1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 4 * 5 * Copyright (C) 2008 Atmel Corporation 6 * 7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 8 * The only Atmel DMA Controller that is not covered by this driver is the one 9 * found on AT91SAM9263. 10 */ 11 12 #include <dt-bindings/dma/at91.h> 13 #include <linux/clk.h> 14 #include <linux/dmaengine.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/dmapool.h> 17 #include <linux/interrupt.h> 18 #include <linux/module.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/of_device.h> 23 #include <linux/of_dma.h> 24 25 #include "at_hdmac_regs.h" 26 #include "dmaengine.h" 27 28 /* 29 * Glossary 30 * -------- 31 * 32 * at_hdmac : Name of the ATmel AHB DMA Controller 33 * at_dma_ / atdma : ATmel DMA controller entity related 34 * atc_ / atchan : ATmel DMA Channel entity related 35 */ 36 37 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) 38 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ 39 |ATC_DIF(AT_DMA_MEM_IF)) 40 #define ATC_DMA_BUSWIDTHS\ 41 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 42 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 43 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 44 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 45 46 #define ATC_MAX_DSCR_TRIALS 10 47 48 /* 49 * Initial number of descriptors to allocate for each channel. This could 50 * be increased during dma usage. 51 */ 52 static unsigned int init_nr_desc_per_channel = 64; 53 module_param(init_nr_desc_per_channel, uint, 0644); 54 MODULE_PARM_DESC(init_nr_desc_per_channel, 55 "initial descriptors per channel (default: 64)"); 56 57 /** 58 * struct at_dma_platform_data - Controller configuration parameters 59 * @nr_channels: Number of channels supported by hardware (max 8) 60 * @cap_mask: dma_capability flags supported by the platform 61 */ 62 struct at_dma_platform_data { 63 unsigned int nr_channels; 64 dma_cap_mask_t cap_mask; 65 }; 66 67 /** 68 * struct at_dma_slave - Controller-specific information about a slave 69 * @dma_dev: required DMA master device 70 * @cfg: Platform-specific initializer for the CFG register 71 */ 72 struct at_dma_slave { 73 struct device *dma_dev; 74 u32 cfg; 75 }; 76 77 /* prototypes */ 78 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); 79 static void atc_issue_pending(struct dma_chan *chan); 80 81 82 /*----------------------------------------------------------------------*/ 83 84 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 85 size_t len) 86 { 87 unsigned int width; 88 89 if (!((src | dst | len) & 3)) 90 width = 2; 91 else if (!((src | dst | len) & 1)) 92 width = 1; 93 else 94 width = 0; 95 96 return width; 97 } 98 99 static struct at_desc *atc_first_active(struct at_dma_chan *atchan) 100 { 101 return list_first_entry(&atchan->active_list, 102 struct at_desc, desc_node); 103 } 104 105 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) 106 { 107 return list_first_entry(&atchan->queue, 108 struct at_desc, desc_node); 109 } 110 111 /** 112 * atc_alloc_descriptor - allocate and return an initialized descriptor 113 * @chan: the channel to allocate descriptors for 114 * @gfp_flags: GFP allocation flags 115 * 116 * Note: The ack-bit is positioned in the descriptor flag at creation time 117 * to make initial allocation more convenient. This bit will be cleared 118 * and control will be given to client at usage time (during 119 * preparation functions). 120 */ 121 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, 122 gfp_t gfp_flags) 123 { 124 struct at_desc *desc = NULL; 125 struct at_dma *atdma = to_at_dma(chan->device); 126 dma_addr_t phys; 127 128 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys); 129 if (desc) { 130 INIT_LIST_HEAD(&desc->tx_list); 131 dma_async_tx_descriptor_init(&desc->txd, chan); 132 /* txd.flags will be overwritten in prep functions */ 133 desc->txd.flags = DMA_CTRL_ACK; 134 desc->txd.tx_submit = atc_tx_submit; 135 desc->txd.phys = phys; 136 } 137 138 return desc; 139 } 140 141 /** 142 * atc_desc_get - get an unused descriptor from free_list 143 * @atchan: channel we want a new descriptor for 144 */ 145 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) 146 { 147 struct at_desc *desc, *_desc; 148 struct at_desc *ret = NULL; 149 unsigned long flags; 150 unsigned int i = 0; 151 152 spin_lock_irqsave(&atchan->lock, flags); 153 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 154 i++; 155 if (async_tx_test_ack(&desc->txd)) { 156 list_del(&desc->desc_node); 157 ret = desc; 158 break; 159 } 160 dev_dbg(chan2dev(&atchan->chan_common), 161 "desc %p not ACKed\n", desc); 162 } 163 spin_unlock_irqrestore(&atchan->lock, flags); 164 dev_vdbg(chan2dev(&atchan->chan_common), 165 "scanned %u descriptors on freelist\n", i); 166 167 /* no more descriptor available in initial pool: create one more */ 168 if (!ret) 169 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_NOWAIT); 170 171 return ret; 172 } 173 174 /** 175 * atc_desc_put - move a descriptor, including any children, to the free list 176 * @atchan: channel we work on 177 * @desc: descriptor, at the head of a chain, to move to free list 178 */ 179 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) 180 { 181 if (desc) { 182 struct at_desc *child; 183 unsigned long flags; 184 185 spin_lock_irqsave(&atchan->lock, flags); 186 list_for_each_entry(child, &desc->tx_list, desc_node) 187 dev_vdbg(chan2dev(&atchan->chan_common), 188 "moving child desc %p to freelist\n", 189 child); 190 list_splice_init(&desc->tx_list, &atchan->free_list); 191 dev_vdbg(chan2dev(&atchan->chan_common), 192 "moving desc %p to freelist\n", desc); 193 list_add(&desc->desc_node, &atchan->free_list); 194 spin_unlock_irqrestore(&atchan->lock, flags); 195 } 196 } 197 198 /** 199 * atc_desc_chain - build chain adding a descriptor 200 * @first: address of first descriptor of the chain 201 * @prev: address of previous descriptor of the chain 202 * @desc: descriptor to queue 203 * 204 * Called from prep_* functions 205 */ 206 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, 207 struct at_desc *desc) 208 { 209 if (!(*first)) { 210 *first = desc; 211 } else { 212 /* inform the HW lli about chaining */ 213 (*prev)->lli.dscr = desc->txd.phys; 214 /* insert the link descriptor to the LD ring */ 215 list_add_tail(&desc->desc_node, 216 &(*first)->tx_list); 217 } 218 *prev = desc; 219 } 220 221 /** 222 * atc_dostart - starts the DMA engine for real 223 * @atchan: the channel we want to start 224 * @first: first descriptor in the list we want to begin with 225 * 226 * Called with atchan->lock held and bh disabled 227 */ 228 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) 229 { 230 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 231 232 /* ASSERT: channel is idle */ 233 if (atc_chan_is_enabled(atchan)) { 234 dev_err(chan2dev(&atchan->chan_common), 235 "BUG: Attempted to start non-idle channel\n"); 236 dev_err(chan2dev(&atchan->chan_common), 237 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", 238 channel_readl(atchan, SADDR), 239 channel_readl(atchan, DADDR), 240 channel_readl(atchan, CTRLA), 241 channel_readl(atchan, CTRLB), 242 channel_readl(atchan, DSCR)); 243 244 /* The tasklet will hopefully advance the queue... */ 245 return; 246 } 247 248 vdbg_dump_regs(atchan); 249 250 channel_writel(atchan, SADDR, 0); 251 channel_writel(atchan, DADDR, 0); 252 channel_writel(atchan, CTRLA, 0); 253 channel_writel(atchan, CTRLB, 0); 254 channel_writel(atchan, DSCR, first->txd.phys); 255 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | 256 ATC_SPIP_BOUNDARY(first->boundary)); 257 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | 258 ATC_DPIP_BOUNDARY(first->boundary)); 259 dma_writel(atdma, CHER, atchan->mask); 260 261 vdbg_dump_regs(atchan); 262 } 263 264 /* 265 * atc_get_desc_by_cookie - get the descriptor of a cookie 266 * @atchan: the DMA channel 267 * @cookie: the cookie to get the descriptor for 268 */ 269 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, 270 dma_cookie_t cookie) 271 { 272 struct at_desc *desc, *_desc; 273 274 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { 275 if (desc->txd.cookie == cookie) 276 return desc; 277 } 278 279 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { 280 if (desc->txd.cookie == cookie) 281 return desc; 282 } 283 284 return NULL; 285 } 286 287 /** 288 * atc_calc_bytes_left - calculates the number of bytes left according to the 289 * value read from CTRLA. 290 * 291 * @current_len: the number of bytes left before reading CTRLA 292 * @ctrla: the value of CTRLA 293 */ 294 static inline int atc_calc_bytes_left(int current_len, u32 ctrla) 295 { 296 u32 btsize = (ctrla & ATC_BTSIZE_MAX); 297 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); 298 299 /* 300 * According to the datasheet, when reading the Control A Register 301 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 302 * number of transfers completed on the Source Interface. 303 * So btsize is always a number of source width transfers. 304 */ 305 return current_len - (btsize << src_width); 306 } 307 308 /** 309 * atc_get_bytes_left - get the number of bytes residue for a cookie 310 * @chan: DMA channel 311 * @cookie: transaction identifier to check status of 312 */ 313 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) 314 { 315 struct at_dma_chan *atchan = to_at_dma_chan(chan); 316 struct at_desc *desc_first = atc_first_active(atchan); 317 struct at_desc *desc; 318 int ret; 319 u32 ctrla, dscr, trials; 320 321 /* 322 * If the cookie doesn't match to the currently running transfer then 323 * we can return the total length of the associated DMA transfer, 324 * because it is still queued. 325 */ 326 desc = atc_get_desc_by_cookie(atchan, cookie); 327 if (desc == NULL) 328 return -EINVAL; 329 else if (desc != desc_first) 330 return desc->total_len; 331 332 /* cookie matches to the currently running transfer */ 333 ret = desc_first->total_len; 334 335 if (desc_first->lli.dscr) { 336 /* hardware linked list transfer */ 337 338 /* 339 * Calculate the residue by removing the length of the child 340 * descriptors already transferred from the total length. 341 * To get the current child descriptor we can use the value of 342 * the channel's DSCR register and compare it against the value 343 * of the hardware linked list structure of each child 344 * descriptor. 345 * 346 * The CTRLA register provides us with the amount of data 347 * already read from the source for the current child 348 * descriptor. So we can compute a more accurate residue by also 349 * removing the number of bytes corresponding to this amount of 350 * data. 351 * 352 * However, the DSCR and CTRLA registers cannot be read both 353 * atomically. Hence a race condition may occur: the first read 354 * register may refer to one child descriptor whereas the second 355 * read may refer to a later child descriptor in the list 356 * because of the DMA transfer progression inbetween the two 357 * reads. 358 * 359 * One solution could have been to pause the DMA transfer, read 360 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless, 361 * this approach presents some drawbacks: 362 * - If the DMA transfer is paused, RX overruns or TX underruns 363 * are more likey to occur depending on the system latency. 364 * Taking the USART driver as an example, it uses a cyclic DMA 365 * transfer to read data from the Receive Holding Register 366 * (RHR) to avoid RX overruns since the RHR is not protected 367 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer 368 * to compute the residue would break the USART driver design. 369 * - The atc_pause() function masks interrupts but we'd rather 370 * avoid to do so for system latency purpose. 371 * 372 * Then we'd rather use another solution: the DSCR is read a 373 * first time, the CTRLA is read in turn, next the DSCR is read 374 * a second time. If the two consecutive read values of the DSCR 375 * are the same then we assume both refers to the very same 376 * child descriptor as well as the CTRLA value read inbetween 377 * does. For cyclic tranfers, the assumption is that a full loop 378 * is "not so fast". 379 * If the two DSCR values are different, we read again the CTRLA 380 * then the DSCR till two consecutive read values from DSCR are 381 * equal or till the maxium trials is reach. 382 * This algorithm is very unlikely not to find a stable value for 383 * DSCR. 384 */ 385 386 dscr = channel_readl(atchan, DSCR); 387 rmb(); /* ensure DSCR is read before CTRLA */ 388 ctrla = channel_readl(atchan, CTRLA); 389 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) { 390 u32 new_dscr; 391 392 rmb(); /* ensure DSCR is read after CTRLA */ 393 new_dscr = channel_readl(atchan, DSCR); 394 395 /* 396 * If the DSCR register value has not changed inside the 397 * DMA controller since the previous read, we assume 398 * that both the dscr and ctrla values refers to the 399 * very same descriptor. 400 */ 401 if (likely(new_dscr == dscr)) 402 break; 403 404 /* 405 * DSCR has changed inside the DMA controller, so the 406 * previouly read value of CTRLA may refer to an already 407 * processed descriptor hence could be outdated. 408 * We need to update ctrla to match the current 409 * descriptor. 410 */ 411 dscr = new_dscr; 412 rmb(); /* ensure DSCR is read before CTRLA */ 413 ctrla = channel_readl(atchan, CTRLA); 414 } 415 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS)) 416 return -ETIMEDOUT; 417 418 /* for the first descriptor we can be more accurate */ 419 if (desc_first->lli.dscr == dscr) 420 return atc_calc_bytes_left(ret, ctrla); 421 422 ret -= desc_first->len; 423 list_for_each_entry(desc, &desc_first->tx_list, desc_node) { 424 if (desc->lli.dscr == dscr) 425 break; 426 427 ret -= desc->len; 428 } 429 430 /* 431 * For the current descriptor in the chain we can calculate 432 * the remaining bytes using the channel's register. 433 */ 434 ret = atc_calc_bytes_left(ret, ctrla); 435 } else { 436 /* single transfer */ 437 ctrla = channel_readl(atchan, CTRLA); 438 ret = atc_calc_bytes_left(ret, ctrla); 439 } 440 441 return ret; 442 } 443 444 /** 445 * atc_chain_complete - finish work for one transaction chain 446 * @atchan: channel we work on 447 * @desc: descriptor at the head of the chain we want do complete 448 */ 449 static void 450 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) 451 { 452 struct dma_async_tx_descriptor *txd = &desc->txd; 453 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 454 unsigned long flags; 455 456 dev_vdbg(chan2dev(&atchan->chan_common), 457 "descriptor %u complete\n", txd->cookie); 458 459 spin_lock_irqsave(&atchan->lock, flags); 460 461 /* mark the descriptor as complete for non cyclic cases only */ 462 if (!atc_chan_is_cyclic(atchan)) 463 dma_cookie_complete(txd); 464 465 /* If the transfer was a memset, free our temporary buffer */ 466 if (desc->memset_buffer) { 467 dma_pool_free(atdma->memset_pool, desc->memset_vaddr, 468 desc->memset_paddr); 469 desc->memset_buffer = false; 470 } 471 472 /* move children to free_list */ 473 list_splice_init(&desc->tx_list, &atchan->free_list); 474 /* move myself to free_list */ 475 list_move(&desc->desc_node, &atchan->free_list); 476 477 spin_unlock_irqrestore(&atchan->lock, flags); 478 479 dma_descriptor_unmap(txd); 480 /* for cyclic transfers, 481 * no need to replay callback function while stopping */ 482 if (!atc_chan_is_cyclic(atchan)) 483 dmaengine_desc_get_callback_invoke(txd, NULL); 484 485 dma_run_dependencies(txd); 486 } 487 488 /** 489 * atc_complete_all - finish work for all transactions 490 * @atchan: channel to complete transactions for 491 * 492 * Eventually submit queued descriptors if any 493 * 494 * Assume channel is idle while calling this function 495 * Called with atchan->lock held and bh disabled 496 */ 497 static void atc_complete_all(struct at_dma_chan *atchan) 498 { 499 struct at_desc *desc, *_desc; 500 LIST_HEAD(list); 501 unsigned long flags; 502 503 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n"); 504 505 spin_lock_irqsave(&atchan->lock, flags); 506 507 /* 508 * Submit queued descriptors ASAP, i.e. before we go through 509 * the completed ones. 510 */ 511 if (!list_empty(&atchan->queue)) 512 atc_dostart(atchan, atc_first_queued(atchan)); 513 /* empty active_list now it is completed */ 514 list_splice_init(&atchan->active_list, &list); 515 /* empty queue list by moving descriptors (if any) to active_list */ 516 list_splice_init(&atchan->queue, &atchan->active_list); 517 518 spin_unlock_irqrestore(&atchan->lock, flags); 519 520 list_for_each_entry_safe(desc, _desc, &list, desc_node) 521 atc_chain_complete(atchan, desc); 522 } 523 524 /** 525 * atc_advance_work - at the end of a transaction, move forward 526 * @atchan: channel where the transaction ended 527 */ 528 static void atc_advance_work(struct at_dma_chan *atchan) 529 { 530 unsigned long flags; 531 int ret; 532 533 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); 534 535 spin_lock_irqsave(&atchan->lock, flags); 536 ret = atc_chan_is_enabled(atchan); 537 spin_unlock_irqrestore(&atchan->lock, flags); 538 if (ret) 539 return; 540 541 if (list_empty(&atchan->active_list) || 542 list_is_singular(&atchan->active_list)) 543 return atc_complete_all(atchan); 544 545 atc_chain_complete(atchan, atc_first_active(atchan)); 546 547 /* advance work */ 548 spin_lock_irqsave(&atchan->lock, flags); 549 atc_dostart(atchan, atc_first_active(atchan)); 550 spin_unlock_irqrestore(&atchan->lock, flags); 551 } 552 553 554 /** 555 * atc_handle_error - handle errors reported by DMA controller 556 * @atchan: channel where error occurs 557 */ 558 static void atc_handle_error(struct at_dma_chan *atchan) 559 { 560 struct at_desc *bad_desc; 561 struct at_desc *child; 562 unsigned long flags; 563 564 spin_lock_irqsave(&atchan->lock, flags); 565 /* 566 * The descriptor currently at the head of the active list is 567 * broked. Since we don't have any way to report errors, we'll 568 * just have to scream loudly and try to carry on. 569 */ 570 bad_desc = atc_first_active(atchan); 571 list_del_init(&bad_desc->desc_node); 572 573 /* As we are stopped, take advantage to push queued descriptors 574 * in active_list */ 575 list_splice_init(&atchan->queue, atchan->active_list.prev); 576 577 /* Try to restart the controller */ 578 if (!list_empty(&atchan->active_list)) 579 atc_dostart(atchan, atc_first_active(atchan)); 580 581 /* 582 * KERN_CRITICAL may seem harsh, but since this only happens 583 * when someone submits a bad physical address in a 584 * descriptor, we should consider ourselves lucky that the 585 * controller flagged an error instead of scribbling over 586 * random memory locations. 587 */ 588 dev_crit(chan2dev(&atchan->chan_common), 589 "Bad descriptor submitted for DMA!\n"); 590 dev_crit(chan2dev(&atchan->chan_common), 591 " cookie: %d\n", bad_desc->txd.cookie); 592 atc_dump_lli(atchan, &bad_desc->lli); 593 list_for_each_entry(child, &bad_desc->tx_list, desc_node) 594 atc_dump_lli(atchan, &child->lli); 595 596 spin_unlock_irqrestore(&atchan->lock, flags); 597 598 /* Pretend the descriptor completed successfully */ 599 atc_chain_complete(atchan, bad_desc); 600 } 601 602 /** 603 * atc_handle_cyclic - at the end of a period, run callback function 604 * @atchan: channel used for cyclic operations 605 */ 606 static void atc_handle_cyclic(struct at_dma_chan *atchan) 607 { 608 struct at_desc *first = atc_first_active(atchan); 609 struct dma_async_tx_descriptor *txd = &first->txd; 610 611 dev_vdbg(chan2dev(&atchan->chan_common), 612 "new cyclic period llp 0x%08x\n", 613 channel_readl(atchan, DSCR)); 614 615 dmaengine_desc_get_callback_invoke(txd, NULL); 616 } 617 618 /*-- IRQ & Tasklet ---------------------------------------------------*/ 619 620 static void atc_tasklet(struct tasklet_struct *t) 621 { 622 struct at_dma_chan *atchan = from_tasklet(atchan, t, tasklet); 623 624 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) 625 return atc_handle_error(atchan); 626 627 if (atc_chan_is_cyclic(atchan)) 628 return atc_handle_cyclic(atchan); 629 630 atc_advance_work(atchan); 631 } 632 633 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 634 { 635 struct at_dma *atdma = (struct at_dma *)dev_id; 636 struct at_dma_chan *atchan; 637 int i; 638 u32 status, pending, imr; 639 int ret = IRQ_NONE; 640 641 do { 642 imr = dma_readl(atdma, EBCIMR); 643 status = dma_readl(atdma, EBCISR); 644 pending = status & imr; 645 646 if (!pending) 647 break; 648 649 dev_vdbg(atdma->dma_common.dev, 650 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 651 status, imr, pending); 652 653 for (i = 0; i < atdma->dma_common.chancnt; i++) { 654 atchan = &atdma->chan[i]; 655 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { 656 if (pending & AT_DMA_ERR(i)) { 657 /* Disable channel on AHB error */ 658 dma_writel(atdma, CHDR, 659 AT_DMA_RES(i) | atchan->mask); 660 /* Give information to tasklet */ 661 set_bit(ATC_IS_ERROR, &atchan->status); 662 } 663 tasklet_schedule(&atchan->tasklet); 664 ret = IRQ_HANDLED; 665 } 666 } 667 668 } while (pending); 669 670 return ret; 671 } 672 673 674 /*-- DMA Engine API --------------------------------------------------*/ 675 676 /** 677 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine 678 * @tx: descriptor at the head of the transaction chain 679 * 680 * Queue chain if DMA engine is working already 681 * 682 * Cookie increment and adding to active_list or queue must be atomic 683 */ 684 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) 685 { 686 struct at_desc *desc = txd_to_at_desc(tx); 687 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); 688 dma_cookie_t cookie; 689 unsigned long flags; 690 691 spin_lock_irqsave(&atchan->lock, flags); 692 cookie = dma_cookie_assign(tx); 693 694 if (list_empty(&atchan->active_list)) { 695 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", 696 desc->txd.cookie); 697 atc_dostart(atchan, desc); 698 list_add_tail(&desc->desc_node, &atchan->active_list); 699 } else { 700 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", 701 desc->txd.cookie); 702 list_add_tail(&desc->desc_node, &atchan->queue); 703 } 704 705 spin_unlock_irqrestore(&atchan->lock, flags); 706 707 return cookie; 708 } 709 710 /** 711 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 712 * @chan: the channel to prepare operation on 713 * @xt: Interleaved transfer template 714 * @flags: tx descriptor status flags 715 */ 716 static struct dma_async_tx_descriptor * 717 atc_prep_dma_interleaved(struct dma_chan *chan, 718 struct dma_interleaved_template *xt, 719 unsigned long flags) 720 { 721 struct at_dma_chan *atchan = to_at_dma_chan(chan); 722 struct data_chunk *first; 723 struct at_desc *desc = NULL; 724 size_t xfer_count; 725 unsigned int dwidth; 726 u32 ctrla; 727 u32 ctrlb; 728 size_t len = 0; 729 int i; 730 731 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 732 return NULL; 733 734 first = xt->sgl; 735 736 dev_info(chan2dev(chan), 737 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", 738 __func__, &xt->src_start, &xt->dst_start, xt->numf, 739 xt->frame_size, flags); 740 741 /* 742 * The controller can only "skip" X bytes every Y bytes, so we 743 * need to make sure we are given a template that fit that 744 * description, ie a template with chunks that always have the 745 * same size, with the same ICGs. 746 */ 747 for (i = 0; i < xt->frame_size; i++) { 748 struct data_chunk *chunk = xt->sgl + i; 749 750 if ((chunk->size != xt->sgl->size) || 751 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 752 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 753 dev_err(chan2dev(chan), 754 "%s: the controller can transfer only identical chunks\n", 755 __func__); 756 return NULL; 757 } 758 759 len += chunk->size; 760 } 761 762 dwidth = atc_get_xfer_width(xt->src_start, 763 xt->dst_start, len); 764 765 xfer_count = len >> dwidth; 766 if (xfer_count > ATC_BTSIZE_MAX) { 767 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 768 return NULL; 769 } 770 771 ctrla = ATC_SRC_WIDTH(dwidth) | 772 ATC_DST_WIDTH(dwidth); 773 774 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 775 | ATC_SRC_ADDR_MODE_INCR 776 | ATC_DST_ADDR_MODE_INCR 777 | ATC_SRC_PIP 778 | ATC_DST_PIP 779 | ATC_FC_MEM2MEM; 780 781 /* create the transfer */ 782 desc = atc_desc_get(atchan); 783 if (!desc) { 784 dev_err(chan2dev(chan), 785 "%s: couldn't allocate our descriptor\n", __func__); 786 return NULL; 787 } 788 789 desc->lli.saddr = xt->src_start; 790 desc->lli.daddr = xt->dst_start; 791 desc->lli.ctrla = ctrla | xfer_count; 792 desc->lli.ctrlb = ctrlb; 793 794 desc->boundary = first->size >> dwidth; 795 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 796 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 797 798 desc->txd.cookie = -EBUSY; 799 desc->total_len = desc->len = len; 800 801 /* set end-of-link to the last link descriptor of list*/ 802 set_desc_eol(desc); 803 804 desc->txd.flags = flags; /* client is in control of this ack */ 805 806 return &desc->txd; 807 } 808 809 /** 810 * atc_prep_dma_memcpy - prepare a memcpy operation 811 * @chan: the channel to prepare operation on 812 * @dest: operation virtual destination address 813 * @src: operation virtual source address 814 * @len: operation length 815 * @flags: tx descriptor status flags 816 */ 817 static struct dma_async_tx_descriptor * 818 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 819 size_t len, unsigned long flags) 820 { 821 struct at_dma_chan *atchan = to_at_dma_chan(chan); 822 struct at_desc *desc = NULL; 823 struct at_desc *first = NULL; 824 struct at_desc *prev = NULL; 825 size_t xfer_count; 826 size_t offset; 827 unsigned int src_width; 828 unsigned int dst_width; 829 u32 ctrla; 830 u32 ctrlb; 831 832 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n", 833 &dest, &src, len, flags); 834 835 if (unlikely(!len)) { 836 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 837 return NULL; 838 } 839 840 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 841 | ATC_SRC_ADDR_MODE_INCR 842 | ATC_DST_ADDR_MODE_INCR 843 | ATC_FC_MEM2MEM; 844 845 /* 846 * We can be a lot more clever here, but this should take care 847 * of the most common optimization. 848 */ 849 src_width = dst_width = atc_get_xfer_width(src, dest, len); 850 851 ctrla = ATC_SRC_WIDTH(src_width) | 852 ATC_DST_WIDTH(dst_width); 853 854 for (offset = 0; offset < len; offset += xfer_count << src_width) { 855 xfer_count = min_t(size_t, (len - offset) >> src_width, 856 ATC_BTSIZE_MAX); 857 858 desc = atc_desc_get(atchan); 859 if (!desc) 860 goto err_desc_get; 861 862 desc->lli.saddr = src + offset; 863 desc->lli.daddr = dest + offset; 864 desc->lli.ctrla = ctrla | xfer_count; 865 desc->lli.ctrlb = ctrlb; 866 867 desc->txd.cookie = 0; 868 desc->len = xfer_count << src_width; 869 870 atc_desc_chain(&first, &prev, desc); 871 } 872 873 /* First descriptor of the chain embedds additional information */ 874 first->txd.cookie = -EBUSY; 875 first->total_len = len; 876 877 /* set end-of-link to the last link descriptor of list*/ 878 set_desc_eol(desc); 879 880 first->txd.flags = flags; /* client is in control of this ack */ 881 882 return &first->txd; 883 884 err_desc_get: 885 atc_desc_put(atchan, first); 886 return NULL; 887 } 888 889 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan, 890 dma_addr_t psrc, 891 dma_addr_t pdst, 892 size_t len) 893 { 894 struct at_dma_chan *atchan = to_at_dma_chan(chan); 895 struct at_desc *desc; 896 size_t xfer_count; 897 898 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2); 899 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 900 ATC_SRC_ADDR_MODE_FIXED | 901 ATC_DST_ADDR_MODE_INCR | 902 ATC_FC_MEM2MEM; 903 904 xfer_count = len >> 2; 905 if (xfer_count > ATC_BTSIZE_MAX) { 906 dev_err(chan2dev(chan), "%s: buffer is too big\n", 907 __func__); 908 return NULL; 909 } 910 911 desc = atc_desc_get(atchan); 912 if (!desc) { 913 dev_err(chan2dev(chan), "%s: can't get a descriptor\n", 914 __func__); 915 return NULL; 916 } 917 918 desc->lli.saddr = psrc; 919 desc->lli.daddr = pdst; 920 desc->lli.ctrla = ctrla | xfer_count; 921 desc->lli.ctrlb = ctrlb; 922 923 desc->txd.cookie = 0; 924 desc->len = len; 925 926 return desc; 927 } 928 929 /** 930 * atc_prep_dma_memset - prepare a memcpy operation 931 * @chan: the channel to prepare operation on 932 * @dest: operation virtual destination address 933 * @value: value to set memory buffer to 934 * @len: operation length 935 * @flags: tx descriptor status flags 936 */ 937 static struct dma_async_tx_descriptor * 938 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 939 size_t len, unsigned long flags) 940 { 941 struct at_dma *atdma = to_at_dma(chan->device); 942 struct at_desc *desc; 943 void __iomem *vaddr; 944 dma_addr_t paddr; 945 char fill_pattern; 946 947 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__, 948 &dest, value, len, flags); 949 950 if (unlikely(!len)) { 951 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); 952 return NULL; 953 } 954 955 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 956 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", 957 __func__); 958 return NULL; 959 } 960 961 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); 962 if (!vaddr) { 963 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 964 __func__); 965 return NULL; 966 } 967 968 /* Only the first byte of value is to be used according to dmaengine */ 969 fill_pattern = (char)value; 970 971 *(u32*)vaddr = (fill_pattern << 24) | 972 (fill_pattern << 16) | 973 (fill_pattern << 8) | 974 fill_pattern; 975 976 desc = atc_create_memset_desc(chan, paddr, dest, len); 977 if (!desc) { 978 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n", 979 __func__); 980 goto err_free_buffer; 981 } 982 983 desc->memset_paddr = paddr; 984 desc->memset_vaddr = vaddr; 985 desc->memset_buffer = true; 986 987 desc->txd.cookie = -EBUSY; 988 desc->total_len = len; 989 990 /* set end-of-link on the descriptor */ 991 set_desc_eol(desc); 992 993 desc->txd.flags = flags; 994 995 return &desc->txd; 996 997 err_free_buffer: 998 dma_pool_free(atdma->memset_pool, vaddr, paddr); 999 return NULL; 1000 } 1001 1002 static struct dma_async_tx_descriptor * 1003 atc_prep_dma_memset_sg(struct dma_chan *chan, 1004 struct scatterlist *sgl, 1005 unsigned int sg_len, int value, 1006 unsigned long flags) 1007 { 1008 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1009 struct at_dma *atdma = to_at_dma(chan->device); 1010 struct at_desc *desc = NULL, *first = NULL, *prev = NULL; 1011 struct scatterlist *sg; 1012 void __iomem *vaddr; 1013 dma_addr_t paddr; 1014 size_t total_len = 0; 1015 int i; 1016 1017 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, 1018 value, sg_len, flags); 1019 1020 if (unlikely(!sgl || !sg_len)) { 1021 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", 1022 __func__); 1023 return NULL; 1024 } 1025 1026 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); 1027 if (!vaddr) { 1028 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 1029 __func__); 1030 return NULL; 1031 } 1032 *(u32*)vaddr = value; 1033 1034 for_each_sg(sgl, sg, sg_len, i) { 1035 dma_addr_t dest = sg_dma_address(sg); 1036 size_t len = sg_dma_len(sg); 1037 1038 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n", 1039 __func__, &dest, len); 1040 1041 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1042 dev_err(chan2dev(chan), "%s: buffer is not aligned\n", 1043 __func__); 1044 goto err_put_desc; 1045 } 1046 1047 desc = atc_create_memset_desc(chan, paddr, dest, len); 1048 if (!desc) 1049 goto err_put_desc; 1050 1051 atc_desc_chain(&first, &prev, desc); 1052 1053 total_len += len; 1054 } 1055 1056 /* 1057 * Only set the buffer pointers on the last descriptor to 1058 * avoid free'ing while we have our transfer still going 1059 */ 1060 desc->memset_paddr = paddr; 1061 desc->memset_vaddr = vaddr; 1062 desc->memset_buffer = true; 1063 1064 first->txd.cookie = -EBUSY; 1065 first->total_len = total_len; 1066 1067 /* set end-of-link on the descriptor */ 1068 set_desc_eol(desc); 1069 1070 first->txd.flags = flags; 1071 1072 return &first->txd; 1073 1074 err_put_desc: 1075 atc_desc_put(atchan, first); 1076 return NULL; 1077 } 1078 1079 /** 1080 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 1081 * @chan: DMA channel 1082 * @sgl: scatterlist to transfer to/from 1083 * @sg_len: number of entries in @scatterlist 1084 * @direction: DMA direction 1085 * @flags: tx descriptor status flags 1086 * @context: transaction context (ignored) 1087 */ 1088 static struct dma_async_tx_descriptor * 1089 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1090 unsigned int sg_len, enum dma_transfer_direction direction, 1091 unsigned long flags, void *context) 1092 { 1093 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1094 struct at_dma_slave *atslave = chan->private; 1095 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1096 struct at_desc *first = NULL; 1097 struct at_desc *prev = NULL; 1098 u32 ctrla; 1099 u32 ctrlb; 1100 dma_addr_t reg; 1101 unsigned int reg_width; 1102 unsigned int mem_width; 1103 unsigned int i; 1104 struct scatterlist *sg; 1105 size_t total_len = 0; 1106 1107 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 1108 sg_len, 1109 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1110 flags); 1111 1112 if (unlikely(!atslave || !sg_len)) { 1113 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 1114 return NULL; 1115 } 1116 1117 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1118 | ATC_DCSIZE(sconfig->dst_maxburst); 1119 ctrlb = ATC_IEN; 1120 1121 switch (direction) { 1122 case DMA_MEM_TO_DEV: 1123 reg_width = convert_buswidth(sconfig->dst_addr_width); 1124 ctrla |= ATC_DST_WIDTH(reg_width); 1125 ctrlb |= ATC_DST_ADDR_MODE_FIXED 1126 | ATC_SRC_ADDR_MODE_INCR 1127 | ATC_FC_MEM2PER 1128 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); 1129 reg = sconfig->dst_addr; 1130 for_each_sg(sgl, sg, sg_len, i) { 1131 struct at_desc *desc; 1132 u32 len; 1133 u32 mem; 1134 1135 desc = atc_desc_get(atchan); 1136 if (!desc) 1137 goto err_desc_get; 1138 1139 mem = sg_dma_address(sg); 1140 len = sg_dma_len(sg); 1141 if (unlikely(!len)) { 1142 dev_dbg(chan2dev(chan), 1143 "prep_slave_sg: sg(%d) data length is zero\n", i); 1144 goto err; 1145 } 1146 mem_width = 2; 1147 if (unlikely(mem & 3 || len & 3)) 1148 mem_width = 0; 1149 1150 desc->lli.saddr = mem; 1151 desc->lli.daddr = reg; 1152 desc->lli.ctrla = ctrla 1153 | ATC_SRC_WIDTH(mem_width) 1154 | len >> mem_width; 1155 desc->lli.ctrlb = ctrlb; 1156 desc->len = len; 1157 1158 atc_desc_chain(&first, &prev, desc); 1159 total_len += len; 1160 } 1161 break; 1162 case DMA_DEV_TO_MEM: 1163 reg_width = convert_buswidth(sconfig->src_addr_width); 1164 ctrla |= ATC_SRC_WIDTH(reg_width); 1165 ctrlb |= ATC_DST_ADDR_MODE_INCR 1166 | ATC_SRC_ADDR_MODE_FIXED 1167 | ATC_FC_PER2MEM 1168 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); 1169 1170 reg = sconfig->src_addr; 1171 for_each_sg(sgl, sg, sg_len, i) { 1172 struct at_desc *desc; 1173 u32 len; 1174 u32 mem; 1175 1176 desc = atc_desc_get(atchan); 1177 if (!desc) 1178 goto err_desc_get; 1179 1180 mem = sg_dma_address(sg); 1181 len = sg_dma_len(sg); 1182 if (unlikely(!len)) { 1183 dev_dbg(chan2dev(chan), 1184 "prep_slave_sg: sg(%d) data length is zero\n", i); 1185 goto err; 1186 } 1187 mem_width = 2; 1188 if (unlikely(mem & 3 || len & 3)) 1189 mem_width = 0; 1190 1191 desc->lli.saddr = reg; 1192 desc->lli.daddr = mem; 1193 desc->lli.ctrla = ctrla 1194 | ATC_DST_WIDTH(mem_width) 1195 | len >> reg_width; 1196 desc->lli.ctrlb = ctrlb; 1197 desc->len = len; 1198 1199 atc_desc_chain(&first, &prev, desc); 1200 total_len += len; 1201 } 1202 break; 1203 default: 1204 return NULL; 1205 } 1206 1207 /* set end-of-link to the last link descriptor of list*/ 1208 set_desc_eol(prev); 1209 1210 /* First descriptor of the chain embedds additional information */ 1211 first->txd.cookie = -EBUSY; 1212 first->total_len = total_len; 1213 1214 /* first link descriptor of list is responsible of flags */ 1215 first->txd.flags = flags; /* client is in control of this ack */ 1216 1217 return &first->txd; 1218 1219 err_desc_get: 1220 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1221 err: 1222 atc_desc_put(atchan, first); 1223 return NULL; 1224 } 1225 1226 /* 1227 * atc_dma_cyclic_check_values 1228 * Check for too big/unaligned periods and unaligned DMA buffer 1229 */ 1230 static int 1231 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1232 size_t period_len) 1233 { 1234 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1235 goto err_out; 1236 if (unlikely(period_len & ((1 << reg_width) - 1))) 1237 goto err_out; 1238 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1239 goto err_out; 1240 1241 return 0; 1242 1243 err_out: 1244 return -EINVAL; 1245 } 1246 1247 /* 1248 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1249 */ 1250 static int 1251 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1252 unsigned int period_index, dma_addr_t buf_addr, 1253 unsigned int reg_width, size_t period_len, 1254 enum dma_transfer_direction direction) 1255 { 1256 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1257 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1258 u32 ctrla; 1259 1260 /* prepare common CRTLA value */ 1261 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1262 | ATC_DCSIZE(sconfig->dst_maxburst) 1263 | ATC_DST_WIDTH(reg_width) 1264 | ATC_SRC_WIDTH(reg_width) 1265 | period_len >> reg_width; 1266 1267 switch (direction) { 1268 case DMA_MEM_TO_DEV: 1269 desc->lli.saddr = buf_addr + (period_len * period_index); 1270 desc->lli.daddr = sconfig->dst_addr; 1271 desc->lli.ctrla = ctrla; 1272 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED 1273 | ATC_SRC_ADDR_MODE_INCR 1274 | ATC_FC_MEM2PER 1275 | ATC_SIF(atchan->mem_if) 1276 | ATC_DIF(atchan->per_if); 1277 desc->len = period_len; 1278 break; 1279 1280 case DMA_DEV_TO_MEM: 1281 desc->lli.saddr = sconfig->src_addr; 1282 desc->lli.daddr = buf_addr + (period_len * period_index); 1283 desc->lli.ctrla = ctrla; 1284 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR 1285 | ATC_SRC_ADDR_MODE_FIXED 1286 | ATC_FC_PER2MEM 1287 | ATC_SIF(atchan->per_if) 1288 | ATC_DIF(atchan->mem_if); 1289 desc->len = period_len; 1290 break; 1291 1292 default: 1293 return -EINVAL; 1294 } 1295 1296 return 0; 1297 } 1298 1299 /** 1300 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1301 * @chan: the DMA channel to prepare 1302 * @buf_addr: physical DMA address where the buffer starts 1303 * @buf_len: total number of bytes for the entire buffer 1304 * @period_len: number of bytes for each period 1305 * @direction: transfer direction, to or from device 1306 * @flags: tx descriptor status flags 1307 */ 1308 static struct dma_async_tx_descriptor * 1309 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1310 size_t period_len, enum dma_transfer_direction direction, 1311 unsigned long flags) 1312 { 1313 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1314 struct at_dma_slave *atslave = chan->private; 1315 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1316 struct at_desc *first = NULL; 1317 struct at_desc *prev = NULL; 1318 unsigned long was_cyclic; 1319 unsigned int reg_width; 1320 unsigned int periods = buf_len / period_len; 1321 unsigned int i; 1322 1323 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n", 1324 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1325 &buf_addr, 1326 periods, buf_len, period_len); 1327 1328 if (unlikely(!atslave || !buf_len || !period_len)) { 1329 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1330 return NULL; 1331 } 1332 1333 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1334 if (was_cyclic) { 1335 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1336 return NULL; 1337 } 1338 1339 if (unlikely(!is_slave_direction(direction))) 1340 goto err_out; 1341 1342 if (direction == DMA_MEM_TO_DEV) 1343 reg_width = convert_buswidth(sconfig->dst_addr_width); 1344 else 1345 reg_width = convert_buswidth(sconfig->src_addr_width); 1346 1347 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1348 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1349 goto err_out; 1350 1351 /* build cyclic linked list */ 1352 for (i = 0; i < periods; i++) { 1353 struct at_desc *desc; 1354 1355 desc = atc_desc_get(atchan); 1356 if (!desc) 1357 goto err_desc_get; 1358 1359 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1360 reg_width, period_len, direction)) 1361 goto err_desc_get; 1362 1363 atc_desc_chain(&first, &prev, desc); 1364 } 1365 1366 /* lets make a cyclic list */ 1367 prev->lli.dscr = first->txd.phys; 1368 1369 /* First descriptor of the chain embedds additional information */ 1370 first->txd.cookie = -EBUSY; 1371 first->total_len = buf_len; 1372 1373 return &first->txd; 1374 1375 err_desc_get: 1376 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1377 atc_desc_put(atchan, first); 1378 err_out: 1379 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1380 return NULL; 1381 } 1382 1383 static int atc_config(struct dma_chan *chan, 1384 struct dma_slave_config *sconfig) 1385 { 1386 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1387 1388 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1389 1390 /* Check if it is chan is configured for slave transfers */ 1391 if (!chan->private) 1392 return -EINVAL; 1393 1394 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1395 1396 convert_burst(&atchan->dma_sconfig.src_maxburst); 1397 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1398 1399 return 0; 1400 } 1401 1402 static int atc_pause(struct dma_chan *chan) 1403 { 1404 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1405 struct at_dma *atdma = to_at_dma(chan->device); 1406 int chan_id = atchan->chan_common.chan_id; 1407 unsigned long flags; 1408 1409 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1410 1411 spin_lock_irqsave(&atchan->lock, flags); 1412 1413 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1414 set_bit(ATC_IS_PAUSED, &atchan->status); 1415 1416 spin_unlock_irqrestore(&atchan->lock, flags); 1417 1418 return 0; 1419 } 1420 1421 static int atc_resume(struct dma_chan *chan) 1422 { 1423 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1424 struct at_dma *atdma = to_at_dma(chan->device); 1425 int chan_id = atchan->chan_common.chan_id; 1426 unsigned long flags; 1427 1428 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1429 1430 if (!atc_chan_is_paused(atchan)) 1431 return 0; 1432 1433 spin_lock_irqsave(&atchan->lock, flags); 1434 1435 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1436 clear_bit(ATC_IS_PAUSED, &atchan->status); 1437 1438 spin_unlock_irqrestore(&atchan->lock, flags); 1439 1440 return 0; 1441 } 1442 1443 static int atc_terminate_all(struct dma_chan *chan) 1444 { 1445 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1446 struct at_dma *atdma = to_at_dma(chan->device); 1447 int chan_id = atchan->chan_common.chan_id; 1448 struct at_desc *desc, *_desc; 1449 unsigned long flags; 1450 1451 LIST_HEAD(list); 1452 1453 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1454 1455 /* 1456 * This is only called when something went wrong elsewhere, so 1457 * we don't really care about the data. Just disable the 1458 * channel. We still have to poll the channel enable bit due 1459 * to AHB/HSB limitations. 1460 */ 1461 spin_lock_irqsave(&atchan->lock, flags); 1462 1463 /* disabling channel: must also remove suspend state */ 1464 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1465 1466 /* confirm that this channel is disabled */ 1467 while (dma_readl(atdma, CHSR) & atchan->mask) 1468 cpu_relax(); 1469 1470 /* active_list entries will end up before queued entries */ 1471 list_splice_init(&atchan->queue, &list); 1472 list_splice_init(&atchan->active_list, &list); 1473 1474 spin_unlock_irqrestore(&atchan->lock, flags); 1475 1476 /* Flush all pending and queued descriptors */ 1477 list_for_each_entry_safe(desc, _desc, &list, desc_node) 1478 atc_chain_complete(atchan, desc); 1479 1480 clear_bit(ATC_IS_PAUSED, &atchan->status); 1481 /* if channel dedicated to cyclic operations, free it */ 1482 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1483 1484 return 0; 1485 } 1486 1487 /** 1488 * atc_tx_status - poll for transaction completion 1489 * @chan: DMA channel 1490 * @cookie: transaction identifier to check status of 1491 * @txstate: if not %NULL updated with transaction state 1492 * 1493 * If @txstate is passed in, upon return it reflect the driver 1494 * internal state and can be used with dma_async_is_complete() to check 1495 * the status of multiple cookies without re-checking hardware state. 1496 */ 1497 static enum dma_status 1498 atc_tx_status(struct dma_chan *chan, 1499 dma_cookie_t cookie, 1500 struct dma_tx_state *txstate) 1501 { 1502 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1503 unsigned long flags; 1504 enum dma_status ret; 1505 int bytes = 0; 1506 1507 ret = dma_cookie_status(chan, cookie, txstate); 1508 if (ret == DMA_COMPLETE) 1509 return ret; 1510 /* 1511 * There's no point calculating the residue if there's 1512 * no txstate to store the value. 1513 */ 1514 if (!txstate) 1515 return DMA_ERROR; 1516 1517 spin_lock_irqsave(&atchan->lock, flags); 1518 1519 /* Get number of bytes left in the active transactions */ 1520 bytes = atc_get_bytes_left(chan, cookie); 1521 1522 spin_unlock_irqrestore(&atchan->lock, flags); 1523 1524 if (unlikely(bytes < 0)) { 1525 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1526 return DMA_ERROR; 1527 } else { 1528 dma_set_residue(txstate, bytes); 1529 } 1530 1531 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", 1532 ret, cookie, bytes); 1533 1534 return ret; 1535 } 1536 1537 /** 1538 * atc_issue_pending - try to finish work 1539 * @chan: target DMA channel 1540 */ 1541 static void atc_issue_pending(struct dma_chan *chan) 1542 { 1543 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1544 1545 dev_vdbg(chan2dev(chan), "issue_pending\n"); 1546 1547 /* Not needed for cyclic transfers */ 1548 if (atc_chan_is_cyclic(atchan)) 1549 return; 1550 1551 atc_advance_work(atchan); 1552 } 1553 1554 /** 1555 * atc_alloc_chan_resources - allocate resources for DMA channel 1556 * @chan: allocate descriptor resources for this channel 1557 * 1558 * return - the number of allocated descriptors 1559 */ 1560 static int atc_alloc_chan_resources(struct dma_chan *chan) 1561 { 1562 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1563 struct at_dma *atdma = to_at_dma(chan->device); 1564 struct at_desc *desc; 1565 struct at_dma_slave *atslave; 1566 int i; 1567 u32 cfg; 1568 1569 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1570 1571 /* ASSERT: channel is idle */ 1572 if (atc_chan_is_enabled(atchan)) { 1573 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1574 return -EIO; 1575 } 1576 1577 if (!list_empty(&atchan->free_list)) { 1578 dev_dbg(chan2dev(chan), "can't allocate channel resources (channel not freed from a previous use)\n"); 1579 return -EIO; 1580 } 1581 1582 cfg = ATC_DEFAULT_CFG; 1583 1584 atslave = chan->private; 1585 if (atslave) { 1586 /* 1587 * We need controller-specific data to set up slave 1588 * transfers. 1589 */ 1590 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); 1591 1592 /* if cfg configuration specified take it instead of default */ 1593 if (atslave->cfg) 1594 cfg = atslave->cfg; 1595 } 1596 1597 /* Allocate initial pool of descriptors */ 1598 for (i = 0; i < init_nr_desc_per_channel; i++) { 1599 desc = atc_alloc_descriptor(chan, GFP_KERNEL); 1600 if (!desc) { 1601 dev_err(atdma->dma_common.dev, 1602 "Only %d initial descriptors\n", i); 1603 break; 1604 } 1605 list_add_tail(&desc->desc_node, &atchan->free_list); 1606 } 1607 1608 dma_cookie_init(chan); 1609 1610 /* channel parameters */ 1611 channel_writel(atchan, CFG, cfg); 1612 1613 dev_dbg(chan2dev(chan), 1614 "alloc_chan_resources: allocated %d descriptors\n", i); 1615 1616 return i; 1617 } 1618 1619 /** 1620 * atc_free_chan_resources - free all channel resources 1621 * @chan: DMA channel 1622 */ 1623 static void atc_free_chan_resources(struct dma_chan *chan) 1624 { 1625 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1626 struct at_dma *atdma = to_at_dma(chan->device); 1627 struct at_desc *desc, *_desc; 1628 LIST_HEAD(list); 1629 1630 /* ASSERT: channel is idle */ 1631 BUG_ON(!list_empty(&atchan->active_list)); 1632 BUG_ON(!list_empty(&atchan->queue)); 1633 BUG_ON(atc_chan_is_enabled(atchan)); 1634 1635 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 1636 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); 1637 list_del(&desc->desc_node); 1638 /* free link descriptor */ 1639 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); 1640 } 1641 list_splice_init(&atchan->free_list, &list); 1642 atchan->status = 0; 1643 1644 /* 1645 * Free atslave allocated in at_dma_xlate() 1646 */ 1647 kfree(chan->private); 1648 chan->private = NULL; 1649 1650 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1651 } 1652 1653 #ifdef CONFIG_OF 1654 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1655 { 1656 struct at_dma_slave *atslave = slave; 1657 1658 if (atslave->dma_dev == chan->device->dev) { 1659 chan->private = atslave; 1660 return true; 1661 } else { 1662 return false; 1663 } 1664 } 1665 1666 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1667 struct of_dma *of_dma) 1668 { 1669 struct dma_chan *chan; 1670 struct at_dma_chan *atchan; 1671 struct at_dma_slave *atslave; 1672 dma_cap_mask_t mask; 1673 unsigned int per_id; 1674 struct platform_device *dmac_pdev; 1675 1676 if (dma_spec->args_count != 2) 1677 return NULL; 1678 1679 dmac_pdev = of_find_device_by_node(dma_spec->np); 1680 if (!dmac_pdev) 1681 return NULL; 1682 1683 dma_cap_zero(mask); 1684 dma_cap_set(DMA_SLAVE, mask); 1685 1686 atslave = kmalloc(sizeof(*atslave), GFP_KERNEL); 1687 if (!atslave) { 1688 put_device(&dmac_pdev->dev); 1689 return NULL; 1690 } 1691 1692 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; 1693 /* 1694 * We can fill both SRC_PER and DST_PER, one of these fields will be 1695 * ignored depending on DMA transfer direction. 1696 */ 1697 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1698 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) 1699 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); 1700 /* 1701 * We have to translate the value we get from the device tree since 1702 * the half FIFO configuration value had to be 0 to keep backward 1703 * compatibility. 1704 */ 1705 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1706 case AT91_DMA_CFG_FIFOCFG_ALAP: 1707 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; 1708 break; 1709 case AT91_DMA_CFG_FIFOCFG_ASAP: 1710 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; 1711 break; 1712 case AT91_DMA_CFG_FIFOCFG_HALF: 1713 default: 1714 atslave->cfg |= ATC_FIFOCFG_HALFFIFO; 1715 } 1716 atslave->dma_dev = &dmac_pdev->dev; 1717 1718 chan = dma_request_channel(mask, at_dma_filter, atslave); 1719 if (!chan) { 1720 put_device(&dmac_pdev->dev); 1721 kfree(atslave); 1722 return NULL; 1723 } 1724 1725 atchan = to_at_dma_chan(chan); 1726 atchan->per_if = dma_spec->args[0] & 0xff; 1727 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1728 1729 return chan; 1730 } 1731 #else 1732 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1733 struct of_dma *of_dma) 1734 { 1735 return NULL; 1736 } 1737 #endif 1738 1739 /*-- Module Management -----------------------------------------------*/ 1740 1741 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1742 static struct at_dma_platform_data at91sam9rl_config = { 1743 .nr_channels = 2, 1744 }; 1745 static struct at_dma_platform_data at91sam9g45_config = { 1746 .nr_channels = 8, 1747 }; 1748 1749 #if defined(CONFIG_OF) 1750 static const struct of_device_id atmel_dma_dt_ids[] = { 1751 { 1752 .compatible = "atmel,at91sam9rl-dma", 1753 .data = &at91sam9rl_config, 1754 }, { 1755 .compatible = "atmel,at91sam9g45-dma", 1756 .data = &at91sam9g45_config, 1757 }, { 1758 /* sentinel */ 1759 } 1760 }; 1761 1762 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1763 #endif 1764 1765 static const struct platform_device_id atdma_devtypes[] = { 1766 { 1767 .name = "at91sam9rl_dma", 1768 .driver_data = (unsigned long) &at91sam9rl_config, 1769 }, { 1770 .name = "at91sam9g45_dma", 1771 .driver_data = (unsigned long) &at91sam9g45_config, 1772 }, { 1773 /* sentinel */ 1774 } 1775 }; 1776 1777 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1778 struct platform_device *pdev) 1779 { 1780 if (pdev->dev.of_node) { 1781 const struct of_device_id *match; 1782 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1783 if (match == NULL) 1784 return NULL; 1785 return match->data; 1786 } 1787 return (struct at_dma_platform_data *) 1788 platform_get_device_id(pdev)->driver_data; 1789 } 1790 1791 /** 1792 * at_dma_off - disable DMA controller 1793 * @atdma: the Atmel HDAMC device 1794 */ 1795 static void at_dma_off(struct at_dma *atdma) 1796 { 1797 dma_writel(atdma, EN, 0); 1798 1799 /* disable all interrupts */ 1800 dma_writel(atdma, EBCIDR, -1L); 1801 1802 /* confirm that all channels are disabled */ 1803 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1804 cpu_relax(); 1805 } 1806 1807 static int __init at_dma_probe(struct platform_device *pdev) 1808 { 1809 struct resource *io; 1810 struct at_dma *atdma; 1811 size_t size; 1812 int irq; 1813 int err; 1814 int i; 1815 const struct at_dma_platform_data *plat_dat; 1816 1817 /* setup platform data for each SoC */ 1818 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1819 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1820 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1821 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); 1822 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); 1823 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); 1824 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1825 1826 /* get DMA parameters from controller type */ 1827 plat_dat = at_dma_get_driver_data(pdev); 1828 if (!plat_dat) 1829 return -ENODEV; 1830 1831 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1832 if (!io) 1833 return -EINVAL; 1834 1835 irq = platform_get_irq(pdev, 0); 1836 if (irq < 0) 1837 return irq; 1838 1839 size = sizeof(struct at_dma); 1840 size += plat_dat->nr_channels * sizeof(struct at_dma_chan); 1841 atdma = kzalloc(size, GFP_KERNEL); 1842 if (!atdma) 1843 return -ENOMEM; 1844 1845 /* discover transaction capabilities */ 1846 atdma->dma_common.cap_mask = plat_dat->cap_mask; 1847 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1848 1849 size = resource_size(io); 1850 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { 1851 err = -EBUSY; 1852 goto err_kfree; 1853 } 1854 1855 atdma->regs = ioremap(io->start, size); 1856 if (!atdma->regs) { 1857 err = -ENOMEM; 1858 goto err_release_r; 1859 } 1860 1861 atdma->clk = clk_get(&pdev->dev, "dma_clk"); 1862 if (IS_ERR(atdma->clk)) { 1863 err = PTR_ERR(atdma->clk); 1864 goto err_clk; 1865 } 1866 err = clk_prepare_enable(atdma->clk); 1867 if (err) 1868 goto err_clk_prepare; 1869 1870 /* force dma off, just in case */ 1871 at_dma_off(atdma); 1872 1873 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1874 if (err) 1875 goto err_irq; 1876 1877 platform_set_drvdata(pdev, atdma); 1878 1879 /* create a pool of consistent memory blocks for hardware descriptors */ 1880 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", 1881 &pdev->dev, sizeof(struct at_desc), 1882 4 /* word alignment */, 0); 1883 if (!atdma->dma_desc_pool) { 1884 dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); 1885 err = -ENOMEM; 1886 goto err_desc_pool_create; 1887 } 1888 1889 /* create a pool of consistent memory blocks for memset blocks */ 1890 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", 1891 &pdev->dev, sizeof(int), 4, 0); 1892 if (!atdma->memset_pool) { 1893 dev_err(&pdev->dev, "No memory for memset dma pool\n"); 1894 err = -ENOMEM; 1895 goto err_memset_pool_create; 1896 } 1897 1898 /* clear any pending interrupt */ 1899 while (dma_readl(atdma, EBCISR)) 1900 cpu_relax(); 1901 1902 /* initialize channels related values */ 1903 INIT_LIST_HEAD(&atdma->dma_common.channels); 1904 for (i = 0; i < plat_dat->nr_channels; i++) { 1905 struct at_dma_chan *atchan = &atdma->chan[i]; 1906 1907 atchan->mem_if = AT_DMA_MEM_IF; 1908 atchan->per_if = AT_DMA_PER_IF; 1909 atchan->chan_common.device = &atdma->dma_common; 1910 dma_cookie_init(&atchan->chan_common); 1911 list_add_tail(&atchan->chan_common.device_node, 1912 &atdma->dma_common.channels); 1913 1914 atchan->ch_regs = atdma->regs + ch_regs(i); 1915 spin_lock_init(&atchan->lock); 1916 atchan->mask = 1 << i; 1917 1918 INIT_LIST_HEAD(&atchan->active_list); 1919 INIT_LIST_HEAD(&atchan->queue); 1920 INIT_LIST_HEAD(&atchan->free_list); 1921 1922 tasklet_setup(&atchan->tasklet, atc_tasklet); 1923 atc_enable_chan_irq(atdma, i); 1924 } 1925 1926 /* set base routines */ 1927 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; 1928 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; 1929 atdma->dma_common.device_tx_status = atc_tx_status; 1930 atdma->dma_common.device_issue_pending = atc_issue_pending; 1931 atdma->dma_common.dev = &pdev->dev; 1932 1933 /* set prep routines based on capability */ 1934 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) 1935 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; 1936 1937 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) 1938 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; 1939 1940 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) { 1941 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset; 1942 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; 1943 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES; 1944 } 1945 1946 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { 1947 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; 1948 /* controller can do slave DMA: can trigger cyclic transfers */ 1949 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); 1950 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; 1951 atdma->dma_common.device_config = atc_config; 1952 atdma->dma_common.device_pause = atc_pause; 1953 atdma->dma_common.device_resume = atc_resume; 1954 atdma->dma_common.device_terminate_all = atc_terminate_all; 1955 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; 1956 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; 1957 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1958 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1959 } 1960 1961 dma_writel(atdma, EN, AT_DMA_ENABLE); 1962 1963 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n", 1964 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", 1965 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "", 1966 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", 1967 plat_dat->nr_channels); 1968 1969 dma_async_device_register(&atdma->dma_common); 1970 1971 /* 1972 * Do not return an error if the dmac node is not present in order to 1973 * not break the existing way of requesting channel with 1974 * dma_request_channel(). 1975 */ 1976 if (pdev->dev.of_node) { 1977 err = of_dma_controller_register(pdev->dev.of_node, 1978 at_dma_xlate, atdma); 1979 if (err) { 1980 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 1981 goto err_of_dma_controller_register; 1982 } 1983 } 1984 1985 return 0; 1986 1987 err_of_dma_controller_register: 1988 dma_async_device_unregister(&atdma->dma_common); 1989 dma_pool_destroy(atdma->memset_pool); 1990 err_memset_pool_create: 1991 dma_pool_destroy(atdma->dma_desc_pool); 1992 err_desc_pool_create: 1993 free_irq(platform_get_irq(pdev, 0), atdma); 1994 err_irq: 1995 clk_disable_unprepare(atdma->clk); 1996 err_clk_prepare: 1997 clk_put(atdma->clk); 1998 err_clk: 1999 iounmap(atdma->regs); 2000 atdma->regs = NULL; 2001 err_release_r: 2002 release_mem_region(io->start, size); 2003 err_kfree: 2004 kfree(atdma); 2005 return err; 2006 } 2007 2008 static int at_dma_remove(struct platform_device *pdev) 2009 { 2010 struct at_dma *atdma = platform_get_drvdata(pdev); 2011 struct dma_chan *chan, *_chan; 2012 struct resource *io; 2013 2014 at_dma_off(atdma); 2015 if (pdev->dev.of_node) 2016 of_dma_controller_free(pdev->dev.of_node); 2017 dma_async_device_unregister(&atdma->dma_common); 2018 2019 dma_pool_destroy(atdma->memset_pool); 2020 dma_pool_destroy(atdma->dma_desc_pool); 2021 free_irq(platform_get_irq(pdev, 0), atdma); 2022 2023 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2024 device_node) { 2025 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2026 2027 /* Disable interrupts */ 2028 atc_disable_chan_irq(atdma, chan->chan_id); 2029 2030 tasklet_kill(&atchan->tasklet); 2031 list_del(&chan->device_node); 2032 } 2033 2034 clk_disable_unprepare(atdma->clk); 2035 clk_put(atdma->clk); 2036 2037 iounmap(atdma->regs); 2038 atdma->regs = NULL; 2039 2040 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2041 release_mem_region(io->start, resource_size(io)); 2042 2043 kfree(atdma); 2044 2045 return 0; 2046 } 2047 2048 static void at_dma_shutdown(struct platform_device *pdev) 2049 { 2050 struct at_dma *atdma = platform_get_drvdata(pdev); 2051 2052 at_dma_off(platform_get_drvdata(pdev)); 2053 clk_disable_unprepare(atdma->clk); 2054 } 2055 2056 static int at_dma_prepare(struct device *dev) 2057 { 2058 struct at_dma *atdma = dev_get_drvdata(dev); 2059 struct dma_chan *chan, *_chan; 2060 2061 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2062 device_node) { 2063 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2064 /* wait for transaction completion (except in cyclic case) */ 2065 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 2066 return -EAGAIN; 2067 } 2068 return 0; 2069 } 2070 2071 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 2072 { 2073 struct dma_chan *chan = &atchan->chan_common; 2074 2075 /* Channel should be paused by user 2076 * do it anyway even if it is not done already */ 2077 if (!atc_chan_is_paused(atchan)) { 2078 dev_warn(chan2dev(chan), 2079 "cyclic channel not paused, should be done by channel user\n"); 2080 atc_pause(chan); 2081 } 2082 2083 /* now preserve additional data for cyclic operations */ 2084 /* next descriptor address in the cyclic list */ 2085 atchan->save_dscr = channel_readl(atchan, DSCR); 2086 2087 vdbg_dump_regs(atchan); 2088 } 2089 2090 static int at_dma_suspend_noirq(struct device *dev) 2091 { 2092 struct at_dma *atdma = dev_get_drvdata(dev); 2093 struct dma_chan *chan, *_chan; 2094 2095 /* preserve data */ 2096 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2097 device_node) { 2098 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2099 2100 if (atc_chan_is_cyclic(atchan)) 2101 atc_suspend_cyclic(atchan); 2102 atchan->save_cfg = channel_readl(atchan, CFG); 2103 } 2104 atdma->save_imr = dma_readl(atdma, EBCIMR); 2105 2106 /* disable DMA controller */ 2107 at_dma_off(atdma); 2108 clk_disable_unprepare(atdma->clk); 2109 return 0; 2110 } 2111 2112 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2113 { 2114 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 2115 2116 /* restore channel status for cyclic descriptors list: 2117 * next descriptor in the cyclic list at the time of suspend */ 2118 channel_writel(atchan, SADDR, 0); 2119 channel_writel(atchan, DADDR, 0); 2120 channel_writel(atchan, CTRLA, 0); 2121 channel_writel(atchan, CTRLB, 0); 2122 channel_writel(atchan, DSCR, atchan->save_dscr); 2123 dma_writel(atdma, CHER, atchan->mask); 2124 2125 /* channel pause status should be removed by channel user 2126 * We cannot take the initiative to do it here */ 2127 2128 vdbg_dump_regs(atchan); 2129 } 2130 2131 static int at_dma_resume_noirq(struct device *dev) 2132 { 2133 struct at_dma *atdma = dev_get_drvdata(dev); 2134 struct dma_chan *chan, *_chan; 2135 2136 /* bring back DMA controller */ 2137 clk_prepare_enable(atdma->clk); 2138 dma_writel(atdma, EN, AT_DMA_ENABLE); 2139 2140 /* clear any pending interrupt */ 2141 while (dma_readl(atdma, EBCISR)) 2142 cpu_relax(); 2143 2144 /* restore saved data */ 2145 dma_writel(atdma, EBCIER, atdma->save_imr); 2146 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2147 device_node) { 2148 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2149 2150 channel_writel(atchan, CFG, atchan->save_cfg); 2151 if (atc_chan_is_cyclic(atchan)) 2152 atc_resume_cyclic(atchan); 2153 } 2154 return 0; 2155 } 2156 2157 static const struct dev_pm_ops at_dma_dev_pm_ops = { 2158 .prepare = at_dma_prepare, 2159 .suspend_noirq = at_dma_suspend_noirq, 2160 .resume_noirq = at_dma_resume_noirq, 2161 }; 2162 2163 static struct platform_driver at_dma_driver = { 2164 .remove = at_dma_remove, 2165 .shutdown = at_dma_shutdown, 2166 .id_table = atdma_devtypes, 2167 .driver = { 2168 .name = "at_hdmac", 2169 .pm = &at_dma_dev_pm_ops, 2170 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2171 }, 2172 }; 2173 2174 static int __init at_dma_init(void) 2175 { 2176 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2177 } 2178 subsys_initcall(at_dma_init); 2179 2180 static void __exit at_dma_exit(void) 2181 { 2182 platform_driver_unregister(&at_dma_driver); 2183 } 2184 module_exit(at_dma_exit); 2185 2186 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2187 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2188 MODULE_LICENSE("GPL"); 2189 MODULE_ALIAS("platform:at_hdmac"); 2190