1 /* 2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 3 * 4 * Copyright (C) 2008 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * 12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 13 * The only Atmel DMA Controller that is not covered by this driver is the one 14 * found on AT91SAM9263. 15 */ 16 17 #include <dt-bindings/dma/at91.h> 18 #include <linux/clk.h> 19 #include <linux/dmaengine.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dmapool.h> 22 #include <linux/interrupt.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/slab.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/of_dma.h> 29 30 #include "at_hdmac_regs.h" 31 #include "dmaengine.h" 32 33 /* 34 * Glossary 35 * -------- 36 * 37 * at_hdmac : Name of the ATmel AHB DMA Controller 38 * at_dma_ / atdma : ATmel DMA controller entity related 39 * atc_ / atchan : ATmel DMA Channel entity related 40 */ 41 42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) 43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ 44 |ATC_DIF(AT_DMA_MEM_IF)) 45 #define ATC_DMA_BUSWIDTHS\ 46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 50 51 #define ATC_MAX_DSCR_TRIALS 10 52 53 /* 54 * Initial number of descriptors to allocate for each channel. This could 55 * be increased during dma usage. 56 */ 57 static unsigned int init_nr_desc_per_channel = 64; 58 module_param(init_nr_desc_per_channel, uint, 0644); 59 MODULE_PARM_DESC(init_nr_desc_per_channel, 60 "initial descriptors per channel (default: 64)"); 61 62 63 /* prototypes */ 64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); 65 static void atc_issue_pending(struct dma_chan *chan); 66 67 68 /*----------------------------------------------------------------------*/ 69 70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 71 size_t len) 72 { 73 unsigned int width; 74 75 if (!((src | dst | len) & 3)) 76 width = 2; 77 else if (!((src | dst | len) & 1)) 78 width = 1; 79 else 80 width = 0; 81 82 return width; 83 } 84 85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan) 86 { 87 return list_first_entry(&atchan->active_list, 88 struct at_desc, desc_node); 89 } 90 91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) 92 { 93 return list_first_entry(&atchan->queue, 94 struct at_desc, desc_node); 95 } 96 97 /** 98 * atc_alloc_descriptor - allocate and return an initialized descriptor 99 * @chan: the channel to allocate descriptors for 100 * @gfp_flags: GFP allocation flags 101 * 102 * Note: The ack-bit is positioned in the descriptor flag at creation time 103 * to make initial allocation more convenient. This bit will be cleared 104 * and control will be given to client at usage time (during 105 * preparation functions). 106 */ 107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, 108 gfp_t gfp_flags) 109 { 110 struct at_desc *desc = NULL; 111 struct at_dma *atdma = to_at_dma(chan->device); 112 dma_addr_t phys; 113 114 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys); 115 if (desc) { 116 INIT_LIST_HEAD(&desc->tx_list); 117 dma_async_tx_descriptor_init(&desc->txd, chan); 118 /* txd.flags will be overwritten in prep functions */ 119 desc->txd.flags = DMA_CTRL_ACK; 120 desc->txd.tx_submit = atc_tx_submit; 121 desc->txd.phys = phys; 122 } 123 124 return desc; 125 } 126 127 /** 128 * atc_desc_get - get an unused descriptor from free_list 129 * @atchan: channel we want a new descriptor for 130 */ 131 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) 132 { 133 struct at_desc *desc, *_desc; 134 struct at_desc *ret = NULL; 135 unsigned long flags; 136 unsigned int i = 0; 137 138 spin_lock_irqsave(&atchan->lock, flags); 139 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 140 i++; 141 if (async_tx_test_ack(&desc->txd)) { 142 list_del(&desc->desc_node); 143 ret = desc; 144 break; 145 } 146 dev_dbg(chan2dev(&atchan->chan_common), 147 "desc %p not ACKed\n", desc); 148 } 149 spin_unlock_irqrestore(&atchan->lock, flags); 150 dev_vdbg(chan2dev(&atchan->chan_common), 151 "scanned %u descriptors on freelist\n", i); 152 153 /* no more descriptor available in initial pool: create one more */ 154 if (!ret) { 155 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC); 156 if (ret) { 157 spin_lock_irqsave(&atchan->lock, flags); 158 atchan->descs_allocated++; 159 spin_unlock_irqrestore(&atchan->lock, flags); 160 } else { 161 dev_err(chan2dev(&atchan->chan_common), 162 "not enough descriptors available\n"); 163 } 164 } 165 166 return ret; 167 } 168 169 /** 170 * atc_desc_put - move a descriptor, including any children, to the free list 171 * @atchan: channel we work on 172 * @desc: descriptor, at the head of a chain, to move to free list 173 */ 174 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) 175 { 176 if (desc) { 177 struct at_desc *child; 178 unsigned long flags; 179 180 spin_lock_irqsave(&atchan->lock, flags); 181 list_for_each_entry(child, &desc->tx_list, desc_node) 182 dev_vdbg(chan2dev(&atchan->chan_common), 183 "moving child desc %p to freelist\n", 184 child); 185 list_splice_init(&desc->tx_list, &atchan->free_list); 186 dev_vdbg(chan2dev(&atchan->chan_common), 187 "moving desc %p to freelist\n", desc); 188 list_add(&desc->desc_node, &atchan->free_list); 189 spin_unlock_irqrestore(&atchan->lock, flags); 190 } 191 } 192 193 /** 194 * atc_desc_chain - build chain adding a descriptor 195 * @first: address of first descriptor of the chain 196 * @prev: address of previous descriptor of the chain 197 * @desc: descriptor to queue 198 * 199 * Called from prep_* functions 200 */ 201 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, 202 struct at_desc *desc) 203 { 204 if (!(*first)) { 205 *first = desc; 206 } else { 207 /* inform the HW lli about chaining */ 208 (*prev)->lli.dscr = desc->txd.phys; 209 /* insert the link descriptor to the LD ring */ 210 list_add_tail(&desc->desc_node, 211 &(*first)->tx_list); 212 } 213 *prev = desc; 214 } 215 216 /** 217 * atc_dostart - starts the DMA engine for real 218 * @atchan: the channel we want to start 219 * @first: first descriptor in the list we want to begin with 220 * 221 * Called with atchan->lock held and bh disabled 222 */ 223 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) 224 { 225 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 226 227 /* ASSERT: channel is idle */ 228 if (atc_chan_is_enabled(atchan)) { 229 dev_err(chan2dev(&atchan->chan_common), 230 "BUG: Attempted to start non-idle channel\n"); 231 dev_err(chan2dev(&atchan->chan_common), 232 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", 233 channel_readl(atchan, SADDR), 234 channel_readl(atchan, DADDR), 235 channel_readl(atchan, CTRLA), 236 channel_readl(atchan, CTRLB), 237 channel_readl(atchan, DSCR)); 238 239 /* The tasklet will hopefully advance the queue... */ 240 return; 241 } 242 243 vdbg_dump_regs(atchan); 244 245 channel_writel(atchan, SADDR, 0); 246 channel_writel(atchan, DADDR, 0); 247 channel_writel(atchan, CTRLA, 0); 248 channel_writel(atchan, CTRLB, 0); 249 channel_writel(atchan, DSCR, first->txd.phys); 250 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | 251 ATC_SPIP_BOUNDARY(first->boundary)); 252 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | 253 ATC_DPIP_BOUNDARY(first->boundary)); 254 dma_writel(atdma, CHER, atchan->mask); 255 256 vdbg_dump_regs(atchan); 257 } 258 259 /* 260 * atc_get_desc_by_cookie - get the descriptor of a cookie 261 * @atchan: the DMA channel 262 * @cookie: the cookie to get the descriptor for 263 */ 264 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, 265 dma_cookie_t cookie) 266 { 267 struct at_desc *desc, *_desc; 268 269 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { 270 if (desc->txd.cookie == cookie) 271 return desc; 272 } 273 274 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { 275 if (desc->txd.cookie == cookie) 276 return desc; 277 } 278 279 return NULL; 280 } 281 282 /** 283 * atc_calc_bytes_left - calculates the number of bytes left according to the 284 * value read from CTRLA. 285 * 286 * @current_len: the number of bytes left before reading CTRLA 287 * @ctrla: the value of CTRLA 288 */ 289 static inline int atc_calc_bytes_left(int current_len, u32 ctrla) 290 { 291 u32 btsize = (ctrla & ATC_BTSIZE_MAX); 292 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); 293 294 /* 295 * According to the datasheet, when reading the Control A Register 296 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 297 * number of transfers completed on the Source Interface. 298 * So btsize is always a number of source width transfers. 299 */ 300 return current_len - (btsize << src_width); 301 } 302 303 /** 304 * atc_get_bytes_left - get the number of bytes residue for a cookie 305 * @chan: DMA channel 306 * @cookie: transaction identifier to check status of 307 */ 308 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) 309 { 310 struct at_dma_chan *atchan = to_at_dma_chan(chan); 311 struct at_desc *desc_first = atc_first_active(atchan); 312 struct at_desc *desc; 313 int ret; 314 u32 ctrla, dscr, trials; 315 316 /* 317 * If the cookie doesn't match to the currently running transfer then 318 * we can return the total length of the associated DMA transfer, 319 * because it is still queued. 320 */ 321 desc = atc_get_desc_by_cookie(atchan, cookie); 322 if (desc == NULL) 323 return -EINVAL; 324 else if (desc != desc_first) 325 return desc->total_len; 326 327 /* cookie matches to the currently running transfer */ 328 ret = desc_first->total_len; 329 330 if (desc_first->lli.dscr) { 331 /* hardware linked list transfer */ 332 333 /* 334 * Calculate the residue by removing the length of the child 335 * descriptors already transferred from the total length. 336 * To get the current child descriptor we can use the value of 337 * the channel's DSCR register and compare it against the value 338 * of the hardware linked list structure of each child 339 * descriptor. 340 * 341 * The CTRLA register provides us with the amount of data 342 * already read from the source for the current child 343 * descriptor. So we can compute a more accurate residue by also 344 * removing the number of bytes corresponding to this amount of 345 * data. 346 * 347 * However, the DSCR and CTRLA registers cannot be read both 348 * atomically. Hence a race condition may occur: the first read 349 * register may refer to one child descriptor whereas the second 350 * read may refer to a later child descriptor in the list 351 * because of the DMA transfer progression inbetween the two 352 * reads. 353 * 354 * One solution could have been to pause the DMA transfer, read 355 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless, 356 * this approach presents some drawbacks: 357 * - If the DMA transfer is paused, RX overruns or TX underruns 358 * are more likey to occur depending on the system latency. 359 * Taking the USART driver as an example, it uses a cyclic DMA 360 * transfer to read data from the Receive Holding Register 361 * (RHR) to avoid RX overruns since the RHR is not protected 362 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer 363 * to compute the residue would break the USART driver design. 364 * - The atc_pause() function masks interrupts but we'd rather 365 * avoid to do so for system latency purpose. 366 * 367 * Then we'd rather use another solution: the DSCR is read a 368 * first time, the CTRLA is read in turn, next the DSCR is read 369 * a second time. If the two consecutive read values of the DSCR 370 * are the same then we assume both refers to the very same 371 * child descriptor as well as the CTRLA value read inbetween 372 * does. For cyclic tranfers, the assumption is that a full loop 373 * is "not so fast". 374 * If the two DSCR values are different, we read again the CTRLA 375 * then the DSCR till two consecutive read values from DSCR are 376 * equal or till the maxium trials is reach. 377 * This algorithm is very unlikely not to find a stable value for 378 * DSCR. 379 */ 380 381 dscr = channel_readl(atchan, DSCR); 382 rmb(); /* ensure DSCR is read before CTRLA */ 383 ctrla = channel_readl(atchan, CTRLA); 384 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) { 385 u32 new_dscr; 386 387 rmb(); /* ensure DSCR is read after CTRLA */ 388 new_dscr = channel_readl(atchan, DSCR); 389 390 /* 391 * If the DSCR register value has not changed inside the 392 * DMA controller since the previous read, we assume 393 * that both the dscr and ctrla values refers to the 394 * very same descriptor. 395 */ 396 if (likely(new_dscr == dscr)) 397 break; 398 399 /* 400 * DSCR has changed inside the DMA controller, so the 401 * previouly read value of CTRLA may refer to an already 402 * processed descriptor hence could be outdated. 403 * We need to update ctrla to match the current 404 * descriptor. 405 */ 406 dscr = new_dscr; 407 rmb(); /* ensure DSCR is read before CTRLA */ 408 ctrla = channel_readl(atchan, CTRLA); 409 } 410 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS)) 411 return -ETIMEDOUT; 412 413 /* for the first descriptor we can be more accurate */ 414 if (desc_first->lli.dscr == dscr) 415 return atc_calc_bytes_left(ret, ctrla); 416 417 ret -= desc_first->len; 418 list_for_each_entry(desc, &desc_first->tx_list, desc_node) { 419 if (desc->lli.dscr == dscr) 420 break; 421 422 ret -= desc->len; 423 } 424 425 /* 426 * For the current descriptor in the chain we can calculate 427 * the remaining bytes using the channel's register. 428 */ 429 ret = atc_calc_bytes_left(ret, ctrla); 430 } else { 431 /* single transfer */ 432 ctrla = channel_readl(atchan, CTRLA); 433 ret = atc_calc_bytes_left(ret, ctrla); 434 } 435 436 return ret; 437 } 438 439 /** 440 * atc_chain_complete - finish work for one transaction chain 441 * @atchan: channel we work on 442 * @desc: descriptor at the head of the chain we want do complete 443 * 444 * Called with atchan->lock held and bh disabled */ 445 static void 446 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) 447 { 448 struct dma_async_tx_descriptor *txd = &desc->txd; 449 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 450 451 dev_vdbg(chan2dev(&atchan->chan_common), 452 "descriptor %u complete\n", txd->cookie); 453 454 /* mark the descriptor as complete for non cyclic cases only */ 455 if (!atc_chan_is_cyclic(atchan)) 456 dma_cookie_complete(txd); 457 458 /* If the transfer was a memset, free our temporary buffer */ 459 if (desc->memset_buffer) { 460 dma_pool_free(atdma->memset_pool, desc->memset_vaddr, 461 desc->memset_paddr); 462 desc->memset_buffer = false; 463 } 464 465 /* move children to free_list */ 466 list_splice_init(&desc->tx_list, &atchan->free_list); 467 /* move myself to free_list */ 468 list_move(&desc->desc_node, &atchan->free_list); 469 470 dma_descriptor_unmap(txd); 471 /* for cyclic transfers, 472 * no need to replay callback function while stopping */ 473 if (!atc_chan_is_cyclic(atchan)) { 474 /* 475 * The API requires that no submissions are done from a 476 * callback, so we don't need to drop the lock here 477 */ 478 dmaengine_desc_get_callback_invoke(txd, NULL); 479 } 480 481 dma_run_dependencies(txd); 482 } 483 484 /** 485 * atc_complete_all - finish work for all transactions 486 * @atchan: channel to complete transactions for 487 * 488 * Eventually submit queued descriptors if any 489 * 490 * Assume channel is idle while calling this function 491 * Called with atchan->lock held and bh disabled 492 */ 493 static void atc_complete_all(struct at_dma_chan *atchan) 494 { 495 struct at_desc *desc, *_desc; 496 LIST_HEAD(list); 497 498 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n"); 499 500 /* 501 * Submit queued descriptors ASAP, i.e. before we go through 502 * the completed ones. 503 */ 504 if (!list_empty(&atchan->queue)) 505 atc_dostart(atchan, atc_first_queued(atchan)); 506 /* empty active_list now it is completed */ 507 list_splice_init(&atchan->active_list, &list); 508 /* empty queue list by moving descriptors (if any) to active_list */ 509 list_splice_init(&atchan->queue, &atchan->active_list); 510 511 list_for_each_entry_safe(desc, _desc, &list, desc_node) 512 atc_chain_complete(atchan, desc); 513 } 514 515 /** 516 * atc_advance_work - at the end of a transaction, move forward 517 * @atchan: channel where the transaction ended 518 * 519 * Called with atchan->lock held and bh disabled 520 */ 521 static void atc_advance_work(struct at_dma_chan *atchan) 522 { 523 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); 524 525 if (atc_chan_is_enabled(atchan)) 526 return; 527 528 if (list_empty(&atchan->active_list) || 529 list_is_singular(&atchan->active_list)) { 530 atc_complete_all(atchan); 531 } else { 532 atc_chain_complete(atchan, atc_first_active(atchan)); 533 /* advance work */ 534 atc_dostart(atchan, atc_first_active(atchan)); 535 } 536 } 537 538 539 /** 540 * atc_handle_error - handle errors reported by DMA controller 541 * @atchan: channel where error occurs 542 * 543 * Called with atchan->lock held and bh disabled 544 */ 545 static void atc_handle_error(struct at_dma_chan *atchan) 546 { 547 struct at_desc *bad_desc; 548 struct at_desc *child; 549 550 /* 551 * The descriptor currently at the head of the active list is 552 * broked. Since we don't have any way to report errors, we'll 553 * just have to scream loudly and try to carry on. 554 */ 555 bad_desc = atc_first_active(atchan); 556 list_del_init(&bad_desc->desc_node); 557 558 /* As we are stopped, take advantage to push queued descriptors 559 * in active_list */ 560 list_splice_init(&atchan->queue, atchan->active_list.prev); 561 562 /* Try to restart the controller */ 563 if (!list_empty(&atchan->active_list)) 564 atc_dostart(atchan, atc_first_active(atchan)); 565 566 /* 567 * KERN_CRITICAL may seem harsh, but since this only happens 568 * when someone submits a bad physical address in a 569 * descriptor, we should consider ourselves lucky that the 570 * controller flagged an error instead of scribbling over 571 * random memory locations. 572 */ 573 dev_crit(chan2dev(&atchan->chan_common), 574 "Bad descriptor submitted for DMA!\n"); 575 dev_crit(chan2dev(&atchan->chan_common), 576 " cookie: %d\n", bad_desc->txd.cookie); 577 atc_dump_lli(atchan, &bad_desc->lli); 578 list_for_each_entry(child, &bad_desc->tx_list, desc_node) 579 atc_dump_lli(atchan, &child->lli); 580 581 /* Pretend the descriptor completed successfully */ 582 atc_chain_complete(atchan, bad_desc); 583 } 584 585 /** 586 * atc_handle_cyclic - at the end of a period, run callback function 587 * @atchan: channel used for cyclic operations 588 * 589 * Called with atchan->lock held and bh disabled 590 */ 591 static void atc_handle_cyclic(struct at_dma_chan *atchan) 592 { 593 struct at_desc *first = atc_first_active(atchan); 594 struct dma_async_tx_descriptor *txd = &first->txd; 595 596 dev_vdbg(chan2dev(&atchan->chan_common), 597 "new cyclic period llp 0x%08x\n", 598 channel_readl(atchan, DSCR)); 599 600 dmaengine_desc_get_callback_invoke(txd, NULL); 601 } 602 603 /*-- IRQ & Tasklet ---------------------------------------------------*/ 604 605 static void atc_tasklet(unsigned long data) 606 { 607 struct at_dma_chan *atchan = (struct at_dma_chan *)data; 608 unsigned long flags; 609 610 spin_lock_irqsave(&atchan->lock, flags); 611 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) 612 atc_handle_error(atchan); 613 else if (atc_chan_is_cyclic(atchan)) 614 atc_handle_cyclic(atchan); 615 else 616 atc_advance_work(atchan); 617 618 spin_unlock_irqrestore(&atchan->lock, flags); 619 } 620 621 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 622 { 623 struct at_dma *atdma = (struct at_dma *)dev_id; 624 struct at_dma_chan *atchan; 625 int i; 626 u32 status, pending, imr; 627 int ret = IRQ_NONE; 628 629 do { 630 imr = dma_readl(atdma, EBCIMR); 631 status = dma_readl(atdma, EBCISR); 632 pending = status & imr; 633 634 if (!pending) 635 break; 636 637 dev_vdbg(atdma->dma_common.dev, 638 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 639 status, imr, pending); 640 641 for (i = 0; i < atdma->dma_common.chancnt; i++) { 642 atchan = &atdma->chan[i]; 643 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { 644 if (pending & AT_DMA_ERR(i)) { 645 /* Disable channel on AHB error */ 646 dma_writel(atdma, CHDR, 647 AT_DMA_RES(i) | atchan->mask); 648 /* Give information to tasklet */ 649 set_bit(ATC_IS_ERROR, &atchan->status); 650 } 651 tasklet_schedule(&atchan->tasklet); 652 ret = IRQ_HANDLED; 653 } 654 } 655 656 } while (pending); 657 658 return ret; 659 } 660 661 662 /*-- DMA Engine API --------------------------------------------------*/ 663 664 /** 665 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine 666 * @desc: descriptor at the head of the transaction chain 667 * 668 * Queue chain if DMA engine is working already 669 * 670 * Cookie increment and adding to active_list or queue must be atomic 671 */ 672 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) 673 { 674 struct at_desc *desc = txd_to_at_desc(tx); 675 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); 676 dma_cookie_t cookie; 677 unsigned long flags; 678 679 spin_lock_irqsave(&atchan->lock, flags); 680 cookie = dma_cookie_assign(tx); 681 682 if (list_empty(&atchan->active_list)) { 683 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", 684 desc->txd.cookie); 685 atc_dostart(atchan, desc); 686 list_add_tail(&desc->desc_node, &atchan->active_list); 687 } else { 688 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", 689 desc->txd.cookie); 690 list_add_tail(&desc->desc_node, &atchan->queue); 691 } 692 693 spin_unlock_irqrestore(&atchan->lock, flags); 694 695 return cookie; 696 } 697 698 /** 699 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 700 * @chan: the channel to prepare operation on 701 * @xt: Interleaved transfer template 702 * @flags: tx descriptor status flags 703 */ 704 static struct dma_async_tx_descriptor * 705 atc_prep_dma_interleaved(struct dma_chan *chan, 706 struct dma_interleaved_template *xt, 707 unsigned long flags) 708 { 709 struct at_dma_chan *atchan = to_at_dma_chan(chan); 710 struct data_chunk *first; 711 struct at_desc *desc = NULL; 712 size_t xfer_count; 713 unsigned int dwidth; 714 u32 ctrla; 715 u32 ctrlb; 716 size_t len = 0; 717 int i; 718 719 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 720 return NULL; 721 722 first = xt->sgl; 723 724 dev_info(chan2dev(chan), 725 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", 726 __func__, &xt->src_start, &xt->dst_start, xt->numf, 727 xt->frame_size, flags); 728 729 /* 730 * The controller can only "skip" X bytes every Y bytes, so we 731 * need to make sure we are given a template that fit that 732 * description, ie a template with chunks that always have the 733 * same size, with the same ICGs. 734 */ 735 for (i = 0; i < xt->frame_size; i++) { 736 struct data_chunk *chunk = xt->sgl + i; 737 738 if ((chunk->size != xt->sgl->size) || 739 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 740 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 741 dev_err(chan2dev(chan), 742 "%s: the controller can transfer only identical chunks\n", 743 __func__); 744 return NULL; 745 } 746 747 len += chunk->size; 748 } 749 750 dwidth = atc_get_xfer_width(xt->src_start, 751 xt->dst_start, len); 752 753 xfer_count = len >> dwidth; 754 if (xfer_count > ATC_BTSIZE_MAX) { 755 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 756 return NULL; 757 } 758 759 ctrla = ATC_SRC_WIDTH(dwidth) | 760 ATC_DST_WIDTH(dwidth); 761 762 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 763 | ATC_SRC_ADDR_MODE_INCR 764 | ATC_DST_ADDR_MODE_INCR 765 | ATC_SRC_PIP 766 | ATC_DST_PIP 767 | ATC_FC_MEM2MEM; 768 769 /* create the transfer */ 770 desc = atc_desc_get(atchan); 771 if (!desc) { 772 dev_err(chan2dev(chan), 773 "%s: couldn't allocate our descriptor\n", __func__); 774 return NULL; 775 } 776 777 desc->lli.saddr = xt->src_start; 778 desc->lli.daddr = xt->dst_start; 779 desc->lli.ctrla = ctrla | xfer_count; 780 desc->lli.ctrlb = ctrlb; 781 782 desc->boundary = first->size >> dwidth; 783 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 784 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 785 786 desc->txd.cookie = -EBUSY; 787 desc->total_len = desc->len = len; 788 789 /* set end-of-link to the last link descriptor of list*/ 790 set_desc_eol(desc); 791 792 desc->txd.flags = flags; /* client is in control of this ack */ 793 794 return &desc->txd; 795 } 796 797 /** 798 * atc_prep_dma_memcpy - prepare a memcpy operation 799 * @chan: the channel to prepare operation on 800 * @dest: operation virtual destination address 801 * @src: operation virtual source address 802 * @len: operation length 803 * @flags: tx descriptor status flags 804 */ 805 static struct dma_async_tx_descriptor * 806 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 807 size_t len, unsigned long flags) 808 { 809 struct at_dma_chan *atchan = to_at_dma_chan(chan); 810 struct at_desc *desc = NULL; 811 struct at_desc *first = NULL; 812 struct at_desc *prev = NULL; 813 size_t xfer_count; 814 size_t offset; 815 unsigned int src_width; 816 unsigned int dst_width; 817 u32 ctrla; 818 u32 ctrlb; 819 820 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n", 821 &dest, &src, len, flags); 822 823 if (unlikely(!len)) { 824 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 825 return NULL; 826 } 827 828 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 829 | ATC_SRC_ADDR_MODE_INCR 830 | ATC_DST_ADDR_MODE_INCR 831 | ATC_FC_MEM2MEM; 832 833 /* 834 * We can be a lot more clever here, but this should take care 835 * of the most common optimization. 836 */ 837 src_width = dst_width = atc_get_xfer_width(src, dest, len); 838 839 ctrla = ATC_SRC_WIDTH(src_width) | 840 ATC_DST_WIDTH(dst_width); 841 842 for (offset = 0; offset < len; offset += xfer_count << src_width) { 843 xfer_count = min_t(size_t, (len - offset) >> src_width, 844 ATC_BTSIZE_MAX); 845 846 desc = atc_desc_get(atchan); 847 if (!desc) 848 goto err_desc_get; 849 850 desc->lli.saddr = src + offset; 851 desc->lli.daddr = dest + offset; 852 desc->lli.ctrla = ctrla | xfer_count; 853 desc->lli.ctrlb = ctrlb; 854 855 desc->txd.cookie = 0; 856 desc->len = xfer_count << src_width; 857 858 atc_desc_chain(&first, &prev, desc); 859 } 860 861 /* First descriptor of the chain embedds additional information */ 862 first->txd.cookie = -EBUSY; 863 first->total_len = len; 864 865 /* set end-of-link to the last link descriptor of list*/ 866 set_desc_eol(desc); 867 868 first->txd.flags = flags; /* client is in control of this ack */ 869 870 return &first->txd; 871 872 err_desc_get: 873 atc_desc_put(atchan, first); 874 return NULL; 875 } 876 877 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan, 878 dma_addr_t psrc, 879 dma_addr_t pdst, 880 size_t len) 881 { 882 struct at_dma_chan *atchan = to_at_dma_chan(chan); 883 struct at_desc *desc; 884 size_t xfer_count; 885 886 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2); 887 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 888 ATC_SRC_ADDR_MODE_FIXED | 889 ATC_DST_ADDR_MODE_INCR | 890 ATC_FC_MEM2MEM; 891 892 xfer_count = len >> 2; 893 if (xfer_count > ATC_BTSIZE_MAX) { 894 dev_err(chan2dev(chan), "%s: buffer is too big\n", 895 __func__); 896 return NULL; 897 } 898 899 desc = atc_desc_get(atchan); 900 if (!desc) { 901 dev_err(chan2dev(chan), "%s: can't get a descriptor\n", 902 __func__); 903 return NULL; 904 } 905 906 desc->lli.saddr = psrc; 907 desc->lli.daddr = pdst; 908 desc->lli.ctrla = ctrla | xfer_count; 909 desc->lli.ctrlb = ctrlb; 910 911 desc->txd.cookie = 0; 912 desc->len = len; 913 914 return desc; 915 } 916 917 /** 918 * atc_prep_dma_memset - prepare a memcpy operation 919 * @chan: the channel to prepare operation on 920 * @dest: operation virtual destination address 921 * @value: value to set memory buffer to 922 * @len: operation length 923 * @flags: tx descriptor status flags 924 */ 925 static struct dma_async_tx_descriptor * 926 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 927 size_t len, unsigned long flags) 928 { 929 struct at_dma *atdma = to_at_dma(chan->device); 930 struct at_desc *desc; 931 void __iomem *vaddr; 932 dma_addr_t paddr; 933 934 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__, 935 &dest, value, len, flags); 936 937 if (unlikely(!len)) { 938 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); 939 return NULL; 940 } 941 942 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 943 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", 944 __func__); 945 return NULL; 946 } 947 948 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 949 if (!vaddr) { 950 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 951 __func__); 952 return NULL; 953 } 954 *(u32*)vaddr = value; 955 956 desc = atc_create_memset_desc(chan, paddr, dest, len); 957 if (!desc) { 958 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n", 959 __func__); 960 goto err_free_buffer; 961 } 962 963 desc->memset_paddr = paddr; 964 desc->memset_vaddr = vaddr; 965 desc->memset_buffer = true; 966 967 desc->txd.cookie = -EBUSY; 968 desc->total_len = len; 969 970 /* set end-of-link on the descriptor */ 971 set_desc_eol(desc); 972 973 desc->txd.flags = flags; 974 975 return &desc->txd; 976 977 err_free_buffer: 978 dma_pool_free(atdma->memset_pool, vaddr, paddr); 979 return NULL; 980 } 981 982 static struct dma_async_tx_descriptor * 983 atc_prep_dma_memset_sg(struct dma_chan *chan, 984 struct scatterlist *sgl, 985 unsigned int sg_len, int value, 986 unsigned long flags) 987 { 988 struct at_dma_chan *atchan = to_at_dma_chan(chan); 989 struct at_dma *atdma = to_at_dma(chan->device); 990 struct at_desc *desc = NULL, *first = NULL, *prev = NULL; 991 struct scatterlist *sg; 992 void __iomem *vaddr; 993 dma_addr_t paddr; 994 size_t total_len = 0; 995 int i; 996 997 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, 998 value, sg_len, flags); 999 1000 if (unlikely(!sgl || !sg_len)) { 1001 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", 1002 __func__); 1003 return NULL; 1004 } 1005 1006 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 1007 if (!vaddr) { 1008 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 1009 __func__); 1010 return NULL; 1011 } 1012 *(u32*)vaddr = value; 1013 1014 for_each_sg(sgl, sg, sg_len, i) { 1015 dma_addr_t dest = sg_dma_address(sg); 1016 size_t len = sg_dma_len(sg); 1017 1018 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n", 1019 __func__, &dest, len); 1020 1021 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1022 dev_err(chan2dev(chan), "%s: buffer is not aligned\n", 1023 __func__); 1024 goto err_put_desc; 1025 } 1026 1027 desc = atc_create_memset_desc(chan, paddr, dest, len); 1028 if (!desc) 1029 goto err_put_desc; 1030 1031 atc_desc_chain(&first, &prev, desc); 1032 1033 total_len += len; 1034 } 1035 1036 /* 1037 * Only set the buffer pointers on the last descriptor to 1038 * avoid free'ing while we have our transfer still going 1039 */ 1040 desc->memset_paddr = paddr; 1041 desc->memset_vaddr = vaddr; 1042 desc->memset_buffer = true; 1043 1044 first->txd.cookie = -EBUSY; 1045 first->total_len = total_len; 1046 1047 /* set end-of-link on the descriptor */ 1048 set_desc_eol(desc); 1049 1050 first->txd.flags = flags; 1051 1052 return &first->txd; 1053 1054 err_put_desc: 1055 atc_desc_put(atchan, first); 1056 return NULL; 1057 } 1058 1059 /** 1060 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 1061 * @chan: DMA channel 1062 * @sgl: scatterlist to transfer to/from 1063 * @sg_len: number of entries in @scatterlist 1064 * @direction: DMA direction 1065 * @flags: tx descriptor status flags 1066 * @context: transaction context (ignored) 1067 */ 1068 static struct dma_async_tx_descriptor * 1069 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1070 unsigned int sg_len, enum dma_transfer_direction direction, 1071 unsigned long flags, void *context) 1072 { 1073 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1074 struct at_dma_slave *atslave = chan->private; 1075 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1076 struct at_desc *first = NULL; 1077 struct at_desc *prev = NULL; 1078 u32 ctrla; 1079 u32 ctrlb; 1080 dma_addr_t reg; 1081 unsigned int reg_width; 1082 unsigned int mem_width; 1083 unsigned int i; 1084 struct scatterlist *sg; 1085 size_t total_len = 0; 1086 1087 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 1088 sg_len, 1089 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1090 flags); 1091 1092 if (unlikely(!atslave || !sg_len)) { 1093 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 1094 return NULL; 1095 } 1096 1097 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1098 | ATC_DCSIZE(sconfig->dst_maxburst); 1099 ctrlb = ATC_IEN; 1100 1101 switch (direction) { 1102 case DMA_MEM_TO_DEV: 1103 reg_width = convert_buswidth(sconfig->dst_addr_width); 1104 ctrla |= ATC_DST_WIDTH(reg_width); 1105 ctrlb |= ATC_DST_ADDR_MODE_FIXED 1106 | ATC_SRC_ADDR_MODE_INCR 1107 | ATC_FC_MEM2PER 1108 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); 1109 reg = sconfig->dst_addr; 1110 for_each_sg(sgl, sg, sg_len, i) { 1111 struct at_desc *desc; 1112 u32 len; 1113 u32 mem; 1114 1115 desc = atc_desc_get(atchan); 1116 if (!desc) 1117 goto err_desc_get; 1118 1119 mem = sg_dma_address(sg); 1120 len = sg_dma_len(sg); 1121 if (unlikely(!len)) { 1122 dev_dbg(chan2dev(chan), 1123 "prep_slave_sg: sg(%d) data length is zero\n", i); 1124 goto err; 1125 } 1126 mem_width = 2; 1127 if (unlikely(mem & 3 || len & 3)) 1128 mem_width = 0; 1129 1130 desc->lli.saddr = mem; 1131 desc->lli.daddr = reg; 1132 desc->lli.ctrla = ctrla 1133 | ATC_SRC_WIDTH(mem_width) 1134 | len >> mem_width; 1135 desc->lli.ctrlb = ctrlb; 1136 desc->len = len; 1137 1138 atc_desc_chain(&first, &prev, desc); 1139 total_len += len; 1140 } 1141 break; 1142 case DMA_DEV_TO_MEM: 1143 reg_width = convert_buswidth(sconfig->src_addr_width); 1144 ctrla |= ATC_SRC_WIDTH(reg_width); 1145 ctrlb |= ATC_DST_ADDR_MODE_INCR 1146 | ATC_SRC_ADDR_MODE_FIXED 1147 | ATC_FC_PER2MEM 1148 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); 1149 1150 reg = sconfig->src_addr; 1151 for_each_sg(sgl, sg, sg_len, i) { 1152 struct at_desc *desc; 1153 u32 len; 1154 u32 mem; 1155 1156 desc = atc_desc_get(atchan); 1157 if (!desc) 1158 goto err_desc_get; 1159 1160 mem = sg_dma_address(sg); 1161 len = sg_dma_len(sg); 1162 if (unlikely(!len)) { 1163 dev_dbg(chan2dev(chan), 1164 "prep_slave_sg: sg(%d) data length is zero\n", i); 1165 goto err; 1166 } 1167 mem_width = 2; 1168 if (unlikely(mem & 3 || len & 3)) 1169 mem_width = 0; 1170 1171 desc->lli.saddr = reg; 1172 desc->lli.daddr = mem; 1173 desc->lli.ctrla = ctrla 1174 | ATC_DST_WIDTH(mem_width) 1175 | len >> reg_width; 1176 desc->lli.ctrlb = ctrlb; 1177 desc->len = len; 1178 1179 atc_desc_chain(&first, &prev, desc); 1180 total_len += len; 1181 } 1182 break; 1183 default: 1184 return NULL; 1185 } 1186 1187 /* set end-of-link to the last link descriptor of list*/ 1188 set_desc_eol(prev); 1189 1190 /* First descriptor of the chain embedds additional information */ 1191 first->txd.cookie = -EBUSY; 1192 first->total_len = total_len; 1193 1194 /* first link descriptor of list is responsible of flags */ 1195 first->txd.flags = flags; /* client is in control of this ack */ 1196 1197 return &first->txd; 1198 1199 err_desc_get: 1200 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1201 err: 1202 atc_desc_put(atchan, first); 1203 return NULL; 1204 } 1205 1206 /** 1207 * atc_dma_cyclic_check_values 1208 * Check for too big/unaligned periods and unaligned DMA buffer 1209 */ 1210 static int 1211 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1212 size_t period_len) 1213 { 1214 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1215 goto err_out; 1216 if (unlikely(period_len & ((1 << reg_width) - 1))) 1217 goto err_out; 1218 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1219 goto err_out; 1220 1221 return 0; 1222 1223 err_out: 1224 return -EINVAL; 1225 } 1226 1227 /** 1228 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1229 */ 1230 static int 1231 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1232 unsigned int period_index, dma_addr_t buf_addr, 1233 unsigned int reg_width, size_t period_len, 1234 enum dma_transfer_direction direction) 1235 { 1236 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1237 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1238 u32 ctrla; 1239 1240 /* prepare common CRTLA value */ 1241 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1242 | ATC_DCSIZE(sconfig->dst_maxburst) 1243 | ATC_DST_WIDTH(reg_width) 1244 | ATC_SRC_WIDTH(reg_width) 1245 | period_len >> reg_width; 1246 1247 switch (direction) { 1248 case DMA_MEM_TO_DEV: 1249 desc->lli.saddr = buf_addr + (period_len * period_index); 1250 desc->lli.daddr = sconfig->dst_addr; 1251 desc->lli.ctrla = ctrla; 1252 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED 1253 | ATC_SRC_ADDR_MODE_INCR 1254 | ATC_FC_MEM2PER 1255 | ATC_SIF(atchan->mem_if) 1256 | ATC_DIF(atchan->per_if); 1257 desc->len = period_len; 1258 break; 1259 1260 case DMA_DEV_TO_MEM: 1261 desc->lli.saddr = sconfig->src_addr; 1262 desc->lli.daddr = buf_addr + (period_len * period_index); 1263 desc->lli.ctrla = ctrla; 1264 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR 1265 | ATC_SRC_ADDR_MODE_FIXED 1266 | ATC_FC_PER2MEM 1267 | ATC_SIF(atchan->per_if) 1268 | ATC_DIF(atchan->mem_if); 1269 desc->len = period_len; 1270 break; 1271 1272 default: 1273 return -EINVAL; 1274 } 1275 1276 return 0; 1277 } 1278 1279 /** 1280 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1281 * @chan: the DMA channel to prepare 1282 * @buf_addr: physical DMA address where the buffer starts 1283 * @buf_len: total number of bytes for the entire buffer 1284 * @period_len: number of bytes for each period 1285 * @direction: transfer direction, to or from device 1286 * @flags: tx descriptor status flags 1287 */ 1288 static struct dma_async_tx_descriptor * 1289 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1290 size_t period_len, enum dma_transfer_direction direction, 1291 unsigned long flags) 1292 { 1293 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1294 struct at_dma_slave *atslave = chan->private; 1295 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1296 struct at_desc *first = NULL; 1297 struct at_desc *prev = NULL; 1298 unsigned long was_cyclic; 1299 unsigned int reg_width; 1300 unsigned int periods = buf_len / period_len; 1301 unsigned int i; 1302 1303 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n", 1304 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1305 &buf_addr, 1306 periods, buf_len, period_len); 1307 1308 if (unlikely(!atslave || !buf_len || !period_len)) { 1309 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1310 return NULL; 1311 } 1312 1313 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1314 if (was_cyclic) { 1315 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1316 return NULL; 1317 } 1318 1319 if (unlikely(!is_slave_direction(direction))) 1320 goto err_out; 1321 1322 if (direction == DMA_MEM_TO_DEV) 1323 reg_width = convert_buswidth(sconfig->dst_addr_width); 1324 else 1325 reg_width = convert_buswidth(sconfig->src_addr_width); 1326 1327 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1328 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1329 goto err_out; 1330 1331 /* build cyclic linked list */ 1332 for (i = 0; i < periods; i++) { 1333 struct at_desc *desc; 1334 1335 desc = atc_desc_get(atchan); 1336 if (!desc) 1337 goto err_desc_get; 1338 1339 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1340 reg_width, period_len, direction)) 1341 goto err_desc_get; 1342 1343 atc_desc_chain(&first, &prev, desc); 1344 } 1345 1346 /* lets make a cyclic list */ 1347 prev->lli.dscr = first->txd.phys; 1348 1349 /* First descriptor of the chain embedds additional information */ 1350 first->txd.cookie = -EBUSY; 1351 first->total_len = buf_len; 1352 1353 return &first->txd; 1354 1355 err_desc_get: 1356 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1357 atc_desc_put(atchan, first); 1358 err_out: 1359 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1360 return NULL; 1361 } 1362 1363 static int atc_config(struct dma_chan *chan, 1364 struct dma_slave_config *sconfig) 1365 { 1366 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1367 1368 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1369 1370 /* Check if it is chan is configured for slave transfers */ 1371 if (!chan->private) 1372 return -EINVAL; 1373 1374 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1375 1376 convert_burst(&atchan->dma_sconfig.src_maxburst); 1377 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1378 1379 return 0; 1380 } 1381 1382 static int atc_pause(struct dma_chan *chan) 1383 { 1384 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1385 struct at_dma *atdma = to_at_dma(chan->device); 1386 int chan_id = atchan->chan_common.chan_id; 1387 unsigned long flags; 1388 1389 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1390 1391 spin_lock_irqsave(&atchan->lock, flags); 1392 1393 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1394 set_bit(ATC_IS_PAUSED, &atchan->status); 1395 1396 spin_unlock_irqrestore(&atchan->lock, flags); 1397 1398 return 0; 1399 } 1400 1401 static int atc_resume(struct dma_chan *chan) 1402 { 1403 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1404 struct at_dma *atdma = to_at_dma(chan->device); 1405 int chan_id = atchan->chan_common.chan_id; 1406 unsigned long flags; 1407 1408 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1409 1410 if (!atc_chan_is_paused(atchan)) 1411 return 0; 1412 1413 spin_lock_irqsave(&atchan->lock, flags); 1414 1415 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1416 clear_bit(ATC_IS_PAUSED, &atchan->status); 1417 1418 spin_unlock_irqrestore(&atchan->lock, flags); 1419 1420 return 0; 1421 } 1422 1423 static int atc_terminate_all(struct dma_chan *chan) 1424 { 1425 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1426 struct at_dma *atdma = to_at_dma(chan->device); 1427 int chan_id = atchan->chan_common.chan_id; 1428 struct at_desc *desc, *_desc; 1429 unsigned long flags; 1430 1431 LIST_HEAD(list); 1432 1433 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1434 1435 /* 1436 * This is only called when something went wrong elsewhere, so 1437 * we don't really care about the data. Just disable the 1438 * channel. We still have to poll the channel enable bit due 1439 * to AHB/HSB limitations. 1440 */ 1441 spin_lock_irqsave(&atchan->lock, flags); 1442 1443 /* disabling channel: must also remove suspend state */ 1444 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1445 1446 /* confirm that this channel is disabled */ 1447 while (dma_readl(atdma, CHSR) & atchan->mask) 1448 cpu_relax(); 1449 1450 /* active_list entries will end up before queued entries */ 1451 list_splice_init(&atchan->queue, &list); 1452 list_splice_init(&atchan->active_list, &list); 1453 1454 /* Flush all pending and queued descriptors */ 1455 list_for_each_entry_safe(desc, _desc, &list, desc_node) 1456 atc_chain_complete(atchan, desc); 1457 1458 clear_bit(ATC_IS_PAUSED, &atchan->status); 1459 /* if channel dedicated to cyclic operations, free it */ 1460 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1461 1462 spin_unlock_irqrestore(&atchan->lock, flags); 1463 1464 return 0; 1465 } 1466 1467 /** 1468 * atc_tx_status - poll for transaction completion 1469 * @chan: DMA channel 1470 * @cookie: transaction identifier to check status of 1471 * @txstate: if not %NULL updated with transaction state 1472 * 1473 * If @txstate is passed in, upon return it reflect the driver 1474 * internal state and can be used with dma_async_is_complete() to check 1475 * the status of multiple cookies without re-checking hardware state. 1476 */ 1477 static enum dma_status 1478 atc_tx_status(struct dma_chan *chan, 1479 dma_cookie_t cookie, 1480 struct dma_tx_state *txstate) 1481 { 1482 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1483 unsigned long flags; 1484 enum dma_status ret; 1485 int bytes = 0; 1486 1487 ret = dma_cookie_status(chan, cookie, txstate); 1488 if (ret == DMA_COMPLETE) 1489 return ret; 1490 /* 1491 * There's no point calculating the residue if there's 1492 * no txstate to store the value. 1493 */ 1494 if (!txstate) 1495 return DMA_ERROR; 1496 1497 spin_lock_irqsave(&atchan->lock, flags); 1498 1499 /* Get number of bytes left in the active transactions */ 1500 bytes = atc_get_bytes_left(chan, cookie); 1501 1502 spin_unlock_irqrestore(&atchan->lock, flags); 1503 1504 if (unlikely(bytes < 0)) { 1505 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1506 return DMA_ERROR; 1507 } else { 1508 dma_set_residue(txstate, bytes); 1509 } 1510 1511 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", 1512 ret, cookie, bytes); 1513 1514 return ret; 1515 } 1516 1517 /** 1518 * atc_issue_pending - try to finish work 1519 * @chan: target DMA channel 1520 */ 1521 static void atc_issue_pending(struct dma_chan *chan) 1522 { 1523 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1524 unsigned long flags; 1525 1526 dev_vdbg(chan2dev(chan), "issue_pending\n"); 1527 1528 /* Not needed for cyclic transfers */ 1529 if (atc_chan_is_cyclic(atchan)) 1530 return; 1531 1532 spin_lock_irqsave(&atchan->lock, flags); 1533 atc_advance_work(atchan); 1534 spin_unlock_irqrestore(&atchan->lock, flags); 1535 } 1536 1537 /** 1538 * atc_alloc_chan_resources - allocate resources for DMA channel 1539 * @chan: allocate descriptor resources for this channel 1540 * @client: current client requesting the channel be ready for requests 1541 * 1542 * return - the number of allocated descriptors 1543 */ 1544 static int atc_alloc_chan_resources(struct dma_chan *chan) 1545 { 1546 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1547 struct at_dma *atdma = to_at_dma(chan->device); 1548 struct at_desc *desc; 1549 struct at_dma_slave *atslave; 1550 unsigned long flags; 1551 int i; 1552 u32 cfg; 1553 LIST_HEAD(tmp_list); 1554 1555 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1556 1557 /* ASSERT: channel is idle */ 1558 if (atc_chan_is_enabled(atchan)) { 1559 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1560 return -EIO; 1561 } 1562 1563 cfg = ATC_DEFAULT_CFG; 1564 1565 atslave = chan->private; 1566 if (atslave) { 1567 /* 1568 * We need controller-specific data to set up slave 1569 * transfers. 1570 */ 1571 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); 1572 1573 /* if cfg configuration specified take it instead of default */ 1574 if (atslave->cfg) 1575 cfg = atslave->cfg; 1576 } 1577 1578 /* have we already been set up? 1579 * reconfigure channel but no need to reallocate descriptors */ 1580 if (!list_empty(&atchan->free_list)) 1581 return atchan->descs_allocated; 1582 1583 /* Allocate initial pool of descriptors */ 1584 for (i = 0; i < init_nr_desc_per_channel; i++) { 1585 desc = atc_alloc_descriptor(chan, GFP_KERNEL); 1586 if (!desc) { 1587 dev_err(atdma->dma_common.dev, 1588 "Only %d initial descriptors\n", i); 1589 break; 1590 } 1591 list_add_tail(&desc->desc_node, &tmp_list); 1592 } 1593 1594 spin_lock_irqsave(&atchan->lock, flags); 1595 atchan->descs_allocated = i; 1596 list_splice(&tmp_list, &atchan->free_list); 1597 dma_cookie_init(chan); 1598 spin_unlock_irqrestore(&atchan->lock, flags); 1599 1600 /* channel parameters */ 1601 channel_writel(atchan, CFG, cfg); 1602 1603 dev_dbg(chan2dev(chan), 1604 "alloc_chan_resources: allocated %d descriptors\n", 1605 atchan->descs_allocated); 1606 1607 return atchan->descs_allocated; 1608 } 1609 1610 /** 1611 * atc_free_chan_resources - free all channel resources 1612 * @chan: DMA channel 1613 */ 1614 static void atc_free_chan_resources(struct dma_chan *chan) 1615 { 1616 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1617 struct at_dma *atdma = to_at_dma(chan->device); 1618 struct at_desc *desc, *_desc; 1619 LIST_HEAD(list); 1620 1621 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n", 1622 atchan->descs_allocated); 1623 1624 /* ASSERT: channel is idle */ 1625 BUG_ON(!list_empty(&atchan->active_list)); 1626 BUG_ON(!list_empty(&atchan->queue)); 1627 BUG_ON(atc_chan_is_enabled(atchan)); 1628 1629 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 1630 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); 1631 list_del(&desc->desc_node); 1632 /* free link descriptor */ 1633 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); 1634 } 1635 list_splice_init(&atchan->free_list, &list); 1636 atchan->descs_allocated = 0; 1637 atchan->status = 0; 1638 1639 /* 1640 * Free atslave allocated in at_dma_xlate() 1641 */ 1642 kfree(chan->private); 1643 chan->private = NULL; 1644 1645 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1646 } 1647 1648 #ifdef CONFIG_OF 1649 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1650 { 1651 struct at_dma_slave *atslave = slave; 1652 1653 if (atslave->dma_dev == chan->device->dev) { 1654 chan->private = atslave; 1655 return true; 1656 } else { 1657 return false; 1658 } 1659 } 1660 1661 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1662 struct of_dma *of_dma) 1663 { 1664 struct dma_chan *chan; 1665 struct at_dma_chan *atchan; 1666 struct at_dma_slave *atslave; 1667 dma_cap_mask_t mask; 1668 unsigned int per_id; 1669 struct platform_device *dmac_pdev; 1670 1671 if (dma_spec->args_count != 2) 1672 return NULL; 1673 1674 dmac_pdev = of_find_device_by_node(dma_spec->np); 1675 1676 dma_cap_zero(mask); 1677 dma_cap_set(DMA_SLAVE, mask); 1678 1679 atslave = kzalloc(sizeof(*atslave), GFP_KERNEL); 1680 if (!atslave) 1681 return NULL; 1682 1683 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; 1684 /* 1685 * We can fill both SRC_PER and DST_PER, one of these fields will be 1686 * ignored depending on DMA transfer direction. 1687 */ 1688 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1689 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) 1690 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); 1691 /* 1692 * We have to translate the value we get from the device tree since 1693 * the half FIFO configuration value had to be 0 to keep backward 1694 * compatibility. 1695 */ 1696 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1697 case AT91_DMA_CFG_FIFOCFG_ALAP: 1698 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; 1699 break; 1700 case AT91_DMA_CFG_FIFOCFG_ASAP: 1701 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; 1702 break; 1703 case AT91_DMA_CFG_FIFOCFG_HALF: 1704 default: 1705 atslave->cfg |= ATC_FIFOCFG_HALFFIFO; 1706 } 1707 atslave->dma_dev = &dmac_pdev->dev; 1708 1709 chan = dma_request_channel(mask, at_dma_filter, atslave); 1710 if (!chan) 1711 return NULL; 1712 1713 atchan = to_at_dma_chan(chan); 1714 atchan->per_if = dma_spec->args[0] & 0xff; 1715 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1716 1717 return chan; 1718 } 1719 #else 1720 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1721 struct of_dma *of_dma) 1722 { 1723 return NULL; 1724 } 1725 #endif 1726 1727 /*-- Module Management -----------------------------------------------*/ 1728 1729 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1730 static struct at_dma_platform_data at91sam9rl_config = { 1731 .nr_channels = 2, 1732 }; 1733 static struct at_dma_platform_data at91sam9g45_config = { 1734 .nr_channels = 8, 1735 }; 1736 1737 #if defined(CONFIG_OF) 1738 static const struct of_device_id atmel_dma_dt_ids[] = { 1739 { 1740 .compatible = "atmel,at91sam9rl-dma", 1741 .data = &at91sam9rl_config, 1742 }, { 1743 .compatible = "atmel,at91sam9g45-dma", 1744 .data = &at91sam9g45_config, 1745 }, { 1746 /* sentinel */ 1747 } 1748 }; 1749 1750 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1751 #endif 1752 1753 static const struct platform_device_id atdma_devtypes[] = { 1754 { 1755 .name = "at91sam9rl_dma", 1756 .driver_data = (unsigned long) &at91sam9rl_config, 1757 }, { 1758 .name = "at91sam9g45_dma", 1759 .driver_data = (unsigned long) &at91sam9g45_config, 1760 }, { 1761 /* sentinel */ 1762 } 1763 }; 1764 1765 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1766 struct platform_device *pdev) 1767 { 1768 if (pdev->dev.of_node) { 1769 const struct of_device_id *match; 1770 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1771 if (match == NULL) 1772 return NULL; 1773 return match->data; 1774 } 1775 return (struct at_dma_platform_data *) 1776 platform_get_device_id(pdev)->driver_data; 1777 } 1778 1779 /** 1780 * at_dma_off - disable DMA controller 1781 * @atdma: the Atmel HDAMC device 1782 */ 1783 static void at_dma_off(struct at_dma *atdma) 1784 { 1785 dma_writel(atdma, EN, 0); 1786 1787 /* disable all interrupts */ 1788 dma_writel(atdma, EBCIDR, -1L); 1789 1790 /* confirm that all channels are disabled */ 1791 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1792 cpu_relax(); 1793 } 1794 1795 static int __init at_dma_probe(struct platform_device *pdev) 1796 { 1797 struct resource *io; 1798 struct at_dma *atdma; 1799 size_t size; 1800 int irq; 1801 int err; 1802 int i; 1803 const struct at_dma_platform_data *plat_dat; 1804 1805 /* setup platform data for each SoC */ 1806 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1807 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1808 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1809 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); 1810 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); 1811 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); 1812 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1813 1814 /* get DMA parameters from controller type */ 1815 plat_dat = at_dma_get_driver_data(pdev); 1816 if (!plat_dat) 1817 return -ENODEV; 1818 1819 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1820 if (!io) 1821 return -EINVAL; 1822 1823 irq = platform_get_irq(pdev, 0); 1824 if (irq < 0) 1825 return irq; 1826 1827 size = sizeof(struct at_dma); 1828 size += plat_dat->nr_channels * sizeof(struct at_dma_chan); 1829 atdma = kzalloc(size, GFP_KERNEL); 1830 if (!atdma) 1831 return -ENOMEM; 1832 1833 /* discover transaction capabilities */ 1834 atdma->dma_common.cap_mask = plat_dat->cap_mask; 1835 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1836 1837 size = resource_size(io); 1838 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { 1839 err = -EBUSY; 1840 goto err_kfree; 1841 } 1842 1843 atdma->regs = ioremap(io->start, size); 1844 if (!atdma->regs) { 1845 err = -ENOMEM; 1846 goto err_release_r; 1847 } 1848 1849 atdma->clk = clk_get(&pdev->dev, "dma_clk"); 1850 if (IS_ERR(atdma->clk)) { 1851 err = PTR_ERR(atdma->clk); 1852 goto err_clk; 1853 } 1854 err = clk_prepare_enable(atdma->clk); 1855 if (err) 1856 goto err_clk_prepare; 1857 1858 /* force dma off, just in case */ 1859 at_dma_off(atdma); 1860 1861 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1862 if (err) 1863 goto err_irq; 1864 1865 platform_set_drvdata(pdev, atdma); 1866 1867 /* create a pool of consistent memory blocks for hardware descriptors */ 1868 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", 1869 &pdev->dev, sizeof(struct at_desc), 1870 4 /* word alignment */, 0); 1871 if (!atdma->dma_desc_pool) { 1872 dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); 1873 err = -ENOMEM; 1874 goto err_desc_pool_create; 1875 } 1876 1877 /* create a pool of consistent memory blocks for memset blocks */ 1878 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", 1879 &pdev->dev, sizeof(int), 4, 0); 1880 if (!atdma->memset_pool) { 1881 dev_err(&pdev->dev, "No memory for memset dma pool\n"); 1882 err = -ENOMEM; 1883 goto err_memset_pool_create; 1884 } 1885 1886 /* clear any pending interrupt */ 1887 while (dma_readl(atdma, EBCISR)) 1888 cpu_relax(); 1889 1890 /* initialize channels related values */ 1891 INIT_LIST_HEAD(&atdma->dma_common.channels); 1892 for (i = 0; i < plat_dat->nr_channels; i++) { 1893 struct at_dma_chan *atchan = &atdma->chan[i]; 1894 1895 atchan->mem_if = AT_DMA_MEM_IF; 1896 atchan->per_if = AT_DMA_PER_IF; 1897 atchan->chan_common.device = &atdma->dma_common; 1898 dma_cookie_init(&atchan->chan_common); 1899 list_add_tail(&atchan->chan_common.device_node, 1900 &atdma->dma_common.channels); 1901 1902 atchan->ch_regs = atdma->regs + ch_regs(i); 1903 spin_lock_init(&atchan->lock); 1904 atchan->mask = 1 << i; 1905 1906 INIT_LIST_HEAD(&atchan->active_list); 1907 INIT_LIST_HEAD(&atchan->queue); 1908 INIT_LIST_HEAD(&atchan->free_list); 1909 1910 tasklet_init(&atchan->tasklet, atc_tasklet, 1911 (unsigned long)atchan); 1912 atc_enable_chan_irq(atdma, i); 1913 } 1914 1915 /* set base routines */ 1916 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; 1917 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; 1918 atdma->dma_common.device_tx_status = atc_tx_status; 1919 atdma->dma_common.device_issue_pending = atc_issue_pending; 1920 atdma->dma_common.dev = &pdev->dev; 1921 1922 /* set prep routines based on capability */ 1923 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) 1924 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; 1925 1926 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) 1927 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; 1928 1929 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) { 1930 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset; 1931 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; 1932 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES; 1933 } 1934 1935 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { 1936 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; 1937 /* controller can do slave DMA: can trigger cyclic transfers */ 1938 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); 1939 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; 1940 atdma->dma_common.device_config = atc_config; 1941 atdma->dma_common.device_pause = atc_pause; 1942 atdma->dma_common.device_resume = atc_resume; 1943 atdma->dma_common.device_terminate_all = atc_terminate_all; 1944 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; 1945 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; 1946 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1947 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1948 } 1949 1950 dma_writel(atdma, EN, AT_DMA_ENABLE); 1951 1952 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n", 1953 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", 1954 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "", 1955 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", 1956 plat_dat->nr_channels); 1957 1958 dma_async_device_register(&atdma->dma_common); 1959 1960 /* 1961 * Do not return an error if the dmac node is not present in order to 1962 * not break the existing way of requesting channel with 1963 * dma_request_channel(). 1964 */ 1965 if (pdev->dev.of_node) { 1966 err = of_dma_controller_register(pdev->dev.of_node, 1967 at_dma_xlate, atdma); 1968 if (err) { 1969 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 1970 goto err_of_dma_controller_register; 1971 } 1972 } 1973 1974 return 0; 1975 1976 err_of_dma_controller_register: 1977 dma_async_device_unregister(&atdma->dma_common); 1978 dma_pool_destroy(atdma->memset_pool); 1979 err_memset_pool_create: 1980 dma_pool_destroy(atdma->dma_desc_pool); 1981 err_desc_pool_create: 1982 free_irq(platform_get_irq(pdev, 0), atdma); 1983 err_irq: 1984 clk_disable_unprepare(atdma->clk); 1985 err_clk_prepare: 1986 clk_put(atdma->clk); 1987 err_clk: 1988 iounmap(atdma->regs); 1989 atdma->regs = NULL; 1990 err_release_r: 1991 release_mem_region(io->start, size); 1992 err_kfree: 1993 kfree(atdma); 1994 return err; 1995 } 1996 1997 static int at_dma_remove(struct platform_device *pdev) 1998 { 1999 struct at_dma *atdma = platform_get_drvdata(pdev); 2000 struct dma_chan *chan, *_chan; 2001 struct resource *io; 2002 2003 at_dma_off(atdma); 2004 if (pdev->dev.of_node) 2005 of_dma_controller_free(pdev->dev.of_node); 2006 dma_async_device_unregister(&atdma->dma_common); 2007 2008 dma_pool_destroy(atdma->memset_pool); 2009 dma_pool_destroy(atdma->dma_desc_pool); 2010 free_irq(platform_get_irq(pdev, 0), atdma); 2011 2012 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2013 device_node) { 2014 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2015 2016 /* Disable interrupts */ 2017 atc_disable_chan_irq(atdma, chan->chan_id); 2018 2019 tasklet_kill(&atchan->tasklet); 2020 list_del(&chan->device_node); 2021 } 2022 2023 clk_disable_unprepare(atdma->clk); 2024 clk_put(atdma->clk); 2025 2026 iounmap(atdma->regs); 2027 atdma->regs = NULL; 2028 2029 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2030 release_mem_region(io->start, resource_size(io)); 2031 2032 kfree(atdma); 2033 2034 return 0; 2035 } 2036 2037 static void at_dma_shutdown(struct platform_device *pdev) 2038 { 2039 struct at_dma *atdma = platform_get_drvdata(pdev); 2040 2041 at_dma_off(platform_get_drvdata(pdev)); 2042 clk_disable_unprepare(atdma->clk); 2043 } 2044 2045 static int at_dma_prepare(struct device *dev) 2046 { 2047 struct at_dma *atdma = dev_get_drvdata(dev); 2048 struct dma_chan *chan, *_chan; 2049 2050 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2051 device_node) { 2052 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2053 /* wait for transaction completion (except in cyclic case) */ 2054 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 2055 return -EAGAIN; 2056 } 2057 return 0; 2058 } 2059 2060 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 2061 { 2062 struct dma_chan *chan = &atchan->chan_common; 2063 2064 /* Channel should be paused by user 2065 * do it anyway even if it is not done already */ 2066 if (!atc_chan_is_paused(atchan)) { 2067 dev_warn(chan2dev(chan), 2068 "cyclic channel not paused, should be done by channel user\n"); 2069 atc_pause(chan); 2070 } 2071 2072 /* now preserve additional data for cyclic operations */ 2073 /* next descriptor address in the cyclic list */ 2074 atchan->save_dscr = channel_readl(atchan, DSCR); 2075 2076 vdbg_dump_regs(atchan); 2077 } 2078 2079 static int at_dma_suspend_noirq(struct device *dev) 2080 { 2081 struct at_dma *atdma = dev_get_drvdata(dev); 2082 struct dma_chan *chan, *_chan; 2083 2084 /* preserve data */ 2085 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2086 device_node) { 2087 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2088 2089 if (atc_chan_is_cyclic(atchan)) 2090 atc_suspend_cyclic(atchan); 2091 atchan->save_cfg = channel_readl(atchan, CFG); 2092 } 2093 atdma->save_imr = dma_readl(atdma, EBCIMR); 2094 2095 /* disable DMA controller */ 2096 at_dma_off(atdma); 2097 clk_disable_unprepare(atdma->clk); 2098 return 0; 2099 } 2100 2101 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2102 { 2103 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 2104 2105 /* restore channel status for cyclic descriptors list: 2106 * next descriptor in the cyclic list at the time of suspend */ 2107 channel_writel(atchan, SADDR, 0); 2108 channel_writel(atchan, DADDR, 0); 2109 channel_writel(atchan, CTRLA, 0); 2110 channel_writel(atchan, CTRLB, 0); 2111 channel_writel(atchan, DSCR, atchan->save_dscr); 2112 dma_writel(atdma, CHER, atchan->mask); 2113 2114 /* channel pause status should be removed by channel user 2115 * We cannot take the initiative to do it here */ 2116 2117 vdbg_dump_regs(atchan); 2118 } 2119 2120 static int at_dma_resume_noirq(struct device *dev) 2121 { 2122 struct at_dma *atdma = dev_get_drvdata(dev); 2123 struct dma_chan *chan, *_chan; 2124 2125 /* bring back DMA controller */ 2126 clk_prepare_enable(atdma->clk); 2127 dma_writel(atdma, EN, AT_DMA_ENABLE); 2128 2129 /* clear any pending interrupt */ 2130 while (dma_readl(atdma, EBCISR)) 2131 cpu_relax(); 2132 2133 /* restore saved data */ 2134 dma_writel(atdma, EBCIER, atdma->save_imr); 2135 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2136 device_node) { 2137 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2138 2139 channel_writel(atchan, CFG, atchan->save_cfg); 2140 if (atc_chan_is_cyclic(atchan)) 2141 atc_resume_cyclic(atchan); 2142 } 2143 return 0; 2144 } 2145 2146 static const struct dev_pm_ops at_dma_dev_pm_ops = { 2147 .prepare = at_dma_prepare, 2148 .suspend_noirq = at_dma_suspend_noirq, 2149 .resume_noirq = at_dma_resume_noirq, 2150 }; 2151 2152 static struct platform_driver at_dma_driver = { 2153 .remove = at_dma_remove, 2154 .shutdown = at_dma_shutdown, 2155 .id_table = atdma_devtypes, 2156 .driver = { 2157 .name = "at_hdmac", 2158 .pm = &at_dma_dev_pm_ops, 2159 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2160 }, 2161 }; 2162 2163 static int __init at_dma_init(void) 2164 { 2165 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2166 } 2167 subsys_initcall(at_dma_init); 2168 2169 static void __exit at_dma_exit(void) 2170 { 2171 platform_driver_unregister(&at_dma_driver); 2172 } 2173 module_exit(at_dma_exit); 2174 2175 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2176 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2177 MODULE_LICENSE("GPL"); 2178 MODULE_ALIAS("platform:at_hdmac"); 2179