1 /* 2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 3 * 4 * Copyright (C) 2008 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * 12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 13 * The only Atmel DMA Controller that is not covered by this driver is the one 14 * found on AT91SAM9263. 15 */ 16 17 #include <dt-bindings/dma/at91.h> 18 #include <linux/clk.h> 19 #include <linux/dmaengine.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dmapool.h> 22 #include <linux/interrupt.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/slab.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/of_dma.h> 29 30 #include "at_hdmac_regs.h" 31 #include "dmaengine.h" 32 33 /* 34 * Glossary 35 * -------- 36 * 37 * at_hdmac : Name of the ATmel AHB DMA Controller 38 * at_dma_ / atdma : ATmel DMA controller entity related 39 * atc_ / atchan : ATmel DMA Channel entity related 40 */ 41 42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) 43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ 44 |ATC_DIF(AT_DMA_MEM_IF)) 45 #define ATC_DMA_BUSWIDTHS\ 46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 50 51 #define ATC_MAX_DSCR_TRIALS 10 52 53 /* 54 * Initial number of descriptors to allocate for each channel. This could 55 * be increased during dma usage. 56 */ 57 static unsigned int init_nr_desc_per_channel = 64; 58 module_param(init_nr_desc_per_channel, uint, 0644); 59 MODULE_PARM_DESC(init_nr_desc_per_channel, 60 "initial descriptors per channel (default: 64)"); 61 62 63 /* prototypes */ 64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); 65 static void atc_issue_pending(struct dma_chan *chan); 66 67 68 /*----------------------------------------------------------------------*/ 69 70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 71 size_t len) 72 { 73 unsigned int width; 74 75 if (!((src | dst | len) & 3)) 76 width = 2; 77 else if (!((src | dst | len) & 1)) 78 width = 1; 79 else 80 width = 0; 81 82 return width; 83 } 84 85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan) 86 { 87 return list_first_entry(&atchan->active_list, 88 struct at_desc, desc_node); 89 } 90 91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) 92 { 93 return list_first_entry(&atchan->queue, 94 struct at_desc, desc_node); 95 } 96 97 /** 98 * atc_alloc_descriptor - allocate and return an initialized descriptor 99 * @chan: the channel to allocate descriptors for 100 * @gfp_flags: GFP allocation flags 101 * 102 * Note: The ack-bit is positioned in the descriptor flag at creation time 103 * to make initial allocation more convenient. This bit will be cleared 104 * and control will be given to client at usage time (during 105 * preparation functions). 106 */ 107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, 108 gfp_t gfp_flags) 109 { 110 struct at_desc *desc = NULL; 111 struct at_dma *atdma = to_at_dma(chan->device); 112 dma_addr_t phys; 113 114 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys); 115 if (desc) { 116 INIT_LIST_HEAD(&desc->tx_list); 117 dma_async_tx_descriptor_init(&desc->txd, chan); 118 /* txd.flags will be overwritten in prep functions */ 119 desc->txd.flags = DMA_CTRL_ACK; 120 desc->txd.tx_submit = atc_tx_submit; 121 desc->txd.phys = phys; 122 } 123 124 return desc; 125 } 126 127 /** 128 * atc_desc_get - get an unused descriptor from free_list 129 * @atchan: channel we want a new descriptor for 130 */ 131 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) 132 { 133 struct at_desc *desc, *_desc; 134 struct at_desc *ret = NULL; 135 unsigned long flags; 136 unsigned int i = 0; 137 LIST_HEAD(tmp_list); 138 139 spin_lock_irqsave(&atchan->lock, flags); 140 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 141 i++; 142 if (async_tx_test_ack(&desc->txd)) { 143 list_del(&desc->desc_node); 144 ret = desc; 145 break; 146 } 147 dev_dbg(chan2dev(&atchan->chan_common), 148 "desc %p not ACKed\n", desc); 149 } 150 spin_unlock_irqrestore(&atchan->lock, flags); 151 dev_vdbg(chan2dev(&atchan->chan_common), 152 "scanned %u descriptors on freelist\n", i); 153 154 /* no more descriptor available in initial pool: create one more */ 155 if (!ret) { 156 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC); 157 if (ret) { 158 spin_lock_irqsave(&atchan->lock, flags); 159 atchan->descs_allocated++; 160 spin_unlock_irqrestore(&atchan->lock, flags); 161 } else { 162 dev_err(chan2dev(&atchan->chan_common), 163 "not enough descriptors available\n"); 164 } 165 } 166 167 return ret; 168 } 169 170 /** 171 * atc_desc_put - move a descriptor, including any children, to the free list 172 * @atchan: channel we work on 173 * @desc: descriptor, at the head of a chain, to move to free list 174 */ 175 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) 176 { 177 if (desc) { 178 struct at_desc *child; 179 unsigned long flags; 180 181 spin_lock_irqsave(&atchan->lock, flags); 182 list_for_each_entry(child, &desc->tx_list, desc_node) 183 dev_vdbg(chan2dev(&atchan->chan_common), 184 "moving child desc %p to freelist\n", 185 child); 186 list_splice_init(&desc->tx_list, &atchan->free_list); 187 dev_vdbg(chan2dev(&atchan->chan_common), 188 "moving desc %p to freelist\n", desc); 189 list_add(&desc->desc_node, &atchan->free_list); 190 spin_unlock_irqrestore(&atchan->lock, flags); 191 } 192 } 193 194 /** 195 * atc_desc_chain - build chain adding a descriptor 196 * @first: address of first descriptor of the chain 197 * @prev: address of previous descriptor of the chain 198 * @desc: descriptor to queue 199 * 200 * Called from prep_* functions 201 */ 202 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, 203 struct at_desc *desc) 204 { 205 if (!(*first)) { 206 *first = desc; 207 } else { 208 /* inform the HW lli about chaining */ 209 (*prev)->lli.dscr = desc->txd.phys; 210 /* insert the link descriptor to the LD ring */ 211 list_add_tail(&desc->desc_node, 212 &(*first)->tx_list); 213 } 214 *prev = desc; 215 } 216 217 /** 218 * atc_dostart - starts the DMA engine for real 219 * @atchan: the channel we want to start 220 * @first: first descriptor in the list we want to begin with 221 * 222 * Called with atchan->lock held and bh disabled 223 */ 224 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) 225 { 226 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 227 228 /* ASSERT: channel is idle */ 229 if (atc_chan_is_enabled(atchan)) { 230 dev_err(chan2dev(&atchan->chan_common), 231 "BUG: Attempted to start non-idle channel\n"); 232 dev_err(chan2dev(&atchan->chan_common), 233 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", 234 channel_readl(atchan, SADDR), 235 channel_readl(atchan, DADDR), 236 channel_readl(atchan, CTRLA), 237 channel_readl(atchan, CTRLB), 238 channel_readl(atchan, DSCR)); 239 240 /* The tasklet will hopefully advance the queue... */ 241 return; 242 } 243 244 vdbg_dump_regs(atchan); 245 246 channel_writel(atchan, SADDR, 0); 247 channel_writel(atchan, DADDR, 0); 248 channel_writel(atchan, CTRLA, 0); 249 channel_writel(atchan, CTRLB, 0); 250 channel_writel(atchan, DSCR, first->txd.phys); 251 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | 252 ATC_SPIP_BOUNDARY(first->boundary)); 253 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | 254 ATC_DPIP_BOUNDARY(first->boundary)); 255 dma_writel(atdma, CHER, atchan->mask); 256 257 vdbg_dump_regs(atchan); 258 } 259 260 /* 261 * atc_get_desc_by_cookie - get the descriptor of a cookie 262 * @atchan: the DMA channel 263 * @cookie: the cookie to get the descriptor for 264 */ 265 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, 266 dma_cookie_t cookie) 267 { 268 struct at_desc *desc, *_desc; 269 270 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { 271 if (desc->txd.cookie == cookie) 272 return desc; 273 } 274 275 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { 276 if (desc->txd.cookie == cookie) 277 return desc; 278 } 279 280 return NULL; 281 } 282 283 /** 284 * atc_calc_bytes_left - calculates the number of bytes left according to the 285 * value read from CTRLA. 286 * 287 * @current_len: the number of bytes left before reading CTRLA 288 * @ctrla: the value of CTRLA 289 */ 290 static inline int atc_calc_bytes_left(int current_len, u32 ctrla) 291 { 292 u32 btsize = (ctrla & ATC_BTSIZE_MAX); 293 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); 294 295 /* 296 * According to the datasheet, when reading the Control A Register 297 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 298 * number of transfers completed on the Source Interface. 299 * So btsize is always a number of source width transfers. 300 */ 301 return current_len - (btsize << src_width); 302 } 303 304 /** 305 * atc_get_bytes_left - get the number of bytes residue for a cookie 306 * @chan: DMA channel 307 * @cookie: transaction identifier to check status of 308 */ 309 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) 310 { 311 struct at_dma_chan *atchan = to_at_dma_chan(chan); 312 struct at_desc *desc_first = atc_first_active(atchan); 313 struct at_desc *desc; 314 int ret; 315 u32 ctrla, dscr, trials; 316 317 /* 318 * If the cookie doesn't match to the currently running transfer then 319 * we can return the total length of the associated DMA transfer, 320 * because it is still queued. 321 */ 322 desc = atc_get_desc_by_cookie(atchan, cookie); 323 if (desc == NULL) 324 return -EINVAL; 325 else if (desc != desc_first) 326 return desc->total_len; 327 328 /* cookie matches to the currently running transfer */ 329 ret = desc_first->total_len; 330 331 if (desc_first->lli.dscr) { 332 /* hardware linked list transfer */ 333 334 /* 335 * Calculate the residue by removing the length of the child 336 * descriptors already transferred from the total length. 337 * To get the current child descriptor we can use the value of 338 * the channel's DSCR register and compare it against the value 339 * of the hardware linked list structure of each child 340 * descriptor. 341 * 342 * The CTRLA register provides us with the amount of data 343 * already read from the source for the current child 344 * descriptor. So we can compute a more accurate residue by also 345 * removing the number of bytes corresponding to this amount of 346 * data. 347 * 348 * However, the DSCR and CTRLA registers cannot be read both 349 * atomically. Hence a race condition may occur: the first read 350 * register may refer to one child descriptor whereas the second 351 * read may refer to a later child descriptor in the list 352 * because of the DMA transfer progression inbetween the two 353 * reads. 354 * 355 * One solution could have been to pause the DMA transfer, read 356 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless, 357 * this approach presents some drawbacks: 358 * - If the DMA transfer is paused, RX overruns or TX underruns 359 * are more likey to occur depending on the system latency. 360 * Taking the USART driver as an example, it uses a cyclic DMA 361 * transfer to read data from the Receive Holding Register 362 * (RHR) to avoid RX overruns since the RHR is not protected 363 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer 364 * to compute the residue would break the USART driver design. 365 * - The atc_pause() function masks interrupts but we'd rather 366 * avoid to do so for system latency purpose. 367 * 368 * Then we'd rather use another solution: the DSCR is read a 369 * first time, the CTRLA is read in turn, next the DSCR is read 370 * a second time. If the two consecutive read values of the DSCR 371 * are the same then we assume both refers to the very same 372 * child descriptor as well as the CTRLA value read inbetween 373 * does. For cyclic tranfers, the assumption is that a full loop 374 * is "not so fast". 375 * If the two DSCR values are different, we read again the CTRLA 376 * then the DSCR till two consecutive read values from DSCR are 377 * equal or till the maxium trials is reach. 378 * This algorithm is very unlikely not to find a stable value for 379 * DSCR. 380 */ 381 382 dscr = channel_readl(atchan, DSCR); 383 rmb(); /* ensure DSCR is read before CTRLA */ 384 ctrla = channel_readl(atchan, CTRLA); 385 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) { 386 u32 new_dscr; 387 388 rmb(); /* ensure DSCR is read after CTRLA */ 389 new_dscr = channel_readl(atchan, DSCR); 390 391 /* 392 * If the DSCR register value has not changed inside the 393 * DMA controller since the previous read, we assume 394 * that both the dscr and ctrla values refers to the 395 * very same descriptor. 396 */ 397 if (likely(new_dscr == dscr)) 398 break; 399 400 /* 401 * DSCR has changed inside the DMA controller, so the 402 * previouly read value of CTRLA may refer to an already 403 * processed descriptor hence could be outdated. 404 * We need to update ctrla to match the current 405 * descriptor. 406 */ 407 dscr = new_dscr; 408 rmb(); /* ensure DSCR is read before CTRLA */ 409 ctrla = channel_readl(atchan, CTRLA); 410 } 411 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS)) 412 return -ETIMEDOUT; 413 414 /* for the first descriptor we can be more accurate */ 415 if (desc_first->lli.dscr == dscr) 416 return atc_calc_bytes_left(ret, ctrla); 417 418 ret -= desc_first->len; 419 list_for_each_entry(desc, &desc_first->tx_list, desc_node) { 420 if (desc->lli.dscr == dscr) 421 break; 422 423 ret -= desc->len; 424 } 425 426 /* 427 * For the current descriptor in the chain we can calculate 428 * the remaining bytes using the channel's register. 429 */ 430 ret = atc_calc_bytes_left(ret, ctrla); 431 } else { 432 /* single transfer */ 433 ctrla = channel_readl(atchan, CTRLA); 434 ret = atc_calc_bytes_left(ret, ctrla); 435 } 436 437 return ret; 438 } 439 440 /** 441 * atc_chain_complete - finish work for one transaction chain 442 * @atchan: channel we work on 443 * @desc: descriptor at the head of the chain we want do complete 444 * 445 * Called with atchan->lock held and bh disabled */ 446 static void 447 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) 448 { 449 struct dma_async_tx_descriptor *txd = &desc->txd; 450 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 451 452 dev_vdbg(chan2dev(&atchan->chan_common), 453 "descriptor %u complete\n", txd->cookie); 454 455 /* mark the descriptor as complete for non cyclic cases only */ 456 if (!atc_chan_is_cyclic(atchan)) 457 dma_cookie_complete(txd); 458 459 /* If the transfer was a memset, free our temporary buffer */ 460 if (desc->memset_buffer) { 461 dma_pool_free(atdma->memset_pool, desc->memset_vaddr, 462 desc->memset_paddr); 463 desc->memset_buffer = false; 464 } 465 466 /* move children to free_list */ 467 list_splice_init(&desc->tx_list, &atchan->free_list); 468 /* move myself to free_list */ 469 list_move(&desc->desc_node, &atchan->free_list); 470 471 dma_descriptor_unmap(txd); 472 /* for cyclic transfers, 473 * no need to replay callback function while stopping */ 474 if (!atc_chan_is_cyclic(atchan)) { 475 /* 476 * The API requires that no submissions are done from a 477 * callback, so we don't need to drop the lock here 478 */ 479 dmaengine_desc_get_callback_invoke(txd, NULL); 480 } 481 482 dma_run_dependencies(txd); 483 } 484 485 /** 486 * atc_complete_all - finish work for all transactions 487 * @atchan: channel to complete transactions for 488 * 489 * Eventually submit queued descriptors if any 490 * 491 * Assume channel is idle while calling this function 492 * Called with atchan->lock held and bh disabled 493 */ 494 static void atc_complete_all(struct at_dma_chan *atchan) 495 { 496 struct at_desc *desc, *_desc; 497 LIST_HEAD(list); 498 499 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n"); 500 501 /* 502 * Submit queued descriptors ASAP, i.e. before we go through 503 * the completed ones. 504 */ 505 if (!list_empty(&atchan->queue)) 506 atc_dostart(atchan, atc_first_queued(atchan)); 507 /* empty active_list now it is completed */ 508 list_splice_init(&atchan->active_list, &list); 509 /* empty queue list by moving descriptors (if any) to active_list */ 510 list_splice_init(&atchan->queue, &atchan->active_list); 511 512 list_for_each_entry_safe(desc, _desc, &list, desc_node) 513 atc_chain_complete(atchan, desc); 514 } 515 516 /** 517 * atc_advance_work - at the end of a transaction, move forward 518 * @atchan: channel where the transaction ended 519 * 520 * Called with atchan->lock held and bh disabled 521 */ 522 static void atc_advance_work(struct at_dma_chan *atchan) 523 { 524 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); 525 526 if (atc_chan_is_enabled(atchan)) 527 return; 528 529 if (list_empty(&atchan->active_list) || 530 list_is_singular(&atchan->active_list)) { 531 atc_complete_all(atchan); 532 } else { 533 atc_chain_complete(atchan, atc_first_active(atchan)); 534 /* advance work */ 535 atc_dostart(atchan, atc_first_active(atchan)); 536 } 537 } 538 539 540 /** 541 * atc_handle_error - handle errors reported by DMA controller 542 * @atchan: channel where error occurs 543 * 544 * Called with atchan->lock held and bh disabled 545 */ 546 static void atc_handle_error(struct at_dma_chan *atchan) 547 { 548 struct at_desc *bad_desc; 549 struct at_desc *child; 550 551 /* 552 * The descriptor currently at the head of the active list is 553 * broked. Since we don't have any way to report errors, we'll 554 * just have to scream loudly and try to carry on. 555 */ 556 bad_desc = atc_first_active(atchan); 557 list_del_init(&bad_desc->desc_node); 558 559 /* As we are stopped, take advantage to push queued descriptors 560 * in active_list */ 561 list_splice_init(&atchan->queue, atchan->active_list.prev); 562 563 /* Try to restart the controller */ 564 if (!list_empty(&atchan->active_list)) 565 atc_dostart(atchan, atc_first_active(atchan)); 566 567 /* 568 * KERN_CRITICAL may seem harsh, but since this only happens 569 * when someone submits a bad physical address in a 570 * descriptor, we should consider ourselves lucky that the 571 * controller flagged an error instead of scribbling over 572 * random memory locations. 573 */ 574 dev_crit(chan2dev(&atchan->chan_common), 575 "Bad descriptor submitted for DMA!\n"); 576 dev_crit(chan2dev(&atchan->chan_common), 577 " cookie: %d\n", bad_desc->txd.cookie); 578 atc_dump_lli(atchan, &bad_desc->lli); 579 list_for_each_entry(child, &bad_desc->tx_list, desc_node) 580 atc_dump_lli(atchan, &child->lli); 581 582 /* Pretend the descriptor completed successfully */ 583 atc_chain_complete(atchan, bad_desc); 584 } 585 586 /** 587 * atc_handle_cyclic - at the end of a period, run callback function 588 * @atchan: channel used for cyclic operations 589 * 590 * Called with atchan->lock held and bh disabled 591 */ 592 static void atc_handle_cyclic(struct at_dma_chan *atchan) 593 { 594 struct at_desc *first = atc_first_active(atchan); 595 struct dma_async_tx_descriptor *txd = &first->txd; 596 597 dev_vdbg(chan2dev(&atchan->chan_common), 598 "new cyclic period llp 0x%08x\n", 599 channel_readl(atchan, DSCR)); 600 601 dmaengine_desc_get_callback_invoke(txd, NULL); 602 } 603 604 /*-- IRQ & Tasklet ---------------------------------------------------*/ 605 606 static void atc_tasklet(unsigned long data) 607 { 608 struct at_dma_chan *atchan = (struct at_dma_chan *)data; 609 unsigned long flags; 610 611 spin_lock_irqsave(&atchan->lock, flags); 612 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) 613 atc_handle_error(atchan); 614 else if (atc_chan_is_cyclic(atchan)) 615 atc_handle_cyclic(atchan); 616 else 617 atc_advance_work(atchan); 618 619 spin_unlock_irqrestore(&atchan->lock, flags); 620 } 621 622 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 623 { 624 struct at_dma *atdma = (struct at_dma *)dev_id; 625 struct at_dma_chan *atchan; 626 int i; 627 u32 status, pending, imr; 628 int ret = IRQ_NONE; 629 630 do { 631 imr = dma_readl(atdma, EBCIMR); 632 status = dma_readl(atdma, EBCISR); 633 pending = status & imr; 634 635 if (!pending) 636 break; 637 638 dev_vdbg(atdma->dma_common.dev, 639 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 640 status, imr, pending); 641 642 for (i = 0; i < atdma->dma_common.chancnt; i++) { 643 atchan = &atdma->chan[i]; 644 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { 645 if (pending & AT_DMA_ERR(i)) { 646 /* Disable channel on AHB error */ 647 dma_writel(atdma, CHDR, 648 AT_DMA_RES(i) | atchan->mask); 649 /* Give information to tasklet */ 650 set_bit(ATC_IS_ERROR, &atchan->status); 651 } 652 tasklet_schedule(&atchan->tasklet); 653 ret = IRQ_HANDLED; 654 } 655 } 656 657 } while (pending); 658 659 return ret; 660 } 661 662 663 /*-- DMA Engine API --------------------------------------------------*/ 664 665 /** 666 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine 667 * @desc: descriptor at the head of the transaction chain 668 * 669 * Queue chain if DMA engine is working already 670 * 671 * Cookie increment and adding to active_list or queue must be atomic 672 */ 673 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) 674 { 675 struct at_desc *desc = txd_to_at_desc(tx); 676 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); 677 dma_cookie_t cookie; 678 unsigned long flags; 679 680 spin_lock_irqsave(&atchan->lock, flags); 681 cookie = dma_cookie_assign(tx); 682 683 if (list_empty(&atchan->active_list)) { 684 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", 685 desc->txd.cookie); 686 atc_dostart(atchan, desc); 687 list_add_tail(&desc->desc_node, &atchan->active_list); 688 } else { 689 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", 690 desc->txd.cookie); 691 list_add_tail(&desc->desc_node, &atchan->queue); 692 } 693 694 spin_unlock_irqrestore(&atchan->lock, flags); 695 696 return cookie; 697 } 698 699 /** 700 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 701 * @chan: the channel to prepare operation on 702 * @xt: Interleaved transfer template 703 * @flags: tx descriptor status flags 704 */ 705 static struct dma_async_tx_descriptor * 706 atc_prep_dma_interleaved(struct dma_chan *chan, 707 struct dma_interleaved_template *xt, 708 unsigned long flags) 709 { 710 struct at_dma_chan *atchan = to_at_dma_chan(chan); 711 struct data_chunk *first = xt->sgl; 712 struct at_desc *desc = NULL; 713 size_t xfer_count; 714 unsigned int dwidth; 715 u32 ctrla; 716 u32 ctrlb; 717 size_t len = 0; 718 int i; 719 720 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 721 return NULL; 722 723 dev_info(chan2dev(chan), 724 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", 725 __func__, &xt->src_start, &xt->dst_start, xt->numf, 726 xt->frame_size, flags); 727 728 /* 729 * The controller can only "skip" X bytes every Y bytes, so we 730 * need to make sure we are given a template that fit that 731 * description, ie a template with chunks that always have the 732 * same size, with the same ICGs. 733 */ 734 for (i = 0; i < xt->frame_size; i++) { 735 struct data_chunk *chunk = xt->sgl + i; 736 737 if ((chunk->size != xt->sgl->size) || 738 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 739 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 740 dev_err(chan2dev(chan), 741 "%s: the controller can transfer only identical chunks\n", 742 __func__); 743 return NULL; 744 } 745 746 len += chunk->size; 747 } 748 749 dwidth = atc_get_xfer_width(xt->src_start, 750 xt->dst_start, len); 751 752 xfer_count = len >> dwidth; 753 if (xfer_count > ATC_BTSIZE_MAX) { 754 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 755 return NULL; 756 } 757 758 ctrla = ATC_SRC_WIDTH(dwidth) | 759 ATC_DST_WIDTH(dwidth); 760 761 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 762 | ATC_SRC_ADDR_MODE_INCR 763 | ATC_DST_ADDR_MODE_INCR 764 | ATC_SRC_PIP 765 | ATC_DST_PIP 766 | ATC_FC_MEM2MEM; 767 768 /* create the transfer */ 769 desc = atc_desc_get(atchan); 770 if (!desc) { 771 dev_err(chan2dev(chan), 772 "%s: couldn't allocate our descriptor\n", __func__); 773 return NULL; 774 } 775 776 desc->lli.saddr = xt->src_start; 777 desc->lli.daddr = xt->dst_start; 778 desc->lli.ctrla = ctrla | xfer_count; 779 desc->lli.ctrlb = ctrlb; 780 781 desc->boundary = first->size >> dwidth; 782 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 783 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 784 785 desc->txd.cookie = -EBUSY; 786 desc->total_len = desc->len = len; 787 788 /* set end-of-link to the last link descriptor of list*/ 789 set_desc_eol(desc); 790 791 desc->txd.flags = flags; /* client is in control of this ack */ 792 793 return &desc->txd; 794 } 795 796 /** 797 * atc_prep_dma_memcpy - prepare a memcpy operation 798 * @chan: the channel to prepare operation on 799 * @dest: operation virtual destination address 800 * @src: operation virtual source address 801 * @len: operation length 802 * @flags: tx descriptor status flags 803 */ 804 static struct dma_async_tx_descriptor * 805 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 806 size_t len, unsigned long flags) 807 { 808 struct at_dma_chan *atchan = to_at_dma_chan(chan); 809 struct at_desc *desc = NULL; 810 struct at_desc *first = NULL; 811 struct at_desc *prev = NULL; 812 size_t xfer_count; 813 size_t offset; 814 unsigned int src_width; 815 unsigned int dst_width; 816 u32 ctrla; 817 u32 ctrlb; 818 819 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n", 820 &dest, &src, len, flags); 821 822 if (unlikely(!len)) { 823 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 824 return NULL; 825 } 826 827 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 828 | ATC_SRC_ADDR_MODE_INCR 829 | ATC_DST_ADDR_MODE_INCR 830 | ATC_FC_MEM2MEM; 831 832 /* 833 * We can be a lot more clever here, but this should take care 834 * of the most common optimization. 835 */ 836 src_width = dst_width = atc_get_xfer_width(src, dest, len); 837 838 ctrla = ATC_SRC_WIDTH(src_width) | 839 ATC_DST_WIDTH(dst_width); 840 841 for (offset = 0; offset < len; offset += xfer_count << src_width) { 842 xfer_count = min_t(size_t, (len - offset) >> src_width, 843 ATC_BTSIZE_MAX); 844 845 desc = atc_desc_get(atchan); 846 if (!desc) 847 goto err_desc_get; 848 849 desc->lli.saddr = src + offset; 850 desc->lli.daddr = dest + offset; 851 desc->lli.ctrla = ctrla | xfer_count; 852 desc->lli.ctrlb = ctrlb; 853 854 desc->txd.cookie = 0; 855 desc->len = xfer_count << src_width; 856 857 atc_desc_chain(&first, &prev, desc); 858 } 859 860 /* First descriptor of the chain embedds additional information */ 861 first->txd.cookie = -EBUSY; 862 first->total_len = len; 863 864 /* set end-of-link to the last link descriptor of list*/ 865 set_desc_eol(desc); 866 867 first->txd.flags = flags; /* client is in control of this ack */ 868 869 return &first->txd; 870 871 err_desc_get: 872 atc_desc_put(atchan, first); 873 return NULL; 874 } 875 876 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan, 877 dma_addr_t psrc, 878 dma_addr_t pdst, 879 size_t len) 880 { 881 struct at_dma_chan *atchan = to_at_dma_chan(chan); 882 struct at_desc *desc; 883 size_t xfer_count; 884 885 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2); 886 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 887 ATC_SRC_ADDR_MODE_FIXED | 888 ATC_DST_ADDR_MODE_INCR | 889 ATC_FC_MEM2MEM; 890 891 xfer_count = len >> 2; 892 if (xfer_count > ATC_BTSIZE_MAX) { 893 dev_err(chan2dev(chan), "%s: buffer is too big\n", 894 __func__); 895 return NULL; 896 } 897 898 desc = atc_desc_get(atchan); 899 if (!desc) { 900 dev_err(chan2dev(chan), "%s: can't get a descriptor\n", 901 __func__); 902 return NULL; 903 } 904 905 desc->lli.saddr = psrc; 906 desc->lli.daddr = pdst; 907 desc->lli.ctrla = ctrla | xfer_count; 908 desc->lli.ctrlb = ctrlb; 909 910 desc->txd.cookie = 0; 911 desc->len = len; 912 913 return desc; 914 } 915 916 /** 917 * atc_prep_dma_memset - prepare a memcpy operation 918 * @chan: the channel to prepare operation on 919 * @dest: operation virtual destination address 920 * @value: value to set memory buffer to 921 * @len: operation length 922 * @flags: tx descriptor status flags 923 */ 924 static struct dma_async_tx_descriptor * 925 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 926 size_t len, unsigned long flags) 927 { 928 struct at_dma *atdma = to_at_dma(chan->device); 929 struct at_desc *desc; 930 void __iomem *vaddr; 931 dma_addr_t paddr; 932 933 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__, 934 &dest, value, len, flags); 935 936 if (unlikely(!len)) { 937 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); 938 return NULL; 939 } 940 941 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 942 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", 943 __func__); 944 return NULL; 945 } 946 947 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 948 if (!vaddr) { 949 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 950 __func__); 951 return NULL; 952 } 953 *(u32*)vaddr = value; 954 955 desc = atc_create_memset_desc(chan, paddr, dest, len); 956 if (!desc) { 957 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n", 958 __func__); 959 goto err_free_buffer; 960 } 961 962 desc->memset_paddr = paddr; 963 desc->memset_vaddr = vaddr; 964 desc->memset_buffer = true; 965 966 desc->txd.cookie = -EBUSY; 967 desc->total_len = len; 968 969 /* set end-of-link on the descriptor */ 970 set_desc_eol(desc); 971 972 desc->txd.flags = flags; 973 974 return &desc->txd; 975 976 err_free_buffer: 977 dma_pool_free(atdma->memset_pool, vaddr, paddr); 978 return NULL; 979 } 980 981 static struct dma_async_tx_descriptor * 982 atc_prep_dma_memset_sg(struct dma_chan *chan, 983 struct scatterlist *sgl, 984 unsigned int sg_len, int value, 985 unsigned long flags) 986 { 987 struct at_dma_chan *atchan = to_at_dma_chan(chan); 988 struct at_dma *atdma = to_at_dma(chan->device); 989 struct at_desc *desc = NULL, *first = NULL, *prev = NULL; 990 struct scatterlist *sg; 991 void __iomem *vaddr; 992 dma_addr_t paddr; 993 size_t total_len = 0; 994 int i; 995 996 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, 997 value, sg_len, flags); 998 999 if (unlikely(!sgl || !sg_len)) { 1000 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", 1001 __func__); 1002 return NULL; 1003 } 1004 1005 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 1006 if (!vaddr) { 1007 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 1008 __func__); 1009 return NULL; 1010 } 1011 *(u32*)vaddr = value; 1012 1013 for_each_sg(sgl, sg, sg_len, i) { 1014 dma_addr_t dest = sg_dma_address(sg); 1015 size_t len = sg_dma_len(sg); 1016 1017 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n", 1018 __func__, &dest, len); 1019 1020 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1021 dev_err(chan2dev(chan), "%s: buffer is not aligned\n", 1022 __func__); 1023 goto err_put_desc; 1024 } 1025 1026 desc = atc_create_memset_desc(chan, paddr, dest, len); 1027 if (!desc) 1028 goto err_put_desc; 1029 1030 atc_desc_chain(&first, &prev, desc); 1031 1032 total_len += len; 1033 } 1034 1035 /* 1036 * Only set the buffer pointers on the last descriptor to 1037 * avoid free'ing while we have our transfer still going 1038 */ 1039 desc->memset_paddr = paddr; 1040 desc->memset_vaddr = vaddr; 1041 desc->memset_buffer = true; 1042 1043 first->txd.cookie = -EBUSY; 1044 first->total_len = total_len; 1045 1046 /* set end-of-link on the descriptor */ 1047 set_desc_eol(desc); 1048 1049 first->txd.flags = flags; 1050 1051 return &first->txd; 1052 1053 err_put_desc: 1054 atc_desc_put(atchan, first); 1055 return NULL; 1056 } 1057 1058 /** 1059 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 1060 * @chan: DMA channel 1061 * @sgl: scatterlist to transfer to/from 1062 * @sg_len: number of entries in @scatterlist 1063 * @direction: DMA direction 1064 * @flags: tx descriptor status flags 1065 * @context: transaction context (ignored) 1066 */ 1067 static struct dma_async_tx_descriptor * 1068 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1069 unsigned int sg_len, enum dma_transfer_direction direction, 1070 unsigned long flags, void *context) 1071 { 1072 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1073 struct at_dma_slave *atslave = chan->private; 1074 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1075 struct at_desc *first = NULL; 1076 struct at_desc *prev = NULL; 1077 u32 ctrla; 1078 u32 ctrlb; 1079 dma_addr_t reg; 1080 unsigned int reg_width; 1081 unsigned int mem_width; 1082 unsigned int i; 1083 struct scatterlist *sg; 1084 size_t total_len = 0; 1085 1086 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 1087 sg_len, 1088 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1089 flags); 1090 1091 if (unlikely(!atslave || !sg_len)) { 1092 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 1093 return NULL; 1094 } 1095 1096 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1097 | ATC_DCSIZE(sconfig->dst_maxburst); 1098 ctrlb = ATC_IEN; 1099 1100 switch (direction) { 1101 case DMA_MEM_TO_DEV: 1102 reg_width = convert_buswidth(sconfig->dst_addr_width); 1103 ctrla |= ATC_DST_WIDTH(reg_width); 1104 ctrlb |= ATC_DST_ADDR_MODE_FIXED 1105 | ATC_SRC_ADDR_MODE_INCR 1106 | ATC_FC_MEM2PER 1107 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); 1108 reg = sconfig->dst_addr; 1109 for_each_sg(sgl, sg, sg_len, i) { 1110 struct at_desc *desc; 1111 u32 len; 1112 u32 mem; 1113 1114 desc = atc_desc_get(atchan); 1115 if (!desc) 1116 goto err_desc_get; 1117 1118 mem = sg_dma_address(sg); 1119 len = sg_dma_len(sg); 1120 if (unlikely(!len)) { 1121 dev_dbg(chan2dev(chan), 1122 "prep_slave_sg: sg(%d) data length is zero\n", i); 1123 goto err; 1124 } 1125 mem_width = 2; 1126 if (unlikely(mem & 3 || len & 3)) 1127 mem_width = 0; 1128 1129 desc->lli.saddr = mem; 1130 desc->lli.daddr = reg; 1131 desc->lli.ctrla = ctrla 1132 | ATC_SRC_WIDTH(mem_width) 1133 | len >> mem_width; 1134 desc->lli.ctrlb = ctrlb; 1135 desc->len = len; 1136 1137 atc_desc_chain(&first, &prev, desc); 1138 total_len += len; 1139 } 1140 break; 1141 case DMA_DEV_TO_MEM: 1142 reg_width = convert_buswidth(sconfig->src_addr_width); 1143 ctrla |= ATC_SRC_WIDTH(reg_width); 1144 ctrlb |= ATC_DST_ADDR_MODE_INCR 1145 | ATC_SRC_ADDR_MODE_FIXED 1146 | ATC_FC_PER2MEM 1147 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); 1148 1149 reg = sconfig->src_addr; 1150 for_each_sg(sgl, sg, sg_len, i) { 1151 struct at_desc *desc; 1152 u32 len; 1153 u32 mem; 1154 1155 desc = atc_desc_get(atchan); 1156 if (!desc) 1157 goto err_desc_get; 1158 1159 mem = sg_dma_address(sg); 1160 len = sg_dma_len(sg); 1161 if (unlikely(!len)) { 1162 dev_dbg(chan2dev(chan), 1163 "prep_slave_sg: sg(%d) data length is zero\n", i); 1164 goto err; 1165 } 1166 mem_width = 2; 1167 if (unlikely(mem & 3 || len & 3)) 1168 mem_width = 0; 1169 1170 desc->lli.saddr = reg; 1171 desc->lli.daddr = mem; 1172 desc->lli.ctrla = ctrla 1173 | ATC_DST_WIDTH(mem_width) 1174 | len >> reg_width; 1175 desc->lli.ctrlb = ctrlb; 1176 desc->len = len; 1177 1178 atc_desc_chain(&first, &prev, desc); 1179 total_len += len; 1180 } 1181 break; 1182 default: 1183 return NULL; 1184 } 1185 1186 /* set end-of-link to the last link descriptor of list*/ 1187 set_desc_eol(prev); 1188 1189 /* First descriptor of the chain embedds additional information */ 1190 first->txd.cookie = -EBUSY; 1191 first->total_len = total_len; 1192 1193 /* first link descriptor of list is responsible of flags */ 1194 first->txd.flags = flags; /* client is in control of this ack */ 1195 1196 return &first->txd; 1197 1198 err_desc_get: 1199 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1200 err: 1201 atc_desc_put(atchan, first); 1202 return NULL; 1203 } 1204 1205 /** 1206 * atc_prep_dma_sg - prepare memory to memory scather-gather operation 1207 * @chan: the channel to prepare operation on 1208 * @dst_sg: destination scatterlist 1209 * @dst_nents: number of destination scatterlist entries 1210 * @src_sg: source scatterlist 1211 * @src_nents: number of source scatterlist entries 1212 * @flags: tx descriptor status flags 1213 */ 1214 static struct dma_async_tx_descriptor * 1215 atc_prep_dma_sg(struct dma_chan *chan, 1216 struct scatterlist *dst_sg, unsigned int dst_nents, 1217 struct scatterlist *src_sg, unsigned int src_nents, 1218 unsigned long flags) 1219 { 1220 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1221 struct at_desc *desc = NULL; 1222 struct at_desc *first = NULL; 1223 struct at_desc *prev = NULL; 1224 unsigned int src_width; 1225 unsigned int dst_width; 1226 size_t xfer_count; 1227 u32 ctrla; 1228 u32 ctrlb; 1229 size_t dst_len = 0, src_len = 0; 1230 dma_addr_t dst = 0, src = 0; 1231 size_t len = 0, total_len = 0; 1232 1233 if (unlikely(dst_nents == 0 || src_nents == 0)) 1234 return NULL; 1235 1236 if (unlikely(dst_sg == NULL || src_sg == NULL)) 1237 return NULL; 1238 1239 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 1240 | ATC_SRC_ADDR_MODE_INCR 1241 | ATC_DST_ADDR_MODE_INCR 1242 | ATC_FC_MEM2MEM; 1243 1244 /* 1245 * loop until there is either no more source or no more destination 1246 * scatterlist entry 1247 */ 1248 while (true) { 1249 1250 /* prepare the next transfer */ 1251 if (dst_len == 0) { 1252 1253 /* no more destination scatterlist entries */ 1254 if (!dst_sg || !dst_nents) 1255 break; 1256 1257 dst = sg_dma_address(dst_sg); 1258 dst_len = sg_dma_len(dst_sg); 1259 1260 dst_sg = sg_next(dst_sg); 1261 dst_nents--; 1262 } 1263 1264 if (src_len == 0) { 1265 1266 /* no more source scatterlist entries */ 1267 if (!src_sg || !src_nents) 1268 break; 1269 1270 src = sg_dma_address(src_sg); 1271 src_len = sg_dma_len(src_sg); 1272 1273 src_sg = sg_next(src_sg); 1274 src_nents--; 1275 } 1276 1277 len = min_t(size_t, src_len, dst_len); 1278 if (len == 0) 1279 continue; 1280 1281 /* take care for the alignment */ 1282 src_width = dst_width = atc_get_xfer_width(src, dst, len); 1283 1284 ctrla = ATC_SRC_WIDTH(src_width) | 1285 ATC_DST_WIDTH(dst_width); 1286 1287 /* 1288 * The number of transfers to set up refer to the source width 1289 * that depends on the alignment. 1290 */ 1291 xfer_count = len >> src_width; 1292 if (xfer_count > ATC_BTSIZE_MAX) { 1293 xfer_count = ATC_BTSIZE_MAX; 1294 len = ATC_BTSIZE_MAX << src_width; 1295 } 1296 1297 /* create the transfer */ 1298 desc = atc_desc_get(atchan); 1299 if (!desc) 1300 goto err_desc_get; 1301 1302 desc->lli.saddr = src; 1303 desc->lli.daddr = dst; 1304 desc->lli.ctrla = ctrla | xfer_count; 1305 desc->lli.ctrlb = ctrlb; 1306 1307 desc->txd.cookie = 0; 1308 desc->len = len; 1309 1310 atc_desc_chain(&first, &prev, desc); 1311 1312 /* update the lengths and addresses for the next loop cycle */ 1313 dst_len -= len; 1314 src_len -= len; 1315 dst += len; 1316 src += len; 1317 1318 total_len += len; 1319 } 1320 1321 /* First descriptor of the chain embedds additional information */ 1322 first->txd.cookie = -EBUSY; 1323 first->total_len = total_len; 1324 1325 /* set end-of-link to the last link descriptor of list*/ 1326 set_desc_eol(desc); 1327 1328 first->txd.flags = flags; /* client is in control of this ack */ 1329 1330 return &first->txd; 1331 1332 err_desc_get: 1333 atc_desc_put(atchan, first); 1334 return NULL; 1335 } 1336 1337 /** 1338 * atc_dma_cyclic_check_values 1339 * Check for too big/unaligned periods and unaligned DMA buffer 1340 */ 1341 static int 1342 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1343 size_t period_len) 1344 { 1345 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1346 goto err_out; 1347 if (unlikely(period_len & ((1 << reg_width) - 1))) 1348 goto err_out; 1349 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1350 goto err_out; 1351 1352 return 0; 1353 1354 err_out: 1355 return -EINVAL; 1356 } 1357 1358 /** 1359 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1360 */ 1361 static int 1362 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1363 unsigned int period_index, dma_addr_t buf_addr, 1364 unsigned int reg_width, size_t period_len, 1365 enum dma_transfer_direction direction) 1366 { 1367 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1368 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1369 u32 ctrla; 1370 1371 /* prepare common CRTLA value */ 1372 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1373 | ATC_DCSIZE(sconfig->dst_maxburst) 1374 | ATC_DST_WIDTH(reg_width) 1375 | ATC_SRC_WIDTH(reg_width) 1376 | period_len >> reg_width; 1377 1378 switch (direction) { 1379 case DMA_MEM_TO_DEV: 1380 desc->lli.saddr = buf_addr + (period_len * period_index); 1381 desc->lli.daddr = sconfig->dst_addr; 1382 desc->lli.ctrla = ctrla; 1383 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED 1384 | ATC_SRC_ADDR_MODE_INCR 1385 | ATC_FC_MEM2PER 1386 | ATC_SIF(atchan->mem_if) 1387 | ATC_DIF(atchan->per_if); 1388 desc->len = period_len; 1389 break; 1390 1391 case DMA_DEV_TO_MEM: 1392 desc->lli.saddr = sconfig->src_addr; 1393 desc->lli.daddr = buf_addr + (period_len * period_index); 1394 desc->lli.ctrla = ctrla; 1395 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR 1396 | ATC_SRC_ADDR_MODE_FIXED 1397 | ATC_FC_PER2MEM 1398 | ATC_SIF(atchan->per_if) 1399 | ATC_DIF(atchan->mem_if); 1400 desc->len = period_len; 1401 break; 1402 1403 default: 1404 return -EINVAL; 1405 } 1406 1407 return 0; 1408 } 1409 1410 /** 1411 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1412 * @chan: the DMA channel to prepare 1413 * @buf_addr: physical DMA address where the buffer starts 1414 * @buf_len: total number of bytes for the entire buffer 1415 * @period_len: number of bytes for each period 1416 * @direction: transfer direction, to or from device 1417 * @flags: tx descriptor status flags 1418 */ 1419 static struct dma_async_tx_descriptor * 1420 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1421 size_t period_len, enum dma_transfer_direction direction, 1422 unsigned long flags) 1423 { 1424 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1425 struct at_dma_slave *atslave = chan->private; 1426 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1427 struct at_desc *first = NULL; 1428 struct at_desc *prev = NULL; 1429 unsigned long was_cyclic; 1430 unsigned int reg_width; 1431 unsigned int periods = buf_len / period_len; 1432 unsigned int i; 1433 1434 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n", 1435 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1436 &buf_addr, 1437 periods, buf_len, period_len); 1438 1439 if (unlikely(!atslave || !buf_len || !period_len)) { 1440 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1441 return NULL; 1442 } 1443 1444 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1445 if (was_cyclic) { 1446 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1447 return NULL; 1448 } 1449 1450 if (unlikely(!is_slave_direction(direction))) 1451 goto err_out; 1452 1453 if (sconfig->direction == DMA_MEM_TO_DEV) 1454 reg_width = convert_buswidth(sconfig->dst_addr_width); 1455 else 1456 reg_width = convert_buswidth(sconfig->src_addr_width); 1457 1458 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1459 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1460 goto err_out; 1461 1462 /* build cyclic linked list */ 1463 for (i = 0; i < periods; i++) { 1464 struct at_desc *desc; 1465 1466 desc = atc_desc_get(atchan); 1467 if (!desc) 1468 goto err_desc_get; 1469 1470 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1471 reg_width, period_len, direction)) 1472 goto err_desc_get; 1473 1474 atc_desc_chain(&first, &prev, desc); 1475 } 1476 1477 /* lets make a cyclic list */ 1478 prev->lli.dscr = first->txd.phys; 1479 1480 /* First descriptor of the chain embedds additional information */ 1481 first->txd.cookie = -EBUSY; 1482 first->total_len = buf_len; 1483 1484 return &first->txd; 1485 1486 err_desc_get: 1487 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1488 atc_desc_put(atchan, first); 1489 err_out: 1490 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1491 return NULL; 1492 } 1493 1494 static int atc_config(struct dma_chan *chan, 1495 struct dma_slave_config *sconfig) 1496 { 1497 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1498 1499 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1500 1501 /* Check if it is chan is configured for slave transfers */ 1502 if (!chan->private) 1503 return -EINVAL; 1504 1505 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1506 1507 convert_burst(&atchan->dma_sconfig.src_maxburst); 1508 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1509 1510 return 0; 1511 } 1512 1513 static int atc_pause(struct dma_chan *chan) 1514 { 1515 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1516 struct at_dma *atdma = to_at_dma(chan->device); 1517 int chan_id = atchan->chan_common.chan_id; 1518 unsigned long flags; 1519 1520 LIST_HEAD(list); 1521 1522 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1523 1524 spin_lock_irqsave(&atchan->lock, flags); 1525 1526 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1527 set_bit(ATC_IS_PAUSED, &atchan->status); 1528 1529 spin_unlock_irqrestore(&atchan->lock, flags); 1530 1531 return 0; 1532 } 1533 1534 static int atc_resume(struct dma_chan *chan) 1535 { 1536 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1537 struct at_dma *atdma = to_at_dma(chan->device); 1538 int chan_id = atchan->chan_common.chan_id; 1539 unsigned long flags; 1540 1541 LIST_HEAD(list); 1542 1543 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1544 1545 if (!atc_chan_is_paused(atchan)) 1546 return 0; 1547 1548 spin_lock_irqsave(&atchan->lock, flags); 1549 1550 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1551 clear_bit(ATC_IS_PAUSED, &atchan->status); 1552 1553 spin_unlock_irqrestore(&atchan->lock, flags); 1554 1555 return 0; 1556 } 1557 1558 static int atc_terminate_all(struct dma_chan *chan) 1559 { 1560 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1561 struct at_dma *atdma = to_at_dma(chan->device); 1562 int chan_id = atchan->chan_common.chan_id; 1563 struct at_desc *desc, *_desc; 1564 unsigned long flags; 1565 1566 LIST_HEAD(list); 1567 1568 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1569 1570 /* 1571 * This is only called when something went wrong elsewhere, so 1572 * we don't really care about the data. Just disable the 1573 * channel. We still have to poll the channel enable bit due 1574 * to AHB/HSB limitations. 1575 */ 1576 spin_lock_irqsave(&atchan->lock, flags); 1577 1578 /* disabling channel: must also remove suspend state */ 1579 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1580 1581 /* confirm that this channel is disabled */ 1582 while (dma_readl(atdma, CHSR) & atchan->mask) 1583 cpu_relax(); 1584 1585 /* active_list entries will end up before queued entries */ 1586 list_splice_init(&atchan->queue, &list); 1587 list_splice_init(&atchan->active_list, &list); 1588 1589 /* Flush all pending and queued descriptors */ 1590 list_for_each_entry_safe(desc, _desc, &list, desc_node) 1591 atc_chain_complete(atchan, desc); 1592 1593 clear_bit(ATC_IS_PAUSED, &atchan->status); 1594 /* if channel dedicated to cyclic operations, free it */ 1595 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1596 1597 spin_unlock_irqrestore(&atchan->lock, flags); 1598 1599 return 0; 1600 } 1601 1602 /** 1603 * atc_tx_status - poll for transaction completion 1604 * @chan: DMA channel 1605 * @cookie: transaction identifier to check status of 1606 * @txstate: if not %NULL updated with transaction state 1607 * 1608 * If @txstate is passed in, upon return it reflect the driver 1609 * internal state and can be used with dma_async_is_complete() to check 1610 * the status of multiple cookies without re-checking hardware state. 1611 */ 1612 static enum dma_status 1613 atc_tx_status(struct dma_chan *chan, 1614 dma_cookie_t cookie, 1615 struct dma_tx_state *txstate) 1616 { 1617 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1618 unsigned long flags; 1619 enum dma_status ret; 1620 int bytes = 0; 1621 1622 ret = dma_cookie_status(chan, cookie, txstate); 1623 if (ret == DMA_COMPLETE) 1624 return ret; 1625 /* 1626 * There's no point calculating the residue if there's 1627 * no txstate to store the value. 1628 */ 1629 if (!txstate) 1630 return DMA_ERROR; 1631 1632 spin_lock_irqsave(&atchan->lock, flags); 1633 1634 /* Get number of bytes left in the active transactions */ 1635 bytes = atc_get_bytes_left(chan, cookie); 1636 1637 spin_unlock_irqrestore(&atchan->lock, flags); 1638 1639 if (unlikely(bytes < 0)) { 1640 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1641 return DMA_ERROR; 1642 } else { 1643 dma_set_residue(txstate, bytes); 1644 } 1645 1646 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", 1647 ret, cookie, bytes); 1648 1649 return ret; 1650 } 1651 1652 /** 1653 * atc_issue_pending - try to finish work 1654 * @chan: target DMA channel 1655 */ 1656 static void atc_issue_pending(struct dma_chan *chan) 1657 { 1658 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1659 unsigned long flags; 1660 1661 dev_vdbg(chan2dev(chan), "issue_pending\n"); 1662 1663 /* Not needed for cyclic transfers */ 1664 if (atc_chan_is_cyclic(atchan)) 1665 return; 1666 1667 spin_lock_irqsave(&atchan->lock, flags); 1668 atc_advance_work(atchan); 1669 spin_unlock_irqrestore(&atchan->lock, flags); 1670 } 1671 1672 /** 1673 * atc_alloc_chan_resources - allocate resources for DMA channel 1674 * @chan: allocate descriptor resources for this channel 1675 * @client: current client requesting the channel be ready for requests 1676 * 1677 * return - the number of allocated descriptors 1678 */ 1679 static int atc_alloc_chan_resources(struct dma_chan *chan) 1680 { 1681 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1682 struct at_dma *atdma = to_at_dma(chan->device); 1683 struct at_desc *desc; 1684 struct at_dma_slave *atslave; 1685 unsigned long flags; 1686 int i; 1687 u32 cfg; 1688 LIST_HEAD(tmp_list); 1689 1690 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1691 1692 /* ASSERT: channel is idle */ 1693 if (atc_chan_is_enabled(atchan)) { 1694 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1695 return -EIO; 1696 } 1697 1698 cfg = ATC_DEFAULT_CFG; 1699 1700 atslave = chan->private; 1701 if (atslave) { 1702 /* 1703 * We need controller-specific data to set up slave 1704 * transfers. 1705 */ 1706 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); 1707 1708 /* if cfg configuration specified take it instead of default */ 1709 if (atslave->cfg) 1710 cfg = atslave->cfg; 1711 } 1712 1713 /* have we already been set up? 1714 * reconfigure channel but no need to reallocate descriptors */ 1715 if (!list_empty(&atchan->free_list)) 1716 return atchan->descs_allocated; 1717 1718 /* Allocate initial pool of descriptors */ 1719 for (i = 0; i < init_nr_desc_per_channel; i++) { 1720 desc = atc_alloc_descriptor(chan, GFP_KERNEL); 1721 if (!desc) { 1722 dev_err(atdma->dma_common.dev, 1723 "Only %d initial descriptors\n", i); 1724 break; 1725 } 1726 list_add_tail(&desc->desc_node, &tmp_list); 1727 } 1728 1729 spin_lock_irqsave(&atchan->lock, flags); 1730 atchan->descs_allocated = i; 1731 list_splice(&tmp_list, &atchan->free_list); 1732 dma_cookie_init(chan); 1733 spin_unlock_irqrestore(&atchan->lock, flags); 1734 1735 /* channel parameters */ 1736 channel_writel(atchan, CFG, cfg); 1737 1738 dev_dbg(chan2dev(chan), 1739 "alloc_chan_resources: allocated %d descriptors\n", 1740 atchan->descs_allocated); 1741 1742 return atchan->descs_allocated; 1743 } 1744 1745 /** 1746 * atc_free_chan_resources - free all channel resources 1747 * @chan: DMA channel 1748 */ 1749 static void atc_free_chan_resources(struct dma_chan *chan) 1750 { 1751 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1752 struct at_dma *atdma = to_at_dma(chan->device); 1753 struct at_desc *desc, *_desc; 1754 LIST_HEAD(list); 1755 1756 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n", 1757 atchan->descs_allocated); 1758 1759 /* ASSERT: channel is idle */ 1760 BUG_ON(!list_empty(&atchan->active_list)); 1761 BUG_ON(!list_empty(&atchan->queue)); 1762 BUG_ON(atc_chan_is_enabled(atchan)); 1763 1764 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 1765 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); 1766 list_del(&desc->desc_node); 1767 /* free link descriptor */ 1768 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); 1769 } 1770 list_splice_init(&atchan->free_list, &list); 1771 atchan->descs_allocated = 0; 1772 atchan->status = 0; 1773 1774 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1775 } 1776 1777 #ifdef CONFIG_OF 1778 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1779 { 1780 struct at_dma_slave *atslave = slave; 1781 1782 if (atslave->dma_dev == chan->device->dev) { 1783 chan->private = atslave; 1784 return true; 1785 } else { 1786 return false; 1787 } 1788 } 1789 1790 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1791 struct of_dma *of_dma) 1792 { 1793 struct dma_chan *chan; 1794 struct at_dma_chan *atchan; 1795 struct at_dma_slave *atslave; 1796 dma_cap_mask_t mask; 1797 unsigned int per_id; 1798 struct platform_device *dmac_pdev; 1799 1800 if (dma_spec->args_count != 2) 1801 return NULL; 1802 1803 dmac_pdev = of_find_device_by_node(dma_spec->np); 1804 1805 dma_cap_zero(mask); 1806 dma_cap_set(DMA_SLAVE, mask); 1807 1808 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL); 1809 if (!atslave) 1810 return NULL; 1811 1812 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; 1813 /* 1814 * We can fill both SRC_PER and DST_PER, one of these fields will be 1815 * ignored depending on DMA transfer direction. 1816 */ 1817 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1818 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) 1819 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); 1820 /* 1821 * We have to translate the value we get from the device tree since 1822 * the half FIFO configuration value had to be 0 to keep backward 1823 * compatibility. 1824 */ 1825 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1826 case AT91_DMA_CFG_FIFOCFG_ALAP: 1827 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; 1828 break; 1829 case AT91_DMA_CFG_FIFOCFG_ASAP: 1830 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; 1831 break; 1832 case AT91_DMA_CFG_FIFOCFG_HALF: 1833 default: 1834 atslave->cfg |= ATC_FIFOCFG_HALFFIFO; 1835 } 1836 atslave->dma_dev = &dmac_pdev->dev; 1837 1838 chan = dma_request_channel(mask, at_dma_filter, atslave); 1839 if (!chan) 1840 return NULL; 1841 1842 atchan = to_at_dma_chan(chan); 1843 atchan->per_if = dma_spec->args[0] & 0xff; 1844 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1845 1846 return chan; 1847 } 1848 #else 1849 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1850 struct of_dma *of_dma) 1851 { 1852 return NULL; 1853 } 1854 #endif 1855 1856 /*-- Module Management -----------------------------------------------*/ 1857 1858 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1859 static struct at_dma_platform_data at91sam9rl_config = { 1860 .nr_channels = 2, 1861 }; 1862 static struct at_dma_platform_data at91sam9g45_config = { 1863 .nr_channels = 8, 1864 }; 1865 1866 #if defined(CONFIG_OF) 1867 static const struct of_device_id atmel_dma_dt_ids[] = { 1868 { 1869 .compatible = "atmel,at91sam9rl-dma", 1870 .data = &at91sam9rl_config, 1871 }, { 1872 .compatible = "atmel,at91sam9g45-dma", 1873 .data = &at91sam9g45_config, 1874 }, { 1875 /* sentinel */ 1876 } 1877 }; 1878 1879 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1880 #endif 1881 1882 static const struct platform_device_id atdma_devtypes[] = { 1883 { 1884 .name = "at91sam9rl_dma", 1885 .driver_data = (unsigned long) &at91sam9rl_config, 1886 }, { 1887 .name = "at91sam9g45_dma", 1888 .driver_data = (unsigned long) &at91sam9g45_config, 1889 }, { 1890 /* sentinel */ 1891 } 1892 }; 1893 1894 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1895 struct platform_device *pdev) 1896 { 1897 if (pdev->dev.of_node) { 1898 const struct of_device_id *match; 1899 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1900 if (match == NULL) 1901 return NULL; 1902 return match->data; 1903 } 1904 return (struct at_dma_platform_data *) 1905 platform_get_device_id(pdev)->driver_data; 1906 } 1907 1908 /** 1909 * at_dma_off - disable DMA controller 1910 * @atdma: the Atmel HDAMC device 1911 */ 1912 static void at_dma_off(struct at_dma *atdma) 1913 { 1914 dma_writel(atdma, EN, 0); 1915 1916 /* disable all interrupts */ 1917 dma_writel(atdma, EBCIDR, -1L); 1918 1919 /* confirm that all channels are disabled */ 1920 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1921 cpu_relax(); 1922 } 1923 1924 static int __init at_dma_probe(struct platform_device *pdev) 1925 { 1926 struct resource *io; 1927 struct at_dma *atdma; 1928 size_t size; 1929 int irq; 1930 int err; 1931 int i; 1932 const struct at_dma_platform_data *plat_dat; 1933 1934 /* setup platform data for each SoC */ 1935 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1936 dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask); 1937 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1938 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1939 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); 1940 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); 1941 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); 1942 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1943 dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask); 1944 1945 /* get DMA parameters from controller type */ 1946 plat_dat = at_dma_get_driver_data(pdev); 1947 if (!plat_dat) 1948 return -ENODEV; 1949 1950 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1951 if (!io) 1952 return -EINVAL; 1953 1954 irq = platform_get_irq(pdev, 0); 1955 if (irq < 0) 1956 return irq; 1957 1958 size = sizeof(struct at_dma); 1959 size += plat_dat->nr_channels * sizeof(struct at_dma_chan); 1960 atdma = kzalloc(size, GFP_KERNEL); 1961 if (!atdma) 1962 return -ENOMEM; 1963 1964 /* discover transaction capabilities */ 1965 atdma->dma_common.cap_mask = plat_dat->cap_mask; 1966 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1967 1968 size = resource_size(io); 1969 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { 1970 err = -EBUSY; 1971 goto err_kfree; 1972 } 1973 1974 atdma->regs = ioremap(io->start, size); 1975 if (!atdma->regs) { 1976 err = -ENOMEM; 1977 goto err_release_r; 1978 } 1979 1980 atdma->clk = clk_get(&pdev->dev, "dma_clk"); 1981 if (IS_ERR(atdma->clk)) { 1982 err = PTR_ERR(atdma->clk); 1983 goto err_clk; 1984 } 1985 err = clk_prepare_enable(atdma->clk); 1986 if (err) 1987 goto err_clk_prepare; 1988 1989 /* force dma off, just in case */ 1990 at_dma_off(atdma); 1991 1992 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1993 if (err) 1994 goto err_irq; 1995 1996 platform_set_drvdata(pdev, atdma); 1997 1998 /* create a pool of consistent memory blocks for hardware descriptors */ 1999 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", 2000 &pdev->dev, sizeof(struct at_desc), 2001 4 /* word alignment */, 0); 2002 if (!atdma->dma_desc_pool) { 2003 dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); 2004 err = -ENOMEM; 2005 goto err_desc_pool_create; 2006 } 2007 2008 /* create a pool of consistent memory blocks for memset blocks */ 2009 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", 2010 &pdev->dev, sizeof(int), 4, 0); 2011 if (!atdma->memset_pool) { 2012 dev_err(&pdev->dev, "No memory for memset dma pool\n"); 2013 err = -ENOMEM; 2014 goto err_memset_pool_create; 2015 } 2016 2017 /* clear any pending interrupt */ 2018 while (dma_readl(atdma, EBCISR)) 2019 cpu_relax(); 2020 2021 /* initialize channels related values */ 2022 INIT_LIST_HEAD(&atdma->dma_common.channels); 2023 for (i = 0; i < plat_dat->nr_channels; i++) { 2024 struct at_dma_chan *atchan = &atdma->chan[i]; 2025 2026 atchan->mem_if = AT_DMA_MEM_IF; 2027 atchan->per_if = AT_DMA_PER_IF; 2028 atchan->chan_common.device = &atdma->dma_common; 2029 dma_cookie_init(&atchan->chan_common); 2030 list_add_tail(&atchan->chan_common.device_node, 2031 &atdma->dma_common.channels); 2032 2033 atchan->ch_regs = atdma->regs + ch_regs(i); 2034 spin_lock_init(&atchan->lock); 2035 atchan->mask = 1 << i; 2036 2037 INIT_LIST_HEAD(&atchan->active_list); 2038 INIT_LIST_HEAD(&atchan->queue); 2039 INIT_LIST_HEAD(&atchan->free_list); 2040 2041 tasklet_init(&atchan->tasklet, atc_tasklet, 2042 (unsigned long)atchan); 2043 atc_enable_chan_irq(atdma, i); 2044 } 2045 2046 /* set base routines */ 2047 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; 2048 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; 2049 atdma->dma_common.device_tx_status = atc_tx_status; 2050 atdma->dma_common.device_issue_pending = atc_issue_pending; 2051 atdma->dma_common.dev = &pdev->dev; 2052 2053 /* set prep routines based on capability */ 2054 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) 2055 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; 2056 2057 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) 2058 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; 2059 2060 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) { 2061 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset; 2062 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; 2063 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES; 2064 } 2065 2066 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { 2067 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; 2068 /* controller can do slave DMA: can trigger cyclic transfers */ 2069 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); 2070 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; 2071 atdma->dma_common.device_config = atc_config; 2072 atdma->dma_common.device_pause = atc_pause; 2073 atdma->dma_common.device_resume = atc_resume; 2074 atdma->dma_common.device_terminate_all = atc_terminate_all; 2075 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; 2076 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; 2077 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2078 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2079 } 2080 2081 if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)) 2082 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg; 2083 2084 dma_writel(atdma, EN, AT_DMA_ENABLE); 2085 2086 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n", 2087 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", 2088 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "", 2089 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", 2090 dma_has_cap(DMA_SG, atdma->dma_common.cap_mask) ? "sg-cpy " : "", 2091 plat_dat->nr_channels); 2092 2093 dma_async_device_register(&atdma->dma_common); 2094 2095 /* 2096 * Do not return an error if the dmac node is not present in order to 2097 * not break the existing way of requesting channel with 2098 * dma_request_channel(). 2099 */ 2100 if (pdev->dev.of_node) { 2101 err = of_dma_controller_register(pdev->dev.of_node, 2102 at_dma_xlate, atdma); 2103 if (err) { 2104 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 2105 goto err_of_dma_controller_register; 2106 } 2107 } 2108 2109 return 0; 2110 2111 err_of_dma_controller_register: 2112 dma_async_device_unregister(&atdma->dma_common); 2113 dma_pool_destroy(atdma->memset_pool); 2114 err_memset_pool_create: 2115 dma_pool_destroy(atdma->dma_desc_pool); 2116 err_desc_pool_create: 2117 free_irq(platform_get_irq(pdev, 0), atdma); 2118 err_irq: 2119 clk_disable_unprepare(atdma->clk); 2120 err_clk_prepare: 2121 clk_put(atdma->clk); 2122 err_clk: 2123 iounmap(atdma->regs); 2124 atdma->regs = NULL; 2125 err_release_r: 2126 release_mem_region(io->start, size); 2127 err_kfree: 2128 kfree(atdma); 2129 return err; 2130 } 2131 2132 static int at_dma_remove(struct platform_device *pdev) 2133 { 2134 struct at_dma *atdma = platform_get_drvdata(pdev); 2135 struct dma_chan *chan, *_chan; 2136 struct resource *io; 2137 2138 at_dma_off(atdma); 2139 dma_async_device_unregister(&atdma->dma_common); 2140 2141 dma_pool_destroy(atdma->memset_pool); 2142 dma_pool_destroy(atdma->dma_desc_pool); 2143 free_irq(platform_get_irq(pdev, 0), atdma); 2144 2145 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2146 device_node) { 2147 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2148 2149 /* Disable interrupts */ 2150 atc_disable_chan_irq(atdma, chan->chan_id); 2151 2152 tasklet_kill(&atchan->tasklet); 2153 list_del(&chan->device_node); 2154 } 2155 2156 clk_disable_unprepare(atdma->clk); 2157 clk_put(atdma->clk); 2158 2159 iounmap(atdma->regs); 2160 atdma->regs = NULL; 2161 2162 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2163 release_mem_region(io->start, resource_size(io)); 2164 2165 kfree(atdma); 2166 2167 return 0; 2168 } 2169 2170 static void at_dma_shutdown(struct platform_device *pdev) 2171 { 2172 struct at_dma *atdma = platform_get_drvdata(pdev); 2173 2174 at_dma_off(platform_get_drvdata(pdev)); 2175 clk_disable_unprepare(atdma->clk); 2176 } 2177 2178 static int at_dma_prepare(struct device *dev) 2179 { 2180 struct platform_device *pdev = to_platform_device(dev); 2181 struct at_dma *atdma = platform_get_drvdata(pdev); 2182 struct dma_chan *chan, *_chan; 2183 2184 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2185 device_node) { 2186 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2187 /* wait for transaction completion (except in cyclic case) */ 2188 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 2189 return -EAGAIN; 2190 } 2191 return 0; 2192 } 2193 2194 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 2195 { 2196 struct dma_chan *chan = &atchan->chan_common; 2197 2198 /* Channel should be paused by user 2199 * do it anyway even if it is not done already */ 2200 if (!atc_chan_is_paused(atchan)) { 2201 dev_warn(chan2dev(chan), 2202 "cyclic channel not paused, should be done by channel user\n"); 2203 atc_pause(chan); 2204 } 2205 2206 /* now preserve additional data for cyclic operations */ 2207 /* next descriptor address in the cyclic list */ 2208 atchan->save_dscr = channel_readl(atchan, DSCR); 2209 2210 vdbg_dump_regs(atchan); 2211 } 2212 2213 static int at_dma_suspend_noirq(struct device *dev) 2214 { 2215 struct platform_device *pdev = to_platform_device(dev); 2216 struct at_dma *atdma = platform_get_drvdata(pdev); 2217 struct dma_chan *chan, *_chan; 2218 2219 /* preserve data */ 2220 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2221 device_node) { 2222 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2223 2224 if (atc_chan_is_cyclic(atchan)) 2225 atc_suspend_cyclic(atchan); 2226 atchan->save_cfg = channel_readl(atchan, CFG); 2227 } 2228 atdma->save_imr = dma_readl(atdma, EBCIMR); 2229 2230 /* disable DMA controller */ 2231 at_dma_off(atdma); 2232 clk_disable_unprepare(atdma->clk); 2233 return 0; 2234 } 2235 2236 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2237 { 2238 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 2239 2240 /* restore channel status for cyclic descriptors list: 2241 * next descriptor in the cyclic list at the time of suspend */ 2242 channel_writel(atchan, SADDR, 0); 2243 channel_writel(atchan, DADDR, 0); 2244 channel_writel(atchan, CTRLA, 0); 2245 channel_writel(atchan, CTRLB, 0); 2246 channel_writel(atchan, DSCR, atchan->save_dscr); 2247 dma_writel(atdma, CHER, atchan->mask); 2248 2249 /* channel pause status should be removed by channel user 2250 * We cannot take the initiative to do it here */ 2251 2252 vdbg_dump_regs(atchan); 2253 } 2254 2255 static int at_dma_resume_noirq(struct device *dev) 2256 { 2257 struct platform_device *pdev = to_platform_device(dev); 2258 struct at_dma *atdma = platform_get_drvdata(pdev); 2259 struct dma_chan *chan, *_chan; 2260 2261 /* bring back DMA controller */ 2262 clk_prepare_enable(atdma->clk); 2263 dma_writel(atdma, EN, AT_DMA_ENABLE); 2264 2265 /* clear any pending interrupt */ 2266 while (dma_readl(atdma, EBCISR)) 2267 cpu_relax(); 2268 2269 /* restore saved data */ 2270 dma_writel(atdma, EBCIER, atdma->save_imr); 2271 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2272 device_node) { 2273 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2274 2275 channel_writel(atchan, CFG, atchan->save_cfg); 2276 if (atc_chan_is_cyclic(atchan)) 2277 atc_resume_cyclic(atchan); 2278 } 2279 return 0; 2280 } 2281 2282 static const struct dev_pm_ops at_dma_dev_pm_ops = { 2283 .prepare = at_dma_prepare, 2284 .suspend_noirq = at_dma_suspend_noirq, 2285 .resume_noirq = at_dma_resume_noirq, 2286 }; 2287 2288 static struct platform_driver at_dma_driver = { 2289 .remove = at_dma_remove, 2290 .shutdown = at_dma_shutdown, 2291 .id_table = atdma_devtypes, 2292 .driver = { 2293 .name = "at_hdmac", 2294 .pm = &at_dma_dev_pm_ops, 2295 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2296 }, 2297 }; 2298 2299 static int __init at_dma_init(void) 2300 { 2301 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2302 } 2303 subsys_initcall(at_dma_init); 2304 2305 static void __exit at_dma_exit(void) 2306 { 2307 platform_driver_unregister(&at_dma_driver); 2308 } 2309 module_exit(at_dma_exit); 2310 2311 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2312 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2313 MODULE_LICENSE("GPL"); 2314 MODULE_ALIAS("platform:at_hdmac"); 2315