xref: /openbmc/linux/drivers/dma/at_hdmac.c (revision 55b37d9c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4  *
5  * Copyright (C) 2008 Atmel Corporation
6  * Copyright (C) 2022 Microchip Technology, Inc. and its subsidiaries
7  *
8  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
9  * The only Atmel DMA Controller that is not covered by this driver is the one
10  * found on AT91SAM9263.
11  */
12 
13 #include <dt-bindings/dma/at91.h>
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/dmaengine.h>
17 #include <linux/dmapool.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/overflow.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 
28 #include "dmaengine.h"
29 #include "virt-dma.h"
30 
31 /*
32  * Glossary
33  * --------
34  *
35  * at_hdmac		: Name of the ATmel AHB DMA Controller
36  * at_dma_ / atdma	: ATmel DMA controller entity related
37  * atc_	/ atchan	: ATmel DMA Channel entity related
38  */
39 
40 #define	AT_DMA_MAX_NR_CHANNELS	8
41 
42 /* Global Configuration Register */
43 #define AT_DMA_GCFG		0x00
44 #define AT_DMA_IF_BIGEND(i)	BIT((i))	/* AHB-Lite Interface i in Big-endian mode */
45 #define AT_DMA_ARB_CFG		BIT(4)		/* Arbiter mode. */
46 
47 /* Controller Enable Register */
48 #define AT_DMA_EN		0x04
49 #define AT_DMA_ENABLE		BIT(0)
50 
51 /* Software Single Request Register */
52 #define AT_DMA_SREQ		0x08
53 #define AT_DMA_SSREQ(x)		BIT((x) << 1)		/* Request a source single transfer on channel x */
54 #define AT_DMA_DSREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination single transfer on channel x */
55 
56 /* Software Chunk Transfer Request Register */
57 #define AT_DMA_CREQ		0x0c
58 #define AT_DMA_SCREQ(x)		BIT((x) << 1)		/* Request a source chunk transfer on channel x */
59 #define AT_DMA_DCREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination chunk transfer on channel x */
60 
61 /* Software Last Transfer Flag Register */
62 #define AT_DMA_LAST		0x10
63 #define AT_DMA_SLAST(x)		BIT((x) << 1)		/* This src rq is last tx of buffer on channel x */
64 #define AT_DMA_DLAST(x)		BIT(1 + ((x) << 1))	/* This dst rq is last tx of buffer on channel x */
65 
66 /* Request Synchronization Register */
67 #define AT_DMA_SYNC		0x14
68 #define AT_DMA_SYR(h)		BIT((h))		/* Synchronize handshake line h */
69 
70 /* Error, Chained Buffer transfer completed and Buffer transfer completed Interrupt registers */
71 #define AT_DMA_EBCIER		0x18			/* Enable register */
72 #define AT_DMA_EBCIDR		0x1c			/* Disable register */
73 #define AT_DMA_EBCIMR		0x20			/* Mask Register */
74 #define AT_DMA_EBCISR		0x24			/* Status Register */
75 #define AT_DMA_CBTC_OFFSET	8
76 #define AT_DMA_ERR_OFFSET	16
77 #define AT_DMA_BTC(x)		BIT((x))
78 #define AT_DMA_CBTC(x)		BIT(AT_DMA_CBTC_OFFSET + (x))
79 #define AT_DMA_ERR(x)		BIT(AT_DMA_ERR_OFFSET + (x))
80 
81 /* Channel Handler Enable Register */
82 #define AT_DMA_CHER		0x28
83 #define AT_DMA_ENA(x)		BIT((x))
84 #define AT_DMA_SUSP(x)		BIT(8 + (x))
85 #define AT_DMA_KEEP(x)		BIT(24 + (x))
86 
87 /* Channel Handler Disable Register */
88 #define AT_DMA_CHDR		0x2c
89 #define AT_DMA_DIS(x)		BIT(x)
90 #define AT_DMA_RES(x)		BIT(8 + (x))
91 
92 /* Channel Handler Status Register */
93 #define AT_DMA_CHSR		0x30
94 #define AT_DMA_EMPT(x)		BIT(16 + (x))
95 #define AT_DMA_STAL(x)		BIT(24 + (x))
96 
97 /* Channel registers base address */
98 #define AT_DMA_CH_REGS_BASE	0x3c
99 #define ch_regs(x)		(AT_DMA_CH_REGS_BASE + (x) * 0x28) /* Channel x base addr */
100 
101 /* Hardware register offset for each channel */
102 #define ATC_SADDR_OFFSET	0x00	/* Source Address Register */
103 #define ATC_DADDR_OFFSET	0x04	/* Destination Address Register */
104 #define ATC_DSCR_OFFSET		0x08	/* Descriptor Address Register */
105 #define ATC_CTRLA_OFFSET	0x0c	/* Control A Register */
106 #define ATC_CTRLB_OFFSET	0x10	/* Control B Register */
107 #define ATC_CFG_OFFSET		0x14	/* Configuration Register */
108 #define ATC_SPIP_OFFSET		0x18	/* Src PIP Configuration Register */
109 #define ATC_DPIP_OFFSET		0x1c	/* Dst PIP Configuration Register */
110 
111 
112 /* Bitfield definitions */
113 
114 /* Bitfields in DSCR */
115 #define ATC_DSCR_IF		GENMASK(1, 0)	/* Dsc feched via AHB-Lite Interface */
116 
117 /* Bitfields in CTRLA */
118 #define ATC_BTSIZE_MAX		GENMASK(15, 0)	/* Maximum Buffer Transfer Size */
119 #define ATC_BTSIZE		GENMASK(15, 0)	/* Buffer Transfer Size */
120 #define ATC_SCSIZE		GENMASK(18, 16)	/* Source Chunk Transfer Size */
121 #define ATC_DCSIZE		GENMASK(22, 20)	/* Destination Chunk Transfer Size */
122 #define ATC_SRC_WIDTH		GENMASK(25, 24)	/* Source Single Transfer Size */
123 #define ATC_DST_WIDTH		GENMASK(29, 28)	/* Destination Single Transfer Size */
124 #define ATC_DONE		BIT(31)	/* Tx Done (only written back in descriptor) */
125 
126 /* Bitfields in CTRLB */
127 #define ATC_SIF			GENMASK(1, 0)	/* Src tx done via AHB-Lite Interface i */
128 #define ATC_DIF			GENMASK(5, 4)	/* Dst tx done via AHB-Lite Interface i */
129 #define AT_DMA_MEM_IF		0x0		/* interface 0 as memory interface */
130 #define AT_DMA_PER_IF		0x1		/* interface 1 as peripheral interface */
131 #define ATC_SRC_PIP		BIT(8)		/* Source Picture-in-Picture enabled */
132 #define ATC_DST_PIP		BIT(12)		/* Destination Picture-in-Picture enabled */
133 #define ATC_SRC_DSCR_DIS	BIT(16)		/* Src Descriptor fetch disable */
134 #define ATC_DST_DSCR_DIS	BIT(20)		/* Dst Descriptor fetch disable */
135 #define ATC_FC			GENMASK(22, 21)	/* Choose Flow Controller */
136 #define ATC_FC_MEM2MEM		0x0		/* Mem-to-Mem (DMA) */
137 #define ATC_FC_MEM2PER		0x1		/* Mem-to-Periph (DMA) */
138 #define ATC_FC_PER2MEM		0x2		/* Periph-to-Mem (DMA) */
139 #define ATC_FC_PER2PER		0x3		/* Periph-to-Periph (DMA) */
140 #define ATC_FC_PER2MEM_PER	0x4		/* Periph-to-Mem (Peripheral) */
141 #define ATC_FC_MEM2PER_PER	0x5		/* Mem-to-Periph (Peripheral) */
142 #define ATC_FC_PER2PER_SRCPER	0x6		/* Periph-to-Periph (Src Peripheral) */
143 #define ATC_FC_PER2PER_DSTPER	0x7		/* Periph-to-Periph (Dst Peripheral) */
144 #define ATC_SRC_ADDR_MODE	GENMASK(25, 24)
145 #define ATC_SRC_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
146 #define ATC_SRC_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
147 #define ATC_SRC_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
148 #define ATC_DST_ADDR_MODE	GENMASK(29, 28)
149 #define ATC_DST_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
150 #define ATC_DST_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
151 #define ATC_DST_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
152 #define ATC_IEN			BIT(30)		/* BTC interrupt enable (active low) */
153 #define ATC_AUTO		BIT(31)		/* Auto multiple buffer tx enable */
154 
155 /* Bitfields in CFG */
156 #define ATC_PER_MSB(h)	((0x30U & (h)) >> 4)	/* Extract most significant bits of a handshaking identifier */
157 
158 #define ATC_SRC_PER		GENMASK(3, 0)	/* Channel src rq associated with periph handshaking ifc h */
159 #define ATC_DST_PER		GENMASK(7, 4)	/* Channel dst rq associated with periph handshaking ifc h */
160 #define ATC_SRC_REP		BIT(8)		/* Source Replay Mod */
161 #define ATC_SRC_H2SEL		BIT(9)		/* Source Handshaking Mod */
162 #define ATC_SRC_PER_MSB		GENMASK(11, 10)	/* Channel src rq (most significant bits) */
163 #define ATC_DST_REP		BIT(12)		/* Destination Replay Mod */
164 #define ATC_DST_H2SEL		BIT(13)		/* Destination Handshaking Mod */
165 #define ATC_DST_PER_MSB		GENMASK(15, 14)	/* Channel dst rq (most significant bits) */
166 #define ATC_SOD			BIT(16)		/* Stop On Done */
167 #define ATC_LOCK_IF		BIT(20)		/* Interface Lock */
168 #define ATC_LOCK_B		BIT(21)		/* AHB Bus Lock */
169 #define ATC_LOCK_IF_L		BIT(22)		/* Master Interface Arbiter Lock */
170 #define ATC_AHB_PROT		GENMASK(26, 24)	/* AHB Protection */
171 #define ATC_FIFOCFG		GENMASK(29, 28)	/* FIFO Request Configuration */
172 #define ATC_FIFOCFG_LARGESTBURST	0x0
173 #define ATC_FIFOCFG_HALFFIFO		0x1
174 #define ATC_FIFOCFG_ENOUGHSPACE		0x2
175 
176 /* Bitfields in SPIP */
177 #define ATC_SPIP_HOLE		GENMASK(15, 0)
178 #define ATC_SPIP_BOUNDARY	GENMASK(25, 16)
179 
180 /* Bitfields in DPIP */
181 #define ATC_DPIP_HOLE		GENMASK(15, 0)
182 #define ATC_DPIP_BOUNDARY	GENMASK(25, 16)
183 
184 #define ATC_SRC_PER_ID(id)	(FIELD_PREP(ATC_SRC_PER_MSB, (id)) |	\
185 				 FIELD_PREP(ATC_SRC_PER, (id)))
186 #define ATC_DST_PER_ID(id)	(FIELD_PREP(ATC_DST_PER_MSB, (id)) |	\
187 				 FIELD_PREP(ATC_DST_PER, (id)))
188 
189 
190 
191 /*--  descriptors  -----------------------------------------------------*/
192 
193 /* LLI == Linked List Item; aka DMA buffer descriptor */
194 struct at_lli {
195 	/* values that are not changed by hardware */
196 	u32 saddr;
197 	u32 daddr;
198 	/* value that may get written back: */
199 	u32 ctrla;
200 	/* more values that are not changed by hardware */
201 	u32 ctrlb;
202 	u32 dscr;	/* chain to next lli */
203 };
204 
205 /**
206  * struct atdma_sg - atdma scatter gather entry
207  * @len: length of the current Linked List Item.
208  * @lli: linked list item that is passed to the DMA controller
209  * @lli_phys: physical address of the LLI.
210  */
211 struct atdma_sg {
212 	unsigned int len;
213 	struct at_lli *lli;
214 	dma_addr_t lli_phys;
215 };
216 
217 /**
218  * struct at_desc - software descriptor
219  * @vd: pointer to the virtual dma descriptor.
220  * @atchan: pointer to the atmel dma channel.
221  * @total_len: total transaction byte count
222  * @sg_len: number of sg entries.
223  * @sg: array of sgs.
224  */
225 struct at_desc {
226 	struct				virt_dma_desc vd;
227 	struct				at_dma_chan *atchan;
228 	size_t				total_len;
229 	unsigned int			sglen;
230 	/* Interleaved data */
231 	size_t				boundary;
232 	size_t				dst_hole;
233 	size_t				src_hole;
234 
235 	/* Memset temporary buffer */
236 	bool				memset_buffer;
237 	dma_addr_t			memset_paddr;
238 	int				*memset_vaddr;
239 	struct atdma_sg			sg[];
240 };
241 
242 /*--  Channels  --------------------------------------------------------*/
243 
244 /**
245  * atc_status - information bits stored in channel status flag
246  *
247  * Manipulated with atomic operations.
248  */
249 enum atc_status {
250 	ATC_IS_PAUSED = 1,
251 	ATC_IS_CYCLIC = 24,
252 };
253 
254 /**
255  * struct at_dma_chan - internal representation of an Atmel HDMAC channel
256  * @vc: virtual dma channel entry.
257  * @atdma: pointer to the driver data.
258  * @ch_regs: memory mapped register base
259  * @mask: channel index in a mask
260  * @per_if: peripheral interface
261  * @mem_if: memory interface
262  * @status: transmit status information from irq/prep* functions
263  *                to tasklet (use atomic operations)
264  * @save_cfg: configuration register that is saved on suspend/resume cycle
265  * @save_dscr: for cyclic operations, preserve next descriptor address in
266  *             the cyclic list on suspend/resume cycle
267  * @dma_sconfig: configuration for slave transfers, passed via
268  * .device_config
269  * @desc: pointer to the atmel dma descriptor.
270  */
271 struct at_dma_chan {
272 	struct virt_dma_chan	vc;
273 	struct at_dma		*atdma;
274 	void __iomem		*ch_regs;
275 	u8			mask;
276 	u8			per_if;
277 	u8			mem_if;
278 	unsigned long		status;
279 	u32			save_cfg;
280 	u32			save_dscr;
281 	struct dma_slave_config	dma_sconfig;
282 	bool			cyclic;
283 	struct at_desc		*desc;
284 };
285 
286 #define	channel_readl(atchan, name) \
287 	__raw_readl((atchan)->ch_regs + ATC_##name##_OFFSET)
288 
289 #define	channel_writel(atchan, name, val) \
290 	__raw_writel((val), (atchan)->ch_regs + ATC_##name##_OFFSET)
291 
292 /*
293  * Fix sconfig's burst size according to at_hdmac. We need to convert them as:
294  * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3, 32 -> 4, 64 -> 5, 128 -> 6, 256 -> 7.
295  *
296  * This can be done by finding most significant bit set.
297  */
298 static inline void convert_burst(u32 *maxburst)
299 {
300 	if (*maxburst > 1)
301 		*maxburst = fls(*maxburst) - 2;
302 	else
303 		*maxburst = 0;
304 }
305 
306 /*
307  * Fix sconfig's bus width according to at_hdmac.
308  * 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2.
309  */
310 static inline u8 convert_buswidth(enum dma_slave_buswidth addr_width)
311 {
312 	switch (addr_width) {
313 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
314 		return 1;
315 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
316 		return 2;
317 	default:
318 		/* For 1 byte width or fallback */
319 		return 0;
320 	}
321 }
322 
323 /*--  Controller  ------------------------------------------------------*/
324 
325 /**
326  * struct at_dma - internal representation of an Atmel HDMA Controller
327  * @dma_device: dmaengine dma_device object members
328  * @atdma_devtype: identifier of DMA controller compatibility
329  * @ch_regs: memory mapped register base
330  * @clk: dma controller clock
331  * @save_imr: interrupt mask register that is saved on suspend/resume cycle
332  * @all_chan_mask: all channels availlable in a mask
333  * @lli_pool: hw lli table
334  * @chan: channels table to store at_dma_chan structures
335  */
336 struct at_dma {
337 	struct dma_device	dma_device;
338 	void __iomem		*regs;
339 	struct clk		*clk;
340 	u32			save_imr;
341 
342 	u8			all_chan_mask;
343 
344 	struct dma_pool		*lli_pool;
345 	struct dma_pool		*memset_pool;
346 	/* AT THE END channels table */
347 	struct at_dma_chan	chan[];
348 };
349 
350 #define	dma_readl(atdma, name) \
351 	__raw_readl((atdma)->regs + AT_DMA_##name)
352 #define	dma_writel(atdma, name, val) \
353 	__raw_writel((val), (atdma)->regs + AT_DMA_##name)
354 
355 static inline struct at_desc *to_atdma_desc(struct dma_async_tx_descriptor *t)
356 {
357 	return container_of(t, struct at_desc, vd.tx);
358 }
359 
360 static inline struct at_dma_chan *to_at_dma_chan(struct dma_chan *chan)
361 {
362 	return container_of(chan, struct at_dma_chan, vc.chan);
363 }
364 
365 static inline struct at_dma *to_at_dma(struct dma_device *ddev)
366 {
367 	return container_of(ddev, struct at_dma, dma_device);
368 }
369 
370 
371 /*--  Helper functions  ------------------------------------------------*/
372 
373 static struct device *chan2dev(struct dma_chan *chan)
374 {
375 	return &chan->dev->device;
376 }
377 
378 #if defined(VERBOSE_DEBUG)
379 static void vdbg_dump_regs(struct at_dma_chan *atchan)
380 {
381 	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);
382 
383 	dev_err(chan2dev(&atchan->vc.chan),
384 		"  channel %d : imr = 0x%x, chsr = 0x%x\n",
385 		atchan->vc.chan.chan_id,
386 		dma_readl(atdma, EBCIMR),
387 		dma_readl(atdma, CHSR));
388 
389 	dev_err(chan2dev(&atchan->vc.chan),
390 		"  channel: s0x%x d0x%x ctrl0x%x:0x%x cfg0x%x l0x%x\n",
391 		channel_readl(atchan, SADDR),
392 		channel_readl(atchan, DADDR),
393 		channel_readl(atchan, CTRLA),
394 		channel_readl(atchan, CTRLB),
395 		channel_readl(atchan, CFG),
396 		channel_readl(atchan, DSCR));
397 }
398 #else
399 static void vdbg_dump_regs(struct at_dma_chan *atchan) {}
400 #endif
401 
402 static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli)
403 {
404 	dev_crit(chan2dev(&atchan->vc.chan),
405 		 "desc: s%pad d%pad ctrl0x%x:0x%x l%pad\n",
406 		 &lli->saddr, &lli->daddr,
407 		 lli->ctrla, lli->ctrlb, &lli->dscr);
408 }
409 
410 
411 static void atc_setup_irq(struct at_dma *atdma, int chan_id, int on)
412 {
413 	u32 ebci;
414 
415 	/* enable interrupts on buffer transfer completion & error */
416 	ebci =    AT_DMA_BTC(chan_id)
417 		| AT_DMA_ERR(chan_id);
418 	if (on)
419 		dma_writel(atdma, EBCIER, ebci);
420 	else
421 		dma_writel(atdma, EBCIDR, ebci);
422 }
423 
424 static void atc_enable_chan_irq(struct at_dma *atdma, int chan_id)
425 {
426 	atc_setup_irq(atdma, chan_id, 1);
427 }
428 
429 static void atc_disable_chan_irq(struct at_dma *atdma, int chan_id)
430 {
431 	atc_setup_irq(atdma, chan_id, 0);
432 }
433 
434 
435 /**
436  * atc_chan_is_enabled - test if given channel is enabled
437  * @atchan: channel we want to test status
438  */
439 static inline int atc_chan_is_enabled(struct at_dma_chan *atchan)
440 {
441 	struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
442 
443 	return !!(dma_readl(atdma, CHSR) & atchan->mask);
444 }
445 
446 /**
447  * atc_chan_is_paused - test channel pause/resume status
448  * @atchan: channel we want to test status
449  */
450 static inline int atc_chan_is_paused(struct at_dma_chan *atchan)
451 {
452 	return test_bit(ATC_IS_PAUSED, &atchan->status);
453 }
454 
455 /**
456  * atc_chan_is_cyclic - test if given channel has cyclic property set
457  * @atchan: channel we want to test status
458  */
459 static inline int atc_chan_is_cyclic(struct at_dma_chan *atchan)
460 {
461 	return test_bit(ATC_IS_CYCLIC, &atchan->status);
462 }
463 
464 /**
465  * set_lli_eol - set end-of-link to descriptor so it will end transfer
466  * @desc: descriptor, signle or at the end of a chain, to end chain on
467  * @i: index of the atmel scatter gather entry that is at the end of the chain.
468  */
469 static void set_lli_eol(struct at_desc *desc, unsigned int i)
470 {
471 	u32 ctrlb = desc->sg[i].lli->ctrlb;
472 
473 	ctrlb &= ~ATC_IEN;
474 	ctrlb |= ATC_SRC_DSCR_DIS | ATC_DST_DSCR_DIS;
475 
476 	desc->sg[i].lli->ctrlb = ctrlb;
477 	desc->sg[i].lli->dscr = 0;
478 }
479 
480 #define	ATC_DEFAULT_CFG		FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO)
481 #define	ATC_DEFAULT_CTRLB	(FIELD_PREP(ATC_SIF, AT_DMA_MEM_IF) | \
482 				 FIELD_PREP(ATC_DIF, AT_DMA_MEM_IF))
483 #define ATC_DMA_BUSWIDTHS\
484 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
485 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
486 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
487 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
488 
489 #define ATC_MAX_DSCR_TRIALS	10
490 
491 /*
492  * Initial number of descriptors to allocate for each channel. This could
493  * be increased during dma usage.
494  */
495 static unsigned int init_nr_desc_per_channel = 64;
496 module_param(init_nr_desc_per_channel, uint, 0644);
497 MODULE_PARM_DESC(init_nr_desc_per_channel,
498 		 "initial descriptors per channel (default: 64)");
499 
500 /**
501  * struct at_dma_platform_data - Controller configuration parameters
502  * @nr_channels: Number of channels supported by hardware (max 8)
503  * @cap_mask: dma_capability flags supported by the platform
504  */
505 struct at_dma_platform_data {
506 	unsigned int	nr_channels;
507 	dma_cap_mask_t  cap_mask;
508 };
509 
510 /**
511  * struct at_dma_slave - Controller-specific information about a slave
512  * @dma_dev: required DMA master device
513  * @cfg: Platform-specific initializer for the CFG register
514  */
515 struct at_dma_slave {
516 	struct device		*dma_dev;
517 	u32			cfg;
518 };
519 
520 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
521 						size_t len)
522 {
523 	unsigned int width;
524 
525 	if (!((src | dst  | len) & 3))
526 		width = 2;
527 	else if (!((src | dst | len) & 1))
528 		width = 1;
529 	else
530 		width = 0;
531 
532 	return width;
533 }
534 
535 static void atdma_lli_chain(struct at_desc *desc, unsigned int i)
536 {
537 	struct atdma_sg *atdma_sg = &desc->sg[i];
538 
539 	if (i)
540 		desc->sg[i - 1].lli->dscr = atdma_sg->lli_phys;
541 }
542 
543 /**
544  * atc_dostart - starts the DMA engine for real
545  * @atchan: the channel we want to start
546  */
547 static void atc_dostart(struct at_dma_chan *atchan)
548 {
549 	struct virt_dma_desc *vd = vchan_next_desc(&atchan->vc);
550 	struct at_desc *desc;
551 
552 	if (!vd) {
553 		atchan->desc = NULL;
554 		return;
555 	}
556 
557 	vdbg_dump_regs(atchan);
558 
559 	list_del(&vd->node);
560 	atchan->desc = desc = to_atdma_desc(&vd->tx);
561 
562 	channel_writel(atchan, SADDR, 0);
563 	channel_writel(atchan, DADDR, 0);
564 	channel_writel(atchan, CTRLA, 0);
565 	channel_writel(atchan, CTRLB, 0);
566 	channel_writel(atchan, DSCR, desc->sg[0].lli_phys);
567 	channel_writel(atchan, SPIP,
568 		       FIELD_PREP(ATC_SPIP_HOLE, desc->src_hole) |
569 		       FIELD_PREP(ATC_SPIP_BOUNDARY, desc->boundary));
570 	channel_writel(atchan, DPIP,
571 		       FIELD_PREP(ATC_DPIP_HOLE, desc->dst_hole) |
572 		       FIELD_PREP(ATC_DPIP_BOUNDARY, desc->boundary));
573 
574 	/* Don't allow CPU to reorder channel enable. */
575 	wmb();
576 	dma_writel(atchan->atdma, CHER, atchan->mask);
577 
578 	vdbg_dump_regs(atchan);
579 }
580 
581 static void atdma_desc_free(struct virt_dma_desc *vd)
582 {
583 	struct at_dma *atdma = to_at_dma(vd->tx.chan->device);
584 	struct at_desc *desc = to_atdma_desc(&vd->tx);
585 	unsigned int i;
586 
587 	for (i = 0; i < desc->sglen; i++) {
588 		if (desc->sg[i].lli)
589 			dma_pool_free(atdma->lli_pool, desc->sg[i].lli,
590 				      desc->sg[i].lli_phys);
591 	}
592 
593 	/* If the transfer was a memset, free our temporary buffer */
594 	if (desc->memset_buffer) {
595 		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
596 			      desc->memset_paddr);
597 		desc->memset_buffer = false;
598 	}
599 
600 	kfree(desc);
601 }
602 
603 /**
604  * atc_calc_bytes_left - calculates the number of bytes left according to the
605  * value read from CTRLA.
606  *
607  * @current_len: the number of bytes left before reading CTRLA
608  * @ctrla: the value of CTRLA
609  */
610 static inline u32 atc_calc_bytes_left(u32 current_len, u32 ctrla)
611 {
612 	u32 btsize = FIELD_GET(ATC_BTSIZE, ctrla);
613 	u32 src_width = FIELD_GET(ATC_SRC_WIDTH, ctrla);
614 
615 	/*
616 	 * According to the datasheet, when reading the Control A Register
617 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
618 	 * number of transfers completed on the Source Interface.
619 	 * So btsize is always a number of source width transfers.
620 	 */
621 	return current_len - (btsize << src_width);
622 }
623 
624 /**
625  * atc_get_llis_residue - Get residue for a hardware linked list transfer
626  *
627  * Calculate the residue by removing the length of the Linked List Item (LLI)
628  * already transferred from the total length. To get the current LLI we can use
629  * the value of the channel's DSCR register and compare it against the DSCR
630  * value of each LLI.
631  *
632  * The CTRLA register provides us with the amount of data already read from the
633  * source for the LLI. So we can compute a more accurate residue by also
634  * removing the number of bytes corresponding to this amount of data.
635  *
636  * However, the DSCR and CTRLA registers cannot be read both atomically. Hence a
637  * race condition may occur: the first read register may refer to one LLI
638  * whereas the second read may refer to a later LLI in the list because of the
639  * DMA transfer progression inbetween the two reads.
640  *
641  * One solution could have been to pause the DMA transfer, read the DSCR and
642  * CTRLA then resume the DMA transfer. Nonetheless, this approach presents some
643  * drawbacks:
644  * - If the DMA transfer is paused, RX overruns or TX underruns are more likey
645  *   to occur depending on the system latency. Taking the USART driver as an
646  *   example, it uses a cyclic DMA transfer to read data from the Receive
647  *   Holding Register (RHR) to avoid RX overruns since the RHR is not protected
648  *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer to compute the
649  *   residue would break the USART driver design.
650  * - The atc_pause() function masks interrupts but we'd rather avoid to do so
651  * for system latency purpose.
652  *
653  * Then we'd rather use another solution: the DSCR is read a first time, the
654  * CTRLA is read in turn, next the DSCR is read a second time. If the two
655  * consecutive read values of the DSCR are the same then we assume both refers
656  * to the very same LLI as well as the CTRLA value read inbetween does. For
657  * cyclic tranfers, the assumption is that a full loop is "not so fast". If the
658  * two DSCR values are different, we read again the CTRLA then the DSCR till two
659  * consecutive read values from DSCR are equal or till the maximum trials is
660  * reach. This algorithm is very unlikely not to find a stable value for DSCR.
661  * @atchan: pointer to an atmel hdmac channel.
662  * @desc: pointer to the descriptor for which the residue is calculated.
663  * @residue: residue to be set to dma_tx_state.
664  * Returns 0 on success, -errno otherwise.
665  */
666 static int atc_get_llis_residue(struct at_dma_chan *atchan,
667 				struct at_desc *desc, u32 *residue)
668 {
669 	u32 len, ctrla, dscr;
670 	unsigned int i;
671 
672 	len = desc->total_len;
673 	dscr = channel_readl(atchan, DSCR);
674 	rmb(); /* ensure DSCR is read before CTRLA */
675 	ctrla = channel_readl(atchan, CTRLA);
676 	for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) {
677 		u32 new_dscr;
678 
679 		rmb(); /* ensure DSCR is read after CTRLA */
680 		new_dscr = channel_readl(atchan, DSCR);
681 
682 		/*
683 		 * If the DSCR register value has not changed inside the DMA
684 		 * controller since the previous read, we assume that both the
685 		 * dscr and ctrla values refers to the very same descriptor.
686 		 */
687 		if (likely(new_dscr == dscr))
688 			break;
689 
690 		/*
691 		 * DSCR has changed inside the DMA controller, so the previouly
692 		 * read value of CTRLA may refer to an already processed
693 		 * descriptor hence could be outdated. We need to update ctrla
694 		 * to match the current descriptor.
695 		 */
696 		dscr = new_dscr;
697 		rmb(); /* ensure DSCR is read before CTRLA */
698 		ctrla = channel_readl(atchan, CTRLA);
699 	}
700 	if (unlikely(i == ATC_MAX_DSCR_TRIALS))
701 		return -ETIMEDOUT;
702 
703 	/* For the first descriptor we can be more accurate. */
704 	if (desc->sg[0].lli->dscr == dscr) {
705 		*residue = atc_calc_bytes_left(len, ctrla);
706 		return 0;
707 	}
708 	len -= desc->sg[0].len;
709 
710 	for (i = 1; i < desc->sglen; i++) {
711 		if (desc->sg[i].lli && desc->sg[i].lli->dscr == dscr)
712 			break;
713 		len -= desc->sg[i].len;
714 	}
715 
716 	/*
717 	 * For the current LLI in the chain we can calculate the remaining bytes
718 	 * using the channel's CTRLA register.
719 	 */
720 	*residue = atc_calc_bytes_left(len, ctrla);
721 	return 0;
722 
723 }
724 
725 /**
726  * atc_get_residue - get the number of bytes residue for a cookie.
727  * The residue is passed by address and updated on success.
728  * @chan: DMA channel
729  * @cookie: transaction identifier to check status of
730  * @residue: residue to be updated.
731  * Return 0 on success, -errono otherwise.
732  */
733 static int atc_get_residue(struct dma_chan *chan, dma_cookie_t cookie,
734 			   u32 *residue)
735 {
736 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
737 	struct virt_dma_desc *vd;
738 	struct at_desc *desc = NULL;
739 	u32 len, ctrla;
740 
741 	vd = vchan_find_desc(&atchan->vc, cookie);
742 	if (vd)
743 		desc = to_atdma_desc(&vd->tx);
744 	else if (atchan->desc && atchan->desc->vd.tx.cookie == cookie)
745 		desc = atchan->desc;
746 
747 	if (!desc)
748 		return -EINVAL;
749 
750 	if (desc->sg[0].lli->dscr)
751 		/* hardware linked list transfer */
752 		return atc_get_llis_residue(atchan, desc, residue);
753 
754 	/* single transfer */
755 	len = desc->total_len;
756 	ctrla = channel_readl(atchan, CTRLA);
757 	*residue = atc_calc_bytes_left(len, ctrla);
758 	return 0;
759 }
760 
761 /**
762  * atc_handle_error - handle errors reported by DMA controller
763  * @atchan: channel where error occurs.
764  * @i: channel index
765  */
766 static void atc_handle_error(struct at_dma_chan *atchan, unsigned int i)
767 {
768 	struct at_desc *desc = atchan->desc;
769 
770 	/* Disable channel on AHB error */
771 	dma_writel(atchan->atdma, CHDR, AT_DMA_RES(i) | atchan->mask);
772 
773 	/*
774 	 * KERN_CRITICAL may seem harsh, but since this only happens
775 	 * when someone submits a bad physical address in a
776 	 * descriptor, we should consider ourselves lucky that the
777 	 * controller flagged an error instead of scribbling over
778 	 * random memory locations.
779 	 */
780 	dev_crit(chan2dev(&atchan->vc.chan), "Bad descriptor submitted for DMA!\n");
781 	dev_crit(chan2dev(&atchan->vc.chan), "cookie: %d\n",
782 		 desc->vd.tx.cookie);
783 	for (i = 0; i < desc->sglen; i++)
784 		atc_dump_lli(atchan, desc->sg[i].lli);
785 }
786 
787 static void atdma_handle_chan_done(struct at_dma_chan *atchan, u32 pending,
788 				   unsigned int i)
789 {
790 	struct at_desc *desc;
791 
792 	spin_lock(&atchan->vc.lock);
793 	desc = atchan->desc;
794 
795 	if (desc) {
796 		if (pending & AT_DMA_ERR(i)) {
797 			atc_handle_error(atchan, i);
798 			/* Pretend the descriptor completed successfully */
799 		}
800 
801 		if (atc_chan_is_cyclic(atchan)) {
802 			vchan_cyclic_callback(&desc->vd);
803 		} else {
804 			vchan_cookie_complete(&desc->vd);
805 			atchan->desc = NULL;
806 			if (!(atc_chan_is_enabled(atchan)))
807 				atc_dostart(atchan);
808 		}
809 	}
810 	spin_unlock(&atchan->vc.lock);
811 }
812 
813 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
814 {
815 	struct at_dma		*atdma = dev_id;
816 	struct at_dma_chan	*atchan;
817 	int			i;
818 	u32			status, pending, imr;
819 	int			ret = IRQ_NONE;
820 
821 	do {
822 		imr = dma_readl(atdma, EBCIMR);
823 		status = dma_readl(atdma, EBCISR);
824 		pending = status & imr;
825 
826 		if (!pending)
827 			break;
828 
829 		dev_vdbg(atdma->dma_device.dev,
830 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
831 			 status, imr, pending);
832 
833 		for (i = 0; i < atdma->dma_device.chancnt; i++) {
834 			atchan = &atdma->chan[i];
835 			if (!(pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))))
836 				continue;
837 			atdma_handle_chan_done(atchan, pending, i);
838 			ret = IRQ_HANDLED;
839 		}
840 
841 	} while (pending);
842 
843 	return ret;
844 }
845 
846 /*--  DMA Engine API  --------------------------------------------------*/
847 /**
848  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
849  * @chan: the channel to prepare operation on
850  * @xt: Interleaved transfer template
851  * @flags: tx descriptor status flags
852  */
853 static struct dma_async_tx_descriptor *
854 atc_prep_dma_interleaved(struct dma_chan *chan,
855 			 struct dma_interleaved_template *xt,
856 			 unsigned long flags)
857 {
858 	struct at_dma		*atdma = to_at_dma(chan->device);
859 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
860 	struct data_chunk	*first;
861 	struct atdma_sg		*atdma_sg;
862 	struct at_desc		*desc;
863 	struct at_lli		*lli;
864 	size_t			xfer_count;
865 	unsigned int		dwidth;
866 	u32			ctrla;
867 	u32			ctrlb;
868 	size_t			len = 0;
869 	int			i;
870 
871 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
872 		return NULL;
873 
874 	first = xt->sgl;
875 
876 	dev_info(chan2dev(chan),
877 		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
878 		__func__, &xt->src_start, &xt->dst_start, xt->numf,
879 		xt->frame_size, flags);
880 
881 	/*
882 	 * The controller can only "skip" X bytes every Y bytes, so we
883 	 * need to make sure we are given a template that fit that
884 	 * description, ie a template with chunks that always have the
885 	 * same size, with the same ICGs.
886 	 */
887 	for (i = 0; i < xt->frame_size; i++) {
888 		struct data_chunk *chunk = xt->sgl + i;
889 
890 		if ((chunk->size != xt->sgl->size) ||
891 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
892 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
893 			dev_err(chan2dev(chan),
894 				"%s: the controller can transfer only identical chunks\n",
895 				__func__);
896 			return NULL;
897 		}
898 
899 		len += chunk->size;
900 	}
901 
902 	dwidth = atc_get_xfer_width(xt->src_start, xt->dst_start, len);
903 
904 	xfer_count = len >> dwidth;
905 	if (xfer_count > ATC_BTSIZE_MAX) {
906 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
907 		return NULL;
908 	}
909 
910 	ctrla = FIELD_PREP(ATC_SRC_WIDTH, dwidth) |
911 		FIELD_PREP(ATC_DST_WIDTH, dwidth);
912 
913 	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
914 		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
915 		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
916 		ATC_SRC_PIP | ATC_DST_PIP |
917 		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
918 
919 	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
920 	if (!desc)
921 		return NULL;
922 	desc->sglen = 1;
923 
924 	atdma_sg = desc->sg;
925 	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
926 				       &atdma_sg->lli_phys);
927 	if (!atdma_sg->lli) {
928 		kfree(desc);
929 		return NULL;
930 	}
931 	lli = atdma_sg->lli;
932 
933 	lli->saddr = xt->src_start;
934 	lli->daddr = xt->dst_start;
935 	lli->ctrla = ctrla | xfer_count;
936 	lli->ctrlb = ctrlb;
937 
938 	desc->boundary = first->size >> dwidth;
939 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
940 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
941 
942 	atdma_sg->len = len;
943 	desc->total_len = len;
944 
945 	set_lli_eol(desc, 0);
946 	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
947 }
948 
949 /**
950  * atc_prep_dma_memcpy - prepare a memcpy operation
951  * @chan: the channel to prepare operation on
952  * @dest: operation virtual destination address
953  * @src: operation virtual source address
954  * @len: operation length
955  * @flags: tx descriptor status flags
956  */
957 static struct dma_async_tx_descriptor *
958 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
959 		size_t len, unsigned long flags)
960 {
961 	struct at_dma		*atdma = to_at_dma(chan->device);
962 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
963 	struct at_desc		*desc = NULL;
964 	size_t			xfer_count;
965 	size_t			offset;
966 	size_t			sg_len;
967 	unsigned int		src_width;
968 	unsigned int		dst_width;
969 	unsigned int		i;
970 	u32			ctrla;
971 	u32			ctrlb;
972 
973 	dev_dbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
974 		&dest, &src, len, flags);
975 
976 	if (unlikely(!len)) {
977 		dev_err(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
978 		return NULL;
979 	}
980 
981 	sg_len = DIV_ROUND_UP(len, ATC_BTSIZE_MAX);
982 	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
983 	if (!desc)
984 		return NULL;
985 	desc->sglen = sg_len;
986 
987 	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
988 		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
989 		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
990 		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
991 
992 	/*
993 	 * We can be a lot more clever here, but this should take care
994 	 * of the most common optimization.
995 	 */
996 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
997 
998 	ctrla = FIELD_PREP(ATC_SRC_WIDTH, src_width) |
999 		FIELD_PREP(ATC_DST_WIDTH, dst_width);
1000 
1001 	for (offset = 0, i = 0; offset < len;
1002 	     offset += xfer_count << src_width, i++) {
1003 		struct atdma_sg *atdma_sg = &desc->sg[i];
1004 		struct at_lli *lli;
1005 
1006 		atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1007 					       &atdma_sg->lli_phys);
1008 		if (!atdma_sg->lli)
1009 			goto err_desc_get;
1010 		lli = atdma_sg->lli;
1011 
1012 		xfer_count = min_t(size_t, (len - offset) >> src_width,
1013 				   ATC_BTSIZE_MAX);
1014 
1015 		lli->saddr = src + offset;
1016 		lli->daddr = dest + offset;
1017 		lli->ctrla = ctrla | xfer_count;
1018 		lli->ctrlb = ctrlb;
1019 
1020 		desc->sg[i].len = xfer_count << src_width;
1021 
1022 		atdma_lli_chain(desc, i);
1023 	}
1024 
1025 	desc->total_len = len;
1026 
1027 	/* set end-of-link to the last link descriptor of list*/
1028 	set_lli_eol(desc, i - 1);
1029 
1030 	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1031 
1032 err_desc_get:
1033 	atdma_desc_free(&desc->vd);
1034 	return NULL;
1035 }
1036 
1037 static int atdma_create_memset_lli(struct dma_chan *chan,
1038 				   struct atdma_sg *atdma_sg,
1039 				   dma_addr_t psrc, dma_addr_t pdst, size_t len)
1040 {
1041 	struct at_dma *atdma = to_at_dma(chan->device);
1042 	struct at_lli *lli;
1043 	size_t xfer_count;
1044 	u32 ctrla = FIELD_PREP(ATC_SRC_WIDTH, 2) | FIELD_PREP(ATC_DST_WIDTH, 2);
1045 	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
1046 		    FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_FIXED) |
1047 		    FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1048 		    FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
1049 
1050 	xfer_count = len >> 2;
1051 	if (xfer_count > ATC_BTSIZE_MAX) {
1052 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
1053 		return -EINVAL;
1054 	}
1055 
1056 	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1057 				       &atdma_sg->lli_phys);
1058 	if (!atdma_sg->lli)
1059 		return -ENOMEM;
1060 	lli = atdma_sg->lli;
1061 
1062 	lli->saddr = psrc;
1063 	lli->daddr = pdst;
1064 	lli->ctrla = ctrla | xfer_count;
1065 	lli->ctrlb = ctrlb;
1066 
1067 	atdma_sg->len = len;
1068 
1069 	return 0;
1070 }
1071 
1072 /**
1073  * atc_prep_dma_memset - prepare a memcpy operation
1074  * @chan: the channel to prepare operation on
1075  * @dest: operation virtual destination address
1076  * @value: value to set memory buffer to
1077  * @len: operation length
1078  * @flags: tx descriptor status flags
1079  */
1080 static struct dma_async_tx_descriptor *
1081 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1082 		    size_t len, unsigned long flags)
1083 {
1084 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1085 	struct at_dma		*atdma = to_at_dma(chan->device);
1086 	struct at_desc		*desc;
1087 	void __iomem		*vaddr;
1088 	dma_addr_t		paddr;
1089 	char			fill_pattern;
1090 	int			ret;
1091 
1092 	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
1093 		&dest, value, len, flags);
1094 
1095 	if (unlikely(!len)) {
1096 		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
1097 		return NULL;
1098 	}
1099 
1100 	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1101 		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
1102 			__func__);
1103 		return NULL;
1104 	}
1105 
1106 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1107 	if (!vaddr) {
1108 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1109 			__func__);
1110 		return NULL;
1111 	}
1112 
1113 	/* Only the first byte of value is to be used according to dmaengine */
1114 	fill_pattern = (char)value;
1115 
1116 	*(u32*)vaddr = (fill_pattern << 24) |
1117 		       (fill_pattern << 16) |
1118 		       (fill_pattern << 8) |
1119 		       fill_pattern;
1120 
1121 	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
1122 	if (!desc)
1123 		goto err_free_buffer;
1124 	desc->sglen = 1;
1125 
1126 	ret = atdma_create_memset_lli(chan, desc->sg, paddr, dest, len);
1127 	if (ret)
1128 		goto err_free_desc;
1129 
1130 	desc->memset_paddr = paddr;
1131 	desc->memset_vaddr = vaddr;
1132 	desc->memset_buffer = true;
1133 
1134 	desc->total_len = len;
1135 
1136 	/* set end-of-link on the descriptor */
1137 	set_lli_eol(desc, 0);
1138 
1139 	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1140 
1141 err_free_desc:
1142 	kfree(desc);
1143 err_free_buffer:
1144 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
1145 	return NULL;
1146 }
1147 
1148 static struct dma_async_tx_descriptor *
1149 atc_prep_dma_memset_sg(struct dma_chan *chan,
1150 		       struct scatterlist *sgl,
1151 		       unsigned int sg_len, int value,
1152 		       unsigned long flags)
1153 {
1154 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1155 	struct at_dma		*atdma = to_at_dma(chan->device);
1156 	struct at_desc		*desc;
1157 	struct scatterlist	*sg;
1158 	void __iomem		*vaddr;
1159 	dma_addr_t		paddr;
1160 	size_t			total_len = 0;
1161 	int			i;
1162 	int			ret;
1163 
1164 	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1165 		 value, sg_len, flags);
1166 
1167 	if (unlikely(!sgl || !sg_len)) {
1168 		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1169 			__func__);
1170 		return NULL;
1171 	}
1172 
1173 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1174 	if (!vaddr) {
1175 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1176 			__func__);
1177 		return NULL;
1178 	}
1179 	*(u32*)vaddr = value;
1180 
1181 	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1182 	if (!desc)
1183 		goto err_free_dma_buf;
1184 	desc->sglen = sg_len;
1185 
1186 	for_each_sg(sgl, sg, sg_len, i) {
1187 		dma_addr_t dest = sg_dma_address(sg);
1188 		size_t len = sg_dma_len(sg);
1189 
1190 		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1191 			 __func__, &dest, len);
1192 
1193 		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1194 			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1195 				__func__);
1196 			goto err_free_desc;
1197 		}
1198 
1199 		ret = atdma_create_memset_lli(chan, &desc->sg[i], paddr, dest,
1200 					      len);
1201 		if (ret)
1202 			goto err_free_desc;
1203 
1204 		atdma_lli_chain(desc, i);
1205 		total_len += len;
1206 	}
1207 
1208 	desc->memset_paddr = paddr;
1209 	desc->memset_vaddr = vaddr;
1210 	desc->memset_buffer = true;
1211 
1212 	desc->total_len = total_len;
1213 
1214 	/* set end-of-link on the descriptor */
1215 	set_lli_eol(desc, i - 1);
1216 
1217 	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1218 
1219 err_free_desc:
1220 	atdma_desc_free(&desc->vd);
1221 err_free_dma_buf:
1222 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
1223 	return NULL;
1224 }
1225 
1226 /**
1227  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1228  * @chan: DMA channel
1229  * @sgl: scatterlist to transfer to/from
1230  * @sg_len: number of entries in @scatterlist
1231  * @direction: DMA direction
1232  * @flags: tx descriptor status flags
1233  * @context: transaction context (ignored)
1234  */
1235 static struct dma_async_tx_descriptor *
1236 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1237 		unsigned int sg_len, enum dma_transfer_direction direction,
1238 		unsigned long flags, void *context)
1239 {
1240 	struct at_dma		*atdma = to_at_dma(chan->device);
1241 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1242 	struct at_dma_slave	*atslave = chan->private;
1243 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1244 	struct at_desc		*desc;
1245 	u32			ctrla;
1246 	u32			ctrlb;
1247 	dma_addr_t		reg;
1248 	unsigned int		reg_width;
1249 	unsigned int		mem_width;
1250 	unsigned int		i;
1251 	struct scatterlist	*sg;
1252 	size_t			total_len = 0;
1253 
1254 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1255 			sg_len,
1256 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1257 			flags);
1258 
1259 	if (unlikely(!atslave || !sg_len)) {
1260 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1261 		return NULL;
1262 	}
1263 
1264 	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1265 	if (!desc)
1266 		return NULL;
1267 	desc->sglen = sg_len;
1268 
1269 	ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1270 		FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst);
1271 	ctrlb = ATC_IEN;
1272 
1273 	switch (direction) {
1274 	case DMA_MEM_TO_DEV:
1275 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1276 		ctrla |= FIELD_PREP(ATC_DST_WIDTH, reg_width);
1277 		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE,
1278 				    ATC_DST_ADDR_MODE_FIXED) |
1279 			 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
1280 			 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1281 			 FIELD_PREP(ATC_SIF, atchan->mem_if) |
1282 			 FIELD_PREP(ATC_DIF, atchan->per_if);
1283 		reg = sconfig->dst_addr;
1284 		for_each_sg(sgl, sg, sg_len, i) {
1285 			struct atdma_sg *atdma_sg = &desc->sg[i];
1286 			struct at_lli *lli;
1287 			u32		len;
1288 			u32		mem;
1289 
1290 			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1291 						       GFP_NOWAIT,
1292 						       &atdma_sg->lli_phys);
1293 			if (!atdma_sg->lli)
1294 				goto err_desc_get;
1295 			lli = atdma_sg->lli;
1296 
1297 			mem = sg_dma_address(sg);
1298 			len = sg_dma_len(sg);
1299 			if (unlikely(!len)) {
1300 				dev_dbg(chan2dev(chan),
1301 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1302 				goto err;
1303 			}
1304 			mem_width = 2;
1305 			if (unlikely(mem & 3 || len & 3))
1306 				mem_width = 0;
1307 
1308 			lli->saddr = mem;
1309 			lli->daddr = reg;
1310 			lli->ctrla = ctrla |
1311 				     FIELD_PREP(ATC_SRC_WIDTH, mem_width) |
1312 				     len >> mem_width;
1313 			lli->ctrlb = ctrlb;
1314 
1315 			atdma_sg->len = len;
1316 			total_len += len;
1317 
1318 			desc->sg[i].len = len;
1319 			atdma_lli_chain(desc, i);
1320 		}
1321 		break;
1322 	case DMA_DEV_TO_MEM:
1323 		reg_width = convert_buswidth(sconfig->src_addr_width);
1324 		ctrla |= FIELD_PREP(ATC_SRC_WIDTH, reg_width);
1325 		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1326 			 FIELD_PREP(ATC_SRC_ADDR_MODE,
1327 				    ATC_SRC_ADDR_MODE_FIXED) |
1328 			 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1329 			 FIELD_PREP(ATC_SIF, atchan->per_if) |
1330 			 FIELD_PREP(ATC_DIF, atchan->mem_if);
1331 
1332 		reg = sconfig->src_addr;
1333 		for_each_sg(sgl, sg, sg_len, i) {
1334 			struct atdma_sg *atdma_sg = &desc->sg[i];
1335 			struct at_lli *lli;
1336 			u32		len;
1337 			u32		mem;
1338 
1339 			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1340 						       GFP_NOWAIT,
1341 						       &atdma_sg->lli_phys);
1342 			if (!atdma_sg->lli)
1343 				goto err_desc_get;
1344 			lli = atdma_sg->lli;
1345 
1346 			mem = sg_dma_address(sg);
1347 			len = sg_dma_len(sg);
1348 			if (unlikely(!len)) {
1349 				dev_dbg(chan2dev(chan),
1350 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1351 				goto err;
1352 			}
1353 			mem_width = 2;
1354 			if (unlikely(mem & 3 || len & 3))
1355 				mem_width = 0;
1356 
1357 			lli->saddr = reg;
1358 			lli->daddr = mem;
1359 			lli->ctrla = ctrla |
1360 				     FIELD_PREP(ATC_DST_WIDTH, mem_width) |
1361 				     len >> reg_width;
1362 			lli->ctrlb = ctrlb;
1363 
1364 			desc->sg[i].len = len;
1365 			total_len += len;
1366 
1367 			atdma_lli_chain(desc, i);
1368 		}
1369 		break;
1370 	default:
1371 		return NULL;
1372 	}
1373 
1374 	/* set end-of-link to the last link descriptor of list*/
1375 	set_lli_eol(desc, i - 1);
1376 
1377 	desc->total_len = total_len;
1378 
1379 	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1380 
1381 err_desc_get:
1382 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1383 err:
1384 	atdma_desc_free(&desc->vd);
1385 	return NULL;
1386 }
1387 
1388 /*
1389  * atc_dma_cyclic_check_values
1390  * Check for too big/unaligned periods and unaligned DMA buffer
1391  */
1392 static int
1393 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1394 		size_t period_len)
1395 {
1396 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1397 		goto err_out;
1398 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1399 		goto err_out;
1400 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1401 		goto err_out;
1402 
1403 	return 0;
1404 
1405 err_out:
1406 	return -EINVAL;
1407 }
1408 
1409 /*
1410  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1411  */
1412 static int
1413 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1414 		unsigned int i, dma_addr_t buf_addr,
1415 		unsigned int reg_width, size_t period_len,
1416 		enum dma_transfer_direction direction)
1417 {
1418 	struct at_dma		*atdma = to_at_dma(chan->device);
1419 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1420 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1421 	struct atdma_sg		*atdma_sg = &desc->sg[i];
1422 	struct at_lli		*lli;
1423 
1424 	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_ATOMIC,
1425 				       &atdma_sg->lli_phys);
1426 	if (!atdma_sg->lli)
1427 		return -ENOMEM;
1428 	lli = atdma_sg->lli;
1429 
1430 	switch (direction) {
1431 	case DMA_MEM_TO_DEV:
1432 		lli->saddr = buf_addr + (period_len * i);
1433 		lli->daddr = sconfig->dst_addr;
1434 		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1435 					ATC_DST_ADDR_MODE_FIXED) |
1436 			     FIELD_PREP(ATC_SRC_ADDR_MODE,
1437 					ATC_SRC_ADDR_MODE_INCR) |
1438 			     FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1439 			     FIELD_PREP(ATC_SIF, atchan->mem_if) |
1440 			     FIELD_PREP(ATC_DIF, atchan->per_if);
1441 
1442 		break;
1443 
1444 	case DMA_DEV_TO_MEM:
1445 		lli->saddr = sconfig->src_addr;
1446 		lli->daddr = buf_addr + (period_len * i);
1447 		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1448 					ATC_DST_ADDR_MODE_INCR) |
1449 			     FIELD_PREP(ATC_SRC_ADDR_MODE,
1450 					ATC_SRC_ADDR_MODE_FIXED) |
1451 			     FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1452 			     FIELD_PREP(ATC_SIF, atchan->per_if) |
1453 			     FIELD_PREP(ATC_DIF, atchan->mem_if);
1454 		break;
1455 
1456 	default:
1457 		return -EINVAL;
1458 	}
1459 
1460 	lli->ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1461 		     FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst) |
1462 		     FIELD_PREP(ATC_DST_WIDTH, reg_width) |
1463 		     FIELD_PREP(ATC_SRC_WIDTH, reg_width) |
1464 		     period_len >> reg_width;
1465 	desc->sg[i].len = period_len;
1466 
1467 	return 0;
1468 }
1469 
1470 /**
1471  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1472  * @chan: the DMA channel to prepare
1473  * @buf_addr: physical DMA address where the buffer starts
1474  * @buf_len: total number of bytes for the entire buffer
1475  * @period_len: number of bytes for each period
1476  * @direction: transfer direction, to or from device
1477  * @flags: tx descriptor status flags
1478  */
1479 static struct dma_async_tx_descriptor *
1480 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1481 		size_t period_len, enum dma_transfer_direction direction,
1482 		unsigned long flags)
1483 {
1484 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1485 	struct at_dma_slave	*atslave = chan->private;
1486 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1487 	struct at_desc		*desc;
1488 	unsigned long		was_cyclic;
1489 	unsigned int		reg_width;
1490 	unsigned int		periods = buf_len / period_len;
1491 	unsigned int		i;
1492 
1493 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1494 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1495 			&buf_addr,
1496 			periods, buf_len, period_len);
1497 
1498 	if (unlikely(!atslave || !buf_len || !period_len)) {
1499 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1500 		return NULL;
1501 	}
1502 
1503 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1504 	if (was_cyclic) {
1505 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1506 		return NULL;
1507 	}
1508 
1509 	if (unlikely(!is_slave_direction(direction)))
1510 		goto err_out;
1511 
1512 	if (direction == DMA_MEM_TO_DEV)
1513 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1514 	else
1515 		reg_width = convert_buswidth(sconfig->src_addr_width);
1516 
1517 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1518 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1519 		goto err_out;
1520 
1521 	desc = kzalloc(struct_size(desc, sg, periods), GFP_ATOMIC);
1522 	if (!desc)
1523 		goto err_out;
1524 	desc->sglen = periods;
1525 
1526 	/* build cyclic linked list */
1527 	for (i = 0; i < periods; i++) {
1528 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1529 					     reg_width, period_len, direction))
1530 			goto err_fill_desc;
1531 		atdma_lli_chain(desc, i);
1532 	}
1533 	desc->total_len = buf_len;
1534 	/* lets make a cyclic list */
1535 	desc->sg[i - 1].lli->dscr = desc->sg[0].lli_phys;
1536 
1537 	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1538 
1539 err_fill_desc:
1540 	atdma_desc_free(&desc->vd);
1541 err_out:
1542 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1543 	return NULL;
1544 }
1545 
1546 static int atc_config(struct dma_chan *chan,
1547 		      struct dma_slave_config *sconfig)
1548 {
1549 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1550 
1551 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1552 
1553 	/* Check if it is chan is configured for slave transfers */
1554 	if (!chan->private)
1555 		return -EINVAL;
1556 
1557 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1558 
1559 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1560 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1561 
1562 	return 0;
1563 }
1564 
1565 static int atc_pause(struct dma_chan *chan)
1566 {
1567 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1568 	struct at_dma		*atdma = to_at_dma(chan->device);
1569 	int			chan_id = atchan->vc.chan.chan_id;
1570 	unsigned long		flags;
1571 
1572 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1573 
1574 	spin_lock_irqsave(&atchan->vc.lock, flags);
1575 
1576 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1577 	set_bit(ATC_IS_PAUSED, &atchan->status);
1578 
1579 	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1580 
1581 	return 0;
1582 }
1583 
1584 static int atc_resume(struct dma_chan *chan)
1585 {
1586 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1587 	struct at_dma		*atdma = to_at_dma(chan->device);
1588 	int			chan_id = atchan->vc.chan.chan_id;
1589 	unsigned long		flags;
1590 
1591 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1592 
1593 	if (!atc_chan_is_paused(atchan))
1594 		return 0;
1595 
1596 	spin_lock_irqsave(&atchan->vc.lock, flags);
1597 
1598 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1599 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1600 
1601 	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1602 
1603 	return 0;
1604 }
1605 
1606 static int atc_terminate_all(struct dma_chan *chan)
1607 {
1608 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1609 	struct at_dma		*atdma = to_at_dma(chan->device);
1610 	int			chan_id = atchan->vc.chan.chan_id;
1611 	unsigned long		flags;
1612 
1613 	LIST_HEAD(list);
1614 
1615 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1616 
1617 	/*
1618 	 * This is only called when something went wrong elsewhere, so
1619 	 * we don't really care about the data. Just disable the
1620 	 * channel. We still have to poll the channel enable bit due
1621 	 * to AHB/HSB limitations.
1622 	 */
1623 	spin_lock_irqsave(&atchan->vc.lock, flags);
1624 
1625 	/* disabling channel: must also remove suspend state */
1626 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1627 
1628 	/* confirm that this channel is disabled */
1629 	while (dma_readl(atdma, CHSR) & atchan->mask)
1630 		cpu_relax();
1631 
1632 	if (atchan->desc) {
1633 		vchan_terminate_vdesc(&atchan->desc->vd);
1634 		atchan->desc = NULL;
1635 	}
1636 
1637 	vchan_get_all_descriptors(&atchan->vc, &list);
1638 
1639 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1640 	/* if channel dedicated to cyclic operations, free it */
1641 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1642 
1643 	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1644 
1645 	vchan_dma_desc_free_list(&atchan->vc, &list);
1646 
1647 	return 0;
1648 }
1649 
1650 /**
1651  * atc_tx_status - poll for transaction completion
1652  * @chan: DMA channel
1653  * @cookie: transaction identifier to check status of
1654  * @txstate: if not %NULL updated with transaction state
1655  *
1656  * If @txstate is passed in, upon return it reflect the driver
1657  * internal state and can be used with dma_async_is_complete() to check
1658  * the status of multiple cookies without re-checking hardware state.
1659  */
1660 static enum dma_status
1661 atc_tx_status(struct dma_chan *chan,
1662 		dma_cookie_t cookie,
1663 		struct dma_tx_state *txstate)
1664 {
1665 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1666 	unsigned long		flags;
1667 	enum dma_status		dma_status;
1668 	u32 residue;
1669 	int ret;
1670 
1671 	dma_status = dma_cookie_status(chan, cookie, txstate);
1672 	if (dma_status == DMA_COMPLETE || !txstate)
1673 		return dma_status;
1674 
1675 	spin_lock_irqsave(&atchan->vc.lock, flags);
1676 	/*  Get number of bytes left in the active transactions */
1677 	ret = atc_get_residue(chan, cookie, &residue);
1678 	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1679 
1680 	if (unlikely(ret < 0)) {
1681 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1682 		return DMA_ERROR;
1683 	} else {
1684 		dma_set_residue(txstate, residue);
1685 	}
1686 
1687 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %u\n",
1688 		 dma_status, cookie, residue);
1689 
1690 	return dma_status;
1691 }
1692 
1693 static void atc_issue_pending(struct dma_chan *chan)
1694 {
1695 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
1696 	unsigned long flags;
1697 
1698 	spin_lock_irqsave(&atchan->vc.lock, flags);
1699 	if (vchan_issue_pending(&atchan->vc) && !atchan->desc) {
1700 		if (!(atc_chan_is_enabled(atchan)))
1701 			atc_dostart(atchan);
1702 	}
1703 	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1704 }
1705 
1706 /**
1707  * atc_alloc_chan_resources - allocate resources for DMA channel
1708  * @chan: allocate descriptor resources for this channel
1709  *
1710  * return - the number of allocated descriptors
1711  */
1712 static int atc_alloc_chan_resources(struct dma_chan *chan)
1713 {
1714 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1715 	struct at_dma		*atdma = to_at_dma(chan->device);
1716 	struct at_dma_slave	*atslave;
1717 	u32			cfg;
1718 
1719 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1720 
1721 	/* ASSERT:  channel is idle */
1722 	if (atc_chan_is_enabled(atchan)) {
1723 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1724 		return -EIO;
1725 	}
1726 
1727 	cfg = ATC_DEFAULT_CFG;
1728 
1729 	atslave = chan->private;
1730 	if (atslave) {
1731 		/*
1732 		 * We need controller-specific data to set up slave
1733 		 * transfers.
1734 		 */
1735 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_device.dev);
1736 
1737 		/* if cfg configuration specified take it instead of default */
1738 		if (atslave->cfg)
1739 			cfg = atslave->cfg;
1740 	}
1741 
1742 	/* channel parameters */
1743 	channel_writel(atchan, CFG, cfg);
1744 
1745 	return 0;
1746 }
1747 
1748 /**
1749  * atc_free_chan_resources - free all channel resources
1750  * @chan: DMA channel
1751  */
1752 static void atc_free_chan_resources(struct dma_chan *chan)
1753 {
1754 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1755 
1756 	BUG_ON(atc_chan_is_enabled(atchan));
1757 
1758 	vchan_free_chan_resources(to_virt_chan(chan));
1759 	atchan->status = 0;
1760 
1761 	/*
1762 	 * Free atslave allocated in at_dma_xlate()
1763 	 */
1764 	kfree(chan->private);
1765 	chan->private = NULL;
1766 
1767 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1768 }
1769 
1770 #ifdef CONFIG_OF
1771 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1772 {
1773 	struct at_dma_slave *atslave = slave;
1774 
1775 	if (atslave->dma_dev == chan->device->dev) {
1776 		chan->private = atslave;
1777 		return true;
1778 	} else {
1779 		return false;
1780 	}
1781 }
1782 
1783 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1784 				     struct of_dma *of_dma)
1785 {
1786 	struct dma_chan *chan;
1787 	struct at_dma_chan *atchan;
1788 	struct at_dma_slave *atslave;
1789 	dma_cap_mask_t mask;
1790 	unsigned int per_id;
1791 	struct platform_device *dmac_pdev;
1792 
1793 	if (dma_spec->args_count != 2)
1794 		return NULL;
1795 
1796 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1797 	if (!dmac_pdev)
1798 		return NULL;
1799 
1800 	dma_cap_zero(mask);
1801 	dma_cap_set(DMA_SLAVE, mask);
1802 
1803 	atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1804 	if (!atslave) {
1805 		put_device(&dmac_pdev->dev);
1806 		return NULL;
1807 	}
1808 
1809 	atslave->cfg = ATC_DST_H2SEL | ATC_SRC_H2SEL;
1810 	/*
1811 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1812 	 * ignored depending on DMA transfer direction.
1813 	 */
1814 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1815 	atslave->cfg |= ATC_DST_PER_ID(per_id) |  ATC_SRC_PER_ID(per_id);
1816 	/*
1817 	 * We have to translate the value we get from the device tree since
1818 	 * the half FIFO configuration value had to be 0 to keep backward
1819 	 * compatibility.
1820 	 */
1821 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1822 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1823 		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1824 					   ATC_FIFOCFG_LARGESTBURST);
1825 		break;
1826 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1827 		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1828 					   ATC_FIFOCFG_ENOUGHSPACE);
1829 		break;
1830 	case AT91_DMA_CFG_FIFOCFG_HALF:
1831 	default:
1832 		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO);
1833 	}
1834 	atslave->dma_dev = &dmac_pdev->dev;
1835 
1836 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1837 	if (!chan) {
1838 		put_device(&dmac_pdev->dev);
1839 		kfree(atslave);
1840 		return NULL;
1841 	}
1842 
1843 	atchan = to_at_dma_chan(chan);
1844 	atchan->per_if = dma_spec->args[0] & 0xff;
1845 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1846 
1847 	return chan;
1848 }
1849 #else
1850 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1851 				     struct of_dma *of_dma)
1852 {
1853 	return NULL;
1854 }
1855 #endif
1856 
1857 /*--  Module Management  -----------------------------------------------*/
1858 
1859 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1860 static struct at_dma_platform_data at91sam9rl_config = {
1861 	.nr_channels = 2,
1862 };
1863 static struct at_dma_platform_data at91sam9g45_config = {
1864 	.nr_channels = 8,
1865 };
1866 
1867 #if defined(CONFIG_OF)
1868 static const struct of_device_id atmel_dma_dt_ids[] = {
1869 	{
1870 		.compatible = "atmel,at91sam9rl-dma",
1871 		.data = &at91sam9rl_config,
1872 	}, {
1873 		.compatible = "atmel,at91sam9g45-dma",
1874 		.data = &at91sam9g45_config,
1875 	}, {
1876 		/* sentinel */
1877 	}
1878 };
1879 
1880 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1881 #endif
1882 
1883 static const struct platform_device_id atdma_devtypes[] = {
1884 	{
1885 		.name = "at91sam9rl_dma",
1886 		.driver_data = (unsigned long) &at91sam9rl_config,
1887 	}, {
1888 		.name = "at91sam9g45_dma",
1889 		.driver_data = (unsigned long) &at91sam9g45_config,
1890 	}, {
1891 		/* sentinel */
1892 	}
1893 };
1894 
1895 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1896 						struct platform_device *pdev)
1897 {
1898 	if (pdev->dev.of_node) {
1899 		const struct of_device_id *match;
1900 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1901 		if (match == NULL)
1902 			return NULL;
1903 		return match->data;
1904 	}
1905 	return (struct at_dma_platform_data *)
1906 			platform_get_device_id(pdev)->driver_data;
1907 }
1908 
1909 /**
1910  * at_dma_off - disable DMA controller
1911  * @atdma: the Atmel HDAMC device
1912  */
1913 static void at_dma_off(struct at_dma *atdma)
1914 {
1915 	dma_writel(atdma, EN, 0);
1916 
1917 	/* disable all interrupts */
1918 	dma_writel(atdma, EBCIDR, -1L);
1919 
1920 	/* confirm that all channels are disabled */
1921 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1922 		cpu_relax();
1923 }
1924 
1925 static int __init at_dma_probe(struct platform_device *pdev)
1926 {
1927 	struct at_dma		*atdma;
1928 	int			irq;
1929 	int			err;
1930 	int			i;
1931 	const struct at_dma_platform_data *plat_dat;
1932 
1933 	/* setup platform data for each SoC */
1934 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1935 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1936 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1937 	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1938 	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1939 	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1940 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1941 
1942 	/* get DMA parameters from controller type */
1943 	plat_dat = at_dma_get_driver_data(pdev);
1944 	if (!plat_dat)
1945 		return -ENODEV;
1946 
1947 	atdma = devm_kzalloc(&pdev->dev,
1948 			     struct_size(atdma, chan, plat_dat->nr_channels),
1949 			     GFP_KERNEL);
1950 	if (!atdma)
1951 		return -ENOMEM;
1952 
1953 	atdma->regs = devm_platform_ioremap_resource(pdev, 0);
1954 	if (IS_ERR(atdma->regs))
1955 		return PTR_ERR(atdma->regs);
1956 
1957 	irq = platform_get_irq(pdev, 0);
1958 	if (irq < 0)
1959 		return irq;
1960 
1961 	/* discover transaction capabilities */
1962 	atdma->dma_device.cap_mask = plat_dat->cap_mask;
1963 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1964 
1965 	atdma->clk = devm_clk_get(&pdev->dev, "dma_clk");
1966 	if (IS_ERR(atdma->clk))
1967 		return PTR_ERR(atdma->clk);
1968 
1969 	err = clk_prepare_enable(atdma->clk);
1970 	if (err)
1971 		return err;
1972 
1973 	/* force dma off, just in case */
1974 	at_dma_off(atdma);
1975 
1976 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1977 	if (err)
1978 		goto err_irq;
1979 
1980 	platform_set_drvdata(pdev, atdma);
1981 
1982 	/* create a pool of consistent memory blocks for hardware descriptors */
1983 	atdma->lli_pool = dma_pool_create("at_hdmac_lli_pool",
1984 					  &pdev->dev, sizeof(struct at_lli),
1985 					  4 /* word alignment */, 0);
1986 	if (!atdma->lli_pool) {
1987 		dev_err(&pdev->dev, "Unable to allocate DMA LLI descriptor pool\n");
1988 		err = -ENOMEM;
1989 		goto err_desc_pool_create;
1990 	}
1991 
1992 	/* create a pool of consistent memory blocks for memset blocks */
1993 	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1994 					     &pdev->dev, sizeof(int), 4, 0);
1995 	if (!atdma->memset_pool) {
1996 		dev_err(&pdev->dev, "No memory for memset dma pool\n");
1997 		err = -ENOMEM;
1998 		goto err_memset_pool_create;
1999 	}
2000 
2001 	/* clear any pending interrupt */
2002 	while (dma_readl(atdma, EBCISR))
2003 		cpu_relax();
2004 
2005 	/* initialize channels related values */
2006 	INIT_LIST_HEAD(&atdma->dma_device.channels);
2007 	for (i = 0; i < plat_dat->nr_channels; i++) {
2008 		struct at_dma_chan	*atchan = &atdma->chan[i];
2009 
2010 		atchan->mem_if = AT_DMA_MEM_IF;
2011 		atchan->per_if = AT_DMA_PER_IF;
2012 
2013 		atchan->ch_regs = atdma->regs + ch_regs(i);
2014 		atchan->mask = 1 << i;
2015 
2016 		atchan->atdma = atdma;
2017 		atchan->vc.desc_free = atdma_desc_free;
2018 		vchan_init(&atchan->vc, &atdma->dma_device);
2019 		atc_enable_chan_irq(atdma, i);
2020 	}
2021 
2022 	/* set base routines */
2023 	atdma->dma_device.device_alloc_chan_resources = atc_alloc_chan_resources;
2024 	atdma->dma_device.device_free_chan_resources = atc_free_chan_resources;
2025 	atdma->dma_device.device_tx_status = atc_tx_status;
2026 	atdma->dma_device.device_issue_pending = atc_issue_pending;
2027 	atdma->dma_device.dev = &pdev->dev;
2028 
2029 	/* set prep routines based on capability */
2030 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_device.cap_mask))
2031 		atdma->dma_device.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2032 
2033 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask))
2034 		atdma->dma_device.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2035 
2036 	if (dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask)) {
2037 		atdma->dma_device.device_prep_dma_memset = atc_prep_dma_memset;
2038 		atdma->dma_device.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2039 		atdma->dma_device.fill_align = DMAENGINE_ALIGN_4_BYTES;
2040 	}
2041 
2042 	if (dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)) {
2043 		atdma->dma_device.device_prep_slave_sg = atc_prep_slave_sg;
2044 		/* controller can do slave DMA: can trigger cyclic transfers */
2045 		dma_cap_set(DMA_CYCLIC, atdma->dma_device.cap_mask);
2046 		atdma->dma_device.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2047 		atdma->dma_device.device_config = atc_config;
2048 		atdma->dma_device.device_pause = atc_pause;
2049 		atdma->dma_device.device_resume = atc_resume;
2050 		atdma->dma_device.device_terminate_all = atc_terminate_all;
2051 		atdma->dma_device.src_addr_widths = ATC_DMA_BUSWIDTHS;
2052 		atdma->dma_device.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2053 		atdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2054 		atdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2055 	}
2056 
2057 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2058 
2059 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
2060 	  dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask) ? "cpy " : "",
2061 	  dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask) ? "set " : "",
2062 	  dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)  ? "slave " : "",
2063 	  plat_dat->nr_channels);
2064 
2065 	err = dma_async_device_register(&atdma->dma_device);
2066 	if (err) {
2067 		dev_err(&pdev->dev, "Unable to register: %d.\n", err);
2068 		goto err_dma_async_device_register;
2069 	}
2070 
2071 	/*
2072 	 * Do not return an error if the dmac node is not present in order to
2073 	 * not break the existing way of requesting channel with
2074 	 * dma_request_channel().
2075 	 */
2076 	if (pdev->dev.of_node) {
2077 		err = of_dma_controller_register(pdev->dev.of_node,
2078 						 at_dma_xlate, atdma);
2079 		if (err) {
2080 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
2081 			goto err_of_dma_controller_register;
2082 		}
2083 	}
2084 
2085 	return 0;
2086 
2087 err_of_dma_controller_register:
2088 	dma_async_device_unregister(&atdma->dma_device);
2089 err_dma_async_device_register:
2090 	dma_pool_destroy(atdma->memset_pool);
2091 err_memset_pool_create:
2092 	dma_pool_destroy(atdma->lli_pool);
2093 err_desc_pool_create:
2094 	free_irq(platform_get_irq(pdev, 0), atdma);
2095 err_irq:
2096 	clk_disable_unprepare(atdma->clk);
2097 	return err;
2098 }
2099 
2100 static int at_dma_remove(struct platform_device *pdev)
2101 {
2102 	struct at_dma		*atdma = platform_get_drvdata(pdev);
2103 	struct dma_chan		*chan, *_chan;
2104 
2105 	at_dma_off(atdma);
2106 	if (pdev->dev.of_node)
2107 		of_dma_controller_free(pdev->dev.of_node);
2108 	dma_async_device_unregister(&atdma->dma_device);
2109 
2110 	dma_pool_destroy(atdma->memset_pool);
2111 	dma_pool_destroy(atdma->lli_pool);
2112 	free_irq(platform_get_irq(pdev, 0), atdma);
2113 
2114 	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2115 			device_node) {
2116 		/* Disable interrupts */
2117 		atc_disable_chan_irq(atdma, chan->chan_id);
2118 		list_del(&chan->device_node);
2119 	}
2120 
2121 	clk_disable_unprepare(atdma->clk);
2122 
2123 	return 0;
2124 }
2125 
2126 static void at_dma_shutdown(struct platform_device *pdev)
2127 {
2128 	struct at_dma	*atdma = platform_get_drvdata(pdev);
2129 
2130 	at_dma_off(platform_get_drvdata(pdev));
2131 	clk_disable_unprepare(atdma->clk);
2132 }
2133 
2134 static int at_dma_prepare(struct device *dev)
2135 {
2136 	struct at_dma *atdma = dev_get_drvdata(dev);
2137 	struct dma_chan *chan, *_chan;
2138 
2139 	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2140 			device_node) {
2141 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2142 		/* wait for transaction completion (except in cyclic case) */
2143 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2144 			return -EAGAIN;
2145 	}
2146 	return 0;
2147 }
2148 
2149 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2150 {
2151 	struct dma_chan	*chan = &atchan->vc.chan;
2152 
2153 	/* Channel should be paused by user
2154 	 * do it anyway even if it is not done already */
2155 	if (!atc_chan_is_paused(atchan)) {
2156 		dev_warn(chan2dev(chan),
2157 		"cyclic channel not paused, should be done by channel user\n");
2158 		atc_pause(chan);
2159 	}
2160 
2161 	/* now preserve additional data for cyclic operations */
2162 	/* next descriptor address in the cyclic list */
2163 	atchan->save_dscr = channel_readl(atchan, DSCR);
2164 
2165 	vdbg_dump_regs(atchan);
2166 }
2167 
2168 static int at_dma_suspend_noirq(struct device *dev)
2169 {
2170 	struct at_dma *atdma = dev_get_drvdata(dev);
2171 	struct dma_chan *chan, *_chan;
2172 
2173 	/* preserve data */
2174 	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2175 			device_node) {
2176 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2177 
2178 		if (atc_chan_is_cyclic(atchan))
2179 			atc_suspend_cyclic(atchan);
2180 		atchan->save_cfg = channel_readl(atchan, CFG);
2181 	}
2182 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2183 
2184 	/* disable DMA controller */
2185 	at_dma_off(atdma);
2186 	clk_disable_unprepare(atdma->clk);
2187 	return 0;
2188 }
2189 
2190 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2191 {
2192 	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);
2193 
2194 	/* restore channel status for cyclic descriptors list:
2195 	 * next descriptor in the cyclic list at the time of suspend */
2196 	channel_writel(atchan, SADDR, 0);
2197 	channel_writel(atchan, DADDR, 0);
2198 	channel_writel(atchan, CTRLA, 0);
2199 	channel_writel(atchan, CTRLB, 0);
2200 	channel_writel(atchan, DSCR, atchan->save_dscr);
2201 	dma_writel(atdma, CHER, atchan->mask);
2202 
2203 	/* channel pause status should be removed by channel user
2204 	 * We cannot take the initiative to do it here */
2205 
2206 	vdbg_dump_regs(atchan);
2207 }
2208 
2209 static int at_dma_resume_noirq(struct device *dev)
2210 {
2211 	struct at_dma *atdma = dev_get_drvdata(dev);
2212 	struct dma_chan *chan, *_chan;
2213 
2214 	/* bring back DMA controller */
2215 	clk_prepare_enable(atdma->clk);
2216 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2217 
2218 	/* clear any pending interrupt */
2219 	while (dma_readl(atdma, EBCISR))
2220 		cpu_relax();
2221 
2222 	/* restore saved data */
2223 	dma_writel(atdma, EBCIER, atdma->save_imr);
2224 	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2225 			device_node) {
2226 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2227 
2228 		channel_writel(atchan, CFG, atchan->save_cfg);
2229 		if (atc_chan_is_cyclic(atchan))
2230 			atc_resume_cyclic(atchan);
2231 	}
2232 	return 0;
2233 }
2234 
2235 static const struct dev_pm_ops __maybe_unused at_dma_dev_pm_ops = {
2236 	.prepare = at_dma_prepare,
2237 	.suspend_noirq = at_dma_suspend_noirq,
2238 	.resume_noirq = at_dma_resume_noirq,
2239 };
2240 
2241 static struct platform_driver at_dma_driver = {
2242 	.remove		= at_dma_remove,
2243 	.shutdown	= at_dma_shutdown,
2244 	.id_table	= atdma_devtypes,
2245 	.driver = {
2246 		.name	= "at_hdmac",
2247 		.pm	= pm_ptr(&at_dma_dev_pm_ops),
2248 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2249 	},
2250 };
2251 
2252 static int __init at_dma_init(void)
2253 {
2254 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2255 }
2256 subsys_initcall(at_dma_init);
2257 
2258 static void __exit at_dma_exit(void)
2259 {
2260 	platform_driver_unregister(&at_dma_driver);
2261 }
2262 module_exit(at_dma_exit);
2263 
2264 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2265 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2266 MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
2267 MODULE_LICENSE("GPL");
2268 MODULE_ALIAS("platform:at_hdmac");
2269