC_FC_MEM2MEM; 825 826 /* 827 * We can be a lot more clever here, but this should take care 828 * of the most common optimization. 829 */ 830 src_width = dst_width = atc_get_xfer_width(src, dest, len); 831 832 ctrla = ATC_SRC_WIDTH(src_width) | 833 ATC_DST_WIDTH(dst_width); 834 835 for (offset = 0; offset < len; offset += xfer_count << src_width) { 836 xfer_count = min_t(size_t, (len - offset) >> src_width, 837 ATC_BTSIZE_MAX); 838 839 desc = atc_desc_get(atchan); 840 if (!desc) 841 goto err_desc_get; 842 843 desc->lli.saddr = src + offset; 844 desc->lli.daddr = dest + offset; 845 desc->lli.ctrla = ctrla | xfer_count; 846 desc->lli.ctrlb = ctrlb; 847 848 desc->txd.cookie = 0; 849 desc->len = xfer_count << src_width; 850 851 atc_desc_chain(&first, &prev, desc); 852 } 853 854 /* First descriptor of the chain embedds additional information */ 855 first->txd.cookie = -EBUSY; 856 first->total_len = len; 857 858 /* set end-of-link to the last link descriptor of list*/ 859 set_desc_eol(desc); 860 861 first->txd.flags = flags; /* client is in control of this ack */ 862 863 return &first->txd; 864 865 err_desc_get: 866 atc_desc_put(atchan, first); 867 return NULL; 868 } 869 870 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan, 871 dma_addr_t psrc, 872 dma_addr_t pdst, 873 size_t len) 874 { 875 struct at_dma_chan *atchan = to_at_dma_chan(chan); 876 struct at_desc *desc; 877 size_t xfer_count; 878 879 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2); 880 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 881 ATC_SRC_ADDR_MODE_FIXED | 882 ATC_DST_ADDR_MODE_INCR | 883 ATC_FC_MEM2MEM; 884 885 xfer_count = len >> 2; 886 if (xfer_count > ATC_BTSIZE_MAX) { 887 dev_err(chan2dev(chan), "%s: buffer is too big\n", 888 __func__); 889 return NULL; 890 } 891 892 desc = atc_desc_get(atchan); 893 if (!desc) { 894 dev_err(chan2dev(chan), "%s: can't get a descriptor\n", 895 __func__); 896 return NULL; 897 } 898 899 desc->lli.saddr = psrc; 900 desc->lli.daddr = pdst; 901 desc->lli.ctrla = ctrla | xfer_count; 902 desc->lli.ctrlb = ctrlb; 903 904 desc->txd.cookie = 0; 905 desc->len = len; 906 907 return desc; 908 } 909 910 /** 911 * atc_prep_dma_memset - prepare a memcpy operation 912 * @chan: the channel to prepare operation on 913 * @dest: operation virtual destination address 914 * @value: value to set memory buffer to 915 * @len: operation length 916 * @flags: tx descriptor status flags 917 */ 918 static struct dma_async_tx_descriptor * 919 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 920 size_t len, unsigned long flags) 921 { 922 struct at_dma *atdma = to_at_dma(chan->device); 923 struct at_desc *desc; 924 void __iomem *vaddr; 925 dma_addr_t paddr; 926 927 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__, 928 &dest, value, len, flags); 929 930 if (unlikely(!len)) { 931 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); 932 return NULL; 933 } 934 935 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 936 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", 937 __func__); 938 return NULL; 939 } 940 941 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); 942 if (!vaddr) { 943 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 944 __func__); 945 return NULL; 946 } 947 *(u32*)vaddr = value; 948 949 desc = atc_create_memset_desc(chan, paddr, dest, len); 950 if (!desc) { 951 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n", 952 __func__); 953 goto err_free_buffer; 954 } 955 956 desc->memset_paddr = paddr; 957 desc->memset_vaddr = vaddr; 958 desc->memset_buffer = true; 959 960 desc->txd.cookie = -EBUSY; 961 desc->total_len = len; 962 963 /* set end-of-link on the descriptor */ 964 set_desc_eol(desc); 965 966 desc->txd.flags = flags; 967 968 return &desc->txd; 969 970 err_free_buffer: 971 dma_pool_free(atdma->memset_pool, vaddr, paddr); 972 return NULL; 973 } 974 975 static struct dma_async_tx_descriptor * 976 atc_prep_dma_memset_sg(struct dma_chan *chan, 977 struct scatterlist *sgl, 978 unsigned int sg_len, int value, 979 unsigned long flags) 980 { 981 struct at_dma_chan *atchan = to_at_dma_chan(chan); 982 struct at_dma *atdma = to_at_dma(chan->device); 983 struct at_desc *desc = NULL, *first = NULL, *prev = NULL; 984 struct scatterlist *sg; 985 void __iomem *vaddr; 986 dma_addr_t paddr; 987 size_t total_len = 0; 988 int i; 989 990 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, 991 value, sg_len, flags); 992 993 if (unlikely(!sgl || !sg_len)) { 994 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", 995 __func__); 996 return NULL; 997 } 998 999 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); 1000 if (!vaddr) { 1001 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 1002 __func__); 1003 return NULL; 1004 } 1005 *(u32*)vaddr = value; 1006 1007 for_each_sg(sgl, sg, sg_len, i) { 1008 dma_addr_t dest = sg_dma_address(sg); 1009 size_t len = sg_dma_len(sg); 1010 1011 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n", 1012 __func__, &dest, len); 1013 1014 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1015 dev_err(chan2dev(chan), "%s: buffer is not aligned\n", 1016 __func__); 1017 goto err_put_desc; 1018 } 1019 1020 desc = atc_create_memset_desc(chan, paddr, dest, len); 1021 if (!desc) 1022 goto err_put_desc; 1023 1024 atc_desc_chain(&first, &prev, desc); 1025 1026 total_len += len; 1027 } 1028 1029 /* 1030 * Only set the buffer pointers on the last descriptor to 1031 * avoid free'ing while we have our transfer still going 1032 */ 1033 desc->memset_paddr = paddr; 1034 desc->memset_vaddr = vaddr; 1035 desc->memset_buffer = true; 1036 1037 first->txd.cookie = -EBUSY; 1038 first->total_len = total_len; 1039 1040 /* set end-of-link on the descriptor */ 1041 set_desc_eol(desc); 1042 1043 first->txd.flags = flags; 1044 1045 return &first->txd; 1046 1047 err_put_desc: 1048 atc_desc_put(atchan, first); 1049 return NULL; 1050 } 1051 1052 /** 1053 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 1054 * @chan: DMA channel 1055 * @sgl: scatterlist to transfer to/from 1056 * @sg_len: number of entries in @scatterlist 1057 * @direction: DMA direction 1058 * @flags: tx descriptor status flags 1059 * @context: transaction context (ignored) 1060 */ 1061 static struct dma_async_tx_descriptor * 1062 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1063 unsigned int sg_len, enum dma_transfer_direction direction, 1064 unsigned long flags, void *context) 1065 { 1066 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1067 struct at_dma_slave *atslave = chan->private; 1068 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1069 struct at_desc *first = NULL; 1070 struct at_desc *prev = NULL; 1071 u32 ctrla; 1072 u32 ctrlb; 1073 dma_addr_t reg; 1074 unsigned int reg_width; 1075 unsigned int mem_width; 1076 unsigned int i; 1077 struct scatterlist *sg; 1078 size_t total_len = 0; 1079 1080 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 1081 sg_len, 1082 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1083 flags); 1084 1085 if (unlikely(!atslave || !sg_len)) { 1086 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 1087 return NULL; 1088 } 1089 1090 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1091 | ATC_DCSIZE(sconfig->dst_maxburst); 1092 ctrlb = ATC_IEN; 1093 1094 switch (direction) { 1095 case DMA_MEM_TO_DEV: 1096 reg_width = convert_buswidth(sconfig->dst_addr_width); 1097 ctrla |= ATC_DST_WIDTH(reg_width); 1098 ctrlb |= ATC_DST_ADDR_MODE_FIXED 1099 | ATC_SRC_ADDR_MODE_INCR 1100 | ATC_FC_MEM2PER 1101 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); 1102 reg = sconfig->dst_addr; 1103 for_each_sg(sgl, sg, sg_len, i) { 1104 struct at_desc *desc; 1105 u32 len; 1106 u32 mem; 1107 1108 desc = atc_desc_get(atchan); 1109 if (!desc) 1110 goto err_desc_get; 1111 1112 mem = sg_dma_address(sg); 1113 len = sg_dma_len(sg); 1114 if (unlikely(!len)) { 1115 dev_dbg(chan2dev(chan), 1116 "prep_slave_sg: sg(%d) data length is zero\n", i); 1117 goto err; 1118 } 1119 mem_width = 2; 1120 if (unlikely(mem & 3 || len & 3)) 1121 mem_width = 0; 1122 1123 desc->lli.saddr = mem; 1124 desc->lli.daddr = reg; 1125 desc->lli.ctrla = ctrla 1126 | ATC_SRC_WIDTH(mem_width) 1127 | len >> mem_width; 1128 desc->lli.ctrlb = ctrlb; 1129 desc->len = len; 1130 1131 atc_desc_chain(&first, &prev, desc); 1132 total_len += len; 1133 } 1134 break; 1135 case DMA_DEV_TO_MEM: 1136 reg_width = convert_buswidth(sconfig->src_addr_width); 1137 ctrla |= ATC_SRC_WIDTH(reg_width); 1138 ctrlb |= ATC_DST_ADDR_MODE_INCR 1139 | ATC_SRC_ADDR_MODE_FIXED 1140 | ATC_FC_PER2MEM 1141 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); 1142 1143 reg = sconfig->src_addr; 1144 for_each_sg(sgl, sg, sg_len, i) { 1145 struct at_desc *desc; 1146 u32 len; 1147 u32 mem; 1148 1149 desc = atc_desc_get(atchan); 1150 if (!desc) 1151 goto err_desc_get; 1152 1153 mem = sg_dma_address(sg); 1154 len = sg_dma_len(sg); 1155 if (unlikely(!len)) { 1156 dev_dbg(chan2dev(chan), 1157 "prep_slave_sg: sg(%d) data length is zero\n", i); 1158 goto err; 1159 } 1160 mem_width = 2; 1161 if (unlikely(mem & 3 || len & 3)) 1162 mem_width = 0; 1163 1164 desc->lli.saddr = reg; 1165 desc->lli.daddr = mem; 1166 desc->lli.ctrla = ctrla 1167 | ATC_DST_WIDTH(mem_width) 1168 | len >> reg_width; 1169 desc->lli.ctrlb = ctrlb; 1170 desc->len = len; 1171 1172 atc_desc_chain(&first, &prev, desc); 1173 total_len += len; 1174 } 1175 break; 1176 default: 1177 return NULL; 1178 } 1179 1180 /* set end-of-link to the last link descriptor of list*/ 1181 set_desc_eol(prev); 1182 1183 /* First descriptor of the chain embedds additional information */ 1184 first->txd.cookie = -EBUSY; 1185 first->total_len = total_len; 1186 1187 /* first link descriptor of list is responsible of flags */ 1188 first->txd.flags = flags; /* client is in control of this ack */ 1189 1190 return &first->txd; 1191 1192 err_desc_get: 1193 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1194 err: 1195 atc_desc_put(atchan, first); 1196 return NULL; 1197 } 1198 1199 /* 1200 * atc_dma_cyclic_check_values 1201 * Check for too big/unaligned periods and unaligned DMA buffer 1202 */ 1203 static int 1204 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1205 size_t period_len) 1206 { 1207 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1208 goto err_out; 1209 if (unlikely(period_len & ((1 << reg_width) - 1))) 1210 goto err_out; 1211 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1212 goto err_out; 1213 1214 return 0; 1215 1216 err_out: 1217 return -EINVAL; 1218 } 1219 1220 /* 1221 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1222 */ 1223 static int 1224 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1225 unsigned int period_index, dma_addr_t buf_addr, 1226 unsigned int reg_width, size_t period_len, 1227 enum dma_transfer_direction direction) 1228 { 1229 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1230 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1231 u32 ctrla; 1232 1233 /* prepare common CRTLA value */ 1234 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1235 | ATC_DCSIZE(sconfig->dst_maxburst) 1236 | ATC_DST_WIDTH(reg_width) 1237 | ATC_SRC_WIDTH(reg_width) 1238 | period_len >> reg_width; 1239 1240 switch (direction) { 1241 case DMA_MEM_TO_DEV: 1242 desc->lli.saddr = buf_addr + (period_len * period_index); 1243 desc->lli.daddr = sconfig->dst_addr; 1244 desc->lli.ctrla = ctrla; 1245 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED 1246 | ATC_SRC_ADDR_MODE_INCR 1247 | ATC_FC_MEM2PER 1248 | ATC_SIF(atchan->mem_if) 1249 | ATC_DIF(atchan->per_if); 1250 desc->len = period_len; 1251 break; 1252 1253 case DMA_DEV_TO_MEM: 1254 desc->lli.saddr = sconfig->src_addr; 1255 desc->lli.daddr = buf_addr + (period_len * period_index); 1256 desc->lli.ctrla = ctrla; 1257 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR 1258 | ATC_SRC_ADDR_MODE_FIXED 1259 | ATC_FC_PER2MEM 1260 | ATC_SIF(atchan->per_if) 1261 | ATC_DIF(atchan->mem_if); 1262 desc->len = period_len; 1263 break; 1264 1265 default: 1266 return -EINVAL; 1267 } 1268 1269 return 0; 1270 } 1271 1272 /** 1273 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1274 * @chan: the DMA channel to prepare 1275 * @buf_addr: physical DMA address where the buffer starts 1276 * @buf_len: total number of bytes for the entire buffer 1277 * @period_len: number of bytes for each period 1278 * @direction: transfer direction, to or from device 1279 * @flags: tx descriptor status flags 1280 */ 1281 static struct dma_async_tx_descriptor * 1282 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1283 size_t period_len, enum dma_transfer_direction direction, 1284 unsigned long flags) 1285 { 1286 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1287 struct at_dma_slave *atslave = chan->private; 1288 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1289 struct at_desc *first = NULL; 1290 struct at_desc *prev = NULL; 1291 unsigned long was_cyclic; 1292 unsigned int reg_width; 1293 unsigned int periods = buf_len / period_len; 1294 unsigned int i; 1295 1296 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n", 1297 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1298 &buf_addr, 1299 periods, buf_len, period_len); 1300 1301 if (unlikely(!atslave || !buf_len || !period_len)) { 1302 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1303 return NULL; 1304 } 1305 1306 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1307 if (was_cyclic) { 1308 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1309 return NULL; 1310 } 1311 1312 if (unlikely(!is_slave_direction(direction))) 1313 goto err_out; 1314 1315 if (direction == DMA_MEM_TO_DEV) 1316 reg_width = convert_buswidth(sconfig->dst_addr_width); 1317 else 1318 reg_width = convert_buswidth(sconfig->src_addr_width); 1319 1320 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1321 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1322 goto err_out; 1323 1324 /* build cyclic linked list */ 1325 for (i = 0; i < periods; i++) { 1326 struct at_desc *desc; 1327 1328 desc = atc_desc_get(atchan); 1329 if (!desc) 1330 goto err_desc_get; 1331 1332 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1333 reg_width, period_len, direction)) 1334 goto err_desc_get; 1335 1336 atc_desc_chain(&first, &prev, desc); 1337 } 1338 1339 /* lets make a cyclic list */ 1340 prev->lli.dscr = first->txd.phys; 1341 1342 /* First descriptor of the chain embedds additional information */ 1343 first->txd.cookie = -EBUSY; 1344 first->total_len = buf_len; 1345 1346 return &first->txd; 1347 1348 err_desc_get: 1349 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1350 atc_desc_put(atchan, first); 1351 err_out: 1352 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1353 return NULL; 1354 } 1355 1356 static int atc_config(struct dma_chan *chan, 1357 struct dma_slave_config *sconfig) 1358 { 1359 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1360 1361 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1362 1363 /* Check if it is chan is configured for slave transfers */ 1364 if (!chan->private) 1365 return -EINVAL; 1366 1367 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1368 1369 convert_burst(&atchan->dma_sconfig.src_maxburst); 1370 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1371 1372 return 0; 1373 } 1374 1375 static int atc_pause(struct dma_chan *chan) 1376 { 1377 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1378 struct at_dma *atdma = to_at_dma(chan->device); 1379 int chan_id = atchan->chan_common.chan_id; 1380 unsigned long flags; 1381 1382 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1383 1384 spin_lock_irqsave(&atchan->lock, flags); 1385 1386 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1387 set_bit(ATC_IS_PAUSED, &atchan->status); 1388 1389 spin_unlock_irqrestore(&atchan->lock, flags); 1390 1391 return 0; 1392 } 1393 1394 static int atc_resume(struct dma_chan *chan) 1395 { 1396 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1397 struct at_dma *atdma = to_at_dma(chan->device); 1398 int chan_id = atchan->chan_common.chan_id; 1399 unsigned long flags; 1400 1401 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1402 1403 if (!atc_chan_is_paused(atchan)) 1404 return 0; 1405 1406 spin_lock_irqsave(&atchan->lock, flags); 1407 1408 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1409 clear_bit(ATC_IS_PAUSED, &atchan->status); 1410 1411 spin_unlock_irqrestore(&atchan->lock, flags); 1412 1413 return 0; 1414 } 1415 1416 static int atc_terminate_all(struct dma_chan *chan) 1417 { 1418 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1419 struct at_dma *atdma = to_at_dma(chan->device); 1420 int chan_id = atchan->chan_common.chan_id; 1421 struct at_desc *desc, *_desc; 1422 unsigned long flags; 1423 1424 LIST_HEAD(list); 1425 1426 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1427 1428 /* 1429 * This is only called when something went wrong elsewhere, so 1430 * we don't really care about the data. Just disable the 1431 * channel. We still have to poll the channel enable bit due 1432 * to AHB/HSB limitations. 1433 */ 1434 spin_lock_irqsave(&atchan->lock, flags); 1435 1436 /* disabling channel: must also remove suspend state */ 1437 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1438 1439 /* confirm that this channel is disabled */ 1440 while (dma_readl(atdma, CHSR) & atchan->mask) 1441 cpu_relax(); 1442 1443 /* active_list entries will end up before queued entries */ 1444 list_splice_init(&atchan->queue, &list); 1445 list_splice_init(&atchan->active_list, &list); 1446 1447 spin_unlock_irqrestore(&atchan->lock, flags); 1448 1449 /* Flush all pending and queued descriptors */ 1450 list_for_each_entry_safe(desc, _desc, &list, desc_node) 1451 atc_chain_complete(atchan, desc); 1452 1453 clear_bit(ATC_IS_PAUSED, &atchan->status); 1454 /* if channel dedicated to cyclic operations, free it */ 1455 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1456 1457 return 0; 1458 } 1459 1460 /** 1461 * atc_tx_status - poll for transaction completion 1462 * @chan: DMA channel 1463 * @cookie: transaction identifier to check status of 1464 * @txstate: if not %NULL updated with transaction state 1465 * 1466 * If @txstate is passed in, upon return it reflect the driver 1467 * internal state and can be used with dma_async_is_complete() to check 1468 * the status of multiple cookies without re-checking hardware state. 1469 */ 1470 static enum dma_status 1471 atc_tx_status(struct dma_chan *chan, 1472 dma_cookie_t cookie, 1473 struct dma_tx_state *txstate) 1474 { 1475 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1476 unsigned long flags; 1477 enum dma_status ret; 1478 int bytes = 0; 1479 1480 ret = dma_cookie_status(chan, cookie, txstate); 1481 if (ret == DMA_COMPLETE) 1482 return ret; 1483 /* 1484 * There's no point calculating the residue if there's 1485 * no txstate to store the value. 1486 */ 1487 if (!txstate) 1488 return DMA_ERROR; 1489 1490 spin_lock_irqsave(&atchan->lock, flags); 1491 1492 /* Get number of bytes left in the active transactions */ 1493 bytes = atc_get_bytes_left(chan, cookie); 1494 1495 spin_unlock_irqrestore(&atchan->lock, flags); 1496 1497 if (unlikely(bytes < 0)) { 1498 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1499 return DMA_ERROR; 1500 } else { 1501 dma_set_residue(txstate, bytes); 1502 } 1503 1504 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", 1505 ret, cookie, bytes); 1506 1507 return ret; 1508 } 1509 1510 /** 1511 * atc_issue_pending - try to finish work 1512 * @chan: target DMA channel 1513 */ 1514 static void atc_issue_pending(struct dma_chan *chan) 1515 { 1516 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1517 1518 dev_vdbg(chan2dev(chan), "issue_pending\n"); 1519 1520 /* Not needed for cyclic transfers */ 1521 if (atc_chan_is_cyclic(atchan)) 1522 return; 1523 1524 atc_advance_work(atchan); 1525 } 1526 1527 /** 1528 * atc_alloc_chan_resources - allocate resources for DMA channel 1529 * @chan: allocate descriptor resources for this channel 1530 * 1531 * return - the number of allocated descriptors 1532 */ 1533 static int atc_alloc_chan_resources(struct dma_chan *chan) 1534 { 1535 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1536 struct at_dma *atdma = to_at_dma(chan->device); 1537 struct at_desc *desc; 1538 struct at_dma_slave *atslave; 1539 int i; 1540 u32 cfg; 1541 1542 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1543 1544 /* ASSERT: channel is idle */ 1545 if (atc_chan_is_enabled(atchan)) { 1546 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1547 return -EIO; 1548 } 1549 1550 if (!list_empty(&atchan->free_list)) { 1551 dev_dbg(chan2dev(chan), "can't allocate channel resources (channel not freed from a previous use)\n"); 1552 return -EIO; 1553 } 1554 1555 cfg = ATC_DEFAULT_CFG; 1556 1557 atslave = chan->private; 1558 if (atslave) { 1559 /* 1560 * We need controller-specific data to set up slave 1561 * transfers. 1562 */ 1563 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); 1564 1565 /* if cfg configuration specified take it instead of default */ 1566 if (atslave->cfg) 1567 cfg = atslave->cfg; 1568 } 1569 1570 /* Allocate initial pool of descriptors */ 1571 for (i = 0; i < init_nr_desc_per_channel; i++) { 1572 desc = atc_alloc_descriptor(chan, GFP_KERNEL); 1573 if (!desc) { 1574 dev_err(atdma->dma_common.dev, 1575 "Only %d initial descriptors\n", i); 1576 break; 1577 } 1578 list_add_tail(&desc->desc_node, &atchan->free_list); 1579 } 1580 1581 dma_cookie_init(chan); 1582 1583 /* channel parameters */ 1584 channel_writel(atchan, CFG, cfg); 1585 1586 dev_dbg(chan2dev(chan), 1587 "alloc_chan_resources: allocated %d descriptors\n", i); 1588 1589 return i; 1590 } 1591 1592 /** 1593 * atc_free_chan_resources - free all channel resources 1594 * @chan: DMA channel 1595 */ 1596 static void atc_free_chan_resources(struct dma_chan *chan) 1597 { 1598 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1599 struct at_dma *atdma = to_at_dma(chan->device); 1600 struct at_desc *desc, *_desc; 1601 LIST_HEAD(list); 1602 1603 /* ASSERT: channel is idle */ 1604 BUG_ON(!list_empty(&atchan->active_list)); 1605 BUG_ON(!list_empty(&atchan->queue)); 1606 BUG_ON(atc_chan_is_enabled(atchan)); 1607 1608 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 1609 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); 1610 list_del(&desc->desc_node); 1611 /* free link descriptor */ 1612 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); 1613 } 1614 list_splice_init(&atchan->free_list, &list); 1615 atchan->status = 0; 1616 1617 /* 1618 * Free atslave allocated in at_dma_xlate() 1619 */ 1620 kfree(chan->private); 1621 chan->private = NULL; 1622 1623 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1624 } 1625 1626 #ifdef CONFIG_OF 1627 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1628 { 1629 struct at_dma_slave *atslave = slave; 1630 1631 if (atslave->dma_dev == chan->device->dev) { 1632 chan->private = atslave; 1633 return true; 1634 } else { 1635 return false; 1636 } 1637 } 1638 1639 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1640 struct of_dma *of_dma) 1641 { 1642 struct dma_chan *chan; 1643 struct at_dma_chan *atchan; 1644 struct at_dma_slave *atslave; 1645 dma_cap_mask_t mask; 1646 unsigned int per_id; 1647 struct platform_device *dmac_pdev; 1648 1649 if (dma_spec->args_count != 2) 1650 return NULL; 1651 1652 dmac_pdev = of_find_device_by_node(dma_spec->np); 1653 if (!dmac_pdev) 1654 return NULL; 1655 1656 dma_cap_zero(mask); 1657 dma_cap_set(DMA_SLAVE, mask); 1658 1659 atslave = kmalloc(sizeof(*atslave), GFP_KERNEL); 1660 if (!atslave) { 1661 put_device(&dmac_pdev->dev); 1662 return NULL; 1663 } 1664 1665 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; 1666 /* 1667 * We can fill both SRC_PER and DST_PER, one of these fields will be 1668 * ignored depending on DMA transfer direction. 1669 */ 1670 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1671 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) 1672 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); 1673 /* 1674 * We have to translate the value we get from the device tree since 1675 * the half FIFO configuration value had to be 0 to keep backward 1676 * compatibility. 1677 */ 1678 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1679 case AT91_DMA_CFG_FIFOCFG_ALAP: 1680 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; 1681 break; 1682 case AT91_DMA_CFG_FIFOCFG_ASAP: 1683 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; 1684 break; 1685 case AT91_DMA_CFG_FIFOCFG_HALF: 1686 default: 1687 atslave->cfg |= ATC_FIFOCFG_HALFFIFO; 1688 } 1689 atslave->dma_dev = &dmac_pdev->dev; 1690 1691 chan = dma_request_channel(mask, at_dma_filter, atslave); 1692 if (!chan) { 1693 put_device(&dmac_pdev->dev); 1694 kfree(atslave); 1695 return NULL; 1696 } 1697 1698 atchan = to_at_dma_chan(chan); 1699 atchan->per_if = dma_spec->args[0] & 0xff; 1700 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1701 1702 return chan; 1703 } 1704 #else 1705 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1706 struct of_dma *of_dma) 1707 { 1708 return NULL; 1709 } 1710 #endif 1711 1712 /*-- Module Management -----------------------------------------------*/ 1713 1714 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1715 static struct at_dma_platform_data at91sam9rl_config = { 1716 .nr_channels = 2, 1717 }; 1718 static struct at_dma_platform_data at91sam9g45_config = { 1719 .nr_channels = 8, 1720 }; 1721 1722 #if defined(CONFIG_OF) 1723 static const struct of_device_id atmel_dma_dt_ids[] = { 1724 { 1725 .compatible = "atmel,at91sam9rl-dma", 1726 .data = &at91sam9rl_config, 1727 }, { 1728 .compatible = "atmel,at91sam9g45-dma", 1729 .data = &at91sam9g45_config, 1730 }, { 1731 /* sentinel */ 1732 } 1733 }; 1734 1735 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1736 #endif 1737 1738 static const struct platform_device_id atdma_devtypes[] = { 1739 { 1740 .name = "at91sam9rl_dma", 1741 .driver_data = (unsigned long) &at91sam9rl_config, 1742 }, { 1743 .name = "at91sam9g45_dma", 1744 .driver_data = (unsigned long) &at91sam9g45_config, 1745 }, { 1746 /* sentinel */ 1747 } 1748 }; 1749 1750 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1751 struct platform_device *pdev) 1752 { 1753 if (pdev->dev.of_node) { 1754 const struct of_device_id *match; 1755 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1756 if (match == NULL) 1757 return NULL; 1758 return match->data; 1759 } 1760 return (struct at_dma_platform_data *) 1761 platform_get_device_id(pdev)->driver_data; 1762 } 1763 1764 /** 1765 * at_dma_off - disable DMA controller 1766 * @atdma: the Atmel HDAMC device 1767 */ 1768 static void at_dma_off(struct at_dma *atdma) 1769 { 1770 dma_writel(atdma, EN, 0); 1771 1772 /* disable all interrupts */ 1773 dma_writel(atdma, EBCIDR, -1L); 1774 1775 /* confirm that all channels are disabled */ 1776 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1777 cpu_relax(); 1778 } 1779 1780 static int __init at_dma_probe(struct platform_device *pdev) 1781 { 1782 struct resource *io; 1783 struct at_dma *atdma; 1784 size_t size; 1785 int irq; 1786 int err; 1787 int i; 1788 const struct at_dma_platform_data *plat_dat; 1789 1790 /* setup platform data for each SoC */ 1791 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1792 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1793 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1794 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); 1795 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); 1796 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); 1797 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1798 1799 /* get DMA parameters from controller type */ 1800 plat_dat = at_dma_get_driver_data(pdev); 1801 if (!plat_dat) 1802 return -ENODEV; 1803 1804 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1805 if (!io) 1806 return -EINVAL; 1807 1808 irq = platform_get_irq(pdev, 0); 1809 if (irq < 0) 1810 return irq; 1811 1812 size = sizeof(struct at_dma); 1813 size += plat_dat->nr_channels * sizeof(struct at_dma_chan); 1814 atdma = kzalloc(size, GFP_KERNEL); 1815 if (!atdma) 1816 return -ENOMEM; 1817 1818 /* discover transaction capabilities */ 1819 atdma->dma_common.cap_mask = plat_dat->cap_mask; 1820 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1821 1822 size = resource_size(io); 1823 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { 1824 err = -EBUSY; 1825 goto err_kfree; 1826 } 1827 1828 atdma->regs = ioremap(io->start, size); 1829 if (!atdma->regs) { 1830 err = -ENOMEM; 1831 goto err_release_r; 1832 } 1833 1834 atdma->clk = clk_get(&pdev->dev, "dma_clk"); 1835 if (IS_ERR(atdma->clk)) { 1836 err = PTR_ERR(atdma->clk); 1837 goto err_clk; 1838 } 1839 err = clk_prepare_enable(atdma->clk); 1840 if (err) 1841 goto err_clk_prepare; 1842 1843 /* force dma off, just in case */ 1844 at_dma_off(atdma); 1845 1846 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1847 if (err) 1848 goto err_irq; 1849 1850 platform_set_drvdata(pdev, atdma); 1851 1852 /* create a pool of consistent memory blocks for hardware descriptors */ 1853 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", 1854 &pdev->dev, sizeof(struct at_desc), 1855 4 /* word alignment */, 0); 1856 if (!atdma->dma_desc_pool) { 1857 dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); 1858 err = -ENOMEM; 1859 goto err_desc_pool_create; 1860 } 1861 1862 /* create a pool of consistent memory blocks for memset blocks */ 1863 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", 1864 &pdev->dev, sizeof(int), 4, 0); 1865 if (!atdma->memset_pool) { 1866 dev_err(&pdev->dev, "No memory for memset dma pool\n"); 1867 err = -ENOMEM; 1868 goto err_memset_pool_create; 1869 } 1870 1871 /* clear any pending interrupt */ 1872 while (dma_readl(atdma, EBCISR)) 1873 cpu_relax(); 1874 1875 /* initialize channels related values */ 1876 INIT_LIST_HEAD(&atdma->dma_common.channels); 1877 for (i = 0; i < plat_dat->nr_channels; i++) { 1878 struct at_dma_chan *atchan = &atdma->chan[i]; 1879 1880 atchan->mem_if = AT_DMA_MEM_IF; 1881 atchan->per_if = AT_DMA_PER_IF; 1882 atchan->chan_common.device = &atdma->dma_common; 1883 dma_cookie_init(&atchan->chan_common); 1884 list_add_tail(&atchan->chan_common.device_node, 1885 &atdma->dma_common.channels); 1886 1887 atchan->ch_regs = atdma->regs + ch_regs(i); 1888 spin_lock_init(&atchan->lock); 1889 atchan->mask = 1 << i; 1890 1891 INIT_LIST_HEAD(&atchan->active_list); 1892 INIT_LIST_HEAD(&atchan->queue); 1893 INIT_LIST_HEAD(&atchan->free_list); 1894 1895 tasklet_setup(&atchan->tasklet, atc_tasklet); 1896 atc_enable_chan_irq(atdma, i); 1897 } 1898 1899 /* set base routines */ 1900 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; 1901 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; 1902 atdma->dma_common.device_tx_status = atc_tx_status; 1903 atdma->dma_common.device_issue_pending = atc_issue_pending; 1904 atdma->dma_common.dev = &pdev->dev; 1905 1906 /* set prep routines based on capability */ 1907 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) 1908 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; 1909 1910 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) 1911 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; 1912 1913 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) { 1914 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset; 1915 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; 1916 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES; 1917 } 1918 1919 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { 1920 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; 1921 /* controller can do slave DMA: can trigger cyclic transfers */ 1922 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); 1923 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; 1924 atdma->dma_common.device_config = atc_config; 1925 atdma->dma_common.device_pause = atc_pause; 1926 atdma->dma_common.device_resume = atc_resume; 1927 atdma->dma_common.device_terminate_all = atc_terminate_all; 1928 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; 1929 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; 1930 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1931 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1932 } 1933 1934 dma_writel(atdma, EN, AT_DMA_ENABLE); 1935 1936 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n", 1937 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", 1938 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "", 1939 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", 1940 plat_dat->nr_channels); 1941 1942 dma_async_device_register(&atdma->dma_common); 1943 1944 /* 1945 * Do not return an error if the dmac node is not present in order to 1946 * not break the existing way of requesting channel with 1947 * dma_request_channel(). 1948 */ 1949 if (pdev->dev.of_node) { 1950 err = of_dma_controller_register(pdev->dev.of_node, 1951 at_dma_xlate, atdma); 1952 if (err) { 1953 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 1954 goto err_of_dma_controller_register; 1955 } 1956 } 1957 1958 return 0; 1959 1960 err_of_dma_controller_register: 1961 dma_async_device_unregister(&atdma->dma_common); 1962 dma_pool_destroy(atdma->memset_pool); 1963 err_memset_pool_create: 1964 dma_pool_destroy(atdma->dma_desc_pool); 1965 err_desc_pool_create: 1966 free_irq(platform_get_irq(pdev, 0), atdma); 1967 err_irq: 1968 clk_disable_unprepare(atdma->clk); 1969 err_clk_prepare: 1970 clk_put(atdma->clk); 1971 err_clk: 1972 iounmap(atdma->regs); 1973 atdma->regs = NULL; 1974 err_release_r: 1975 release_mem_region(io->start, size); 1976 err_kfree: 1977 kfree(atdma); 1978 return err; 1979 } 1980 1981 static int at_dma_remove(struct platform_device *pdev) 1982 { 1983 struct at_dma *atdma = platform_get_drvdata(pdev); 1984 struct dma_chan *chan, *_chan; 1985 struct resource *io; 1986 1987 at_dma_off(atdma); 1988 if (pdev->dev.of_node) 1989 of_dma_controller_free(pdev->dev.of_node); 1990 dma_async_device_unregister(&atdma->dma_common); 1991 1992 dma_pool_destroy(atdma->memset_pool); 1993 dma_pool_destroy(atdma->dma_desc_pool); 1994 free_irq(platform_get_irq(pdev, 0), atdma); 1995 1996 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 1997 device_node) { 1998 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1999 2000 /* Disable interrupts */ 2001 atc_disable_chan_irq(atdma, chan->chan_id); 2002 2003 tasklet_kill(&atchan->tasklet); 2004 list_del(&chan->device_node); 2005 } 2006 2007 clk_disable_unprepare(atdma->clk); 2008 clk_put(atdma->clk); 2009 2010 iounmap(atdma->regs); 2011 atdma->regs = NULL; 2012 2013 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2014 release_mem_region(io->start, resource_size(io)); 2015 2016 kfree(atdma); 2017 2018 return 0; 2019 } 2020 2021 static void at_dma_shutdown(struct platform_device *pdev) 2022 { 2023 struct at_dma *atdma = platform_get_drvdata(pdev); 2024 2025 at_dma_off(platform_get_drvdata(pdev)); 2026 clk_disable_unprepare(atdma->clk); 2027 } 2028 2029 static int at_dma_prepare(struct device *dev) 2030 { 2031 struct at_dma *atdma = dev_get_drvdata(dev); 2032 struct dma_chan *chan, *_chan; 2033 2034 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2035 device_node) { 2036 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2037 /* wait for transaction completion (except in cyclic case) */ 2038 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 2039 return -EAGAIN; 2040 } 2041 return 0; 2042 } 2043 2044 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 2045 { 2046 struct dma_chan *chan = &atchan->chan_common; 2047 2048 /* Channel should be paused by user 2049 * do it anyway even if it is not done already */ 2050 if (!atc_chan_is_paused(atchan)) { 2051 dev_warn(chan2dev(chan), 2052 "cyclic channel not paused, should be done by channel user\n"); 2053 atc_pause(chan); 2054 } 2055 2056 /* now preserve additional data for cyclic operations */ 2057 /* next descriptor address in the cyclic list */ 2058 atchan->save_dscr = channel_readl(atchan, DSCR); 2059 2060 vdbg_dump_regs(atchan); 2061 } 2062 2063 static int at_dma_suspend_noirq(struct device *dev) 2064 { 2065 struct at_dma *atdma = dev_get_drvdata(dev); 2066 struct dma_chan *chan, *_chan; 2067 2068 /* preserve data */ 2069 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2070 device_node) { 2071 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2072 2073 if (atc_chan_is_cyclic(atchan)) 2074 atc_suspend_cyclic(atchan); 2075 atchan->save_cfg = channel_readl(atchan, CFG); 2076 } 2077 atdma->save_imr = dma_readl(atdma, EBCIMR); 2078 2079 /* disable DMA controller */ 2080 at_dma_off(atdma); 2081 clk_disable_unprepare(atdma->clk); 2082 return 0; 2083 } 2084 2085 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2086 { 2087 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 2088 2089 /* restore channel status for cyclic descriptors list: 2090 * next descriptor in the cyclic list at the time of suspend */ 2091 channel_writel(atchan, SADDR, 0); 2092 channel_writel(atchan, DADDR, 0); 2093 channel_writel(atchan, CTRLA, 0); 2094 channel_writel(atchan, CTRLB, 0); 2095 channel_writel(atchan, DSCR, atchan->save_dscr); 2096 dma_writel(atdma, CHER, atchan->mask); 2097 2098 /* channel pause status should be removed by channel user 2099 * We cannot take the initiative to do it here */ 2100 2101 vdbg_dump_regs(atchan); 2102 } 2103 2104 static int at_dma_resume_noirq(struct device *dev) 2105 { 2106 struct at_dma *atdma = dev_get_drvdata(dev); 2107 struct dma_chan *chan, *_chan; 2108 2109 /* bring back DMA controller */ 2110 clk_prepare_enable(atdma->clk); 2111 dma_writel(atdma, EN, AT_DMA_ENABLE); 2112 2113 /* clear any pending interrupt */ 2114 while (dma_readl(atdma, EBCISR)) 2115 cpu_relax(); 2116 2117 /* restore saved data */ 2118 dma_writel(atdma, EBCIER, atdma->save_imr); 2119 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2120 device_node) { 2121 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2122 2123 channel_writel(atchan, CFG, atchan->save_cfg); 2124 if (atc_chan_is_cyclic(atchan)) 2125 atc_resume_cyclic(atchan); 2126 } 2127 return 0; 2128 } 2129 2130 static const struct dev_pm_ops at_dma_dev_pm_ops = { 2131 .prepare = at_dma_prepare, 2132 .suspend_noirq = at_dma_suspend_noirq, 2133 .resume_noirq = at_dma_resume_noirq, 2134 }; 2135 2136 static struct platform_driver at_dma_driver = { 2137 .remove = at_dma_remove, 2138 .shutdown = at_dma_shutdown, 2139 .id_table = atdma_devtypes, 2140 .driver = { 2141 .name = "at_hdmac", 2142 .pm = &at_dma_dev_pm_ops, 2143 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2144 }, 2145 }; 2146 2147 static int __init at_dma_init(void) 2148 { 2149 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2150 } 2151 subsys_initcall(at_dma_init); 2152 2153 static void __exit at_dma_exit(void) 2154 { 2155 platform_driver_unregister(&at_dma_driver); 2156 } 2157 module_exit(at_dma_exit); 2158 2159 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2160 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2161 MODULE_LICENSE("GPL"); 2162 MODULE_ALIAS("platform:at_hdmac"); 2163