1 /* 2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 3 * 4 * Copyright (C) 2008 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * 12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 13 * The only Atmel DMA Controller that is not covered by this driver is the one 14 * found on AT91SAM9263. 15 */ 16 17 #include <dt-bindings/dma/at91.h> 18 #include <linux/clk.h> 19 #include <linux/dmaengine.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dmapool.h> 22 #include <linux/interrupt.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/slab.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/of_dma.h> 29 30 #include "at_hdmac_regs.h" 31 #include "dmaengine.h" 32 33 /* 34 * Glossary 35 * -------- 36 * 37 * at_hdmac : Name of the ATmel AHB DMA Controller 38 * at_dma_ / atdma : ATmel DMA controller entity related 39 * atc_ / atchan : ATmel DMA Channel entity related 40 */ 41 42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) 43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ 44 |ATC_DIF(AT_DMA_MEM_IF)) 45 #define ATC_DMA_BUSWIDTHS\ 46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 50 51 #define ATC_MAX_DSCR_TRIALS 10 52 53 /* 54 * Initial number of descriptors to allocate for each channel. This could 55 * be increased during dma usage. 56 */ 57 static unsigned int init_nr_desc_per_channel = 64; 58 module_param(init_nr_desc_per_channel, uint, 0644); 59 MODULE_PARM_DESC(init_nr_desc_per_channel, 60 "initial descriptors per channel (default: 64)"); 61 62 63 /* prototypes */ 64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); 65 static void atc_issue_pending(struct dma_chan *chan); 66 67 68 /*----------------------------------------------------------------------*/ 69 70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 71 size_t len) 72 { 73 unsigned int width; 74 75 if (!((src | dst | len) & 3)) 76 width = 2; 77 else if (!((src | dst | len) & 1)) 78 width = 1; 79 else 80 width = 0; 81 82 return width; 83 } 84 85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan) 86 { 87 return list_first_entry(&atchan->active_list, 88 struct at_desc, desc_node); 89 } 90 91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) 92 { 93 return list_first_entry(&atchan->queue, 94 struct at_desc, desc_node); 95 } 96 97 /** 98 * atc_alloc_descriptor - allocate and return an initialized descriptor 99 * @chan: the channel to allocate descriptors for 100 * @gfp_flags: GFP allocation flags 101 * 102 * Note: The ack-bit is positioned in the descriptor flag at creation time 103 * to make initial allocation more convenient. This bit will be cleared 104 * and control will be given to client at usage time (during 105 * preparation functions). 106 */ 107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, 108 gfp_t gfp_flags) 109 { 110 struct at_desc *desc = NULL; 111 struct at_dma *atdma = to_at_dma(chan->device); 112 dma_addr_t phys; 113 114 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys); 115 if (desc) { 116 INIT_LIST_HEAD(&desc->tx_list); 117 dma_async_tx_descriptor_init(&desc->txd, chan); 118 /* txd.flags will be overwritten in prep functions */ 119 desc->txd.flags = DMA_CTRL_ACK; 120 desc->txd.tx_submit = atc_tx_submit; 121 desc->txd.phys = phys; 122 } 123 124 return desc; 125 } 126 127 /** 128 * atc_desc_get - get an unused descriptor from free_list 129 * @atchan: channel we want a new descriptor for 130 */ 131 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) 132 { 133 struct at_desc *desc, *_desc; 134 struct at_desc *ret = NULL; 135 unsigned long flags; 136 unsigned int i = 0; 137 LIST_HEAD(tmp_list); 138 139 spin_lock_irqsave(&atchan->lock, flags); 140 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 141 i++; 142 if (async_tx_test_ack(&desc->txd)) { 143 list_del(&desc->desc_node); 144 ret = desc; 145 break; 146 } 147 dev_dbg(chan2dev(&atchan->chan_common), 148 "desc %p not ACKed\n", desc); 149 } 150 spin_unlock_irqrestore(&atchan->lock, flags); 151 dev_vdbg(chan2dev(&atchan->chan_common), 152 "scanned %u descriptors on freelist\n", i); 153 154 /* no more descriptor available in initial pool: create one more */ 155 if (!ret) { 156 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC); 157 if (ret) { 158 spin_lock_irqsave(&atchan->lock, flags); 159 atchan->descs_allocated++; 160 spin_unlock_irqrestore(&atchan->lock, flags); 161 } else { 162 dev_err(chan2dev(&atchan->chan_common), 163 "not enough descriptors available\n"); 164 } 165 } 166 167 return ret; 168 } 169 170 /** 171 * atc_desc_put - move a descriptor, including any children, to the free list 172 * @atchan: channel we work on 173 * @desc: descriptor, at the head of a chain, to move to free list 174 */ 175 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) 176 { 177 if (desc) { 178 struct at_desc *child; 179 unsigned long flags; 180 181 spin_lock_irqsave(&atchan->lock, flags); 182 list_for_each_entry(child, &desc->tx_list, desc_node) 183 dev_vdbg(chan2dev(&atchan->chan_common), 184 "moving child desc %p to freelist\n", 185 child); 186 list_splice_init(&desc->tx_list, &atchan->free_list); 187 dev_vdbg(chan2dev(&atchan->chan_common), 188 "moving desc %p to freelist\n", desc); 189 list_add(&desc->desc_node, &atchan->free_list); 190 spin_unlock_irqrestore(&atchan->lock, flags); 191 } 192 } 193 194 /** 195 * atc_desc_chain - build chain adding a descriptor 196 * @first: address of first descriptor of the chain 197 * @prev: address of previous descriptor of the chain 198 * @desc: descriptor to queue 199 * 200 * Called from prep_* functions 201 */ 202 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, 203 struct at_desc *desc) 204 { 205 if (!(*first)) { 206 *first = desc; 207 } else { 208 /* inform the HW lli about chaining */ 209 (*prev)->lli.dscr = desc->txd.phys; 210 /* insert the link descriptor to the LD ring */ 211 list_add_tail(&desc->desc_node, 212 &(*first)->tx_list); 213 } 214 *prev = desc; 215 } 216 217 /** 218 * atc_dostart - starts the DMA engine for real 219 * @atchan: the channel we want to start 220 * @first: first descriptor in the list we want to begin with 221 * 222 * Called with atchan->lock held and bh disabled 223 */ 224 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) 225 { 226 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 227 228 /* ASSERT: channel is idle */ 229 if (atc_chan_is_enabled(atchan)) { 230 dev_err(chan2dev(&atchan->chan_common), 231 "BUG: Attempted to start non-idle channel\n"); 232 dev_err(chan2dev(&atchan->chan_common), 233 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", 234 channel_readl(atchan, SADDR), 235 channel_readl(atchan, DADDR), 236 channel_readl(atchan, CTRLA), 237 channel_readl(atchan, CTRLB), 238 channel_readl(atchan, DSCR)); 239 240 /* The tasklet will hopefully advance the queue... */ 241 return; 242 } 243 244 vdbg_dump_regs(atchan); 245 246 channel_writel(atchan, SADDR, 0); 247 channel_writel(atchan, DADDR, 0); 248 channel_writel(atchan, CTRLA, 0); 249 channel_writel(atchan, CTRLB, 0); 250 channel_writel(atchan, DSCR, first->txd.phys); 251 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | 252 ATC_SPIP_BOUNDARY(first->boundary)); 253 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | 254 ATC_DPIP_BOUNDARY(first->boundary)); 255 dma_writel(atdma, CHER, atchan->mask); 256 257 vdbg_dump_regs(atchan); 258 } 259 260 /* 261 * atc_get_desc_by_cookie - get the descriptor of a cookie 262 * @atchan: the DMA channel 263 * @cookie: the cookie to get the descriptor for 264 */ 265 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, 266 dma_cookie_t cookie) 267 { 268 struct at_desc *desc, *_desc; 269 270 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { 271 if (desc->txd.cookie == cookie) 272 return desc; 273 } 274 275 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { 276 if (desc->txd.cookie == cookie) 277 return desc; 278 } 279 280 return NULL; 281 } 282 283 /** 284 * atc_calc_bytes_left - calculates the number of bytes left according to the 285 * value read from CTRLA. 286 * 287 * @current_len: the number of bytes left before reading CTRLA 288 * @ctrla: the value of CTRLA 289 */ 290 static inline int atc_calc_bytes_left(int current_len, u32 ctrla) 291 { 292 u32 btsize = (ctrla & ATC_BTSIZE_MAX); 293 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); 294 295 /* 296 * According to the datasheet, when reading the Control A Register 297 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 298 * number of transfers completed on the Source Interface. 299 * So btsize is always a number of source width transfers. 300 */ 301 return current_len - (btsize << src_width); 302 } 303 304 /** 305 * atc_get_bytes_left - get the number of bytes residue for a cookie 306 * @chan: DMA channel 307 * @cookie: transaction identifier to check status of 308 */ 309 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) 310 { 311 struct at_dma_chan *atchan = to_at_dma_chan(chan); 312 struct at_desc *desc_first = atc_first_active(atchan); 313 struct at_desc *desc; 314 int ret; 315 u32 ctrla, dscr, trials; 316 317 /* 318 * If the cookie doesn't match to the currently running transfer then 319 * we can return the total length of the associated DMA transfer, 320 * because it is still queued. 321 */ 322 desc = atc_get_desc_by_cookie(atchan, cookie); 323 if (desc == NULL) 324 return -EINVAL; 325 else if (desc != desc_first) 326 return desc->total_len; 327 328 /* cookie matches to the currently running transfer */ 329 ret = desc_first->total_len; 330 331 if (desc_first->lli.dscr) { 332 /* hardware linked list transfer */ 333 334 /* 335 * Calculate the residue by removing the length of the child 336 * descriptors already transferred from the total length. 337 * To get the current child descriptor we can use the value of 338 * the channel's DSCR register and compare it against the value 339 * of the hardware linked list structure of each child 340 * descriptor. 341 * 342 * The CTRLA register provides us with the amount of data 343 * already read from the source for the current child 344 * descriptor. So we can compute a more accurate residue by also 345 * removing the number of bytes corresponding to this amount of 346 * data. 347 * 348 * However, the DSCR and CTRLA registers cannot be read both 349 * atomically. Hence a race condition may occur: the first read 350 * register may refer to one child descriptor whereas the second 351 * read may refer to a later child descriptor in the list 352 * because of the DMA transfer progression inbetween the two 353 * reads. 354 * 355 * One solution could have been to pause the DMA transfer, read 356 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless, 357 * this approach presents some drawbacks: 358 * - If the DMA transfer is paused, RX overruns or TX underruns 359 * are more likey to occur depending on the system latency. 360 * Taking the USART driver as an example, it uses a cyclic DMA 361 * transfer to read data from the Receive Holding Register 362 * (RHR) to avoid RX overruns since the RHR is not protected 363 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer 364 * to compute the residue would break the USART driver design. 365 * - The atc_pause() function masks interrupts but we'd rather 366 * avoid to do so for system latency purpose. 367 * 368 * Then we'd rather use another solution: the DSCR is read a 369 * first time, the CTRLA is read in turn, next the DSCR is read 370 * a second time. If the two consecutive read values of the DSCR 371 * are the same then we assume both refers to the very same 372 * child descriptor as well as the CTRLA value read inbetween 373 * does. For cyclic tranfers, the assumption is that a full loop 374 * is "not so fast". 375 * If the two DSCR values are different, we read again the CTRLA 376 * then the DSCR till two consecutive read values from DSCR are 377 * equal or till the maxium trials is reach. 378 * This algorithm is very unlikely not to find a stable value for 379 * DSCR. 380 */ 381 382 dscr = channel_readl(atchan, DSCR); 383 rmb(); /* ensure DSCR is read before CTRLA */ 384 ctrla = channel_readl(atchan, CTRLA); 385 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) { 386 u32 new_dscr; 387 388 rmb(); /* ensure DSCR is read after CTRLA */ 389 new_dscr = channel_readl(atchan, DSCR); 390 391 /* 392 * If the DSCR register value has not changed inside the 393 * DMA controller since the previous read, we assume 394 * that both the dscr and ctrla values refers to the 395 * very same descriptor. 396 */ 397 if (likely(new_dscr == dscr)) 398 break; 399 400 /* 401 * DSCR has changed inside the DMA controller, so the 402 * previouly read value of CTRLA may refer to an already 403 * processed descriptor hence could be outdated. 404 * We need to update ctrla to match the current 405 * descriptor. 406 */ 407 dscr = new_dscr; 408 rmb(); /* ensure DSCR is read before CTRLA */ 409 ctrla = channel_readl(atchan, CTRLA); 410 } 411 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS)) 412 return -ETIMEDOUT; 413 414 /* for the first descriptor we can be more accurate */ 415 if (desc_first->lli.dscr == dscr) 416 return atc_calc_bytes_left(ret, ctrla); 417 418 ret -= desc_first->len; 419 list_for_each_entry(desc, &desc_first->tx_list, desc_node) { 420 if (desc->lli.dscr == dscr) 421 break; 422 423 ret -= desc->len; 424 } 425 426 /* 427 * For the current descriptor in the chain we can calculate 428 * the remaining bytes using the channel's register. 429 */ 430 ret = atc_calc_bytes_left(ret, ctrla); 431 } else { 432 /* single transfer */ 433 ctrla = channel_readl(atchan, CTRLA); 434 ret = atc_calc_bytes_left(ret, ctrla); 435 } 436 437 return ret; 438 } 439 440 /** 441 * atc_chain_complete - finish work for one transaction chain 442 * @atchan: channel we work on 443 * @desc: descriptor at the head of the chain we want do complete 444 * 445 * Called with atchan->lock held and bh disabled */ 446 static void 447 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) 448 { 449 struct dma_async_tx_descriptor *txd = &desc->txd; 450 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 451 452 dev_vdbg(chan2dev(&atchan->chan_common), 453 "descriptor %u complete\n", txd->cookie); 454 455 /* mark the descriptor as complete for non cyclic cases only */ 456 if (!atc_chan_is_cyclic(atchan)) 457 dma_cookie_complete(txd); 458 459 /* If the transfer was a memset, free our temporary buffer */ 460 if (desc->memset_buffer) { 461 dma_pool_free(atdma->memset_pool, desc->memset_vaddr, 462 desc->memset_paddr); 463 desc->memset_buffer = false; 464 } 465 466 /* move children to free_list */ 467 list_splice_init(&desc->tx_list, &atchan->free_list); 468 /* move myself to free_list */ 469 list_move(&desc->desc_node, &atchan->free_list); 470 471 dma_descriptor_unmap(txd); 472 /* for cyclic transfers, 473 * no need to replay callback function while stopping */ 474 if (!atc_chan_is_cyclic(atchan)) { 475 /* 476 * The API requires that no submissions are done from a 477 * callback, so we don't need to drop the lock here 478 */ 479 dmaengine_desc_get_callback_invoke(txd, NULL); 480 } 481 482 dma_run_dependencies(txd); 483 } 484 485 /** 486 * atc_complete_all - finish work for all transactions 487 * @atchan: channel to complete transactions for 488 * 489 * Eventually submit queued descriptors if any 490 * 491 * Assume channel is idle while calling this function 492 * Called with atchan->lock held and bh disabled 493 */ 494 static void atc_complete_all(struct at_dma_chan *atchan) 495 { 496 struct at_desc *desc, *_desc; 497 LIST_HEAD(list); 498 499 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n"); 500 501 /* 502 * Submit queued descriptors ASAP, i.e. before we go through 503 * the completed ones. 504 */ 505 if (!list_empty(&atchan->queue)) 506 atc_dostart(atchan, atc_first_queued(atchan)); 507 /* empty active_list now it is completed */ 508 list_splice_init(&atchan->active_list, &list); 509 /* empty queue list by moving descriptors (if any) to active_list */ 510 list_splice_init(&atchan->queue, &atchan->active_list); 511 512 list_for_each_entry_safe(desc, _desc, &list, desc_node) 513 atc_chain_complete(atchan, desc); 514 } 515 516 /** 517 * atc_advance_work - at the end of a transaction, move forward 518 * @atchan: channel where the transaction ended 519 * 520 * Called with atchan->lock held and bh disabled 521 */ 522 static void atc_advance_work(struct at_dma_chan *atchan) 523 { 524 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); 525 526 if (atc_chan_is_enabled(atchan)) 527 return; 528 529 if (list_empty(&atchan->active_list) || 530 list_is_singular(&atchan->active_list)) { 531 atc_complete_all(atchan); 532 } else { 533 atc_chain_complete(atchan, atc_first_active(atchan)); 534 /* advance work */ 535 atc_dostart(atchan, atc_first_active(atchan)); 536 } 537 } 538 539 540 /** 541 * atc_handle_error - handle errors reported by DMA controller 542 * @atchan: channel where error occurs 543 * 544 * Called with atchan->lock held and bh disabled 545 */ 546 static void atc_handle_error(struct at_dma_chan *atchan) 547 { 548 struct at_desc *bad_desc; 549 struct at_desc *child; 550 551 /* 552 * The descriptor currently at the head of the active list is 553 * broked. Since we don't have any way to report errors, we'll 554 * just have to scream loudly and try to carry on. 555 */ 556 bad_desc = atc_first_active(atchan); 557 list_del_init(&bad_desc->desc_node); 558 559 /* As we are stopped, take advantage to push queued descriptors 560 * in active_list */ 561 list_splice_init(&atchan->queue, atchan->active_list.prev); 562 563 /* Try to restart the controller */ 564 if (!list_empty(&atchan->active_list)) 565 atc_dostart(atchan, atc_first_active(atchan)); 566 567 /* 568 * KERN_CRITICAL may seem harsh, but since this only happens 569 * when someone submits a bad physical address in a 570 * descriptor, we should consider ourselves lucky that the 571 * controller flagged an error instead of scribbling over 572 * random memory locations. 573 */ 574 dev_crit(chan2dev(&atchan->chan_common), 575 "Bad descriptor submitted for DMA!\n"); 576 dev_crit(chan2dev(&atchan->chan_common), 577 " cookie: %d\n", bad_desc->txd.cookie); 578 atc_dump_lli(atchan, &bad_desc->lli); 579 list_for_each_entry(child, &bad_desc->tx_list, desc_node) 580 atc_dump_lli(atchan, &child->lli); 581 582 /* Pretend the descriptor completed successfully */ 583 atc_chain_complete(atchan, bad_desc); 584 } 585 586 /** 587 * atc_handle_cyclic - at the end of a period, run callback function 588 * @atchan: channel used for cyclic operations 589 * 590 * Called with atchan->lock held and bh disabled 591 */ 592 static void atc_handle_cyclic(struct at_dma_chan *atchan) 593 { 594 struct at_desc *first = atc_first_active(atchan); 595 struct dma_async_tx_descriptor *txd = &first->txd; 596 597 dev_vdbg(chan2dev(&atchan->chan_common), 598 "new cyclic period llp 0x%08x\n", 599 channel_readl(atchan, DSCR)); 600 601 dmaengine_desc_get_callback_invoke(txd, NULL); 602 } 603 604 /*-- IRQ & Tasklet ---------------------------------------------------*/ 605 606 static void atc_tasklet(unsigned long data) 607 { 608 struct at_dma_chan *atchan = (struct at_dma_chan *)data; 609 unsigned long flags; 610 611 spin_lock_irqsave(&atchan->lock, flags); 612 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) 613 atc_handle_error(atchan); 614 else if (atc_chan_is_cyclic(atchan)) 615 atc_handle_cyclic(atchan); 616 else 617 atc_advance_work(atchan); 618 619 spin_unlock_irqrestore(&atchan->lock, flags); 620 } 621 622 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 623 { 624 struct at_dma *atdma = (struct at_dma *)dev_id; 625 struct at_dma_chan *atchan; 626 int i; 627 u32 status, pending, imr; 628 int ret = IRQ_NONE; 629 630 do { 631 imr = dma_readl(atdma, EBCIMR); 632 status = dma_readl(atdma, EBCISR); 633 pending = status & imr; 634 635 if (!pending) 636 break; 637 638 dev_vdbg(atdma->dma_common.dev, 639 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 640 status, imr, pending); 641 642 for (i = 0; i < atdma->dma_common.chancnt; i++) { 643 atchan = &atdma->chan[i]; 644 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { 645 if (pending & AT_DMA_ERR(i)) { 646 /* Disable channel on AHB error */ 647 dma_writel(atdma, CHDR, 648 AT_DMA_RES(i) | atchan->mask); 649 /* Give information to tasklet */ 650 set_bit(ATC_IS_ERROR, &atchan->status); 651 } 652 tasklet_schedule(&atchan->tasklet); 653 ret = IRQ_HANDLED; 654 } 655 } 656 657 } while (pending); 658 659 return ret; 660 } 661 662 663 /*-- DMA Engine API --------------------------------------------------*/ 664 665 /** 666 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine 667 * @desc: descriptor at the head of the transaction chain 668 * 669 * Queue chain if DMA engine is working already 670 * 671 * Cookie increment and adding to active_list or queue must be atomic 672 */ 673 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) 674 { 675 struct at_desc *desc = txd_to_at_desc(tx); 676 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); 677 dma_cookie_t cookie; 678 unsigned long flags; 679 680 spin_lock_irqsave(&atchan->lock, flags); 681 cookie = dma_cookie_assign(tx); 682 683 if (list_empty(&atchan->active_list)) { 684 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", 685 desc->txd.cookie); 686 atc_dostart(atchan, desc); 687 list_add_tail(&desc->desc_node, &atchan->active_list); 688 } else { 689 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", 690 desc->txd.cookie); 691 list_add_tail(&desc->desc_node, &atchan->queue); 692 } 693 694 spin_unlock_irqrestore(&atchan->lock, flags); 695 696 return cookie; 697 } 698 699 /** 700 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 701 * @chan: the channel to prepare operation on 702 * @xt: Interleaved transfer template 703 * @flags: tx descriptor status flags 704 */ 705 static struct dma_async_tx_descriptor * 706 atc_prep_dma_interleaved(struct dma_chan *chan, 707 struct dma_interleaved_template *xt, 708 unsigned long flags) 709 { 710 struct at_dma_chan *atchan = to_at_dma_chan(chan); 711 struct data_chunk *first; 712 struct at_desc *desc = NULL; 713 size_t xfer_count; 714 unsigned int dwidth; 715 u32 ctrla; 716 u32 ctrlb; 717 size_t len = 0; 718 int i; 719 720 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 721 return NULL; 722 723 first = xt->sgl; 724 725 dev_info(chan2dev(chan), 726 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", 727 __func__, &xt->src_start, &xt->dst_start, xt->numf, 728 xt->frame_size, flags); 729 730 /* 731 * The controller can only "skip" X bytes every Y bytes, so we 732 * need to make sure we are given a template that fit that 733 * description, ie a template with chunks that always have the 734 * same size, with the same ICGs. 735 */ 736 for (i = 0; i < xt->frame_size; i++) { 737 struct data_chunk *chunk = xt->sgl + i; 738 739 if ((chunk->size != xt->sgl->size) || 740 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 741 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 742 dev_err(chan2dev(chan), 743 "%s: the controller can transfer only identical chunks\n", 744 __func__); 745 return NULL; 746 } 747 748 len += chunk->size; 749 } 750 751 dwidth = atc_get_xfer_width(xt->src_start, 752 xt->dst_start, len); 753 754 xfer_count = len >> dwidth; 755 if (xfer_count > ATC_BTSIZE_MAX) { 756 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 757 return NULL; 758 } 759 760 ctrla = ATC_SRC_WIDTH(dwidth) | 761 ATC_DST_WIDTH(dwidth); 762 763 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 764 | ATC_SRC_ADDR_MODE_INCR 765 | ATC_DST_ADDR_MODE_INCR 766 | ATC_SRC_PIP 767 | ATC_DST_PIP 768 | ATC_FC_MEM2MEM; 769 770 /* create the transfer */ 771 desc = atc_desc_get(atchan); 772 if (!desc) { 773 dev_err(chan2dev(chan), 774 "%s: couldn't allocate our descriptor\n", __func__); 775 return NULL; 776 } 777 778 desc->lli.saddr = xt->src_start; 779 desc->lli.daddr = xt->dst_start; 780 desc->lli.ctrla = ctrla | xfer_count; 781 desc->lli.ctrlb = ctrlb; 782 783 desc->boundary = first->size >> dwidth; 784 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 785 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 786 787 desc->txd.cookie = -EBUSY; 788 desc->total_len = desc->len = len; 789 790 /* set end-of-link to the last link descriptor of list*/ 791 set_desc_eol(desc); 792 793 desc->txd.flags = flags; /* client is in control of this ack */ 794 795 return &desc->txd; 796 } 797 798 /** 799 * atc_prep_dma_memcpy - prepare a memcpy operation 800 * @chan: the channel to prepare operation on 801 * @dest: operation virtual destination address 802 * @src: operation virtual source address 803 * @len: operation length 804 * @flags: tx descriptor status flags 805 */ 806 static struct dma_async_tx_descriptor * 807 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 808 size_t len, unsigned long flags) 809 { 810 struct at_dma_chan *atchan = to_at_dma_chan(chan); 811 struct at_desc *desc = NULL; 812 struct at_desc *first = NULL; 813 struct at_desc *prev = NULL; 814 size_t xfer_count; 815 size_t offset; 816 unsigned int src_width; 817 unsigned int dst_width; 818 u32 ctrla; 819 u32 ctrlb; 820 821 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n", 822 &dest, &src, len, flags); 823 824 if (unlikely(!len)) { 825 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 826 return NULL; 827 } 828 829 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 830 | ATC_SRC_ADDR_MODE_INCR 831 | ATC_DST_ADDR_MODE_INCR 832 | ATC_FC_MEM2MEM; 833 834 /* 835 * We can be a lot more clever here, but this should take care 836 * of the most common optimization. 837 */ 838 src_width = dst_width = atc_get_xfer_width(src, dest, len); 839 840 ctrla = ATC_SRC_WIDTH(src_width) | 841 ATC_DST_WIDTH(dst_width); 842 843 for (offset = 0; offset < len; offset += xfer_count << src_width) { 844 xfer_count = min_t(size_t, (len - offset) >> src_width, 845 ATC_BTSIZE_MAX); 846 847 desc = atc_desc_get(atchan); 848 if (!desc) 849 goto err_desc_get; 850 851 desc->lli.saddr = src + offset; 852 desc->lli.daddr = dest + offset; 853 desc->lli.ctrla = ctrla | xfer_count; 854 desc->lli.ctrlb = ctrlb; 855 856 desc->txd.cookie = 0; 857 desc->len = xfer_count << src_width; 858 859 atc_desc_chain(&first, &prev, desc); 860 } 861 862 /* First descriptor of the chain embedds additional information */ 863 first->txd.cookie = -EBUSY; 864 first->total_len = len; 865 866 /* set end-of-link to the last link descriptor of list*/ 867 set_desc_eol(desc); 868 869 first->txd.flags = flags; /* client is in control of this ack */ 870 871 return &first->txd; 872 873 err_desc_get: 874 atc_desc_put(atchan, first); 875 return NULL; 876 } 877 878 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan, 879 dma_addr_t psrc, 880 dma_addr_t pdst, 881 size_t len) 882 { 883 struct at_dma_chan *atchan = to_at_dma_chan(chan); 884 struct at_desc *desc; 885 size_t xfer_count; 886 887 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2); 888 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 889 ATC_SRC_ADDR_MODE_FIXED | 890 ATC_DST_ADDR_MODE_INCR | 891 ATC_FC_MEM2MEM; 892 893 xfer_count = len >> 2; 894 if (xfer_count > ATC_BTSIZE_MAX) { 895 dev_err(chan2dev(chan), "%s: buffer is too big\n", 896 __func__); 897 return NULL; 898 } 899 900 desc = atc_desc_get(atchan); 901 if (!desc) { 902 dev_err(chan2dev(chan), "%s: can't get a descriptor\n", 903 __func__); 904 return NULL; 905 } 906 907 desc->lli.saddr = psrc; 908 desc->lli.daddr = pdst; 909 desc->lli.ctrla = ctrla | xfer_count; 910 desc->lli.ctrlb = ctrlb; 911 912 desc->txd.cookie = 0; 913 desc->len = len; 914 915 return desc; 916 } 917 918 /** 919 * atc_prep_dma_memset - prepare a memcpy operation 920 * @chan: the channel to prepare operation on 921 * @dest: operation virtual destination address 922 * @value: value to set memory buffer to 923 * @len: operation length 924 * @flags: tx descriptor status flags 925 */ 926 static struct dma_async_tx_descriptor * 927 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 928 size_t len, unsigned long flags) 929 { 930 struct at_dma *atdma = to_at_dma(chan->device); 931 struct at_desc *desc; 932 void __iomem *vaddr; 933 dma_addr_t paddr; 934 935 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__, 936 &dest, value, len, flags); 937 938 if (unlikely(!len)) { 939 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); 940 return NULL; 941 } 942 943 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 944 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", 945 __func__); 946 return NULL; 947 } 948 949 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 950 if (!vaddr) { 951 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 952 __func__); 953 return NULL; 954 } 955 *(u32*)vaddr = value; 956 957 desc = atc_create_memset_desc(chan, paddr, dest, len); 958 if (!desc) { 959 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n", 960 __func__); 961 goto err_free_buffer; 962 } 963 964 desc->memset_paddr = paddr; 965 desc->memset_vaddr = vaddr; 966 desc->memset_buffer = true; 967 968 desc->txd.cookie = -EBUSY; 969 desc->total_len = len; 970 971 /* set end-of-link on the descriptor */ 972 set_desc_eol(desc); 973 974 desc->txd.flags = flags; 975 976 return &desc->txd; 977 978 err_free_buffer: 979 dma_pool_free(atdma->memset_pool, vaddr, paddr); 980 return NULL; 981 } 982 983 static struct dma_async_tx_descriptor * 984 atc_prep_dma_memset_sg(struct dma_chan *chan, 985 struct scatterlist *sgl, 986 unsigned int sg_len, int value, 987 unsigned long flags) 988 { 989 struct at_dma_chan *atchan = to_at_dma_chan(chan); 990 struct at_dma *atdma = to_at_dma(chan->device); 991 struct at_desc *desc = NULL, *first = NULL, *prev = NULL; 992 struct scatterlist *sg; 993 void __iomem *vaddr; 994 dma_addr_t paddr; 995 size_t total_len = 0; 996 int i; 997 998 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, 999 value, sg_len, flags); 1000 1001 if (unlikely(!sgl || !sg_len)) { 1002 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", 1003 __func__); 1004 return NULL; 1005 } 1006 1007 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 1008 if (!vaddr) { 1009 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 1010 __func__); 1011 return NULL; 1012 } 1013 *(u32*)vaddr = value; 1014 1015 for_each_sg(sgl, sg, sg_len, i) { 1016 dma_addr_t dest = sg_dma_address(sg); 1017 size_t len = sg_dma_len(sg); 1018 1019 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n", 1020 __func__, &dest, len); 1021 1022 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1023 dev_err(chan2dev(chan), "%s: buffer is not aligned\n", 1024 __func__); 1025 goto err_put_desc; 1026 } 1027 1028 desc = atc_create_memset_desc(chan, paddr, dest, len); 1029 if (!desc) 1030 goto err_put_desc; 1031 1032 atc_desc_chain(&first, &prev, desc); 1033 1034 total_len += len; 1035 } 1036 1037 /* 1038 * Only set the buffer pointers on the last descriptor to 1039 * avoid free'ing while we have our transfer still going 1040 */ 1041 desc->memset_paddr = paddr; 1042 desc->memset_vaddr = vaddr; 1043 desc->memset_buffer = true; 1044 1045 first->txd.cookie = -EBUSY; 1046 first->total_len = total_len; 1047 1048 /* set end-of-link on the descriptor */ 1049 set_desc_eol(desc); 1050 1051 first->txd.flags = flags; 1052 1053 return &first->txd; 1054 1055 err_put_desc: 1056 atc_desc_put(atchan, first); 1057 return NULL; 1058 } 1059 1060 /** 1061 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 1062 * @chan: DMA channel 1063 * @sgl: scatterlist to transfer to/from 1064 * @sg_len: number of entries in @scatterlist 1065 * @direction: DMA direction 1066 * @flags: tx descriptor status flags 1067 * @context: transaction context (ignored) 1068 */ 1069 static struct dma_async_tx_descriptor * 1070 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1071 unsigned int sg_len, enum dma_transfer_direction direction, 1072 unsigned long flags, void *context) 1073 { 1074 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1075 struct at_dma_slave *atslave = chan->private; 1076 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1077 struct at_desc *first = NULL; 1078 struct at_desc *prev = NULL; 1079 u32 ctrla; 1080 u32 ctrlb; 1081 dma_addr_t reg; 1082 unsigned int reg_width; 1083 unsigned int mem_width; 1084 unsigned int i; 1085 struct scatterlist *sg; 1086 size_t total_len = 0; 1087 1088 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 1089 sg_len, 1090 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1091 flags); 1092 1093 if (unlikely(!atslave || !sg_len)) { 1094 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 1095 return NULL; 1096 } 1097 1098 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1099 | ATC_DCSIZE(sconfig->dst_maxburst); 1100 ctrlb = ATC_IEN; 1101 1102 switch (direction) { 1103 case DMA_MEM_TO_DEV: 1104 reg_width = convert_buswidth(sconfig->dst_addr_width); 1105 ctrla |= ATC_DST_WIDTH(reg_width); 1106 ctrlb |= ATC_DST_ADDR_MODE_FIXED 1107 | ATC_SRC_ADDR_MODE_INCR 1108 | ATC_FC_MEM2PER 1109 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); 1110 reg = sconfig->dst_addr; 1111 for_each_sg(sgl, sg, sg_len, i) { 1112 struct at_desc *desc; 1113 u32 len; 1114 u32 mem; 1115 1116 desc = atc_desc_get(atchan); 1117 if (!desc) 1118 goto err_desc_get; 1119 1120 mem = sg_dma_address(sg); 1121 len = sg_dma_len(sg); 1122 if (unlikely(!len)) { 1123 dev_dbg(chan2dev(chan), 1124 "prep_slave_sg: sg(%d) data length is zero\n", i); 1125 goto err; 1126 } 1127 mem_width = 2; 1128 if (unlikely(mem & 3 || len & 3)) 1129 mem_width = 0; 1130 1131 desc->lli.saddr = mem; 1132 desc->lli.daddr = reg; 1133 desc->lli.ctrla = ctrla 1134 | ATC_SRC_WIDTH(mem_width) 1135 | len >> mem_width; 1136 desc->lli.ctrlb = ctrlb; 1137 desc->len = len; 1138 1139 atc_desc_chain(&first, &prev, desc); 1140 total_len += len; 1141 } 1142 break; 1143 case DMA_DEV_TO_MEM: 1144 reg_width = convert_buswidth(sconfig->src_addr_width); 1145 ctrla |= ATC_SRC_WIDTH(reg_width); 1146 ctrlb |= ATC_DST_ADDR_MODE_INCR 1147 | ATC_SRC_ADDR_MODE_FIXED 1148 | ATC_FC_PER2MEM 1149 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); 1150 1151 reg = sconfig->src_addr; 1152 for_each_sg(sgl, sg, sg_len, i) { 1153 struct at_desc *desc; 1154 u32 len; 1155 u32 mem; 1156 1157 desc = atc_desc_get(atchan); 1158 if (!desc) 1159 goto err_desc_get; 1160 1161 mem = sg_dma_address(sg); 1162 len = sg_dma_len(sg); 1163 if (unlikely(!len)) { 1164 dev_dbg(chan2dev(chan), 1165 "prep_slave_sg: sg(%d) data length is zero\n", i); 1166 goto err; 1167 } 1168 mem_width = 2; 1169 if (unlikely(mem & 3 || len & 3)) 1170 mem_width = 0; 1171 1172 desc->lli.saddr = reg; 1173 desc->lli.daddr = mem; 1174 desc->lli.ctrla = ctrla 1175 | ATC_DST_WIDTH(mem_width) 1176 | len >> reg_width; 1177 desc->lli.ctrlb = ctrlb; 1178 desc->len = len; 1179 1180 atc_desc_chain(&first, &prev, desc); 1181 total_len += len; 1182 } 1183 break; 1184 default: 1185 return NULL; 1186 } 1187 1188 /* set end-of-link to the last link descriptor of list*/ 1189 set_desc_eol(prev); 1190 1191 /* First descriptor of the chain embedds additional information */ 1192 first->txd.cookie = -EBUSY; 1193 first->total_len = total_len; 1194 1195 /* first link descriptor of list is responsible of flags */ 1196 first->txd.flags = flags; /* client is in control of this ack */ 1197 1198 return &first->txd; 1199 1200 err_desc_get: 1201 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1202 err: 1203 atc_desc_put(atchan, first); 1204 return NULL; 1205 } 1206 1207 /** 1208 * atc_dma_cyclic_check_values 1209 * Check for too big/unaligned periods and unaligned DMA buffer 1210 */ 1211 static int 1212 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1213 size_t period_len) 1214 { 1215 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1216 goto err_out; 1217 if (unlikely(period_len & ((1 << reg_width) - 1))) 1218 goto err_out; 1219 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1220 goto err_out; 1221 1222 return 0; 1223 1224 err_out: 1225 return -EINVAL; 1226 } 1227 1228 /** 1229 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1230 */ 1231 static int 1232 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1233 unsigned int period_index, dma_addr_t buf_addr, 1234 unsigned int reg_width, size_t period_len, 1235 enum dma_transfer_direction direction) 1236 { 1237 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1238 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1239 u32 ctrla; 1240 1241 /* prepare common CRTLA value */ 1242 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1243 | ATC_DCSIZE(sconfig->dst_maxburst) 1244 | ATC_DST_WIDTH(reg_width) 1245 | ATC_SRC_WIDTH(reg_width) 1246 | period_len >> reg_width; 1247 1248 switch (direction) { 1249 case DMA_MEM_TO_DEV: 1250 desc->lli.saddr = buf_addr + (period_len * period_index); 1251 desc->lli.daddr = sconfig->dst_addr; 1252 desc->lli.ctrla = ctrla; 1253 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED 1254 | ATC_SRC_ADDR_MODE_INCR 1255 | ATC_FC_MEM2PER 1256 | ATC_SIF(atchan->mem_if) 1257 | ATC_DIF(atchan->per_if); 1258 desc->len = period_len; 1259 break; 1260 1261 case DMA_DEV_TO_MEM: 1262 desc->lli.saddr = sconfig->src_addr; 1263 desc->lli.daddr = buf_addr + (period_len * period_index); 1264 desc->lli.ctrla = ctrla; 1265 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR 1266 | ATC_SRC_ADDR_MODE_FIXED 1267 | ATC_FC_PER2MEM 1268 | ATC_SIF(atchan->per_if) 1269 | ATC_DIF(atchan->mem_if); 1270 desc->len = period_len; 1271 break; 1272 1273 default: 1274 return -EINVAL; 1275 } 1276 1277 return 0; 1278 } 1279 1280 /** 1281 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1282 * @chan: the DMA channel to prepare 1283 * @buf_addr: physical DMA address where the buffer starts 1284 * @buf_len: total number of bytes for the entire buffer 1285 * @period_len: number of bytes for each period 1286 * @direction: transfer direction, to or from device 1287 * @flags: tx descriptor status flags 1288 */ 1289 static struct dma_async_tx_descriptor * 1290 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1291 size_t period_len, enum dma_transfer_direction direction, 1292 unsigned long flags) 1293 { 1294 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1295 struct at_dma_slave *atslave = chan->private; 1296 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1297 struct at_desc *first = NULL; 1298 struct at_desc *prev = NULL; 1299 unsigned long was_cyclic; 1300 unsigned int reg_width; 1301 unsigned int periods = buf_len / period_len; 1302 unsigned int i; 1303 1304 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n", 1305 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1306 &buf_addr, 1307 periods, buf_len, period_len); 1308 1309 if (unlikely(!atslave || !buf_len || !period_len)) { 1310 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1311 return NULL; 1312 } 1313 1314 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1315 if (was_cyclic) { 1316 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1317 return NULL; 1318 } 1319 1320 if (unlikely(!is_slave_direction(direction))) 1321 goto err_out; 1322 1323 if (direction == DMA_MEM_TO_DEV) 1324 reg_width = convert_buswidth(sconfig->dst_addr_width); 1325 else 1326 reg_width = convert_buswidth(sconfig->src_addr_width); 1327 1328 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1329 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1330 goto err_out; 1331 1332 /* build cyclic linked list */ 1333 for (i = 0; i < periods; i++) { 1334 struct at_desc *desc; 1335 1336 desc = atc_desc_get(atchan); 1337 if (!desc) 1338 goto err_desc_get; 1339 1340 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1341 reg_width, period_len, direction)) 1342 goto err_desc_get; 1343 1344 atc_desc_chain(&first, &prev, desc); 1345 } 1346 1347 /* lets make a cyclic list */ 1348 prev->lli.dscr = first->txd.phys; 1349 1350 /* First descriptor of the chain embedds additional information */ 1351 first->txd.cookie = -EBUSY; 1352 first->total_len = buf_len; 1353 1354 return &first->txd; 1355 1356 err_desc_get: 1357 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1358 atc_desc_put(atchan, first); 1359 err_out: 1360 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1361 return NULL; 1362 } 1363 1364 static int atc_config(struct dma_chan *chan, 1365 struct dma_slave_config *sconfig) 1366 { 1367 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1368 1369 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1370 1371 /* Check if it is chan is configured for slave transfers */ 1372 if (!chan->private) 1373 return -EINVAL; 1374 1375 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1376 1377 convert_burst(&atchan->dma_sconfig.src_maxburst); 1378 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1379 1380 return 0; 1381 } 1382 1383 static int atc_pause(struct dma_chan *chan) 1384 { 1385 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1386 struct at_dma *atdma = to_at_dma(chan->device); 1387 int chan_id = atchan->chan_common.chan_id; 1388 unsigned long flags; 1389 1390 LIST_HEAD(list); 1391 1392 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1393 1394 spin_lock_irqsave(&atchan->lock, flags); 1395 1396 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1397 set_bit(ATC_IS_PAUSED, &atchan->status); 1398 1399 spin_unlock_irqrestore(&atchan->lock, flags); 1400 1401 return 0; 1402 } 1403 1404 static int atc_resume(struct dma_chan *chan) 1405 { 1406 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1407 struct at_dma *atdma = to_at_dma(chan->device); 1408 int chan_id = atchan->chan_common.chan_id; 1409 unsigned long flags; 1410 1411 LIST_HEAD(list); 1412 1413 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1414 1415 if (!atc_chan_is_paused(atchan)) 1416 return 0; 1417 1418 spin_lock_irqsave(&atchan->lock, flags); 1419 1420 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1421 clear_bit(ATC_IS_PAUSED, &atchan->status); 1422 1423 spin_unlock_irqrestore(&atchan->lock, flags); 1424 1425 return 0; 1426 } 1427 1428 static int atc_terminate_all(struct dma_chan *chan) 1429 { 1430 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1431 struct at_dma *atdma = to_at_dma(chan->device); 1432 int chan_id = atchan->chan_common.chan_id; 1433 struct at_desc *desc, *_desc; 1434 unsigned long flags; 1435 1436 LIST_HEAD(list); 1437 1438 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1439 1440 /* 1441 * This is only called when something went wrong elsewhere, so 1442 * we don't really care about the data. Just disable the 1443 * channel. We still have to poll the channel enable bit due 1444 * to AHB/HSB limitations. 1445 */ 1446 spin_lock_irqsave(&atchan->lock, flags); 1447 1448 /* disabling channel: must also remove suspend state */ 1449 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1450 1451 /* confirm that this channel is disabled */ 1452 while (dma_readl(atdma, CHSR) & atchan->mask) 1453 cpu_relax(); 1454 1455 /* active_list entries will end up before queued entries */ 1456 list_splice_init(&atchan->queue, &list); 1457 list_splice_init(&atchan->active_list, &list); 1458 1459 /* Flush all pending and queued descriptors */ 1460 list_for_each_entry_safe(desc, _desc, &list, desc_node) 1461 atc_chain_complete(atchan, desc); 1462 1463 clear_bit(ATC_IS_PAUSED, &atchan->status); 1464 /* if channel dedicated to cyclic operations, free it */ 1465 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1466 1467 spin_unlock_irqrestore(&atchan->lock, flags); 1468 1469 return 0; 1470 } 1471 1472 /** 1473 * atc_tx_status - poll for transaction completion 1474 * @chan: DMA channel 1475 * @cookie: transaction identifier to check status of 1476 * @txstate: if not %NULL updated with transaction state 1477 * 1478 * If @txstate is passed in, upon return it reflect the driver 1479 * internal state and can be used with dma_async_is_complete() to check 1480 * the status of multiple cookies without re-checking hardware state. 1481 */ 1482 static enum dma_status 1483 atc_tx_status(struct dma_chan *chan, 1484 dma_cookie_t cookie, 1485 struct dma_tx_state *txstate) 1486 { 1487 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1488 unsigned long flags; 1489 enum dma_status ret; 1490 int bytes = 0; 1491 1492 ret = dma_cookie_status(chan, cookie, txstate); 1493 if (ret == DMA_COMPLETE) 1494 return ret; 1495 /* 1496 * There's no point calculating the residue if there's 1497 * no txstate to store the value. 1498 */ 1499 if (!txstate) 1500 return DMA_ERROR; 1501 1502 spin_lock_irqsave(&atchan->lock, flags); 1503 1504 /* Get number of bytes left in the active transactions */ 1505 bytes = atc_get_bytes_left(chan, cookie); 1506 1507 spin_unlock_irqrestore(&atchan->lock, flags); 1508 1509 if (unlikely(bytes < 0)) { 1510 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1511 return DMA_ERROR; 1512 } else { 1513 dma_set_residue(txstate, bytes); 1514 } 1515 1516 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", 1517 ret, cookie, bytes); 1518 1519 return ret; 1520 } 1521 1522 /** 1523 * atc_issue_pending - try to finish work 1524 * @chan: target DMA channel 1525 */ 1526 static void atc_issue_pending(struct dma_chan *chan) 1527 { 1528 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1529 unsigned long flags; 1530 1531 dev_vdbg(chan2dev(chan), "issue_pending\n"); 1532 1533 /* Not needed for cyclic transfers */ 1534 if (atc_chan_is_cyclic(atchan)) 1535 return; 1536 1537 spin_lock_irqsave(&atchan->lock, flags); 1538 atc_advance_work(atchan); 1539 spin_unlock_irqrestore(&atchan->lock, flags); 1540 } 1541 1542 /** 1543 * atc_alloc_chan_resources - allocate resources for DMA channel 1544 * @chan: allocate descriptor resources for this channel 1545 * @client: current client requesting the channel be ready for requests 1546 * 1547 * return - the number of allocated descriptors 1548 */ 1549 static int atc_alloc_chan_resources(struct dma_chan *chan) 1550 { 1551 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1552 struct at_dma *atdma = to_at_dma(chan->device); 1553 struct at_desc *desc; 1554 struct at_dma_slave *atslave; 1555 unsigned long flags; 1556 int i; 1557 u32 cfg; 1558 LIST_HEAD(tmp_list); 1559 1560 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1561 1562 /* ASSERT: channel is idle */ 1563 if (atc_chan_is_enabled(atchan)) { 1564 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1565 return -EIO; 1566 } 1567 1568 cfg = ATC_DEFAULT_CFG; 1569 1570 atslave = chan->private; 1571 if (atslave) { 1572 /* 1573 * We need controller-specific data to set up slave 1574 * transfers. 1575 */ 1576 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); 1577 1578 /* if cfg configuration specified take it instead of default */ 1579 if (atslave->cfg) 1580 cfg = atslave->cfg; 1581 } 1582 1583 /* have we already been set up? 1584 * reconfigure channel but no need to reallocate descriptors */ 1585 if (!list_empty(&atchan->free_list)) 1586 return atchan->descs_allocated; 1587 1588 /* Allocate initial pool of descriptors */ 1589 for (i = 0; i < init_nr_desc_per_channel; i++) { 1590 desc = atc_alloc_descriptor(chan, GFP_KERNEL); 1591 if (!desc) { 1592 dev_err(atdma->dma_common.dev, 1593 "Only %d initial descriptors\n", i); 1594 break; 1595 } 1596 list_add_tail(&desc->desc_node, &tmp_list); 1597 } 1598 1599 spin_lock_irqsave(&atchan->lock, flags); 1600 atchan->descs_allocated = i; 1601 list_splice(&tmp_list, &atchan->free_list); 1602 dma_cookie_init(chan); 1603 spin_unlock_irqrestore(&atchan->lock, flags); 1604 1605 /* channel parameters */ 1606 channel_writel(atchan, CFG, cfg); 1607 1608 dev_dbg(chan2dev(chan), 1609 "alloc_chan_resources: allocated %d descriptors\n", 1610 atchan->descs_allocated); 1611 1612 return atchan->descs_allocated; 1613 } 1614 1615 /** 1616 * atc_free_chan_resources - free all channel resources 1617 * @chan: DMA channel 1618 */ 1619 static void atc_free_chan_resources(struct dma_chan *chan) 1620 { 1621 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1622 struct at_dma *atdma = to_at_dma(chan->device); 1623 struct at_desc *desc, *_desc; 1624 LIST_HEAD(list); 1625 1626 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n", 1627 atchan->descs_allocated); 1628 1629 /* ASSERT: channel is idle */ 1630 BUG_ON(!list_empty(&atchan->active_list)); 1631 BUG_ON(!list_empty(&atchan->queue)); 1632 BUG_ON(atc_chan_is_enabled(atchan)); 1633 1634 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 1635 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); 1636 list_del(&desc->desc_node); 1637 /* free link descriptor */ 1638 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); 1639 } 1640 list_splice_init(&atchan->free_list, &list); 1641 atchan->descs_allocated = 0; 1642 atchan->status = 0; 1643 1644 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1645 } 1646 1647 #ifdef CONFIG_OF 1648 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1649 { 1650 struct at_dma_slave *atslave = slave; 1651 1652 if (atslave->dma_dev == chan->device->dev) { 1653 chan->private = atslave; 1654 return true; 1655 } else { 1656 return false; 1657 } 1658 } 1659 1660 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1661 struct of_dma *of_dma) 1662 { 1663 struct dma_chan *chan; 1664 struct at_dma_chan *atchan; 1665 struct at_dma_slave *atslave; 1666 dma_cap_mask_t mask; 1667 unsigned int per_id; 1668 struct platform_device *dmac_pdev; 1669 1670 if (dma_spec->args_count != 2) 1671 return NULL; 1672 1673 dmac_pdev = of_find_device_by_node(dma_spec->np); 1674 1675 dma_cap_zero(mask); 1676 dma_cap_set(DMA_SLAVE, mask); 1677 1678 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL); 1679 if (!atslave) 1680 return NULL; 1681 1682 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; 1683 /* 1684 * We can fill both SRC_PER and DST_PER, one of these fields will be 1685 * ignored depending on DMA transfer direction. 1686 */ 1687 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1688 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) 1689 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); 1690 /* 1691 * We have to translate the value we get from the device tree since 1692 * the half FIFO configuration value had to be 0 to keep backward 1693 * compatibility. 1694 */ 1695 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1696 case AT91_DMA_CFG_FIFOCFG_ALAP: 1697 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; 1698 break; 1699 case AT91_DMA_CFG_FIFOCFG_ASAP: 1700 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; 1701 break; 1702 case AT91_DMA_CFG_FIFOCFG_HALF: 1703 default: 1704 atslave->cfg |= ATC_FIFOCFG_HALFFIFO; 1705 } 1706 atslave->dma_dev = &dmac_pdev->dev; 1707 1708 chan = dma_request_channel(mask, at_dma_filter, atslave); 1709 if (!chan) 1710 return NULL; 1711 1712 atchan = to_at_dma_chan(chan); 1713 atchan->per_if = dma_spec->args[0] & 0xff; 1714 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1715 1716 return chan; 1717 } 1718 #else 1719 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1720 struct of_dma *of_dma) 1721 { 1722 return NULL; 1723 } 1724 #endif 1725 1726 /*-- Module Management -----------------------------------------------*/ 1727 1728 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1729 static struct at_dma_platform_data at91sam9rl_config = { 1730 .nr_channels = 2, 1731 }; 1732 static struct at_dma_platform_data at91sam9g45_config = { 1733 .nr_channels = 8, 1734 }; 1735 1736 #if defined(CONFIG_OF) 1737 static const struct of_device_id atmel_dma_dt_ids[] = { 1738 { 1739 .compatible = "atmel,at91sam9rl-dma", 1740 .data = &at91sam9rl_config, 1741 }, { 1742 .compatible = "atmel,at91sam9g45-dma", 1743 .data = &at91sam9g45_config, 1744 }, { 1745 /* sentinel */ 1746 } 1747 }; 1748 1749 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1750 #endif 1751 1752 static const struct platform_device_id atdma_devtypes[] = { 1753 { 1754 .name = "at91sam9rl_dma", 1755 .driver_data = (unsigned long) &at91sam9rl_config, 1756 }, { 1757 .name = "at91sam9g45_dma", 1758 .driver_data = (unsigned long) &at91sam9g45_config, 1759 }, { 1760 /* sentinel */ 1761 } 1762 }; 1763 1764 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1765 struct platform_device *pdev) 1766 { 1767 if (pdev->dev.of_node) { 1768 const struct of_device_id *match; 1769 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1770 if (match == NULL) 1771 return NULL; 1772 return match->data; 1773 } 1774 return (struct at_dma_platform_data *) 1775 platform_get_device_id(pdev)->driver_data; 1776 } 1777 1778 /** 1779 * at_dma_off - disable DMA controller 1780 * @atdma: the Atmel HDAMC device 1781 */ 1782 static void at_dma_off(struct at_dma *atdma) 1783 { 1784 dma_writel(atdma, EN, 0); 1785 1786 /* disable all interrupts */ 1787 dma_writel(atdma, EBCIDR, -1L); 1788 1789 /* confirm that all channels are disabled */ 1790 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1791 cpu_relax(); 1792 } 1793 1794 static int __init at_dma_probe(struct platform_device *pdev) 1795 { 1796 struct resource *io; 1797 struct at_dma *atdma; 1798 size_t size; 1799 int irq; 1800 int err; 1801 int i; 1802 const struct at_dma_platform_data *plat_dat; 1803 1804 /* setup platform data for each SoC */ 1805 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1806 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1807 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1808 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); 1809 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); 1810 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); 1811 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1812 1813 /* get DMA parameters from controller type */ 1814 plat_dat = at_dma_get_driver_data(pdev); 1815 if (!plat_dat) 1816 return -ENODEV; 1817 1818 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1819 if (!io) 1820 return -EINVAL; 1821 1822 irq = platform_get_irq(pdev, 0); 1823 if (irq < 0) 1824 return irq; 1825 1826 size = sizeof(struct at_dma); 1827 size += plat_dat->nr_channels * sizeof(struct at_dma_chan); 1828 atdma = kzalloc(size, GFP_KERNEL); 1829 if (!atdma) 1830 return -ENOMEM; 1831 1832 /* discover transaction capabilities */ 1833 atdma->dma_common.cap_mask = plat_dat->cap_mask; 1834 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1835 1836 size = resource_size(io); 1837 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { 1838 err = -EBUSY; 1839 goto err_kfree; 1840 } 1841 1842 atdma->regs = ioremap(io->start, size); 1843 if (!atdma->regs) { 1844 err = -ENOMEM; 1845 goto err_release_r; 1846 } 1847 1848 atdma->clk = clk_get(&pdev->dev, "dma_clk"); 1849 if (IS_ERR(atdma->clk)) { 1850 err = PTR_ERR(atdma->clk); 1851 goto err_clk; 1852 } 1853 err = clk_prepare_enable(atdma->clk); 1854 if (err) 1855 goto err_clk_prepare; 1856 1857 /* force dma off, just in case */ 1858 at_dma_off(atdma); 1859 1860 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1861 if (err) 1862 goto err_irq; 1863 1864 platform_set_drvdata(pdev, atdma); 1865 1866 /* create a pool of consistent memory blocks for hardware descriptors */ 1867 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", 1868 &pdev->dev, sizeof(struct at_desc), 1869 4 /* word alignment */, 0); 1870 if (!atdma->dma_desc_pool) { 1871 dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); 1872 err = -ENOMEM; 1873 goto err_desc_pool_create; 1874 } 1875 1876 /* create a pool of consistent memory blocks for memset blocks */ 1877 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", 1878 &pdev->dev, sizeof(int), 4, 0); 1879 if (!atdma->memset_pool) { 1880 dev_err(&pdev->dev, "No memory for memset dma pool\n"); 1881 err = -ENOMEM; 1882 goto err_memset_pool_create; 1883 } 1884 1885 /* clear any pending interrupt */ 1886 while (dma_readl(atdma, EBCISR)) 1887 cpu_relax(); 1888 1889 /* initialize channels related values */ 1890 INIT_LIST_HEAD(&atdma->dma_common.channels); 1891 for (i = 0; i < plat_dat->nr_channels; i++) { 1892 struct at_dma_chan *atchan = &atdma->chan[i]; 1893 1894 atchan->mem_if = AT_DMA_MEM_IF; 1895 atchan->per_if = AT_DMA_PER_IF; 1896 atchan->chan_common.device = &atdma->dma_common; 1897 dma_cookie_init(&atchan->chan_common); 1898 list_add_tail(&atchan->chan_common.device_node, 1899 &atdma->dma_common.channels); 1900 1901 atchan->ch_regs = atdma->regs + ch_regs(i); 1902 spin_lock_init(&atchan->lock); 1903 atchan->mask = 1 << i; 1904 1905 INIT_LIST_HEAD(&atchan->active_list); 1906 INIT_LIST_HEAD(&atchan->queue); 1907 INIT_LIST_HEAD(&atchan->free_list); 1908 1909 tasklet_init(&atchan->tasklet, atc_tasklet, 1910 (unsigned long)atchan); 1911 atc_enable_chan_irq(atdma, i); 1912 } 1913 1914 /* set base routines */ 1915 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; 1916 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; 1917 atdma->dma_common.device_tx_status = atc_tx_status; 1918 atdma->dma_common.device_issue_pending = atc_issue_pending; 1919 atdma->dma_common.dev = &pdev->dev; 1920 1921 /* set prep routines based on capability */ 1922 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) 1923 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; 1924 1925 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) 1926 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; 1927 1928 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) { 1929 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset; 1930 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; 1931 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES; 1932 } 1933 1934 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { 1935 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; 1936 /* controller can do slave DMA: can trigger cyclic transfers */ 1937 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); 1938 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; 1939 atdma->dma_common.device_config = atc_config; 1940 atdma->dma_common.device_pause = atc_pause; 1941 atdma->dma_common.device_resume = atc_resume; 1942 atdma->dma_common.device_terminate_all = atc_terminate_all; 1943 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; 1944 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; 1945 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1946 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1947 } 1948 1949 dma_writel(atdma, EN, AT_DMA_ENABLE); 1950 1951 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n", 1952 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", 1953 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "", 1954 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", 1955 plat_dat->nr_channels); 1956 1957 dma_async_device_register(&atdma->dma_common); 1958 1959 /* 1960 * Do not return an error if the dmac node is not present in order to 1961 * not break the existing way of requesting channel with 1962 * dma_request_channel(). 1963 */ 1964 if (pdev->dev.of_node) { 1965 err = of_dma_controller_register(pdev->dev.of_node, 1966 at_dma_xlate, atdma); 1967 if (err) { 1968 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 1969 goto err_of_dma_controller_register; 1970 } 1971 } 1972 1973 return 0; 1974 1975 err_of_dma_controller_register: 1976 dma_async_device_unregister(&atdma->dma_common); 1977 dma_pool_destroy(atdma->memset_pool); 1978 err_memset_pool_create: 1979 dma_pool_destroy(atdma->dma_desc_pool); 1980 err_desc_pool_create: 1981 free_irq(platform_get_irq(pdev, 0), atdma); 1982 err_irq: 1983 clk_disable_unprepare(atdma->clk); 1984 err_clk_prepare: 1985 clk_put(atdma->clk); 1986 err_clk: 1987 iounmap(atdma->regs); 1988 atdma->regs = NULL; 1989 err_release_r: 1990 release_mem_region(io->start, size); 1991 err_kfree: 1992 kfree(atdma); 1993 return err; 1994 } 1995 1996 static int at_dma_remove(struct platform_device *pdev) 1997 { 1998 struct at_dma *atdma = platform_get_drvdata(pdev); 1999 struct dma_chan *chan, *_chan; 2000 struct resource *io; 2001 2002 at_dma_off(atdma); 2003 dma_async_device_unregister(&atdma->dma_common); 2004 2005 dma_pool_destroy(atdma->memset_pool); 2006 dma_pool_destroy(atdma->dma_desc_pool); 2007 free_irq(platform_get_irq(pdev, 0), atdma); 2008 2009 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2010 device_node) { 2011 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2012 2013 /* Disable interrupts */ 2014 atc_disable_chan_irq(atdma, chan->chan_id); 2015 2016 tasklet_kill(&atchan->tasklet); 2017 list_del(&chan->device_node); 2018 } 2019 2020 clk_disable_unprepare(atdma->clk); 2021 clk_put(atdma->clk); 2022 2023 iounmap(atdma->regs); 2024 atdma->regs = NULL; 2025 2026 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2027 release_mem_region(io->start, resource_size(io)); 2028 2029 kfree(atdma); 2030 2031 return 0; 2032 } 2033 2034 static void at_dma_shutdown(struct platform_device *pdev) 2035 { 2036 struct at_dma *atdma = platform_get_drvdata(pdev); 2037 2038 at_dma_off(platform_get_drvdata(pdev)); 2039 clk_disable_unprepare(atdma->clk); 2040 } 2041 2042 static int at_dma_prepare(struct device *dev) 2043 { 2044 struct at_dma *atdma = dev_get_drvdata(dev); 2045 struct dma_chan *chan, *_chan; 2046 2047 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2048 device_node) { 2049 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2050 /* wait for transaction completion (except in cyclic case) */ 2051 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 2052 return -EAGAIN; 2053 } 2054 return 0; 2055 } 2056 2057 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 2058 { 2059 struct dma_chan *chan = &atchan->chan_common; 2060 2061 /* Channel should be paused by user 2062 * do it anyway even if it is not done already */ 2063 if (!atc_chan_is_paused(atchan)) { 2064 dev_warn(chan2dev(chan), 2065 "cyclic channel not paused, should be done by channel user\n"); 2066 atc_pause(chan); 2067 } 2068 2069 /* now preserve additional data for cyclic operations */ 2070 /* next descriptor address in the cyclic list */ 2071 atchan->save_dscr = channel_readl(atchan, DSCR); 2072 2073 vdbg_dump_regs(atchan); 2074 } 2075 2076 static int at_dma_suspend_noirq(struct device *dev) 2077 { 2078 struct at_dma *atdma = dev_get_drvdata(dev); 2079 struct dma_chan *chan, *_chan; 2080 2081 /* preserve data */ 2082 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2083 device_node) { 2084 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2085 2086 if (atc_chan_is_cyclic(atchan)) 2087 atc_suspend_cyclic(atchan); 2088 atchan->save_cfg = channel_readl(atchan, CFG); 2089 } 2090 atdma->save_imr = dma_readl(atdma, EBCIMR); 2091 2092 /* disable DMA controller */ 2093 at_dma_off(atdma); 2094 clk_disable_unprepare(atdma->clk); 2095 return 0; 2096 } 2097 2098 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2099 { 2100 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 2101 2102 /* restore channel status for cyclic descriptors list: 2103 * next descriptor in the cyclic list at the time of suspend */ 2104 channel_writel(atchan, SADDR, 0); 2105 channel_writel(atchan, DADDR, 0); 2106 channel_writel(atchan, CTRLA, 0); 2107 channel_writel(atchan, CTRLB, 0); 2108 channel_writel(atchan, DSCR, atchan->save_dscr); 2109 dma_writel(atdma, CHER, atchan->mask); 2110 2111 /* channel pause status should be removed by channel user 2112 * We cannot take the initiative to do it here */ 2113 2114 vdbg_dump_regs(atchan); 2115 } 2116 2117 static int at_dma_resume_noirq(struct device *dev) 2118 { 2119 struct at_dma *atdma = dev_get_drvdata(dev); 2120 struct dma_chan *chan, *_chan; 2121 2122 /* bring back DMA controller */ 2123 clk_prepare_enable(atdma->clk); 2124 dma_writel(atdma, EN, AT_DMA_ENABLE); 2125 2126 /* clear any pending interrupt */ 2127 while (dma_readl(atdma, EBCISR)) 2128 cpu_relax(); 2129 2130 /* restore saved data */ 2131 dma_writel(atdma, EBCIER, atdma->save_imr); 2132 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2133 device_node) { 2134 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2135 2136 channel_writel(atchan, CFG, atchan->save_cfg); 2137 if (atc_chan_is_cyclic(atchan)) 2138 atc_resume_cyclic(atchan); 2139 } 2140 return 0; 2141 } 2142 2143 static const struct dev_pm_ops at_dma_dev_pm_ops = { 2144 .prepare = at_dma_prepare, 2145 .suspend_noirq = at_dma_suspend_noirq, 2146 .resume_noirq = at_dma_resume_noirq, 2147 }; 2148 2149 static struct platform_driver at_dma_driver = { 2150 .remove = at_dma_remove, 2151 .shutdown = at_dma_shutdown, 2152 .id_table = atdma_devtypes, 2153 .driver = { 2154 .name = "at_hdmac", 2155 .pm = &at_dma_dev_pm_ops, 2156 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2157 }, 2158 }; 2159 2160 static int __init at_dma_init(void) 2161 { 2162 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2163 } 2164 subsys_initcall(at_dma_init); 2165 2166 static void __exit at_dma_exit(void) 2167 { 2168 platform_driver_unregister(&at_dma_driver); 2169 } 2170 module_exit(at_dma_exit); 2171 2172 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2173 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2174 MODULE_LICENSE("GPL"); 2175 MODULE_ALIAS("platform:at_hdmac"); 2176