xref: /openbmc/linux/drivers/dma/at_hdmac.c (revision cfd6ed45)
1 /*
2  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3  *
4  * Copyright (C) 2008 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  *
12  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13  * The only Atmel DMA Controller that is not covered by this driver is the one
14  * found on AT91SAM9263.
15  */
16 
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29 
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32 
33 /*
34  * Glossary
35  * --------
36  *
37  * at_hdmac		: Name of the ATmel AHB DMA Controller
38  * at_dma_ / atdma	: ATmel DMA controller entity related
39  * atc_	/ atchan	: ATmel DMA Channel entity related
40  */
41 
42 #define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
43 #define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
44 				|ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50 
51 #define ATC_MAX_DSCR_TRIALS	10
52 
53 /*
54  * Initial number of descriptors to allocate for each channel. This could
55  * be increased during dma usage.
56  */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 		 "initial descriptors per channel (default: 64)");
61 
62 
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66 
67 
68 /*----------------------------------------------------------------------*/
69 
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 						size_t len)
72 {
73 	unsigned int width;
74 
75 	if (!((src | dst  | len) & 3))
76 		width = 2;
77 	else if (!((src | dst | len) & 1))
78 		width = 1;
79 	else
80 		width = 0;
81 
82 	return width;
83 }
84 
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 	return list_first_entry(&atchan->active_list,
88 				struct at_desc, desc_node);
89 }
90 
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 	return list_first_entry(&atchan->queue,
94 				struct at_desc, desc_node);
95 }
96 
97 /**
98  * atc_alloc_descriptor - allocate and return an initialized descriptor
99  * @chan: the channel to allocate descriptors for
100  * @gfp_flags: GFP allocation flags
101  *
102  * Note: The ack-bit is positioned in the descriptor flag at creation time
103  *       to make initial allocation more convenient. This bit will be cleared
104  *       and control will be given to client at usage time (during
105  *       preparation functions).
106  */
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 					    gfp_t gfp_flags)
109 {
110 	struct at_desc	*desc = NULL;
111 	struct at_dma	*atdma = to_at_dma(chan->device);
112 	dma_addr_t phys;
113 
114 	desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 	if (desc) {
116 		INIT_LIST_HEAD(&desc->tx_list);
117 		dma_async_tx_descriptor_init(&desc->txd, chan);
118 		/* txd.flags will be overwritten in prep functions */
119 		desc->txd.flags = DMA_CTRL_ACK;
120 		desc->txd.tx_submit = atc_tx_submit;
121 		desc->txd.phys = phys;
122 	}
123 
124 	return desc;
125 }
126 
127 /**
128  * atc_desc_get - get an unused descriptor from free_list
129  * @atchan: channel we want a new descriptor for
130  */
131 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
132 {
133 	struct at_desc *desc, *_desc;
134 	struct at_desc *ret = NULL;
135 	unsigned long flags;
136 	unsigned int i = 0;
137 	LIST_HEAD(tmp_list);
138 
139 	spin_lock_irqsave(&atchan->lock, flags);
140 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
141 		i++;
142 		if (async_tx_test_ack(&desc->txd)) {
143 			list_del(&desc->desc_node);
144 			ret = desc;
145 			break;
146 		}
147 		dev_dbg(chan2dev(&atchan->chan_common),
148 				"desc %p not ACKed\n", desc);
149 	}
150 	spin_unlock_irqrestore(&atchan->lock, flags);
151 	dev_vdbg(chan2dev(&atchan->chan_common),
152 		"scanned %u descriptors on freelist\n", i);
153 
154 	/* no more descriptor available in initial pool: create one more */
155 	if (!ret) {
156 		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
157 		if (ret) {
158 			spin_lock_irqsave(&atchan->lock, flags);
159 			atchan->descs_allocated++;
160 			spin_unlock_irqrestore(&atchan->lock, flags);
161 		} else {
162 			dev_err(chan2dev(&atchan->chan_common),
163 					"not enough descriptors available\n");
164 		}
165 	}
166 
167 	return ret;
168 }
169 
170 /**
171  * atc_desc_put - move a descriptor, including any children, to the free list
172  * @atchan: channel we work on
173  * @desc: descriptor, at the head of a chain, to move to free list
174  */
175 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
176 {
177 	if (desc) {
178 		struct at_desc *child;
179 		unsigned long flags;
180 
181 		spin_lock_irqsave(&atchan->lock, flags);
182 		list_for_each_entry(child, &desc->tx_list, desc_node)
183 			dev_vdbg(chan2dev(&atchan->chan_common),
184 					"moving child desc %p to freelist\n",
185 					child);
186 		list_splice_init(&desc->tx_list, &atchan->free_list);
187 		dev_vdbg(chan2dev(&atchan->chan_common),
188 			 "moving desc %p to freelist\n", desc);
189 		list_add(&desc->desc_node, &atchan->free_list);
190 		spin_unlock_irqrestore(&atchan->lock, flags);
191 	}
192 }
193 
194 /**
195  * atc_desc_chain - build chain adding a descriptor
196  * @first: address of first descriptor of the chain
197  * @prev: address of previous descriptor of the chain
198  * @desc: descriptor to queue
199  *
200  * Called from prep_* functions
201  */
202 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
203 			   struct at_desc *desc)
204 {
205 	if (!(*first)) {
206 		*first = desc;
207 	} else {
208 		/* inform the HW lli about chaining */
209 		(*prev)->lli.dscr = desc->txd.phys;
210 		/* insert the link descriptor to the LD ring */
211 		list_add_tail(&desc->desc_node,
212 				&(*first)->tx_list);
213 	}
214 	*prev = desc;
215 }
216 
217 /**
218  * atc_dostart - starts the DMA engine for real
219  * @atchan: the channel we want to start
220  * @first: first descriptor in the list we want to begin with
221  *
222  * Called with atchan->lock held and bh disabled
223  */
224 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
225 {
226 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
227 
228 	/* ASSERT:  channel is idle */
229 	if (atc_chan_is_enabled(atchan)) {
230 		dev_err(chan2dev(&atchan->chan_common),
231 			"BUG: Attempted to start non-idle channel\n");
232 		dev_err(chan2dev(&atchan->chan_common),
233 			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
234 			channel_readl(atchan, SADDR),
235 			channel_readl(atchan, DADDR),
236 			channel_readl(atchan, CTRLA),
237 			channel_readl(atchan, CTRLB),
238 			channel_readl(atchan, DSCR));
239 
240 		/* The tasklet will hopefully advance the queue... */
241 		return;
242 	}
243 
244 	vdbg_dump_regs(atchan);
245 
246 	channel_writel(atchan, SADDR, 0);
247 	channel_writel(atchan, DADDR, 0);
248 	channel_writel(atchan, CTRLA, 0);
249 	channel_writel(atchan, CTRLB, 0);
250 	channel_writel(atchan, DSCR, first->txd.phys);
251 	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
252 		       ATC_SPIP_BOUNDARY(first->boundary));
253 	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
254 		       ATC_DPIP_BOUNDARY(first->boundary));
255 	dma_writel(atdma, CHER, atchan->mask);
256 
257 	vdbg_dump_regs(atchan);
258 }
259 
260 /*
261  * atc_get_desc_by_cookie - get the descriptor of a cookie
262  * @atchan: the DMA channel
263  * @cookie: the cookie to get the descriptor for
264  */
265 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
266 						dma_cookie_t cookie)
267 {
268 	struct at_desc *desc, *_desc;
269 
270 	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
271 		if (desc->txd.cookie == cookie)
272 			return desc;
273 	}
274 
275 	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
276 		if (desc->txd.cookie == cookie)
277 			return desc;
278 	}
279 
280 	return NULL;
281 }
282 
283 /**
284  * atc_calc_bytes_left - calculates the number of bytes left according to the
285  * value read from CTRLA.
286  *
287  * @current_len: the number of bytes left before reading CTRLA
288  * @ctrla: the value of CTRLA
289  */
290 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
291 {
292 	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
293 	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
294 
295 	/*
296 	 * According to the datasheet, when reading the Control A Register
297 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
298 	 * number of transfers completed on the Source Interface.
299 	 * So btsize is always a number of source width transfers.
300 	 */
301 	return current_len - (btsize << src_width);
302 }
303 
304 /**
305  * atc_get_bytes_left - get the number of bytes residue for a cookie
306  * @chan: DMA channel
307  * @cookie: transaction identifier to check status of
308  */
309 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
310 {
311 	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
312 	struct at_desc *desc_first = atc_first_active(atchan);
313 	struct at_desc *desc;
314 	int ret;
315 	u32 ctrla, dscr, trials;
316 
317 	/*
318 	 * If the cookie doesn't match to the currently running transfer then
319 	 * we can return the total length of the associated DMA transfer,
320 	 * because it is still queued.
321 	 */
322 	desc = atc_get_desc_by_cookie(atchan, cookie);
323 	if (desc == NULL)
324 		return -EINVAL;
325 	else if (desc != desc_first)
326 		return desc->total_len;
327 
328 	/* cookie matches to the currently running transfer */
329 	ret = desc_first->total_len;
330 
331 	if (desc_first->lli.dscr) {
332 		/* hardware linked list transfer */
333 
334 		/*
335 		 * Calculate the residue by removing the length of the child
336 		 * descriptors already transferred from the total length.
337 		 * To get the current child descriptor we can use the value of
338 		 * the channel's DSCR register and compare it against the value
339 		 * of the hardware linked list structure of each child
340 		 * descriptor.
341 		 *
342 		 * The CTRLA register provides us with the amount of data
343 		 * already read from the source for the current child
344 		 * descriptor. So we can compute a more accurate residue by also
345 		 * removing the number of bytes corresponding to this amount of
346 		 * data.
347 		 *
348 		 * However, the DSCR and CTRLA registers cannot be read both
349 		 * atomically. Hence a race condition may occur: the first read
350 		 * register may refer to one child descriptor whereas the second
351 		 * read may refer to a later child descriptor in the list
352 		 * because of the DMA transfer progression inbetween the two
353 		 * reads.
354 		 *
355 		 * One solution could have been to pause the DMA transfer, read
356 		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
357 		 * this approach presents some drawbacks:
358 		 * - If the DMA transfer is paused, RX overruns or TX underruns
359 		 *   are more likey to occur depending on the system latency.
360 		 *   Taking the USART driver as an example, it uses a cyclic DMA
361 		 *   transfer to read data from the Receive Holding Register
362 		 *   (RHR) to avoid RX overruns since the RHR is not protected
363 		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
364 		 *   to compute the residue would break the USART driver design.
365 		 * - The atc_pause() function masks interrupts but we'd rather
366 		 *   avoid to do so for system latency purpose.
367 		 *
368 		 * Then we'd rather use another solution: the DSCR is read a
369 		 * first time, the CTRLA is read in turn, next the DSCR is read
370 		 * a second time. If the two consecutive read values of the DSCR
371 		 * are the same then we assume both refers to the very same
372 		 * child descriptor as well as the CTRLA value read inbetween
373 		 * does. For cyclic tranfers, the assumption is that a full loop
374 		 * is "not so fast".
375 		 * If the two DSCR values are different, we read again the CTRLA
376 		 * then the DSCR till two consecutive read values from DSCR are
377 		 * equal or till the maxium trials is reach.
378 		 * This algorithm is very unlikely not to find a stable value for
379 		 * DSCR.
380 		 */
381 
382 		dscr = channel_readl(atchan, DSCR);
383 		rmb(); /* ensure DSCR is read before CTRLA */
384 		ctrla = channel_readl(atchan, CTRLA);
385 		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
386 			u32 new_dscr;
387 
388 			rmb(); /* ensure DSCR is read after CTRLA */
389 			new_dscr = channel_readl(atchan, DSCR);
390 
391 			/*
392 			 * If the DSCR register value has not changed inside the
393 			 * DMA controller since the previous read, we assume
394 			 * that both the dscr and ctrla values refers to the
395 			 * very same descriptor.
396 			 */
397 			if (likely(new_dscr == dscr))
398 				break;
399 
400 			/*
401 			 * DSCR has changed inside the DMA controller, so the
402 			 * previouly read value of CTRLA may refer to an already
403 			 * processed descriptor hence could be outdated.
404 			 * We need to update ctrla to match the current
405 			 * descriptor.
406 			 */
407 			dscr = new_dscr;
408 			rmb(); /* ensure DSCR is read before CTRLA */
409 			ctrla = channel_readl(atchan, CTRLA);
410 		}
411 		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
412 			return -ETIMEDOUT;
413 
414 		/* for the first descriptor we can be more accurate */
415 		if (desc_first->lli.dscr == dscr)
416 			return atc_calc_bytes_left(ret, ctrla);
417 
418 		ret -= desc_first->len;
419 		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
420 			if (desc->lli.dscr == dscr)
421 				break;
422 
423 			ret -= desc->len;
424 		}
425 
426 		/*
427 		 * For the current descriptor in the chain we can calculate
428 		 * the remaining bytes using the channel's register.
429 		 */
430 		ret = atc_calc_bytes_left(ret, ctrla);
431 	} else {
432 		/* single transfer */
433 		ctrla = channel_readl(atchan, CTRLA);
434 		ret = atc_calc_bytes_left(ret, ctrla);
435 	}
436 
437 	return ret;
438 }
439 
440 /**
441  * atc_chain_complete - finish work for one transaction chain
442  * @atchan: channel we work on
443  * @desc: descriptor at the head of the chain we want do complete
444  *
445  * Called with atchan->lock held and bh disabled */
446 static void
447 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
448 {
449 	struct dma_async_tx_descriptor	*txd = &desc->txd;
450 	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
451 
452 	dev_vdbg(chan2dev(&atchan->chan_common),
453 		"descriptor %u complete\n", txd->cookie);
454 
455 	/* mark the descriptor as complete for non cyclic cases only */
456 	if (!atc_chan_is_cyclic(atchan))
457 		dma_cookie_complete(txd);
458 
459 	/* If the transfer was a memset, free our temporary buffer */
460 	if (desc->memset_buffer) {
461 		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
462 			      desc->memset_paddr);
463 		desc->memset_buffer = false;
464 	}
465 
466 	/* move children to free_list */
467 	list_splice_init(&desc->tx_list, &atchan->free_list);
468 	/* move myself to free_list */
469 	list_move(&desc->desc_node, &atchan->free_list);
470 
471 	dma_descriptor_unmap(txd);
472 	/* for cyclic transfers,
473 	 * no need to replay callback function while stopping */
474 	if (!atc_chan_is_cyclic(atchan)) {
475 		/*
476 		 * The API requires that no submissions are done from a
477 		 * callback, so we don't need to drop the lock here
478 		 */
479 		dmaengine_desc_get_callback_invoke(txd, NULL);
480 	}
481 
482 	dma_run_dependencies(txd);
483 }
484 
485 /**
486  * atc_complete_all - finish work for all transactions
487  * @atchan: channel to complete transactions for
488  *
489  * Eventually submit queued descriptors if any
490  *
491  * Assume channel is idle while calling this function
492  * Called with atchan->lock held and bh disabled
493  */
494 static void atc_complete_all(struct at_dma_chan *atchan)
495 {
496 	struct at_desc *desc, *_desc;
497 	LIST_HEAD(list);
498 
499 	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
500 
501 	/*
502 	 * Submit queued descriptors ASAP, i.e. before we go through
503 	 * the completed ones.
504 	 */
505 	if (!list_empty(&atchan->queue))
506 		atc_dostart(atchan, atc_first_queued(atchan));
507 	/* empty active_list now it is completed */
508 	list_splice_init(&atchan->active_list, &list);
509 	/* empty queue list by moving descriptors (if any) to active_list */
510 	list_splice_init(&atchan->queue, &atchan->active_list);
511 
512 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
513 		atc_chain_complete(atchan, desc);
514 }
515 
516 /**
517  * atc_advance_work - at the end of a transaction, move forward
518  * @atchan: channel where the transaction ended
519  *
520  * Called with atchan->lock held and bh disabled
521  */
522 static void atc_advance_work(struct at_dma_chan *atchan)
523 {
524 	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
525 
526 	if (atc_chan_is_enabled(atchan))
527 		return;
528 
529 	if (list_empty(&atchan->active_list) ||
530 	    list_is_singular(&atchan->active_list)) {
531 		atc_complete_all(atchan);
532 	} else {
533 		atc_chain_complete(atchan, atc_first_active(atchan));
534 		/* advance work */
535 		atc_dostart(atchan, atc_first_active(atchan));
536 	}
537 }
538 
539 
540 /**
541  * atc_handle_error - handle errors reported by DMA controller
542  * @atchan: channel where error occurs
543  *
544  * Called with atchan->lock held and bh disabled
545  */
546 static void atc_handle_error(struct at_dma_chan *atchan)
547 {
548 	struct at_desc *bad_desc;
549 	struct at_desc *child;
550 
551 	/*
552 	 * The descriptor currently at the head of the active list is
553 	 * broked. Since we don't have any way to report errors, we'll
554 	 * just have to scream loudly and try to carry on.
555 	 */
556 	bad_desc = atc_first_active(atchan);
557 	list_del_init(&bad_desc->desc_node);
558 
559 	/* As we are stopped, take advantage to push queued descriptors
560 	 * in active_list */
561 	list_splice_init(&atchan->queue, atchan->active_list.prev);
562 
563 	/* Try to restart the controller */
564 	if (!list_empty(&atchan->active_list))
565 		atc_dostart(atchan, atc_first_active(atchan));
566 
567 	/*
568 	 * KERN_CRITICAL may seem harsh, but since this only happens
569 	 * when someone submits a bad physical address in a
570 	 * descriptor, we should consider ourselves lucky that the
571 	 * controller flagged an error instead of scribbling over
572 	 * random memory locations.
573 	 */
574 	dev_crit(chan2dev(&atchan->chan_common),
575 			"Bad descriptor submitted for DMA!\n");
576 	dev_crit(chan2dev(&atchan->chan_common),
577 			"  cookie: %d\n", bad_desc->txd.cookie);
578 	atc_dump_lli(atchan, &bad_desc->lli);
579 	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
580 		atc_dump_lli(atchan, &child->lli);
581 
582 	/* Pretend the descriptor completed successfully */
583 	atc_chain_complete(atchan, bad_desc);
584 }
585 
586 /**
587  * atc_handle_cyclic - at the end of a period, run callback function
588  * @atchan: channel used for cyclic operations
589  *
590  * Called with atchan->lock held and bh disabled
591  */
592 static void atc_handle_cyclic(struct at_dma_chan *atchan)
593 {
594 	struct at_desc			*first = atc_first_active(atchan);
595 	struct dma_async_tx_descriptor	*txd = &first->txd;
596 
597 	dev_vdbg(chan2dev(&atchan->chan_common),
598 			"new cyclic period llp 0x%08x\n",
599 			channel_readl(atchan, DSCR));
600 
601 	dmaengine_desc_get_callback_invoke(txd, NULL);
602 }
603 
604 /*--  IRQ & Tasklet  ---------------------------------------------------*/
605 
606 static void atc_tasklet(unsigned long data)
607 {
608 	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
609 	unsigned long flags;
610 
611 	spin_lock_irqsave(&atchan->lock, flags);
612 	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
613 		atc_handle_error(atchan);
614 	else if (atc_chan_is_cyclic(atchan))
615 		atc_handle_cyclic(atchan);
616 	else
617 		atc_advance_work(atchan);
618 
619 	spin_unlock_irqrestore(&atchan->lock, flags);
620 }
621 
622 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
623 {
624 	struct at_dma		*atdma = (struct at_dma *)dev_id;
625 	struct at_dma_chan	*atchan;
626 	int			i;
627 	u32			status, pending, imr;
628 	int			ret = IRQ_NONE;
629 
630 	do {
631 		imr = dma_readl(atdma, EBCIMR);
632 		status = dma_readl(atdma, EBCISR);
633 		pending = status & imr;
634 
635 		if (!pending)
636 			break;
637 
638 		dev_vdbg(atdma->dma_common.dev,
639 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
640 			 status, imr, pending);
641 
642 		for (i = 0; i < atdma->dma_common.chancnt; i++) {
643 			atchan = &atdma->chan[i];
644 			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
645 				if (pending & AT_DMA_ERR(i)) {
646 					/* Disable channel on AHB error */
647 					dma_writel(atdma, CHDR,
648 						AT_DMA_RES(i) | atchan->mask);
649 					/* Give information to tasklet */
650 					set_bit(ATC_IS_ERROR, &atchan->status);
651 				}
652 				tasklet_schedule(&atchan->tasklet);
653 				ret = IRQ_HANDLED;
654 			}
655 		}
656 
657 	} while (pending);
658 
659 	return ret;
660 }
661 
662 
663 /*--  DMA Engine API  --------------------------------------------------*/
664 
665 /**
666  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
667  * @desc: descriptor at the head of the transaction chain
668  *
669  * Queue chain if DMA engine is working already
670  *
671  * Cookie increment and adding to active_list or queue must be atomic
672  */
673 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
674 {
675 	struct at_desc		*desc = txd_to_at_desc(tx);
676 	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
677 	dma_cookie_t		cookie;
678 	unsigned long		flags;
679 
680 	spin_lock_irqsave(&atchan->lock, flags);
681 	cookie = dma_cookie_assign(tx);
682 
683 	if (list_empty(&atchan->active_list)) {
684 		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
685 				desc->txd.cookie);
686 		atc_dostart(atchan, desc);
687 		list_add_tail(&desc->desc_node, &atchan->active_list);
688 	} else {
689 		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
690 				desc->txd.cookie);
691 		list_add_tail(&desc->desc_node, &atchan->queue);
692 	}
693 
694 	spin_unlock_irqrestore(&atchan->lock, flags);
695 
696 	return cookie;
697 }
698 
699 /**
700  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
701  * @chan: the channel to prepare operation on
702  * @xt: Interleaved transfer template
703  * @flags: tx descriptor status flags
704  */
705 static struct dma_async_tx_descriptor *
706 atc_prep_dma_interleaved(struct dma_chan *chan,
707 			 struct dma_interleaved_template *xt,
708 			 unsigned long flags)
709 {
710 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
711 	struct data_chunk	*first = xt->sgl;
712 	struct at_desc		*desc = NULL;
713 	size_t			xfer_count;
714 	unsigned int		dwidth;
715 	u32			ctrla;
716 	u32			ctrlb;
717 	size_t			len = 0;
718 	int			i;
719 
720 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
721 		return NULL;
722 
723 	dev_info(chan2dev(chan),
724 		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
725 		__func__, &xt->src_start, &xt->dst_start, xt->numf,
726 		xt->frame_size, flags);
727 
728 	/*
729 	 * The controller can only "skip" X bytes every Y bytes, so we
730 	 * need to make sure we are given a template that fit that
731 	 * description, ie a template with chunks that always have the
732 	 * same size, with the same ICGs.
733 	 */
734 	for (i = 0; i < xt->frame_size; i++) {
735 		struct data_chunk *chunk = xt->sgl + i;
736 
737 		if ((chunk->size != xt->sgl->size) ||
738 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
739 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
740 			dev_err(chan2dev(chan),
741 				"%s: the controller can transfer only identical chunks\n",
742 				__func__);
743 			return NULL;
744 		}
745 
746 		len += chunk->size;
747 	}
748 
749 	dwidth = atc_get_xfer_width(xt->src_start,
750 				    xt->dst_start, len);
751 
752 	xfer_count = len >> dwidth;
753 	if (xfer_count > ATC_BTSIZE_MAX) {
754 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
755 		return NULL;
756 	}
757 
758 	ctrla = ATC_SRC_WIDTH(dwidth) |
759 		ATC_DST_WIDTH(dwidth);
760 
761 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
762 		| ATC_SRC_ADDR_MODE_INCR
763 		| ATC_DST_ADDR_MODE_INCR
764 		| ATC_SRC_PIP
765 		| ATC_DST_PIP
766 		| ATC_FC_MEM2MEM;
767 
768 	/* create the transfer */
769 	desc = atc_desc_get(atchan);
770 	if (!desc) {
771 		dev_err(chan2dev(chan),
772 			"%s: couldn't allocate our descriptor\n", __func__);
773 		return NULL;
774 	}
775 
776 	desc->lli.saddr = xt->src_start;
777 	desc->lli.daddr = xt->dst_start;
778 	desc->lli.ctrla = ctrla | xfer_count;
779 	desc->lli.ctrlb = ctrlb;
780 
781 	desc->boundary = first->size >> dwidth;
782 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
783 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
784 
785 	desc->txd.cookie = -EBUSY;
786 	desc->total_len = desc->len = len;
787 
788 	/* set end-of-link to the last link descriptor of list*/
789 	set_desc_eol(desc);
790 
791 	desc->txd.flags = flags; /* client is in control of this ack */
792 
793 	return &desc->txd;
794 }
795 
796 /**
797  * atc_prep_dma_memcpy - prepare a memcpy operation
798  * @chan: the channel to prepare operation on
799  * @dest: operation virtual destination address
800  * @src: operation virtual source address
801  * @len: operation length
802  * @flags: tx descriptor status flags
803  */
804 static struct dma_async_tx_descriptor *
805 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
806 		size_t len, unsigned long flags)
807 {
808 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
809 	struct at_desc		*desc = NULL;
810 	struct at_desc		*first = NULL;
811 	struct at_desc		*prev = NULL;
812 	size_t			xfer_count;
813 	size_t			offset;
814 	unsigned int		src_width;
815 	unsigned int		dst_width;
816 	u32			ctrla;
817 	u32			ctrlb;
818 
819 	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
820 			&dest, &src, len, flags);
821 
822 	if (unlikely(!len)) {
823 		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
824 		return NULL;
825 	}
826 
827 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
828 		| ATC_SRC_ADDR_MODE_INCR
829 		| ATC_DST_ADDR_MODE_INCR
830 		| ATC_FC_MEM2MEM;
831 
832 	/*
833 	 * We can be a lot more clever here, but this should take care
834 	 * of the most common optimization.
835 	 */
836 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
837 
838 	ctrla = ATC_SRC_WIDTH(src_width) |
839 		ATC_DST_WIDTH(dst_width);
840 
841 	for (offset = 0; offset < len; offset += xfer_count << src_width) {
842 		xfer_count = min_t(size_t, (len - offset) >> src_width,
843 				ATC_BTSIZE_MAX);
844 
845 		desc = atc_desc_get(atchan);
846 		if (!desc)
847 			goto err_desc_get;
848 
849 		desc->lli.saddr = src + offset;
850 		desc->lli.daddr = dest + offset;
851 		desc->lli.ctrla = ctrla | xfer_count;
852 		desc->lli.ctrlb = ctrlb;
853 
854 		desc->txd.cookie = 0;
855 		desc->len = xfer_count << src_width;
856 
857 		atc_desc_chain(&first, &prev, desc);
858 	}
859 
860 	/* First descriptor of the chain embedds additional information */
861 	first->txd.cookie = -EBUSY;
862 	first->total_len = len;
863 
864 	/* set end-of-link to the last link descriptor of list*/
865 	set_desc_eol(desc);
866 
867 	first->txd.flags = flags; /* client is in control of this ack */
868 
869 	return &first->txd;
870 
871 err_desc_get:
872 	atc_desc_put(atchan, first);
873 	return NULL;
874 }
875 
876 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
877 					      dma_addr_t psrc,
878 					      dma_addr_t pdst,
879 					      size_t len)
880 {
881 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
882 	struct at_desc *desc;
883 	size_t xfer_count;
884 
885 	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
886 	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
887 		ATC_SRC_ADDR_MODE_FIXED |
888 		ATC_DST_ADDR_MODE_INCR |
889 		ATC_FC_MEM2MEM;
890 
891 	xfer_count = len >> 2;
892 	if (xfer_count > ATC_BTSIZE_MAX) {
893 		dev_err(chan2dev(chan), "%s: buffer is too big\n",
894 			__func__);
895 		return NULL;
896 	}
897 
898 	desc = atc_desc_get(atchan);
899 	if (!desc) {
900 		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
901 			__func__);
902 		return NULL;
903 	}
904 
905 	desc->lli.saddr = psrc;
906 	desc->lli.daddr = pdst;
907 	desc->lli.ctrla = ctrla | xfer_count;
908 	desc->lli.ctrlb = ctrlb;
909 
910 	desc->txd.cookie = 0;
911 	desc->len = len;
912 
913 	return desc;
914 }
915 
916 /**
917  * atc_prep_dma_memset - prepare a memcpy operation
918  * @chan: the channel to prepare operation on
919  * @dest: operation virtual destination address
920  * @value: value to set memory buffer to
921  * @len: operation length
922  * @flags: tx descriptor status flags
923  */
924 static struct dma_async_tx_descriptor *
925 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
926 		    size_t len, unsigned long flags)
927 {
928 	struct at_dma		*atdma = to_at_dma(chan->device);
929 	struct at_desc		*desc;
930 	void __iomem		*vaddr;
931 	dma_addr_t		paddr;
932 
933 	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
934 		&dest, value, len, flags);
935 
936 	if (unlikely(!len)) {
937 		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
938 		return NULL;
939 	}
940 
941 	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
942 		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
943 			__func__);
944 		return NULL;
945 	}
946 
947 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
948 	if (!vaddr) {
949 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
950 			__func__);
951 		return NULL;
952 	}
953 	*(u32*)vaddr = value;
954 
955 	desc = atc_create_memset_desc(chan, paddr, dest, len);
956 	if (!desc) {
957 		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
958 			__func__);
959 		goto err_free_buffer;
960 	}
961 
962 	desc->memset_paddr = paddr;
963 	desc->memset_vaddr = vaddr;
964 	desc->memset_buffer = true;
965 
966 	desc->txd.cookie = -EBUSY;
967 	desc->total_len = len;
968 
969 	/* set end-of-link on the descriptor */
970 	set_desc_eol(desc);
971 
972 	desc->txd.flags = flags;
973 
974 	return &desc->txd;
975 
976 err_free_buffer:
977 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
978 	return NULL;
979 }
980 
981 static struct dma_async_tx_descriptor *
982 atc_prep_dma_memset_sg(struct dma_chan *chan,
983 		       struct scatterlist *sgl,
984 		       unsigned int sg_len, int value,
985 		       unsigned long flags)
986 {
987 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
988 	struct at_dma		*atdma = to_at_dma(chan->device);
989 	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
990 	struct scatterlist	*sg;
991 	void __iomem		*vaddr;
992 	dma_addr_t		paddr;
993 	size_t			total_len = 0;
994 	int			i;
995 
996 	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
997 		 value, sg_len, flags);
998 
999 	if (unlikely(!sgl || !sg_len)) {
1000 		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1001 			__func__);
1002 		return NULL;
1003 	}
1004 
1005 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1006 	if (!vaddr) {
1007 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1008 			__func__);
1009 		return NULL;
1010 	}
1011 	*(u32*)vaddr = value;
1012 
1013 	for_each_sg(sgl, sg, sg_len, i) {
1014 		dma_addr_t dest = sg_dma_address(sg);
1015 		size_t len = sg_dma_len(sg);
1016 
1017 		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1018 			 __func__, &dest, len);
1019 
1020 		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1021 			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1022 				__func__);
1023 			goto err_put_desc;
1024 		}
1025 
1026 		desc = atc_create_memset_desc(chan, paddr, dest, len);
1027 		if (!desc)
1028 			goto err_put_desc;
1029 
1030 		atc_desc_chain(&first, &prev, desc);
1031 
1032 		total_len += len;
1033 	}
1034 
1035 	/*
1036 	 * Only set the buffer pointers on the last descriptor to
1037 	 * avoid free'ing while we have our transfer still going
1038 	 */
1039 	desc->memset_paddr = paddr;
1040 	desc->memset_vaddr = vaddr;
1041 	desc->memset_buffer = true;
1042 
1043 	first->txd.cookie = -EBUSY;
1044 	first->total_len = total_len;
1045 
1046 	/* set end-of-link on the descriptor */
1047 	set_desc_eol(desc);
1048 
1049 	first->txd.flags = flags;
1050 
1051 	return &first->txd;
1052 
1053 err_put_desc:
1054 	atc_desc_put(atchan, first);
1055 	return NULL;
1056 }
1057 
1058 /**
1059  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1060  * @chan: DMA channel
1061  * @sgl: scatterlist to transfer to/from
1062  * @sg_len: number of entries in @scatterlist
1063  * @direction: DMA direction
1064  * @flags: tx descriptor status flags
1065  * @context: transaction context (ignored)
1066  */
1067 static struct dma_async_tx_descriptor *
1068 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1069 		unsigned int sg_len, enum dma_transfer_direction direction,
1070 		unsigned long flags, void *context)
1071 {
1072 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1073 	struct at_dma_slave	*atslave = chan->private;
1074 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1075 	struct at_desc		*first = NULL;
1076 	struct at_desc		*prev = NULL;
1077 	u32			ctrla;
1078 	u32			ctrlb;
1079 	dma_addr_t		reg;
1080 	unsigned int		reg_width;
1081 	unsigned int		mem_width;
1082 	unsigned int		i;
1083 	struct scatterlist	*sg;
1084 	size_t			total_len = 0;
1085 
1086 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1087 			sg_len,
1088 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1089 			flags);
1090 
1091 	if (unlikely(!atslave || !sg_len)) {
1092 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1093 		return NULL;
1094 	}
1095 
1096 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1097 		| ATC_DCSIZE(sconfig->dst_maxburst);
1098 	ctrlb = ATC_IEN;
1099 
1100 	switch (direction) {
1101 	case DMA_MEM_TO_DEV:
1102 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1103 		ctrla |=  ATC_DST_WIDTH(reg_width);
1104 		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1105 			| ATC_SRC_ADDR_MODE_INCR
1106 			| ATC_FC_MEM2PER
1107 			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1108 		reg = sconfig->dst_addr;
1109 		for_each_sg(sgl, sg, sg_len, i) {
1110 			struct at_desc	*desc;
1111 			u32		len;
1112 			u32		mem;
1113 
1114 			desc = atc_desc_get(atchan);
1115 			if (!desc)
1116 				goto err_desc_get;
1117 
1118 			mem = sg_dma_address(sg);
1119 			len = sg_dma_len(sg);
1120 			if (unlikely(!len)) {
1121 				dev_dbg(chan2dev(chan),
1122 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1123 				goto err;
1124 			}
1125 			mem_width = 2;
1126 			if (unlikely(mem & 3 || len & 3))
1127 				mem_width = 0;
1128 
1129 			desc->lli.saddr = mem;
1130 			desc->lli.daddr = reg;
1131 			desc->lli.ctrla = ctrla
1132 					| ATC_SRC_WIDTH(mem_width)
1133 					| len >> mem_width;
1134 			desc->lli.ctrlb = ctrlb;
1135 			desc->len = len;
1136 
1137 			atc_desc_chain(&first, &prev, desc);
1138 			total_len += len;
1139 		}
1140 		break;
1141 	case DMA_DEV_TO_MEM:
1142 		reg_width = convert_buswidth(sconfig->src_addr_width);
1143 		ctrla |=  ATC_SRC_WIDTH(reg_width);
1144 		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1145 			| ATC_SRC_ADDR_MODE_FIXED
1146 			| ATC_FC_PER2MEM
1147 			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1148 
1149 		reg = sconfig->src_addr;
1150 		for_each_sg(sgl, sg, sg_len, i) {
1151 			struct at_desc	*desc;
1152 			u32		len;
1153 			u32		mem;
1154 
1155 			desc = atc_desc_get(atchan);
1156 			if (!desc)
1157 				goto err_desc_get;
1158 
1159 			mem = sg_dma_address(sg);
1160 			len = sg_dma_len(sg);
1161 			if (unlikely(!len)) {
1162 				dev_dbg(chan2dev(chan),
1163 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1164 				goto err;
1165 			}
1166 			mem_width = 2;
1167 			if (unlikely(mem & 3 || len & 3))
1168 				mem_width = 0;
1169 
1170 			desc->lli.saddr = reg;
1171 			desc->lli.daddr = mem;
1172 			desc->lli.ctrla = ctrla
1173 					| ATC_DST_WIDTH(mem_width)
1174 					| len >> reg_width;
1175 			desc->lli.ctrlb = ctrlb;
1176 			desc->len = len;
1177 
1178 			atc_desc_chain(&first, &prev, desc);
1179 			total_len += len;
1180 		}
1181 		break;
1182 	default:
1183 		return NULL;
1184 	}
1185 
1186 	/* set end-of-link to the last link descriptor of list*/
1187 	set_desc_eol(prev);
1188 
1189 	/* First descriptor of the chain embedds additional information */
1190 	first->txd.cookie = -EBUSY;
1191 	first->total_len = total_len;
1192 
1193 	/* first link descriptor of list is responsible of flags */
1194 	first->txd.flags = flags; /* client is in control of this ack */
1195 
1196 	return &first->txd;
1197 
1198 err_desc_get:
1199 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1200 err:
1201 	atc_desc_put(atchan, first);
1202 	return NULL;
1203 }
1204 
1205 /**
1206  * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1207  * @chan: the channel to prepare operation on
1208  * @dst_sg: destination scatterlist
1209  * @dst_nents: number of destination scatterlist entries
1210  * @src_sg: source scatterlist
1211  * @src_nents: number of source scatterlist entries
1212  * @flags: tx descriptor status flags
1213  */
1214 static struct dma_async_tx_descriptor *
1215 atc_prep_dma_sg(struct dma_chan *chan,
1216 		struct scatterlist *dst_sg, unsigned int dst_nents,
1217 		struct scatterlist *src_sg, unsigned int src_nents,
1218 		unsigned long flags)
1219 {
1220 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1221 	struct at_desc		*desc = NULL;
1222 	struct at_desc		*first = NULL;
1223 	struct at_desc		*prev = NULL;
1224 	unsigned int		src_width;
1225 	unsigned int		dst_width;
1226 	size_t			xfer_count;
1227 	u32			ctrla;
1228 	u32			ctrlb;
1229 	size_t			dst_len = 0, src_len = 0;
1230 	dma_addr_t		dst = 0, src = 0;
1231 	size_t			len = 0, total_len = 0;
1232 
1233 	if (unlikely(dst_nents == 0 || src_nents == 0))
1234 		return NULL;
1235 
1236 	if (unlikely(dst_sg == NULL || src_sg == NULL))
1237 		return NULL;
1238 
1239 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
1240 		| ATC_SRC_ADDR_MODE_INCR
1241 		| ATC_DST_ADDR_MODE_INCR
1242 		| ATC_FC_MEM2MEM;
1243 
1244 	/*
1245 	 * loop until there is either no more source or no more destination
1246 	 * scatterlist entry
1247 	 */
1248 	while (true) {
1249 
1250 		/* prepare the next transfer */
1251 		if (dst_len == 0) {
1252 
1253 			/* no more destination scatterlist entries */
1254 			if (!dst_sg || !dst_nents)
1255 				break;
1256 
1257 			dst = sg_dma_address(dst_sg);
1258 			dst_len = sg_dma_len(dst_sg);
1259 
1260 			dst_sg = sg_next(dst_sg);
1261 			dst_nents--;
1262 		}
1263 
1264 		if (src_len == 0) {
1265 
1266 			/* no more source scatterlist entries */
1267 			if (!src_sg || !src_nents)
1268 				break;
1269 
1270 			src = sg_dma_address(src_sg);
1271 			src_len = sg_dma_len(src_sg);
1272 
1273 			src_sg = sg_next(src_sg);
1274 			src_nents--;
1275 		}
1276 
1277 		len = min_t(size_t, src_len, dst_len);
1278 		if (len == 0)
1279 			continue;
1280 
1281 		/* take care for the alignment */
1282 		src_width = dst_width = atc_get_xfer_width(src, dst, len);
1283 
1284 		ctrla = ATC_SRC_WIDTH(src_width) |
1285 			ATC_DST_WIDTH(dst_width);
1286 
1287 		/*
1288 		 * The number of transfers to set up refer to the source width
1289 		 * that depends on the alignment.
1290 		 */
1291 		xfer_count = len >> src_width;
1292 		if (xfer_count > ATC_BTSIZE_MAX) {
1293 			xfer_count = ATC_BTSIZE_MAX;
1294 			len = ATC_BTSIZE_MAX << src_width;
1295 		}
1296 
1297 		/* create the transfer */
1298 		desc = atc_desc_get(atchan);
1299 		if (!desc)
1300 			goto err_desc_get;
1301 
1302 		desc->lli.saddr = src;
1303 		desc->lli.daddr = dst;
1304 		desc->lli.ctrla = ctrla | xfer_count;
1305 		desc->lli.ctrlb = ctrlb;
1306 
1307 		desc->txd.cookie = 0;
1308 		desc->len = len;
1309 
1310 		atc_desc_chain(&first, &prev, desc);
1311 
1312 		/* update the lengths and addresses for the next loop cycle */
1313 		dst_len -= len;
1314 		src_len -= len;
1315 		dst += len;
1316 		src += len;
1317 
1318 		total_len += len;
1319 	}
1320 
1321 	/* First descriptor of the chain embedds additional information */
1322 	first->txd.cookie = -EBUSY;
1323 	first->total_len = total_len;
1324 
1325 	/* set end-of-link to the last link descriptor of list*/
1326 	set_desc_eol(desc);
1327 
1328 	first->txd.flags = flags; /* client is in control of this ack */
1329 
1330 	return &first->txd;
1331 
1332 err_desc_get:
1333 	atc_desc_put(atchan, first);
1334 	return NULL;
1335 }
1336 
1337 /**
1338  * atc_dma_cyclic_check_values
1339  * Check for too big/unaligned periods and unaligned DMA buffer
1340  */
1341 static int
1342 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1343 		size_t period_len)
1344 {
1345 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1346 		goto err_out;
1347 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1348 		goto err_out;
1349 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1350 		goto err_out;
1351 
1352 	return 0;
1353 
1354 err_out:
1355 	return -EINVAL;
1356 }
1357 
1358 /**
1359  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1360  */
1361 static int
1362 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1363 		unsigned int period_index, dma_addr_t buf_addr,
1364 		unsigned int reg_width, size_t period_len,
1365 		enum dma_transfer_direction direction)
1366 {
1367 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1368 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1369 	u32			ctrla;
1370 
1371 	/* prepare common CRTLA value */
1372 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1373 		| ATC_DCSIZE(sconfig->dst_maxburst)
1374 		| ATC_DST_WIDTH(reg_width)
1375 		| ATC_SRC_WIDTH(reg_width)
1376 		| period_len >> reg_width;
1377 
1378 	switch (direction) {
1379 	case DMA_MEM_TO_DEV:
1380 		desc->lli.saddr = buf_addr + (period_len * period_index);
1381 		desc->lli.daddr = sconfig->dst_addr;
1382 		desc->lli.ctrla = ctrla;
1383 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1384 				| ATC_SRC_ADDR_MODE_INCR
1385 				| ATC_FC_MEM2PER
1386 				| ATC_SIF(atchan->mem_if)
1387 				| ATC_DIF(atchan->per_if);
1388 		desc->len = period_len;
1389 		break;
1390 
1391 	case DMA_DEV_TO_MEM:
1392 		desc->lli.saddr = sconfig->src_addr;
1393 		desc->lli.daddr = buf_addr + (period_len * period_index);
1394 		desc->lli.ctrla = ctrla;
1395 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1396 				| ATC_SRC_ADDR_MODE_FIXED
1397 				| ATC_FC_PER2MEM
1398 				| ATC_SIF(atchan->per_if)
1399 				| ATC_DIF(atchan->mem_if);
1400 		desc->len = period_len;
1401 		break;
1402 
1403 	default:
1404 		return -EINVAL;
1405 	}
1406 
1407 	return 0;
1408 }
1409 
1410 /**
1411  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1412  * @chan: the DMA channel to prepare
1413  * @buf_addr: physical DMA address where the buffer starts
1414  * @buf_len: total number of bytes for the entire buffer
1415  * @period_len: number of bytes for each period
1416  * @direction: transfer direction, to or from device
1417  * @flags: tx descriptor status flags
1418  */
1419 static struct dma_async_tx_descriptor *
1420 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1421 		size_t period_len, enum dma_transfer_direction direction,
1422 		unsigned long flags)
1423 {
1424 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1425 	struct at_dma_slave	*atslave = chan->private;
1426 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1427 	struct at_desc		*first = NULL;
1428 	struct at_desc		*prev = NULL;
1429 	unsigned long		was_cyclic;
1430 	unsigned int		reg_width;
1431 	unsigned int		periods = buf_len / period_len;
1432 	unsigned int		i;
1433 
1434 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1435 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1436 			&buf_addr,
1437 			periods, buf_len, period_len);
1438 
1439 	if (unlikely(!atslave || !buf_len || !period_len)) {
1440 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1441 		return NULL;
1442 	}
1443 
1444 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1445 	if (was_cyclic) {
1446 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1447 		return NULL;
1448 	}
1449 
1450 	if (unlikely(!is_slave_direction(direction)))
1451 		goto err_out;
1452 
1453 	if (sconfig->direction == DMA_MEM_TO_DEV)
1454 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1455 	else
1456 		reg_width = convert_buswidth(sconfig->src_addr_width);
1457 
1458 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1459 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1460 		goto err_out;
1461 
1462 	/* build cyclic linked list */
1463 	for (i = 0; i < periods; i++) {
1464 		struct at_desc	*desc;
1465 
1466 		desc = atc_desc_get(atchan);
1467 		if (!desc)
1468 			goto err_desc_get;
1469 
1470 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1471 					     reg_width, period_len, direction))
1472 			goto err_desc_get;
1473 
1474 		atc_desc_chain(&first, &prev, desc);
1475 	}
1476 
1477 	/* lets make a cyclic list */
1478 	prev->lli.dscr = first->txd.phys;
1479 
1480 	/* First descriptor of the chain embedds additional information */
1481 	first->txd.cookie = -EBUSY;
1482 	first->total_len = buf_len;
1483 
1484 	return &first->txd;
1485 
1486 err_desc_get:
1487 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1488 	atc_desc_put(atchan, first);
1489 err_out:
1490 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1491 	return NULL;
1492 }
1493 
1494 static int atc_config(struct dma_chan *chan,
1495 		      struct dma_slave_config *sconfig)
1496 {
1497 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1498 
1499 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1500 
1501 	/* Check if it is chan is configured for slave transfers */
1502 	if (!chan->private)
1503 		return -EINVAL;
1504 
1505 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1506 
1507 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1508 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1509 
1510 	return 0;
1511 }
1512 
1513 static int atc_pause(struct dma_chan *chan)
1514 {
1515 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1516 	struct at_dma		*atdma = to_at_dma(chan->device);
1517 	int			chan_id = atchan->chan_common.chan_id;
1518 	unsigned long		flags;
1519 
1520 	LIST_HEAD(list);
1521 
1522 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1523 
1524 	spin_lock_irqsave(&atchan->lock, flags);
1525 
1526 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1527 	set_bit(ATC_IS_PAUSED, &atchan->status);
1528 
1529 	spin_unlock_irqrestore(&atchan->lock, flags);
1530 
1531 	return 0;
1532 }
1533 
1534 static int atc_resume(struct dma_chan *chan)
1535 {
1536 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1537 	struct at_dma		*atdma = to_at_dma(chan->device);
1538 	int			chan_id = atchan->chan_common.chan_id;
1539 	unsigned long		flags;
1540 
1541 	LIST_HEAD(list);
1542 
1543 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1544 
1545 	if (!atc_chan_is_paused(atchan))
1546 		return 0;
1547 
1548 	spin_lock_irqsave(&atchan->lock, flags);
1549 
1550 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1551 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1552 
1553 	spin_unlock_irqrestore(&atchan->lock, flags);
1554 
1555 	return 0;
1556 }
1557 
1558 static int atc_terminate_all(struct dma_chan *chan)
1559 {
1560 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1561 	struct at_dma		*atdma = to_at_dma(chan->device);
1562 	int			chan_id = atchan->chan_common.chan_id;
1563 	struct at_desc		*desc, *_desc;
1564 	unsigned long		flags;
1565 
1566 	LIST_HEAD(list);
1567 
1568 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1569 
1570 	/*
1571 	 * This is only called when something went wrong elsewhere, so
1572 	 * we don't really care about the data. Just disable the
1573 	 * channel. We still have to poll the channel enable bit due
1574 	 * to AHB/HSB limitations.
1575 	 */
1576 	spin_lock_irqsave(&atchan->lock, flags);
1577 
1578 	/* disabling channel: must also remove suspend state */
1579 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1580 
1581 	/* confirm that this channel is disabled */
1582 	while (dma_readl(atdma, CHSR) & atchan->mask)
1583 		cpu_relax();
1584 
1585 	/* active_list entries will end up before queued entries */
1586 	list_splice_init(&atchan->queue, &list);
1587 	list_splice_init(&atchan->active_list, &list);
1588 
1589 	/* Flush all pending and queued descriptors */
1590 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1591 		atc_chain_complete(atchan, desc);
1592 
1593 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1594 	/* if channel dedicated to cyclic operations, free it */
1595 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1596 
1597 	spin_unlock_irqrestore(&atchan->lock, flags);
1598 
1599 	return 0;
1600 }
1601 
1602 /**
1603  * atc_tx_status - poll for transaction completion
1604  * @chan: DMA channel
1605  * @cookie: transaction identifier to check status of
1606  * @txstate: if not %NULL updated with transaction state
1607  *
1608  * If @txstate is passed in, upon return it reflect the driver
1609  * internal state and can be used with dma_async_is_complete() to check
1610  * the status of multiple cookies without re-checking hardware state.
1611  */
1612 static enum dma_status
1613 atc_tx_status(struct dma_chan *chan,
1614 		dma_cookie_t cookie,
1615 		struct dma_tx_state *txstate)
1616 {
1617 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1618 	unsigned long		flags;
1619 	enum dma_status		ret;
1620 	int bytes = 0;
1621 
1622 	ret = dma_cookie_status(chan, cookie, txstate);
1623 	if (ret == DMA_COMPLETE)
1624 		return ret;
1625 	/*
1626 	 * There's no point calculating the residue if there's
1627 	 * no txstate to store the value.
1628 	 */
1629 	if (!txstate)
1630 		return DMA_ERROR;
1631 
1632 	spin_lock_irqsave(&atchan->lock, flags);
1633 
1634 	/*  Get number of bytes left in the active transactions */
1635 	bytes = atc_get_bytes_left(chan, cookie);
1636 
1637 	spin_unlock_irqrestore(&atchan->lock, flags);
1638 
1639 	if (unlikely(bytes < 0)) {
1640 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1641 		return DMA_ERROR;
1642 	} else {
1643 		dma_set_residue(txstate, bytes);
1644 	}
1645 
1646 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1647 		 ret, cookie, bytes);
1648 
1649 	return ret;
1650 }
1651 
1652 /**
1653  * atc_issue_pending - try to finish work
1654  * @chan: target DMA channel
1655  */
1656 static void atc_issue_pending(struct dma_chan *chan)
1657 {
1658 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1659 	unsigned long		flags;
1660 
1661 	dev_vdbg(chan2dev(chan), "issue_pending\n");
1662 
1663 	/* Not needed for cyclic transfers */
1664 	if (atc_chan_is_cyclic(atchan))
1665 		return;
1666 
1667 	spin_lock_irqsave(&atchan->lock, flags);
1668 	atc_advance_work(atchan);
1669 	spin_unlock_irqrestore(&atchan->lock, flags);
1670 }
1671 
1672 /**
1673  * atc_alloc_chan_resources - allocate resources for DMA channel
1674  * @chan: allocate descriptor resources for this channel
1675  * @client: current client requesting the channel be ready for requests
1676  *
1677  * return - the number of allocated descriptors
1678  */
1679 static int atc_alloc_chan_resources(struct dma_chan *chan)
1680 {
1681 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1682 	struct at_dma		*atdma = to_at_dma(chan->device);
1683 	struct at_desc		*desc;
1684 	struct at_dma_slave	*atslave;
1685 	unsigned long		flags;
1686 	int			i;
1687 	u32			cfg;
1688 	LIST_HEAD(tmp_list);
1689 
1690 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1691 
1692 	/* ASSERT:  channel is idle */
1693 	if (atc_chan_is_enabled(atchan)) {
1694 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1695 		return -EIO;
1696 	}
1697 
1698 	cfg = ATC_DEFAULT_CFG;
1699 
1700 	atslave = chan->private;
1701 	if (atslave) {
1702 		/*
1703 		 * We need controller-specific data to set up slave
1704 		 * transfers.
1705 		 */
1706 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1707 
1708 		/* if cfg configuration specified take it instead of default */
1709 		if (atslave->cfg)
1710 			cfg = atslave->cfg;
1711 	}
1712 
1713 	/* have we already been set up?
1714 	 * reconfigure channel but no need to reallocate descriptors */
1715 	if (!list_empty(&atchan->free_list))
1716 		return atchan->descs_allocated;
1717 
1718 	/* Allocate initial pool of descriptors */
1719 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1720 		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1721 		if (!desc) {
1722 			dev_err(atdma->dma_common.dev,
1723 				"Only %d initial descriptors\n", i);
1724 			break;
1725 		}
1726 		list_add_tail(&desc->desc_node, &tmp_list);
1727 	}
1728 
1729 	spin_lock_irqsave(&atchan->lock, flags);
1730 	atchan->descs_allocated = i;
1731 	list_splice(&tmp_list, &atchan->free_list);
1732 	dma_cookie_init(chan);
1733 	spin_unlock_irqrestore(&atchan->lock, flags);
1734 
1735 	/* channel parameters */
1736 	channel_writel(atchan, CFG, cfg);
1737 
1738 	dev_dbg(chan2dev(chan),
1739 		"alloc_chan_resources: allocated %d descriptors\n",
1740 		atchan->descs_allocated);
1741 
1742 	return atchan->descs_allocated;
1743 }
1744 
1745 /**
1746  * atc_free_chan_resources - free all channel resources
1747  * @chan: DMA channel
1748  */
1749 static void atc_free_chan_resources(struct dma_chan *chan)
1750 {
1751 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1752 	struct at_dma		*atdma = to_at_dma(chan->device);
1753 	struct at_desc		*desc, *_desc;
1754 	LIST_HEAD(list);
1755 
1756 	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1757 		atchan->descs_allocated);
1758 
1759 	/* ASSERT:  channel is idle */
1760 	BUG_ON(!list_empty(&atchan->active_list));
1761 	BUG_ON(!list_empty(&atchan->queue));
1762 	BUG_ON(atc_chan_is_enabled(atchan));
1763 
1764 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1765 		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1766 		list_del(&desc->desc_node);
1767 		/* free link descriptor */
1768 		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1769 	}
1770 	list_splice_init(&atchan->free_list, &list);
1771 	atchan->descs_allocated = 0;
1772 	atchan->status = 0;
1773 
1774 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1775 }
1776 
1777 #ifdef CONFIG_OF
1778 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1779 {
1780 	struct at_dma_slave *atslave = slave;
1781 
1782 	if (atslave->dma_dev == chan->device->dev) {
1783 		chan->private = atslave;
1784 		return true;
1785 	} else {
1786 		return false;
1787 	}
1788 }
1789 
1790 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1791 				     struct of_dma *of_dma)
1792 {
1793 	struct dma_chan *chan;
1794 	struct at_dma_chan *atchan;
1795 	struct at_dma_slave *atslave;
1796 	dma_cap_mask_t mask;
1797 	unsigned int per_id;
1798 	struct platform_device *dmac_pdev;
1799 
1800 	if (dma_spec->args_count != 2)
1801 		return NULL;
1802 
1803 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1804 
1805 	dma_cap_zero(mask);
1806 	dma_cap_set(DMA_SLAVE, mask);
1807 
1808 	atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1809 	if (!atslave)
1810 		return NULL;
1811 
1812 	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1813 	/*
1814 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1815 	 * ignored depending on DMA transfer direction.
1816 	 */
1817 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1818 	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1819 		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1820 	/*
1821 	 * We have to translate the value we get from the device tree since
1822 	 * the half FIFO configuration value had to be 0 to keep backward
1823 	 * compatibility.
1824 	 */
1825 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1826 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1827 		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1828 		break;
1829 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1830 		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1831 		break;
1832 	case AT91_DMA_CFG_FIFOCFG_HALF:
1833 	default:
1834 		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1835 	}
1836 	atslave->dma_dev = &dmac_pdev->dev;
1837 
1838 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1839 	if (!chan)
1840 		return NULL;
1841 
1842 	atchan = to_at_dma_chan(chan);
1843 	atchan->per_if = dma_spec->args[0] & 0xff;
1844 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1845 
1846 	return chan;
1847 }
1848 #else
1849 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1850 				     struct of_dma *of_dma)
1851 {
1852 	return NULL;
1853 }
1854 #endif
1855 
1856 /*--  Module Management  -----------------------------------------------*/
1857 
1858 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1859 static struct at_dma_platform_data at91sam9rl_config = {
1860 	.nr_channels = 2,
1861 };
1862 static struct at_dma_platform_data at91sam9g45_config = {
1863 	.nr_channels = 8,
1864 };
1865 
1866 #if defined(CONFIG_OF)
1867 static const struct of_device_id atmel_dma_dt_ids[] = {
1868 	{
1869 		.compatible = "atmel,at91sam9rl-dma",
1870 		.data = &at91sam9rl_config,
1871 	}, {
1872 		.compatible = "atmel,at91sam9g45-dma",
1873 		.data = &at91sam9g45_config,
1874 	}, {
1875 		/* sentinel */
1876 	}
1877 };
1878 
1879 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1880 #endif
1881 
1882 static const struct platform_device_id atdma_devtypes[] = {
1883 	{
1884 		.name = "at91sam9rl_dma",
1885 		.driver_data = (unsigned long) &at91sam9rl_config,
1886 	}, {
1887 		.name = "at91sam9g45_dma",
1888 		.driver_data = (unsigned long) &at91sam9g45_config,
1889 	}, {
1890 		/* sentinel */
1891 	}
1892 };
1893 
1894 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1895 						struct platform_device *pdev)
1896 {
1897 	if (pdev->dev.of_node) {
1898 		const struct of_device_id *match;
1899 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1900 		if (match == NULL)
1901 			return NULL;
1902 		return match->data;
1903 	}
1904 	return (struct at_dma_platform_data *)
1905 			platform_get_device_id(pdev)->driver_data;
1906 }
1907 
1908 /**
1909  * at_dma_off - disable DMA controller
1910  * @atdma: the Atmel HDAMC device
1911  */
1912 static void at_dma_off(struct at_dma *atdma)
1913 {
1914 	dma_writel(atdma, EN, 0);
1915 
1916 	/* disable all interrupts */
1917 	dma_writel(atdma, EBCIDR, -1L);
1918 
1919 	/* confirm that all channels are disabled */
1920 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1921 		cpu_relax();
1922 }
1923 
1924 static int __init at_dma_probe(struct platform_device *pdev)
1925 {
1926 	struct resource		*io;
1927 	struct at_dma		*atdma;
1928 	size_t			size;
1929 	int			irq;
1930 	int			err;
1931 	int			i;
1932 	const struct at_dma_platform_data *plat_dat;
1933 
1934 	/* setup platform data for each SoC */
1935 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1936 	dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1937 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1938 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1939 	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1940 	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1941 	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1942 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1943 	dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1944 
1945 	/* get DMA parameters from controller type */
1946 	plat_dat = at_dma_get_driver_data(pdev);
1947 	if (!plat_dat)
1948 		return -ENODEV;
1949 
1950 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1951 	if (!io)
1952 		return -EINVAL;
1953 
1954 	irq = platform_get_irq(pdev, 0);
1955 	if (irq < 0)
1956 		return irq;
1957 
1958 	size = sizeof(struct at_dma);
1959 	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1960 	atdma = kzalloc(size, GFP_KERNEL);
1961 	if (!atdma)
1962 		return -ENOMEM;
1963 
1964 	/* discover transaction capabilities */
1965 	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1966 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1967 
1968 	size = resource_size(io);
1969 	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1970 		err = -EBUSY;
1971 		goto err_kfree;
1972 	}
1973 
1974 	atdma->regs = ioremap(io->start, size);
1975 	if (!atdma->regs) {
1976 		err = -ENOMEM;
1977 		goto err_release_r;
1978 	}
1979 
1980 	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1981 	if (IS_ERR(atdma->clk)) {
1982 		err = PTR_ERR(atdma->clk);
1983 		goto err_clk;
1984 	}
1985 	err = clk_prepare_enable(atdma->clk);
1986 	if (err)
1987 		goto err_clk_prepare;
1988 
1989 	/* force dma off, just in case */
1990 	at_dma_off(atdma);
1991 
1992 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1993 	if (err)
1994 		goto err_irq;
1995 
1996 	platform_set_drvdata(pdev, atdma);
1997 
1998 	/* create a pool of consistent memory blocks for hardware descriptors */
1999 	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
2000 			&pdev->dev, sizeof(struct at_desc),
2001 			4 /* word alignment */, 0);
2002 	if (!atdma->dma_desc_pool) {
2003 		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
2004 		err = -ENOMEM;
2005 		goto err_desc_pool_create;
2006 	}
2007 
2008 	/* create a pool of consistent memory blocks for memset blocks */
2009 	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2010 					     &pdev->dev, sizeof(int), 4, 0);
2011 	if (!atdma->memset_pool) {
2012 		dev_err(&pdev->dev, "No memory for memset dma pool\n");
2013 		err = -ENOMEM;
2014 		goto err_memset_pool_create;
2015 	}
2016 
2017 	/* clear any pending interrupt */
2018 	while (dma_readl(atdma, EBCISR))
2019 		cpu_relax();
2020 
2021 	/* initialize channels related values */
2022 	INIT_LIST_HEAD(&atdma->dma_common.channels);
2023 	for (i = 0; i < plat_dat->nr_channels; i++) {
2024 		struct at_dma_chan	*atchan = &atdma->chan[i];
2025 
2026 		atchan->mem_if = AT_DMA_MEM_IF;
2027 		atchan->per_if = AT_DMA_PER_IF;
2028 		atchan->chan_common.device = &atdma->dma_common;
2029 		dma_cookie_init(&atchan->chan_common);
2030 		list_add_tail(&atchan->chan_common.device_node,
2031 				&atdma->dma_common.channels);
2032 
2033 		atchan->ch_regs = atdma->regs + ch_regs(i);
2034 		spin_lock_init(&atchan->lock);
2035 		atchan->mask = 1 << i;
2036 
2037 		INIT_LIST_HEAD(&atchan->active_list);
2038 		INIT_LIST_HEAD(&atchan->queue);
2039 		INIT_LIST_HEAD(&atchan->free_list);
2040 
2041 		tasklet_init(&atchan->tasklet, atc_tasklet,
2042 				(unsigned long)atchan);
2043 		atc_enable_chan_irq(atdma, i);
2044 	}
2045 
2046 	/* set base routines */
2047 	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
2048 	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
2049 	atdma->dma_common.device_tx_status = atc_tx_status;
2050 	atdma->dma_common.device_issue_pending = atc_issue_pending;
2051 	atdma->dma_common.dev = &pdev->dev;
2052 
2053 	/* set prep routines based on capability */
2054 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
2055 		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2056 
2057 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
2058 		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2059 
2060 	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
2061 		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
2062 		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2063 		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
2064 	}
2065 
2066 	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
2067 		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
2068 		/* controller can do slave DMA: can trigger cyclic transfers */
2069 		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
2070 		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2071 		atdma->dma_common.device_config = atc_config;
2072 		atdma->dma_common.device_pause = atc_pause;
2073 		atdma->dma_common.device_resume = atc_resume;
2074 		atdma->dma_common.device_terminate_all = atc_terminate_all;
2075 		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
2076 		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2077 		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2078 		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2079 	}
2080 
2081 	if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
2082 		atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
2083 
2084 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2085 
2086 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
2087 	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2088 	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2089 	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
2090 	  dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)  ? "sg-cpy " : "",
2091 	  plat_dat->nr_channels);
2092 
2093 	dma_async_device_register(&atdma->dma_common);
2094 
2095 	/*
2096 	 * Do not return an error if the dmac node is not present in order to
2097 	 * not break the existing way of requesting channel with
2098 	 * dma_request_channel().
2099 	 */
2100 	if (pdev->dev.of_node) {
2101 		err = of_dma_controller_register(pdev->dev.of_node,
2102 						 at_dma_xlate, atdma);
2103 		if (err) {
2104 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
2105 			goto err_of_dma_controller_register;
2106 		}
2107 	}
2108 
2109 	return 0;
2110 
2111 err_of_dma_controller_register:
2112 	dma_async_device_unregister(&atdma->dma_common);
2113 	dma_pool_destroy(atdma->memset_pool);
2114 err_memset_pool_create:
2115 	dma_pool_destroy(atdma->dma_desc_pool);
2116 err_desc_pool_create:
2117 	free_irq(platform_get_irq(pdev, 0), atdma);
2118 err_irq:
2119 	clk_disable_unprepare(atdma->clk);
2120 err_clk_prepare:
2121 	clk_put(atdma->clk);
2122 err_clk:
2123 	iounmap(atdma->regs);
2124 	atdma->regs = NULL;
2125 err_release_r:
2126 	release_mem_region(io->start, size);
2127 err_kfree:
2128 	kfree(atdma);
2129 	return err;
2130 }
2131 
2132 static int at_dma_remove(struct platform_device *pdev)
2133 {
2134 	struct at_dma		*atdma = platform_get_drvdata(pdev);
2135 	struct dma_chan		*chan, *_chan;
2136 	struct resource		*io;
2137 
2138 	at_dma_off(atdma);
2139 	dma_async_device_unregister(&atdma->dma_common);
2140 
2141 	dma_pool_destroy(atdma->memset_pool);
2142 	dma_pool_destroy(atdma->dma_desc_pool);
2143 	free_irq(platform_get_irq(pdev, 0), atdma);
2144 
2145 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2146 			device_node) {
2147 		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
2148 
2149 		/* Disable interrupts */
2150 		atc_disable_chan_irq(atdma, chan->chan_id);
2151 
2152 		tasklet_kill(&atchan->tasklet);
2153 		list_del(&chan->device_node);
2154 	}
2155 
2156 	clk_disable_unprepare(atdma->clk);
2157 	clk_put(atdma->clk);
2158 
2159 	iounmap(atdma->regs);
2160 	atdma->regs = NULL;
2161 
2162 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2163 	release_mem_region(io->start, resource_size(io));
2164 
2165 	kfree(atdma);
2166 
2167 	return 0;
2168 }
2169 
2170 static void at_dma_shutdown(struct platform_device *pdev)
2171 {
2172 	struct at_dma	*atdma = platform_get_drvdata(pdev);
2173 
2174 	at_dma_off(platform_get_drvdata(pdev));
2175 	clk_disable_unprepare(atdma->clk);
2176 }
2177 
2178 static int at_dma_prepare(struct device *dev)
2179 {
2180 	struct platform_device *pdev = to_platform_device(dev);
2181 	struct at_dma *atdma = platform_get_drvdata(pdev);
2182 	struct dma_chan *chan, *_chan;
2183 
2184 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2185 			device_node) {
2186 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2187 		/* wait for transaction completion (except in cyclic case) */
2188 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2189 			return -EAGAIN;
2190 	}
2191 	return 0;
2192 }
2193 
2194 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2195 {
2196 	struct dma_chan	*chan = &atchan->chan_common;
2197 
2198 	/* Channel should be paused by user
2199 	 * do it anyway even if it is not done already */
2200 	if (!atc_chan_is_paused(atchan)) {
2201 		dev_warn(chan2dev(chan),
2202 		"cyclic channel not paused, should be done by channel user\n");
2203 		atc_pause(chan);
2204 	}
2205 
2206 	/* now preserve additional data for cyclic operations */
2207 	/* next descriptor address in the cyclic list */
2208 	atchan->save_dscr = channel_readl(atchan, DSCR);
2209 
2210 	vdbg_dump_regs(atchan);
2211 }
2212 
2213 static int at_dma_suspend_noirq(struct device *dev)
2214 {
2215 	struct platform_device *pdev = to_platform_device(dev);
2216 	struct at_dma *atdma = platform_get_drvdata(pdev);
2217 	struct dma_chan *chan, *_chan;
2218 
2219 	/* preserve data */
2220 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2221 			device_node) {
2222 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2223 
2224 		if (atc_chan_is_cyclic(atchan))
2225 			atc_suspend_cyclic(atchan);
2226 		atchan->save_cfg = channel_readl(atchan, CFG);
2227 	}
2228 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2229 
2230 	/* disable DMA controller */
2231 	at_dma_off(atdma);
2232 	clk_disable_unprepare(atdma->clk);
2233 	return 0;
2234 }
2235 
2236 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2237 {
2238 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2239 
2240 	/* restore channel status for cyclic descriptors list:
2241 	 * next descriptor in the cyclic list at the time of suspend */
2242 	channel_writel(atchan, SADDR, 0);
2243 	channel_writel(atchan, DADDR, 0);
2244 	channel_writel(atchan, CTRLA, 0);
2245 	channel_writel(atchan, CTRLB, 0);
2246 	channel_writel(atchan, DSCR, atchan->save_dscr);
2247 	dma_writel(atdma, CHER, atchan->mask);
2248 
2249 	/* channel pause status should be removed by channel user
2250 	 * We cannot take the initiative to do it here */
2251 
2252 	vdbg_dump_regs(atchan);
2253 }
2254 
2255 static int at_dma_resume_noirq(struct device *dev)
2256 {
2257 	struct platform_device *pdev = to_platform_device(dev);
2258 	struct at_dma *atdma = platform_get_drvdata(pdev);
2259 	struct dma_chan *chan, *_chan;
2260 
2261 	/* bring back DMA controller */
2262 	clk_prepare_enable(atdma->clk);
2263 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2264 
2265 	/* clear any pending interrupt */
2266 	while (dma_readl(atdma, EBCISR))
2267 		cpu_relax();
2268 
2269 	/* restore saved data */
2270 	dma_writel(atdma, EBCIER, atdma->save_imr);
2271 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2272 			device_node) {
2273 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2274 
2275 		channel_writel(atchan, CFG, atchan->save_cfg);
2276 		if (atc_chan_is_cyclic(atchan))
2277 			atc_resume_cyclic(atchan);
2278 	}
2279 	return 0;
2280 }
2281 
2282 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2283 	.prepare = at_dma_prepare,
2284 	.suspend_noirq = at_dma_suspend_noirq,
2285 	.resume_noirq = at_dma_resume_noirq,
2286 };
2287 
2288 static struct platform_driver at_dma_driver = {
2289 	.remove		= at_dma_remove,
2290 	.shutdown	= at_dma_shutdown,
2291 	.id_table	= atdma_devtypes,
2292 	.driver = {
2293 		.name	= "at_hdmac",
2294 		.pm	= &at_dma_dev_pm_ops,
2295 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2296 	},
2297 };
2298 
2299 static int __init at_dma_init(void)
2300 {
2301 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2302 }
2303 subsys_initcall(at_dma_init);
2304 
2305 static void __exit at_dma_exit(void)
2306 {
2307 	platform_driver_unregister(&at_dma_driver);
2308 }
2309 module_exit(at_dma_exit);
2310 
2311 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2312 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2313 MODULE_LICENSE("GPL");
2314 MODULE_ALIAS("platform:at_hdmac");
2315