xref: /openbmc/linux/drivers/dma/at_hdmac.c (revision d8bcaabe)
1 /*
2  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3  *
4  * Copyright (C) 2008 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  *
12  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13  * The only Atmel DMA Controller that is not covered by this driver is the one
14  * found on AT91SAM9263.
15  */
16 
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29 
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32 
33 /*
34  * Glossary
35  * --------
36  *
37  * at_hdmac		: Name of the ATmel AHB DMA Controller
38  * at_dma_ / atdma	: ATmel DMA controller entity related
39  * atc_	/ atchan	: ATmel DMA Channel entity related
40  */
41 
42 #define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
43 #define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
44 				|ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50 
51 #define ATC_MAX_DSCR_TRIALS	10
52 
53 /*
54  * Initial number of descriptors to allocate for each channel. This could
55  * be increased during dma usage.
56  */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 		 "initial descriptors per channel (default: 64)");
61 
62 
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66 
67 
68 /*----------------------------------------------------------------------*/
69 
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 						size_t len)
72 {
73 	unsigned int width;
74 
75 	if (!((src | dst  | len) & 3))
76 		width = 2;
77 	else if (!((src | dst | len) & 1))
78 		width = 1;
79 	else
80 		width = 0;
81 
82 	return width;
83 }
84 
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 	return list_first_entry(&atchan->active_list,
88 				struct at_desc, desc_node);
89 }
90 
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 	return list_first_entry(&atchan->queue,
94 				struct at_desc, desc_node);
95 }
96 
97 /**
98  * atc_alloc_descriptor - allocate and return an initialized descriptor
99  * @chan: the channel to allocate descriptors for
100  * @gfp_flags: GFP allocation flags
101  *
102  * Note: The ack-bit is positioned in the descriptor flag at creation time
103  *       to make initial allocation more convenient. This bit will be cleared
104  *       and control will be given to client at usage time (during
105  *       preparation functions).
106  */
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 					    gfp_t gfp_flags)
109 {
110 	struct at_desc	*desc = NULL;
111 	struct at_dma	*atdma = to_at_dma(chan->device);
112 	dma_addr_t phys;
113 
114 	desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 	if (desc) {
116 		INIT_LIST_HEAD(&desc->tx_list);
117 		dma_async_tx_descriptor_init(&desc->txd, chan);
118 		/* txd.flags will be overwritten in prep functions */
119 		desc->txd.flags = DMA_CTRL_ACK;
120 		desc->txd.tx_submit = atc_tx_submit;
121 		desc->txd.phys = phys;
122 	}
123 
124 	return desc;
125 }
126 
127 /**
128  * atc_desc_get - get an unused descriptor from free_list
129  * @atchan: channel we want a new descriptor for
130  */
131 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
132 {
133 	struct at_desc *desc, *_desc;
134 	struct at_desc *ret = NULL;
135 	unsigned long flags;
136 	unsigned int i = 0;
137 	LIST_HEAD(tmp_list);
138 
139 	spin_lock_irqsave(&atchan->lock, flags);
140 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
141 		i++;
142 		if (async_tx_test_ack(&desc->txd)) {
143 			list_del(&desc->desc_node);
144 			ret = desc;
145 			break;
146 		}
147 		dev_dbg(chan2dev(&atchan->chan_common),
148 				"desc %p not ACKed\n", desc);
149 	}
150 	spin_unlock_irqrestore(&atchan->lock, flags);
151 	dev_vdbg(chan2dev(&atchan->chan_common),
152 		"scanned %u descriptors on freelist\n", i);
153 
154 	/* no more descriptor available in initial pool: create one more */
155 	if (!ret) {
156 		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
157 		if (ret) {
158 			spin_lock_irqsave(&atchan->lock, flags);
159 			atchan->descs_allocated++;
160 			spin_unlock_irqrestore(&atchan->lock, flags);
161 		} else {
162 			dev_err(chan2dev(&atchan->chan_common),
163 					"not enough descriptors available\n");
164 		}
165 	}
166 
167 	return ret;
168 }
169 
170 /**
171  * atc_desc_put - move a descriptor, including any children, to the free list
172  * @atchan: channel we work on
173  * @desc: descriptor, at the head of a chain, to move to free list
174  */
175 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
176 {
177 	if (desc) {
178 		struct at_desc *child;
179 		unsigned long flags;
180 
181 		spin_lock_irqsave(&atchan->lock, flags);
182 		list_for_each_entry(child, &desc->tx_list, desc_node)
183 			dev_vdbg(chan2dev(&atchan->chan_common),
184 					"moving child desc %p to freelist\n",
185 					child);
186 		list_splice_init(&desc->tx_list, &atchan->free_list);
187 		dev_vdbg(chan2dev(&atchan->chan_common),
188 			 "moving desc %p to freelist\n", desc);
189 		list_add(&desc->desc_node, &atchan->free_list);
190 		spin_unlock_irqrestore(&atchan->lock, flags);
191 	}
192 }
193 
194 /**
195  * atc_desc_chain - build chain adding a descriptor
196  * @first: address of first descriptor of the chain
197  * @prev: address of previous descriptor of the chain
198  * @desc: descriptor to queue
199  *
200  * Called from prep_* functions
201  */
202 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
203 			   struct at_desc *desc)
204 {
205 	if (!(*first)) {
206 		*first = desc;
207 	} else {
208 		/* inform the HW lli about chaining */
209 		(*prev)->lli.dscr = desc->txd.phys;
210 		/* insert the link descriptor to the LD ring */
211 		list_add_tail(&desc->desc_node,
212 				&(*first)->tx_list);
213 	}
214 	*prev = desc;
215 }
216 
217 /**
218  * atc_dostart - starts the DMA engine for real
219  * @atchan: the channel we want to start
220  * @first: first descriptor in the list we want to begin with
221  *
222  * Called with atchan->lock held and bh disabled
223  */
224 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
225 {
226 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
227 
228 	/* ASSERT:  channel is idle */
229 	if (atc_chan_is_enabled(atchan)) {
230 		dev_err(chan2dev(&atchan->chan_common),
231 			"BUG: Attempted to start non-idle channel\n");
232 		dev_err(chan2dev(&atchan->chan_common),
233 			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
234 			channel_readl(atchan, SADDR),
235 			channel_readl(atchan, DADDR),
236 			channel_readl(atchan, CTRLA),
237 			channel_readl(atchan, CTRLB),
238 			channel_readl(atchan, DSCR));
239 
240 		/* The tasklet will hopefully advance the queue... */
241 		return;
242 	}
243 
244 	vdbg_dump_regs(atchan);
245 
246 	channel_writel(atchan, SADDR, 0);
247 	channel_writel(atchan, DADDR, 0);
248 	channel_writel(atchan, CTRLA, 0);
249 	channel_writel(atchan, CTRLB, 0);
250 	channel_writel(atchan, DSCR, first->txd.phys);
251 	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
252 		       ATC_SPIP_BOUNDARY(first->boundary));
253 	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
254 		       ATC_DPIP_BOUNDARY(first->boundary));
255 	dma_writel(atdma, CHER, atchan->mask);
256 
257 	vdbg_dump_regs(atchan);
258 }
259 
260 /*
261  * atc_get_desc_by_cookie - get the descriptor of a cookie
262  * @atchan: the DMA channel
263  * @cookie: the cookie to get the descriptor for
264  */
265 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
266 						dma_cookie_t cookie)
267 {
268 	struct at_desc *desc, *_desc;
269 
270 	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
271 		if (desc->txd.cookie == cookie)
272 			return desc;
273 	}
274 
275 	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
276 		if (desc->txd.cookie == cookie)
277 			return desc;
278 	}
279 
280 	return NULL;
281 }
282 
283 /**
284  * atc_calc_bytes_left - calculates the number of bytes left according to the
285  * value read from CTRLA.
286  *
287  * @current_len: the number of bytes left before reading CTRLA
288  * @ctrla: the value of CTRLA
289  */
290 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
291 {
292 	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
293 	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
294 
295 	/*
296 	 * According to the datasheet, when reading the Control A Register
297 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
298 	 * number of transfers completed on the Source Interface.
299 	 * So btsize is always a number of source width transfers.
300 	 */
301 	return current_len - (btsize << src_width);
302 }
303 
304 /**
305  * atc_get_bytes_left - get the number of bytes residue for a cookie
306  * @chan: DMA channel
307  * @cookie: transaction identifier to check status of
308  */
309 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
310 {
311 	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
312 	struct at_desc *desc_first = atc_first_active(atchan);
313 	struct at_desc *desc;
314 	int ret;
315 	u32 ctrla, dscr, trials;
316 
317 	/*
318 	 * If the cookie doesn't match to the currently running transfer then
319 	 * we can return the total length of the associated DMA transfer,
320 	 * because it is still queued.
321 	 */
322 	desc = atc_get_desc_by_cookie(atchan, cookie);
323 	if (desc == NULL)
324 		return -EINVAL;
325 	else if (desc != desc_first)
326 		return desc->total_len;
327 
328 	/* cookie matches to the currently running transfer */
329 	ret = desc_first->total_len;
330 
331 	if (desc_first->lli.dscr) {
332 		/* hardware linked list transfer */
333 
334 		/*
335 		 * Calculate the residue by removing the length of the child
336 		 * descriptors already transferred from the total length.
337 		 * To get the current child descriptor we can use the value of
338 		 * the channel's DSCR register and compare it against the value
339 		 * of the hardware linked list structure of each child
340 		 * descriptor.
341 		 *
342 		 * The CTRLA register provides us with the amount of data
343 		 * already read from the source for the current child
344 		 * descriptor. So we can compute a more accurate residue by also
345 		 * removing the number of bytes corresponding to this amount of
346 		 * data.
347 		 *
348 		 * However, the DSCR and CTRLA registers cannot be read both
349 		 * atomically. Hence a race condition may occur: the first read
350 		 * register may refer to one child descriptor whereas the second
351 		 * read may refer to a later child descriptor in the list
352 		 * because of the DMA transfer progression inbetween the two
353 		 * reads.
354 		 *
355 		 * One solution could have been to pause the DMA transfer, read
356 		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
357 		 * this approach presents some drawbacks:
358 		 * - If the DMA transfer is paused, RX overruns or TX underruns
359 		 *   are more likey to occur depending on the system latency.
360 		 *   Taking the USART driver as an example, it uses a cyclic DMA
361 		 *   transfer to read data from the Receive Holding Register
362 		 *   (RHR) to avoid RX overruns since the RHR is not protected
363 		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
364 		 *   to compute the residue would break the USART driver design.
365 		 * - The atc_pause() function masks interrupts but we'd rather
366 		 *   avoid to do so for system latency purpose.
367 		 *
368 		 * Then we'd rather use another solution: the DSCR is read a
369 		 * first time, the CTRLA is read in turn, next the DSCR is read
370 		 * a second time. If the two consecutive read values of the DSCR
371 		 * are the same then we assume both refers to the very same
372 		 * child descriptor as well as the CTRLA value read inbetween
373 		 * does. For cyclic tranfers, the assumption is that a full loop
374 		 * is "not so fast".
375 		 * If the two DSCR values are different, we read again the CTRLA
376 		 * then the DSCR till two consecutive read values from DSCR are
377 		 * equal or till the maxium trials is reach.
378 		 * This algorithm is very unlikely not to find a stable value for
379 		 * DSCR.
380 		 */
381 
382 		dscr = channel_readl(atchan, DSCR);
383 		rmb(); /* ensure DSCR is read before CTRLA */
384 		ctrla = channel_readl(atchan, CTRLA);
385 		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
386 			u32 new_dscr;
387 
388 			rmb(); /* ensure DSCR is read after CTRLA */
389 			new_dscr = channel_readl(atchan, DSCR);
390 
391 			/*
392 			 * If the DSCR register value has not changed inside the
393 			 * DMA controller since the previous read, we assume
394 			 * that both the dscr and ctrla values refers to the
395 			 * very same descriptor.
396 			 */
397 			if (likely(new_dscr == dscr))
398 				break;
399 
400 			/*
401 			 * DSCR has changed inside the DMA controller, so the
402 			 * previouly read value of CTRLA may refer to an already
403 			 * processed descriptor hence could be outdated.
404 			 * We need to update ctrla to match the current
405 			 * descriptor.
406 			 */
407 			dscr = new_dscr;
408 			rmb(); /* ensure DSCR is read before CTRLA */
409 			ctrla = channel_readl(atchan, CTRLA);
410 		}
411 		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
412 			return -ETIMEDOUT;
413 
414 		/* for the first descriptor we can be more accurate */
415 		if (desc_first->lli.dscr == dscr)
416 			return atc_calc_bytes_left(ret, ctrla);
417 
418 		ret -= desc_first->len;
419 		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
420 			if (desc->lli.dscr == dscr)
421 				break;
422 
423 			ret -= desc->len;
424 		}
425 
426 		/*
427 		 * For the current descriptor in the chain we can calculate
428 		 * the remaining bytes using the channel's register.
429 		 */
430 		ret = atc_calc_bytes_left(ret, ctrla);
431 	} else {
432 		/* single transfer */
433 		ctrla = channel_readl(atchan, CTRLA);
434 		ret = atc_calc_bytes_left(ret, ctrla);
435 	}
436 
437 	return ret;
438 }
439 
440 /**
441  * atc_chain_complete - finish work for one transaction chain
442  * @atchan: channel we work on
443  * @desc: descriptor at the head of the chain we want do complete
444  *
445  * Called with atchan->lock held and bh disabled */
446 static void
447 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
448 {
449 	struct dma_async_tx_descriptor	*txd = &desc->txd;
450 	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
451 
452 	dev_vdbg(chan2dev(&atchan->chan_common),
453 		"descriptor %u complete\n", txd->cookie);
454 
455 	/* mark the descriptor as complete for non cyclic cases only */
456 	if (!atc_chan_is_cyclic(atchan))
457 		dma_cookie_complete(txd);
458 
459 	/* If the transfer was a memset, free our temporary buffer */
460 	if (desc->memset_buffer) {
461 		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
462 			      desc->memset_paddr);
463 		desc->memset_buffer = false;
464 	}
465 
466 	/* move children to free_list */
467 	list_splice_init(&desc->tx_list, &atchan->free_list);
468 	/* move myself to free_list */
469 	list_move(&desc->desc_node, &atchan->free_list);
470 
471 	dma_descriptor_unmap(txd);
472 	/* for cyclic transfers,
473 	 * no need to replay callback function while stopping */
474 	if (!atc_chan_is_cyclic(atchan)) {
475 		/*
476 		 * The API requires that no submissions are done from a
477 		 * callback, so we don't need to drop the lock here
478 		 */
479 		dmaengine_desc_get_callback_invoke(txd, NULL);
480 	}
481 
482 	dma_run_dependencies(txd);
483 }
484 
485 /**
486  * atc_complete_all - finish work for all transactions
487  * @atchan: channel to complete transactions for
488  *
489  * Eventually submit queued descriptors if any
490  *
491  * Assume channel is idle while calling this function
492  * Called with atchan->lock held and bh disabled
493  */
494 static void atc_complete_all(struct at_dma_chan *atchan)
495 {
496 	struct at_desc *desc, *_desc;
497 	LIST_HEAD(list);
498 
499 	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
500 
501 	/*
502 	 * Submit queued descriptors ASAP, i.e. before we go through
503 	 * the completed ones.
504 	 */
505 	if (!list_empty(&atchan->queue))
506 		atc_dostart(atchan, atc_first_queued(atchan));
507 	/* empty active_list now it is completed */
508 	list_splice_init(&atchan->active_list, &list);
509 	/* empty queue list by moving descriptors (if any) to active_list */
510 	list_splice_init(&atchan->queue, &atchan->active_list);
511 
512 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
513 		atc_chain_complete(atchan, desc);
514 }
515 
516 /**
517  * atc_advance_work - at the end of a transaction, move forward
518  * @atchan: channel where the transaction ended
519  *
520  * Called with atchan->lock held and bh disabled
521  */
522 static void atc_advance_work(struct at_dma_chan *atchan)
523 {
524 	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
525 
526 	if (atc_chan_is_enabled(atchan))
527 		return;
528 
529 	if (list_empty(&atchan->active_list) ||
530 	    list_is_singular(&atchan->active_list)) {
531 		atc_complete_all(atchan);
532 	} else {
533 		atc_chain_complete(atchan, atc_first_active(atchan));
534 		/* advance work */
535 		atc_dostart(atchan, atc_first_active(atchan));
536 	}
537 }
538 
539 
540 /**
541  * atc_handle_error - handle errors reported by DMA controller
542  * @atchan: channel where error occurs
543  *
544  * Called with atchan->lock held and bh disabled
545  */
546 static void atc_handle_error(struct at_dma_chan *atchan)
547 {
548 	struct at_desc *bad_desc;
549 	struct at_desc *child;
550 
551 	/*
552 	 * The descriptor currently at the head of the active list is
553 	 * broked. Since we don't have any way to report errors, we'll
554 	 * just have to scream loudly and try to carry on.
555 	 */
556 	bad_desc = atc_first_active(atchan);
557 	list_del_init(&bad_desc->desc_node);
558 
559 	/* As we are stopped, take advantage to push queued descriptors
560 	 * in active_list */
561 	list_splice_init(&atchan->queue, atchan->active_list.prev);
562 
563 	/* Try to restart the controller */
564 	if (!list_empty(&atchan->active_list))
565 		atc_dostart(atchan, atc_first_active(atchan));
566 
567 	/*
568 	 * KERN_CRITICAL may seem harsh, but since this only happens
569 	 * when someone submits a bad physical address in a
570 	 * descriptor, we should consider ourselves lucky that the
571 	 * controller flagged an error instead of scribbling over
572 	 * random memory locations.
573 	 */
574 	dev_crit(chan2dev(&atchan->chan_common),
575 			"Bad descriptor submitted for DMA!\n");
576 	dev_crit(chan2dev(&atchan->chan_common),
577 			"  cookie: %d\n", bad_desc->txd.cookie);
578 	atc_dump_lli(atchan, &bad_desc->lli);
579 	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
580 		atc_dump_lli(atchan, &child->lli);
581 
582 	/* Pretend the descriptor completed successfully */
583 	atc_chain_complete(atchan, bad_desc);
584 }
585 
586 /**
587  * atc_handle_cyclic - at the end of a period, run callback function
588  * @atchan: channel used for cyclic operations
589  *
590  * Called with atchan->lock held and bh disabled
591  */
592 static void atc_handle_cyclic(struct at_dma_chan *atchan)
593 {
594 	struct at_desc			*first = atc_first_active(atchan);
595 	struct dma_async_tx_descriptor	*txd = &first->txd;
596 
597 	dev_vdbg(chan2dev(&atchan->chan_common),
598 			"new cyclic period llp 0x%08x\n",
599 			channel_readl(atchan, DSCR));
600 
601 	dmaengine_desc_get_callback_invoke(txd, NULL);
602 }
603 
604 /*--  IRQ & Tasklet  ---------------------------------------------------*/
605 
606 static void atc_tasklet(unsigned long data)
607 {
608 	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
609 	unsigned long flags;
610 
611 	spin_lock_irqsave(&atchan->lock, flags);
612 	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
613 		atc_handle_error(atchan);
614 	else if (atc_chan_is_cyclic(atchan))
615 		atc_handle_cyclic(atchan);
616 	else
617 		atc_advance_work(atchan);
618 
619 	spin_unlock_irqrestore(&atchan->lock, flags);
620 }
621 
622 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
623 {
624 	struct at_dma		*atdma = (struct at_dma *)dev_id;
625 	struct at_dma_chan	*atchan;
626 	int			i;
627 	u32			status, pending, imr;
628 	int			ret = IRQ_NONE;
629 
630 	do {
631 		imr = dma_readl(atdma, EBCIMR);
632 		status = dma_readl(atdma, EBCISR);
633 		pending = status & imr;
634 
635 		if (!pending)
636 			break;
637 
638 		dev_vdbg(atdma->dma_common.dev,
639 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
640 			 status, imr, pending);
641 
642 		for (i = 0; i < atdma->dma_common.chancnt; i++) {
643 			atchan = &atdma->chan[i];
644 			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
645 				if (pending & AT_DMA_ERR(i)) {
646 					/* Disable channel on AHB error */
647 					dma_writel(atdma, CHDR,
648 						AT_DMA_RES(i) | atchan->mask);
649 					/* Give information to tasklet */
650 					set_bit(ATC_IS_ERROR, &atchan->status);
651 				}
652 				tasklet_schedule(&atchan->tasklet);
653 				ret = IRQ_HANDLED;
654 			}
655 		}
656 
657 	} while (pending);
658 
659 	return ret;
660 }
661 
662 
663 /*--  DMA Engine API  --------------------------------------------------*/
664 
665 /**
666  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
667  * @desc: descriptor at the head of the transaction chain
668  *
669  * Queue chain if DMA engine is working already
670  *
671  * Cookie increment and adding to active_list or queue must be atomic
672  */
673 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
674 {
675 	struct at_desc		*desc = txd_to_at_desc(tx);
676 	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
677 	dma_cookie_t		cookie;
678 	unsigned long		flags;
679 
680 	spin_lock_irqsave(&atchan->lock, flags);
681 	cookie = dma_cookie_assign(tx);
682 
683 	if (list_empty(&atchan->active_list)) {
684 		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
685 				desc->txd.cookie);
686 		atc_dostart(atchan, desc);
687 		list_add_tail(&desc->desc_node, &atchan->active_list);
688 	} else {
689 		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
690 				desc->txd.cookie);
691 		list_add_tail(&desc->desc_node, &atchan->queue);
692 	}
693 
694 	spin_unlock_irqrestore(&atchan->lock, flags);
695 
696 	return cookie;
697 }
698 
699 /**
700  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
701  * @chan: the channel to prepare operation on
702  * @xt: Interleaved transfer template
703  * @flags: tx descriptor status flags
704  */
705 static struct dma_async_tx_descriptor *
706 atc_prep_dma_interleaved(struct dma_chan *chan,
707 			 struct dma_interleaved_template *xt,
708 			 unsigned long flags)
709 {
710 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
711 	struct data_chunk	*first = xt->sgl;
712 	struct at_desc		*desc = NULL;
713 	size_t			xfer_count;
714 	unsigned int		dwidth;
715 	u32			ctrla;
716 	u32			ctrlb;
717 	size_t			len = 0;
718 	int			i;
719 
720 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
721 		return NULL;
722 
723 	dev_info(chan2dev(chan),
724 		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
725 		__func__, &xt->src_start, &xt->dst_start, xt->numf,
726 		xt->frame_size, flags);
727 
728 	/*
729 	 * The controller can only "skip" X bytes every Y bytes, so we
730 	 * need to make sure we are given a template that fit that
731 	 * description, ie a template with chunks that always have the
732 	 * same size, with the same ICGs.
733 	 */
734 	for (i = 0; i < xt->frame_size; i++) {
735 		struct data_chunk *chunk = xt->sgl + i;
736 
737 		if ((chunk->size != xt->sgl->size) ||
738 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
739 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
740 			dev_err(chan2dev(chan),
741 				"%s: the controller can transfer only identical chunks\n",
742 				__func__);
743 			return NULL;
744 		}
745 
746 		len += chunk->size;
747 	}
748 
749 	dwidth = atc_get_xfer_width(xt->src_start,
750 				    xt->dst_start, len);
751 
752 	xfer_count = len >> dwidth;
753 	if (xfer_count > ATC_BTSIZE_MAX) {
754 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
755 		return NULL;
756 	}
757 
758 	ctrla = ATC_SRC_WIDTH(dwidth) |
759 		ATC_DST_WIDTH(dwidth);
760 
761 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
762 		| ATC_SRC_ADDR_MODE_INCR
763 		| ATC_DST_ADDR_MODE_INCR
764 		| ATC_SRC_PIP
765 		| ATC_DST_PIP
766 		| ATC_FC_MEM2MEM;
767 
768 	/* create the transfer */
769 	desc = atc_desc_get(atchan);
770 	if (!desc) {
771 		dev_err(chan2dev(chan),
772 			"%s: couldn't allocate our descriptor\n", __func__);
773 		return NULL;
774 	}
775 
776 	desc->lli.saddr = xt->src_start;
777 	desc->lli.daddr = xt->dst_start;
778 	desc->lli.ctrla = ctrla | xfer_count;
779 	desc->lli.ctrlb = ctrlb;
780 
781 	desc->boundary = first->size >> dwidth;
782 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
783 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
784 
785 	desc->txd.cookie = -EBUSY;
786 	desc->total_len = desc->len = len;
787 
788 	/* set end-of-link to the last link descriptor of list*/
789 	set_desc_eol(desc);
790 
791 	desc->txd.flags = flags; /* client is in control of this ack */
792 
793 	return &desc->txd;
794 }
795 
796 /**
797  * atc_prep_dma_memcpy - prepare a memcpy operation
798  * @chan: the channel to prepare operation on
799  * @dest: operation virtual destination address
800  * @src: operation virtual source address
801  * @len: operation length
802  * @flags: tx descriptor status flags
803  */
804 static struct dma_async_tx_descriptor *
805 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
806 		size_t len, unsigned long flags)
807 {
808 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
809 	struct at_desc		*desc = NULL;
810 	struct at_desc		*first = NULL;
811 	struct at_desc		*prev = NULL;
812 	size_t			xfer_count;
813 	size_t			offset;
814 	unsigned int		src_width;
815 	unsigned int		dst_width;
816 	u32			ctrla;
817 	u32			ctrlb;
818 
819 	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
820 			&dest, &src, len, flags);
821 
822 	if (unlikely(!len)) {
823 		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
824 		return NULL;
825 	}
826 
827 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
828 		| ATC_SRC_ADDR_MODE_INCR
829 		| ATC_DST_ADDR_MODE_INCR
830 		| ATC_FC_MEM2MEM;
831 
832 	/*
833 	 * We can be a lot more clever here, but this should take care
834 	 * of the most common optimization.
835 	 */
836 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
837 
838 	ctrla = ATC_SRC_WIDTH(src_width) |
839 		ATC_DST_WIDTH(dst_width);
840 
841 	for (offset = 0; offset < len; offset += xfer_count << src_width) {
842 		xfer_count = min_t(size_t, (len - offset) >> src_width,
843 				ATC_BTSIZE_MAX);
844 
845 		desc = atc_desc_get(atchan);
846 		if (!desc)
847 			goto err_desc_get;
848 
849 		desc->lli.saddr = src + offset;
850 		desc->lli.daddr = dest + offset;
851 		desc->lli.ctrla = ctrla | xfer_count;
852 		desc->lli.ctrlb = ctrlb;
853 
854 		desc->txd.cookie = 0;
855 		desc->len = xfer_count << src_width;
856 
857 		atc_desc_chain(&first, &prev, desc);
858 	}
859 
860 	/* First descriptor of the chain embedds additional information */
861 	first->txd.cookie = -EBUSY;
862 	first->total_len = len;
863 
864 	/* set end-of-link to the last link descriptor of list*/
865 	set_desc_eol(desc);
866 
867 	first->txd.flags = flags; /* client is in control of this ack */
868 
869 	return &first->txd;
870 
871 err_desc_get:
872 	atc_desc_put(atchan, first);
873 	return NULL;
874 }
875 
876 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
877 					      dma_addr_t psrc,
878 					      dma_addr_t pdst,
879 					      size_t len)
880 {
881 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
882 	struct at_desc *desc;
883 	size_t xfer_count;
884 
885 	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
886 	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
887 		ATC_SRC_ADDR_MODE_FIXED |
888 		ATC_DST_ADDR_MODE_INCR |
889 		ATC_FC_MEM2MEM;
890 
891 	xfer_count = len >> 2;
892 	if (xfer_count > ATC_BTSIZE_MAX) {
893 		dev_err(chan2dev(chan), "%s: buffer is too big\n",
894 			__func__);
895 		return NULL;
896 	}
897 
898 	desc = atc_desc_get(atchan);
899 	if (!desc) {
900 		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
901 			__func__);
902 		return NULL;
903 	}
904 
905 	desc->lli.saddr = psrc;
906 	desc->lli.daddr = pdst;
907 	desc->lli.ctrla = ctrla | xfer_count;
908 	desc->lli.ctrlb = ctrlb;
909 
910 	desc->txd.cookie = 0;
911 	desc->len = len;
912 
913 	return desc;
914 }
915 
916 /**
917  * atc_prep_dma_memset - prepare a memcpy operation
918  * @chan: the channel to prepare operation on
919  * @dest: operation virtual destination address
920  * @value: value to set memory buffer to
921  * @len: operation length
922  * @flags: tx descriptor status flags
923  */
924 static struct dma_async_tx_descriptor *
925 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
926 		    size_t len, unsigned long flags)
927 {
928 	struct at_dma		*atdma = to_at_dma(chan->device);
929 	struct at_desc		*desc;
930 	void __iomem		*vaddr;
931 	dma_addr_t		paddr;
932 
933 	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
934 		&dest, value, len, flags);
935 
936 	if (unlikely(!len)) {
937 		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
938 		return NULL;
939 	}
940 
941 	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
942 		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
943 			__func__);
944 		return NULL;
945 	}
946 
947 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
948 	if (!vaddr) {
949 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
950 			__func__);
951 		return NULL;
952 	}
953 	*(u32*)vaddr = value;
954 
955 	desc = atc_create_memset_desc(chan, paddr, dest, len);
956 	if (!desc) {
957 		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
958 			__func__);
959 		goto err_free_buffer;
960 	}
961 
962 	desc->memset_paddr = paddr;
963 	desc->memset_vaddr = vaddr;
964 	desc->memset_buffer = true;
965 
966 	desc->txd.cookie = -EBUSY;
967 	desc->total_len = len;
968 
969 	/* set end-of-link on the descriptor */
970 	set_desc_eol(desc);
971 
972 	desc->txd.flags = flags;
973 
974 	return &desc->txd;
975 
976 err_free_buffer:
977 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
978 	return NULL;
979 }
980 
981 static struct dma_async_tx_descriptor *
982 atc_prep_dma_memset_sg(struct dma_chan *chan,
983 		       struct scatterlist *sgl,
984 		       unsigned int sg_len, int value,
985 		       unsigned long flags)
986 {
987 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
988 	struct at_dma		*atdma = to_at_dma(chan->device);
989 	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
990 	struct scatterlist	*sg;
991 	void __iomem		*vaddr;
992 	dma_addr_t		paddr;
993 	size_t			total_len = 0;
994 	int			i;
995 
996 	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
997 		 value, sg_len, flags);
998 
999 	if (unlikely(!sgl || !sg_len)) {
1000 		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1001 			__func__);
1002 		return NULL;
1003 	}
1004 
1005 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1006 	if (!vaddr) {
1007 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1008 			__func__);
1009 		return NULL;
1010 	}
1011 	*(u32*)vaddr = value;
1012 
1013 	for_each_sg(sgl, sg, sg_len, i) {
1014 		dma_addr_t dest = sg_dma_address(sg);
1015 		size_t len = sg_dma_len(sg);
1016 
1017 		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1018 			 __func__, &dest, len);
1019 
1020 		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1021 			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1022 				__func__);
1023 			goto err_put_desc;
1024 		}
1025 
1026 		desc = atc_create_memset_desc(chan, paddr, dest, len);
1027 		if (!desc)
1028 			goto err_put_desc;
1029 
1030 		atc_desc_chain(&first, &prev, desc);
1031 
1032 		total_len += len;
1033 	}
1034 
1035 	/*
1036 	 * Only set the buffer pointers on the last descriptor to
1037 	 * avoid free'ing while we have our transfer still going
1038 	 */
1039 	desc->memset_paddr = paddr;
1040 	desc->memset_vaddr = vaddr;
1041 	desc->memset_buffer = true;
1042 
1043 	first->txd.cookie = -EBUSY;
1044 	first->total_len = total_len;
1045 
1046 	/* set end-of-link on the descriptor */
1047 	set_desc_eol(desc);
1048 
1049 	first->txd.flags = flags;
1050 
1051 	return &first->txd;
1052 
1053 err_put_desc:
1054 	atc_desc_put(atchan, first);
1055 	return NULL;
1056 }
1057 
1058 /**
1059  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1060  * @chan: DMA channel
1061  * @sgl: scatterlist to transfer to/from
1062  * @sg_len: number of entries in @scatterlist
1063  * @direction: DMA direction
1064  * @flags: tx descriptor status flags
1065  * @context: transaction context (ignored)
1066  */
1067 static struct dma_async_tx_descriptor *
1068 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1069 		unsigned int sg_len, enum dma_transfer_direction direction,
1070 		unsigned long flags, void *context)
1071 {
1072 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1073 	struct at_dma_slave	*atslave = chan->private;
1074 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1075 	struct at_desc		*first = NULL;
1076 	struct at_desc		*prev = NULL;
1077 	u32			ctrla;
1078 	u32			ctrlb;
1079 	dma_addr_t		reg;
1080 	unsigned int		reg_width;
1081 	unsigned int		mem_width;
1082 	unsigned int		i;
1083 	struct scatterlist	*sg;
1084 	size_t			total_len = 0;
1085 
1086 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1087 			sg_len,
1088 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1089 			flags);
1090 
1091 	if (unlikely(!atslave || !sg_len)) {
1092 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1093 		return NULL;
1094 	}
1095 
1096 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1097 		| ATC_DCSIZE(sconfig->dst_maxburst);
1098 	ctrlb = ATC_IEN;
1099 
1100 	switch (direction) {
1101 	case DMA_MEM_TO_DEV:
1102 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1103 		ctrla |=  ATC_DST_WIDTH(reg_width);
1104 		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1105 			| ATC_SRC_ADDR_MODE_INCR
1106 			| ATC_FC_MEM2PER
1107 			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1108 		reg = sconfig->dst_addr;
1109 		for_each_sg(sgl, sg, sg_len, i) {
1110 			struct at_desc	*desc;
1111 			u32		len;
1112 			u32		mem;
1113 
1114 			desc = atc_desc_get(atchan);
1115 			if (!desc)
1116 				goto err_desc_get;
1117 
1118 			mem = sg_dma_address(sg);
1119 			len = sg_dma_len(sg);
1120 			if (unlikely(!len)) {
1121 				dev_dbg(chan2dev(chan),
1122 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1123 				goto err;
1124 			}
1125 			mem_width = 2;
1126 			if (unlikely(mem & 3 || len & 3))
1127 				mem_width = 0;
1128 
1129 			desc->lli.saddr = mem;
1130 			desc->lli.daddr = reg;
1131 			desc->lli.ctrla = ctrla
1132 					| ATC_SRC_WIDTH(mem_width)
1133 					| len >> mem_width;
1134 			desc->lli.ctrlb = ctrlb;
1135 			desc->len = len;
1136 
1137 			atc_desc_chain(&first, &prev, desc);
1138 			total_len += len;
1139 		}
1140 		break;
1141 	case DMA_DEV_TO_MEM:
1142 		reg_width = convert_buswidth(sconfig->src_addr_width);
1143 		ctrla |=  ATC_SRC_WIDTH(reg_width);
1144 		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1145 			| ATC_SRC_ADDR_MODE_FIXED
1146 			| ATC_FC_PER2MEM
1147 			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1148 
1149 		reg = sconfig->src_addr;
1150 		for_each_sg(sgl, sg, sg_len, i) {
1151 			struct at_desc	*desc;
1152 			u32		len;
1153 			u32		mem;
1154 
1155 			desc = atc_desc_get(atchan);
1156 			if (!desc)
1157 				goto err_desc_get;
1158 
1159 			mem = sg_dma_address(sg);
1160 			len = sg_dma_len(sg);
1161 			if (unlikely(!len)) {
1162 				dev_dbg(chan2dev(chan),
1163 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1164 				goto err;
1165 			}
1166 			mem_width = 2;
1167 			if (unlikely(mem & 3 || len & 3))
1168 				mem_width = 0;
1169 
1170 			desc->lli.saddr = reg;
1171 			desc->lli.daddr = mem;
1172 			desc->lli.ctrla = ctrla
1173 					| ATC_DST_WIDTH(mem_width)
1174 					| len >> reg_width;
1175 			desc->lli.ctrlb = ctrlb;
1176 			desc->len = len;
1177 
1178 			atc_desc_chain(&first, &prev, desc);
1179 			total_len += len;
1180 		}
1181 		break;
1182 	default:
1183 		return NULL;
1184 	}
1185 
1186 	/* set end-of-link to the last link descriptor of list*/
1187 	set_desc_eol(prev);
1188 
1189 	/* First descriptor of the chain embedds additional information */
1190 	first->txd.cookie = -EBUSY;
1191 	first->total_len = total_len;
1192 
1193 	/* first link descriptor of list is responsible of flags */
1194 	first->txd.flags = flags; /* client is in control of this ack */
1195 
1196 	return &first->txd;
1197 
1198 err_desc_get:
1199 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1200 err:
1201 	atc_desc_put(atchan, first);
1202 	return NULL;
1203 }
1204 
1205 /**
1206  * atc_dma_cyclic_check_values
1207  * Check for too big/unaligned periods and unaligned DMA buffer
1208  */
1209 static int
1210 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1211 		size_t period_len)
1212 {
1213 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1214 		goto err_out;
1215 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1216 		goto err_out;
1217 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1218 		goto err_out;
1219 
1220 	return 0;
1221 
1222 err_out:
1223 	return -EINVAL;
1224 }
1225 
1226 /**
1227  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1228  */
1229 static int
1230 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1231 		unsigned int period_index, dma_addr_t buf_addr,
1232 		unsigned int reg_width, size_t period_len,
1233 		enum dma_transfer_direction direction)
1234 {
1235 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1236 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1237 	u32			ctrla;
1238 
1239 	/* prepare common CRTLA value */
1240 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1241 		| ATC_DCSIZE(sconfig->dst_maxburst)
1242 		| ATC_DST_WIDTH(reg_width)
1243 		| ATC_SRC_WIDTH(reg_width)
1244 		| period_len >> reg_width;
1245 
1246 	switch (direction) {
1247 	case DMA_MEM_TO_DEV:
1248 		desc->lli.saddr = buf_addr + (period_len * period_index);
1249 		desc->lli.daddr = sconfig->dst_addr;
1250 		desc->lli.ctrla = ctrla;
1251 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1252 				| ATC_SRC_ADDR_MODE_INCR
1253 				| ATC_FC_MEM2PER
1254 				| ATC_SIF(atchan->mem_if)
1255 				| ATC_DIF(atchan->per_if);
1256 		desc->len = period_len;
1257 		break;
1258 
1259 	case DMA_DEV_TO_MEM:
1260 		desc->lli.saddr = sconfig->src_addr;
1261 		desc->lli.daddr = buf_addr + (period_len * period_index);
1262 		desc->lli.ctrla = ctrla;
1263 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1264 				| ATC_SRC_ADDR_MODE_FIXED
1265 				| ATC_FC_PER2MEM
1266 				| ATC_SIF(atchan->per_if)
1267 				| ATC_DIF(atchan->mem_if);
1268 		desc->len = period_len;
1269 		break;
1270 
1271 	default:
1272 		return -EINVAL;
1273 	}
1274 
1275 	return 0;
1276 }
1277 
1278 /**
1279  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1280  * @chan: the DMA channel to prepare
1281  * @buf_addr: physical DMA address where the buffer starts
1282  * @buf_len: total number of bytes for the entire buffer
1283  * @period_len: number of bytes for each period
1284  * @direction: transfer direction, to or from device
1285  * @flags: tx descriptor status flags
1286  */
1287 static struct dma_async_tx_descriptor *
1288 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1289 		size_t period_len, enum dma_transfer_direction direction,
1290 		unsigned long flags)
1291 {
1292 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1293 	struct at_dma_slave	*atslave = chan->private;
1294 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1295 	struct at_desc		*first = NULL;
1296 	struct at_desc		*prev = NULL;
1297 	unsigned long		was_cyclic;
1298 	unsigned int		reg_width;
1299 	unsigned int		periods = buf_len / period_len;
1300 	unsigned int		i;
1301 
1302 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1303 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1304 			&buf_addr,
1305 			periods, buf_len, period_len);
1306 
1307 	if (unlikely(!atslave || !buf_len || !period_len)) {
1308 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1309 		return NULL;
1310 	}
1311 
1312 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1313 	if (was_cyclic) {
1314 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1315 		return NULL;
1316 	}
1317 
1318 	if (unlikely(!is_slave_direction(direction)))
1319 		goto err_out;
1320 
1321 	if (sconfig->direction == DMA_MEM_TO_DEV)
1322 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1323 	else
1324 		reg_width = convert_buswidth(sconfig->src_addr_width);
1325 
1326 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1327 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1328 		goto err_out;
1329 
1330 	/* build cyclic linked list */
1331 	for (i = 0; i < periods; i++) {
1332 		struct at_desc	*desc;
1333 
1334 		desc = atc_desc_get(atchan);
1335 		if (!desc)
1336 			goto err_desc_get;
1337 
1338 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1339 					     reg_width, period_len, direction))
1340 			goto err_desc_get;
1341 
1342 		atc_desc_chain(&first, &prev, desc);
1343 	}
1344 
1345 	/* lets make a cyclic list */
1346 	prev->lli.dscr = first->txd.phys;
1347 
1348 	/* First descriptor of the chain embedds additional information */
1349 	first->txd.cookie = -EBUSY;
1350 	first->total_len = buf_len;
1351 
1352 	return &first->txd;
1353 
1354 err_desc_get:
1355 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1356 	atc_desc_put(atchan, first);
1357 err_out:
1358 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1359 	return NULL;
1360 }
1361 
1362 static int atc_config(struct dma_chan *chan,
1363 		      struct dma_slave_config *sconfig)
1364 {
1365 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1366 
1367 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1368 
1369 	/* Check if it is chan is configured for slave transfers */
1370 	if (!chan->private)
1371 		return -EINVAL;
1372 
1373 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1374 
1375 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1376 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1377 
1378 	return 0;
1379 }
1380 
1381 static int atc_pause(struct dma_chan *chan)
1382 {
1383 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1384 	struct at_dma		*atdma = to_at_dma(chan->device);
1385 	int			chan_id = atchan->chan_common.chan_id;
1386 	unsigned long		flags;
1387 
1388 	LIST_HEAD(list);
1389 
1390 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1391 
1392 	spin_lock_irqsave(&atchan->lock, flags);
1393 
1394 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1395 	set_bit(ATC_IS_PAUSED, &atchan->status);
1396 
1397 	spin_unlock_irqrestore(&atchan->lock, flags);
1398 
1399 	return 0;
1400 }
1401 
1402 static int atc_resume(struct dma_chan *chan)
1403 {
1404 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1405 	struct at_dma		*atdma = to_at_dma(chan->device);
1406 	int			chan_id = atchan->chan_common.chan_id;
1407 	unsigned long		flags;
1408 
1409 	LIST_HEAD(list);
1410 
1411 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1412 
1413 	if (!atc_chan_is_paused(atchan))
1414 		return 0;
1415 
1416 	spin_lock_irqsave(&atchan->lock, flags);
1417 
1418 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1419 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1420 
1421 	spin_unlock_irqrestore(&atchan->lock, flags);
1422 
1423 	return 0;
1424 }
1425 
1426 static int atc_terminate_all(struct dma_chan *chan)
1427 {
1428 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1429 	struct at_dma		*atdma = to_at_dma(chan->device);
1430 	int			chan_id = atchan->chan_common.chan_id;
1431 	struct at_desc		*desc, *_desc;
1432 	unsigned long		flags;
1433 
1434 	LIST_HEAD(list);
1435 
1436 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1437 
1438 	/*
1439 	 * This is only called when something went wrong elsewhere, so
1440 	 * we don't really care about the data. Just disable the
1441 	 * channel. We still have to poll the channel enable bit due
1442 	 * to AHB/HSB limitations.
1443 	 */
1444 	spin_lock_irqsave(&atchan->lock, flags);
1445 
1446 	/* disabling channel: must also remove suspend state */
1447 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1448 
1449 	/* confirm that this channel is disabled */
1450 	while (dma_readl(atdma, CHSR) & atchan->mask)
1451 		cpu_relax();
1452 
1453 	/* active_list entries will end up before queued entries */
1454 	list_splice_init(&atchan->queue, &list);
1455 	list_splice_init(&atchan->active_list, &list);
1456 
1457 	/* Flush all pending and queued descriptors */
1458 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1459 		atc_chain_complete(atchan, desc);
1460 
1461 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1462 	/* if channel dedicated to cyclic operations, free it */
1463 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1464 
1465 	spin_unlock_irqrestore(&atchan->lock, flags);
1466 
1467 	return 0;
1468 }
1469 
1470 /**
1471  * atc_tx_status - poll for transaction completion
1472  * @chan: DMA channel
1473  * @cookie: transaction identifier to check status of
1474  * @txstate: if not %NULL updated with transaction state
1475  *
1476  * If @txstate is passed in, upon return it reflect the driver
1477  * internal state and can be used with dma_async_is_complete() to check
1478  * the status of multiple cookies without re-checking hardware state.
1479  */
1480 static enum dma_status
1481 atc_tx_status(struct dma_chan *chan,
1482 		dma_cookie_t cookie,
1483 		struct dma_tx_state *txstate)
1484 {
1485 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1486 	unsigned long		flags;
1487 	enum dma_status		ret;
1488 	int bytes = 0;
1489 
1490 	ret = dma_cookie_status(chan, cookie, txstate);
1491 	if (ret == DMA_COMPLETE)
1492 		return ret;
1493 	/*
1494 	 * There's no point calculating the residue if there's
1495 	 * no txstate to store the value.
1496 	 */
1497 	if (!txstate)
1498 		return DMA_ERROR;
1499 
1500 	spin_lock_irqsave(&atchan->lock, flags);
1501 
1502 	/*  Get number of bytes left in the active transactions */
1503 	bytes = atc_get_bytes_left(chan, cookie);
1504 
1505 	spin_unlock_irqrestore(&atchan->lock, flags);
1506 
1507 	if (unlikely(bytes < 0)) {
1508 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1509 		return DMA_ERROR;
1510 	} else {
1511 		dma_set_residue(txstate, bytes);
1512 	}
1513 
1514 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1515 		 ret, cookie, bytes);
1516 
1517 	return ret;
1518 }
1519 
1520 /**
1521  * atc_issue_pending - try to finish work
1522  * @chan: target DMA channel
1523  */
1524 static void atc_issue_pending(struct dma_chan *chan)
1525 {
1526 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1527 	unsigned long		flags;
1528 
1529 	dev_vdbg(chan2dev(chan), "issue_pending\n");
1530 
1531 	/* Not needed for cyclic transfers */
1532 	if (atc_chan_is_cyclic(atchan))
1533 		return;
1534 
1535 	spin_lock_irqsave(&atchan->lock, flags);
1536 	atc_advance_work(atchan);
1537 	spin_unlock_irqrestore(&atchan->lock, flags);
1538 }
1539 
1540 /**
1541  * atc_alloc_chan_resources - allocate resources for DMA channel
1542  * @chan: allocate descriptor resources for this channel
1543  * @client: current client requesting the channel be ready for requests
1544  *
1545  * return - the number of allocated descriptors
1546  */
1547 static int atc_alloc_chan_resources(struct dma_chan *chan)
1548 {
1549 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1550 	struct at_dma		*atdma = to_at_dma(chan->device);
1551 	struct at_desc		*desc;
1552 	struct at_dma_slave	*atslave;
1553 	unsigned long		flags;
1554 	int			i;
1555 	u32			cfg;
1556 	LIST_HEAD(tmp_list);
1557 
1558 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1559 
1560 	/* ASSERT:  channel is idle */
1561 	if (atc_chan_is_enabled(atchan)) {
1562 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1563 		return -EIO;
1564 	}
1565 
1566 	cfg = ATC_DEFAULT_CFG;
1567 
1568 	atslave = chan->private;
1569 	if (atslave) {
1570 		/*
1571 		 * We need controller-specific data to set up slave
1572 		 * transfers.
1573 		 */
1574 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1575 
1576 		/* if cfg configuration specified take it instead of default */
1577 		if (atslave->cfg)
1578 			cfg = atslave->cfg;
1579 	}
1580 
1581 	/* have we already been set up?
1582 	 * reconfigure channel but no need to reallocate descriptors */
1583 	if (!list_empty(&atchan->free_list))
1584 		return atchan->descs_allocated;
1585 
1586 	/* Allocate initial pool of descriptors */
1587 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1588 		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1589 		if (!desc) {
1590 			dev_err(atdma->dma_common.dev,
1591 				"Only %d initial descriptors\n", i);
1592 			break;
1593 		}
1594 		list_add_tail(&desc->desc_node, &tmp_list);
1595 	}
1596 
1597 	spin_lock_irqsave(&atchan->lock, flags);
1598 	atchan->descs_allocated = i;
1599 	list_splice(&tmp_list, &atchan->free_list);
1600 	dma_cookie_init(chan);
1601 	spin_unlock_irqrestore(&atchan->lock, flags);
1602 
1603 	/* channel parameters */
1604 	channel_writel(atchan, CFG, cfg);
1605 
1606 	dev_dbg(chan2dev(chan),
1607 		"alloc_chan_resources: allocated %d descriptors\n",
1608 		atchan->descs_allocated);
1609 
1610 	return atchan->descs_allocated;
1611 }
1612 
1613 /**
1614  * atc_free_chan_resources - free all channel resources
1615  * @chan: DMA channel
1616  */
1617 static void atc_free_chan_resources(struct dma_chan *chan)
1618 {
1619 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1620 	struct at_dma		*atdma = to_at_dma(chan->device);
1621 	struct at_desc		*desc, *_desc;
1622 	LIST_HEAD(list);
1623 
1624 	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1625 		atchan->descs_allocated);
1626 
1627 	/* ASSERT:  channel is idle */
1628 	BUG_ON(!list_empty(&atchan->active_list));
1629 	BUG_ON(!list_empty(&atchan->queue));
1630 	BUG_ON(atc_chan_is_enabled(atchan));
1631 
1632 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1633 		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1634 		list_del(&desc->desc_node);
1635 		/* free link descriptor */
1636 		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1637 	}
1638 	list_splice_init(&atchan->free_list, &list);
1639 	atchan->descs_allocated = 0;
1640 	atchan->status = 0;
1641 
1642 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1643 }
1644 
1645 #ifdef CONFIG_OF
1646 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1647 {
1648 	struct at_dma_slave *atslave = slave;
1649 
1650 	if (atslave->dma_dev == chan->device->dev) {
1651 		chan->private = atslave;
1652 		return true;
1653 	} else {
1654 		return false;
1655 	}
1656 }
1657 
1658 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1659 				     struct of_dma *of_dma)
1660 {
1661 	struct dma_chan *chan;
1662 	struct at_dma_chan *atchan;
1663 	struct at_dma_slave *atslave;
1664 	dma_cap_mask_t mask;
1665 	unsigned int per_id;
1666 	struct platform_device *dmac_pdev;
1667 
1668 	if (dma_spec->args_count != 2)
1669 		return NULL;
1670 
1671 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1672 
1673 	dma_cap_zero(mask);
1674 	dma_cap_set(DMA_SLAVE, mask);
1675 
1676 	atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1677 	if (!atslave)
1678 		return NULL;
1679 
1680 	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1681 	/*
1682 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1683 	 * ignored depending on DMA transfer direction.
1684 	 */
1685 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1686 	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1687 		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1688 	/*
1689 	 * We have to translate the value we get from the device tree since
1690 	 * the half FIFO configuration value had to be 0 to keep backward
1691 	 * compatibility.
1692 	 */
1693 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1694 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1695 		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1696 		break;
1697 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1698 		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1699 		break;
1700 	case AT91_DMA_CFG_FIFOCFG_HALF:
1701 	default:
1702 		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1703 	}
1704 	atslave->dma_dev = &dmac_pdev->dev;
1705 
1706 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1707 	if (!chan)
1708 		return NULL;
1709 
1710 	atchan = to_at_dma_chan(chan);
1711 	atchan->per_if = dma_spec->args[0] & 0xff;
1712 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1713 
1714 	return chan;
1715 }
1716 #else
1717 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1718 				     struct of_dma *of_dma)
1719 {
1720 	return NULL;
1721 }
1722 #endif
1723 
1724 /*--  Module Management  -----------------------------------------------*/
1725 
1726 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1727 static struct at_dma_platform_data at91sam9rl_config = {
1728 	.nr_channels = 2,
1729 };
1730 static struct at_dma_platform_data at91sam9g45_config = {
1731 	.nr_channels = 8,
1732 };
1733 
1734 #if defined(CONFIG_OF)
1735 static const struct of_device_id atmel_dma_dt_ids[] = {
1736 	{
1737 		.compatible = "atmel,at91sam9rl-dma",
1738 		.data = &at91sam9rl_config,
1739 	}, {
1740 		.compatible = "atmel,at91sam9g45-dma",
1741 		.data = &at91sam9g45_config,
1742 	}, {
1743 		/* sentinel */
1744 	}
1745 };
1746 
1747 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1748 #endif
1749 
1750 static const struct platform_device_id atdma_devtypes[] = {
1751 	{
1752 		.name = "at91sam9rl_dma",
1753 		.driver_data = (unsigned long) &at91sam9rl_config,
1754 	}, {
1755 		.name = "at91sam9g45_dma",
1756 		.driver_data = (unsigned long) &at91sam9g45_config,
1757 	}, {
1758 		/* sentinel */
1759 	}
1760 };
1761 
1762 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1763 						struct platform_device *pdev)
1764 {
1765 	if (pdev->dev.of_node) {
1766 		const struct of_device_id *match;
1767 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1768 		if (match == NULL)
1769 			return NULL;
1770 		return match->data;
1771 	}
1772 	return (struct at_dma_platform_data *)
1773 			platform_get_device_id(pdev)->driver_data;
1774 }
1775 
1776 /**
1777  * at_dma_off - disable DMA controller
1778  * @atdma: the Atmel HDAMC device
1779  */
1780 static void at_dma_off(struct at_dma *atdma)
1781 {
1782 	dma_writel(atdma, EN, 0);
1783 
1784 	/* disable all interrupts */
1785 	dma_writel(atdma, EBCIDR, -1L);
1786 
1787 	/* confirm that all channels are disabled */
1788 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1789 		cpu_relax();
1790 }
1791 
1792 static int __init at_dma_probe(struct platform_device *pdev)
1793 {
1794 	struct resource		*io;
1795 	struct at_dma		*atdma;
1796 	size_t			size;
1797 	int			irq;
1798 	int			err;
1799 	int			i;
1800 	const struct at_dma_platform_data *plat_dat;
1801 
1802 	/* setup platform data for each SoC */
1803 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1804 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1805 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1806 	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1807 	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1808 	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1809 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1810 
1811 	/* get DMA parameters from controller type */
1812 	plat_dat = at_dma_get_driver_data(pdev);
1813 	if (!plat_dat)
1814 		return -ENODEV;
1815 
1816 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1817 	if (!io)
1818 		return -EINVAL;
1819 
1820 	irq = platform_get_irq(pdev, 0);
1821 	if (irq < 0)
1822 		return irq;
1823 
1824 	size = sizeof(struct at_dma);
1825 	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1826 	atdma = kzalloc(size, GFP_KERNEL);
1827 	if (!atdma)
1828 		return -ENOMEM;
1829 
1830 	/* discover transaction capabilities */
1831 	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1832 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1833 
1834 	size = resource_size(io);
1835 	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1836 		err = -EBUSY;
1837 		goto err_kfree;
1838 	}
1839 
1840 	atdma->regs = ioremap(io->start, size);
1841 	if (!atdma->regs) {
1842 		err = -ENOMEM;
1843 		goto err_release_r;
1844 	}
1845 
1846 	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1847 	if (IS_ERR(atdma->clk)) {
1848 		err = PTR_ERR(atdma->clk);
1849 		goto err_clk;
1850 	}
1851 	err = clk_prepare_enable(atdma->clk);
1852 	if (err)
1853 		goto err_clk_prepare;
1854 
1855 	/* force dma off, just in case */
1856 	at_dma_off(atdma);
1857 
1858 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1859 	if (err)
1860 		goto err_irq;
1861 
1862 	platform_set_drvdata(pdev, atdma);
1863 
1864 	/* create a pool of consistent memory blocks for hardware descriptors */
1865 	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1866 			&pdev->dev, sizeof(struct at_desc),
1867 			4 /* word alignment */, 0);
1868 	if (!atdma->dma_desc_pool) {
1869 		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1870 		err = -ENOMEM;
1871 		goto err_desc_pool_create;
1872 	}
1873 
1874 	/* create a pool of consistent memory blocks for memset blocks */
1875 	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1876 					     &pdev->dev, sizeof(int), 4, 0);
1877 	if (!atdma->memset_pool) {
1878 		dev_err(&pdev->dev, "No memory for memset dma pool\n");
1879 		err = -ENOMEM;
1880 		goto err_memset_pool_create;
1881 	}
1882 
1883 	/* clear any pending interrupt */
1884 	while (dma_readl(atdma, EBCISR))
1885 		cpu_relax();
1886 
1887 	/* initialize channels related values */
1888 	INIT_LIST_HEAD(&atdma->dma_common.channels);
1889 	for (i = 0; i < plat_dat->nr_channels; i++) {
1890 		struct at_dma_chan	*atchan = &atdma->chan[i];
1891 
1892 		atchan->mem_if = AT_DMA_MEM_IF;
1893 		atchan->per_if = AT_DMA_PER_IF;
1894 		atchan->chan_common.device = &atdma->dma_common;
1895 		dma_cookie_init(&atchan->chan_common);
1896 		list_add_tail(&atchan->chan_common.device_node,
1897 				&atdma->dma_common.channels);
1898 
1899 		atchan->ch_regs = atdma->regs + ch_regs(i);
1900 		spin_lock_init(&atchan->lock);
1901 		atchan->mask = 1 << i;
1902 
1903 		INIT_LIST_HEAD(&atchan->active_list);
1904 		INIT_LIST_HEAD(&atchan->queue);
1905 		INIT_LIST_HEAD(&atchan->free_list);
1906 
1907 		tasklet_init(&atchan->tasklet, atc_tasklet,
1908 				(unsigned long)atchan);
1909 		atc_enable_chan_irq(atdma, i);
1910 	}
1911 
1912 	/* set base routines */
1913 	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1914 	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1915 	atdma->dma_common.device_tx_status = atc_tx_status;
1916 	atdma->dma_common.device_issue_pending = atc_issue_pending;
1917 	atdma->dma_common.dev = &pdev->dev;
1918 
1919 	/* set prep routines based on capability */
1920 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1921 		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1922 
1923 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1924 		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1925 
1926 	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1927 		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1928 		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1929 		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1930 	}
1931 
1932 	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1933 		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1934 		/* controller can do slave DMA: can trigger cyclic transfers */
1935 		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1936 		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1937 		atdma->dma_common.device_config = atc_config;
1938 		atdma->dma_common.device_pause = atc_pause;
1939 		atdma->dma_common.device_resume = atc_resume;
1940 		atdma->dma_common.device_terminate_all = atc_terminate_all;
1941 		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1942 		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1943 		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1944 		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1945 	}
1946 
1947 	dma_writel(atdma, EN, AT_DMA_ENABLE);
1948 
1949 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1950 	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1951 	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1952 	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
1953 	  plat_dat->nr_channels);
1954 
1955 	dma_async_device_register(&atdma->dma_common);
1956 
1957 	/*
1958 	 * Do not return an error if the dmac node is not present in order to
1959 	 * not break the existing way of requesting channel with
1960 	 * dma_request_channel().
1961 	 */
1962 	if (pdev->dev.of_node) {
1963 		err = of_dma_controller_register(pdev->dev.of_node,
1964 						 at_dma_xlate, atdma);
1965 		if (err) {
1966 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
1967 			goto err_of_dma_controller_register;
1968 		}
1969 	}
1970 
1971 	return 0;
1972 
1973 err_of_dma_controller_register:
1974 	dma_async_device_unregister(&atdma->dma_common);
1975 	dma_pool_destroy(atdma->memset_pool);
1976 err_memset_pool_create:
1977 	dma_pool_destroy(atdma->dma_desc_pool);
1978 err_desc_pool_create:
1979 	free_irq(platform_get_irq(pdev, 0), atdma);
1980 err_irq:
1981 	clk_disable_unprepare(atdma->clk);
1982 err_clk_prepare:
1983 	clk_put(atdma->clk);
1984 err_clk:
1985 	iounmap(atdma->regs);
1986 	atdma->regs = NULL;
1987 err_release_r:
1988 	release_mem_region(io->start, size);
1989 err_kfree:
1990 	kfree(atdma);
1991 	return err;
1992 }
1993 
1994 static int at_dma_remove(struct platform_device *pdev)
1995 {
1996 	struct at_dma		*atdma = platform_get_drvdata(pdev);
1997 	struct dma_chan		*chan, *_chan;
1998 	struct resource		*io;
1999 
2000 	at_dma_off(atdma);
2001 	dma_async_device_unregister(&atdma->dma_common);
2002 
2003 	dma_pool_destroy(atdma->memset_pool);
2004 	dma_pool_destroy(atdma->dma_desc_pool);
2005 	free_irq(platform_get_irq(pdev, 0), atdma);
2006 
2007 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2008 			device_node) {
2009 		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
2010 
2011 		/* Disable interrupts */
2012 		atc_disable_chan_irq(atdma, chan->chan_id);
2013 
2014 		tasklet_kill(&atchan->tasklet);
2015 		list_del(&chan->device_node);
2016 	}
2017 
2018 	clk_disable_unprepare(atdma->clk);
2019 	clk_put(atdma->clk);
2020 
2021 	iounmap(atdma->regs);
2022 	atdma->regs = NULL;
2023 
2024 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2025 	release_mem_region(io->start, resource_size(io));
2026 
2027 	kfree(atdma);
2028 
2029 	return 0;
2030 }
2031 
2032 static void at_dma_shutdown(struct platform_device *pdev)
2033 {
2034 	struct at_dma	*atdma = platform_get_drvdata(pdev);
2035 
2036 	at_dma_off(platform_get_drvdata(pdev));
2037 	clk_disable_unprepare(atdma->clk);
2038 }
2039 
2040 static int at_dma_prepare(struct device *dev)
2041 {
2042 	struct platform_device *pdev = to_platform_device(dev);
2043 	struct at_dma *atdma = platform_get_drvdata(pdev);
2044 	struct dma_chan *chan, *_chan;
2045 
2046 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2047 			device_node) {
2048 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2049 		/* wait for transaction completion (except in cyclic case) */
2050 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2051 			return -EAGAIN;
2052 	}
2053 	return 0;
2054 }
2055 
2056 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2057 {
2058 	struct dma_chan	*chan = &atchan->chan_common;
2059 
2060 	/* Channel should be paused by user
2061 	 * do it anyway even if it is not done already */
2062 	if (!atc_chan_is_paused(atchan)) {
2063 		dev_warn(chan2dev(chan),
2064 		"cyclic channel not paused, should be done by channel user\n");
2065 		atc_pause(chan);
2066 	}
2067 
2068 	/* now preserve additional data for cyclic operations */
2069 	/* next descriptor address in the cyclic list */
2070 	atchan->save_dscr = channel_readl(atchan, DSCR);
2071 
2072 	vdbg_dump_regs(atchan);
2073 }
2074 
2075 static int at_dma_suspend_noirq(struct device *dev)
2076 {
2077 	struct platform_device *pdev = to_platform_device(dev);
2078 	struct at_dma *atdma = platform_get_drvdata(pdev);
2079 	struct dma_chan *chan, *_chan;
2080 
2081 	/* preserve data */
2082 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2083 			device_node) {
2084 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2085 
2086 		if (atc_chan_is_cyclic(atchan))
2087 			atc_suspend_cyclic(atchan);
2088 		atchan->save_cfg = channel_readl(atchan, CFG);
2089 	}
2090 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2091 
2092 	/* disable DMA controller */
2093 	at_dma_off(atdma);
2094 	clk_disable_unprepare(atdma->clk);
2095 	return 0;
2096 }
2097 
2098 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2099 {
2100 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2101 
2102 	/* restore channel status for cyclic descriptors list:
2103 	 * next descriptor in the cyclic list at the time of suspend */
2104 	channel_writel(atchan, SADDR, 0);
2105 	channel_writel(atchan, DADDR, 0);
2106 	channel_writel(atchan, CTRLA, 0);
2107 	channel_writel(atchan, CTRLB, 0);
2108 	channel_writel(atchan, DSCR, atchan->save_dscr);
2109 	dma_writel(atdma, CHER, atchan->mask);
2110 
2111 	/* channel pause status should be removed by channel user
2112 	 * We cannot take the initiative to do it here */
2113 
2114 	vdbg_dump_regs(atchan);
2115 }
2116 
2117 static int at_dma_resume_noirq(struct device *dev)
2118 {
2119 	struct platform_device *pdev = to_platform_device(dev);
2120 	struct at_dma *atdma = platform_get_drvdata(pdev);
2121 	struct dma_chan *chan, *_chan;
2122 
2123 	/* bring back DMA controller */
2124 	clk_prepare_enable(atdma->clk);
2125 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2126 
2127 	/* clear any pending interrupt */
2128 	while (dma_readl(atdma, EBCISR))
2129 		cpu_relax();
2130 
2131 	/* restore saved data */
2132 	dma_writel(atdma, EBCIER, atdma->save_imr);
2133 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2134 			device_node) {
2135 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2136 
2137 		channel_writel(atchan, CFG, atchan->save_cfg);
2138 		if (atc_chan_is_cyclic(atchan))
2139 			atc_resume_cyclic(atchan);
2140 	}
2141 	return 0;
2142 }
2143 
2144 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2145 	.prepare = at_dma_prepare,
2146 	.suspend_noirq = at_dma_suspend_noirq,
2147 	.resume_noirq = at_dma_resume_noirq,
2148 };
2149 
2150 static struct platform_driver at_dma_driver = {
2151 	.remove		= at_dma_remove,
2152 	.shutdown	= at_dma_shutdown,
2153 	.id_table	= atdma_devtypes,
2154 	.driver = {
2155 		.name	= "at_hdmac",
2156 		.pm	= &at_dma_dev_pm_ops,
2157 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2158 	},
2159 };
2160 
2161 static int __init at_dma_init(void)
2162 {
2163 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2164 }
2165 subsys_initcall(at_dma_init);
2166 
2167 static void __exit at_dma_exit(void)
2168 {
2169 	platform_driver_unregister(&at_dma_driver);
2170 }
2171 module_exit(at_dma_exit);
2172 
2173 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2174 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2175 MODULE_LICENSE("GPL");
2176 MODULE_ALIAS("platform:at_hdmac");
2177