1 /* 2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 3 * 4 * Copyright (C) 2008 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * 12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 13 * The only Atmel DMA Controller that is not covered by this driver is the one 14 * found on AT91SAM9263. 15 */ 16 17 #include <dt-bindings/dma/at91.h> 18 #include <linux/clk.h> 19 #include <linux/dmaengine.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dmapool.h> 22 #include <linux/interrupt.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/slab.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/of_dma.h> 29 30 #include "at_hdmac_regs.h" 31 #include "dmaengine.h" 32 33 /* 34 * Glossary 35 * -------- 36 * 37 * at_hdmac : Name of the ATmel AHB DMA Controller 38 * at_dma_ / atdma : ATmel DMA controller entity related 39 * atc_ / atchan : ATmel DMA Channel entity related 40 */ 41 42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) 43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ 44 |ATC_DIF(AT_DMA_MEM_IF)) 45 #define ATC_DMA_BUSWIDTHS\ 46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 50 51 #define ATC_MAX_DSCR_TRIALS 10 52 53 /* 54 * Initial number of descriptors to allocate for each channel. This could 55 * be increased during dma usage. 56 */ 57 static unsigned int init_nr_desc_per_channel = 64; 58 module_param(init_nr_desc_per_channel, uint, 0644); 59 MODULE_PARM_DESC(init_nr_desc_per_channel, 60 "initial descriptors per channel (default: 64)"); 61 62 63 /* prototypes */ 64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); 65 static void atc_issue_pending(struct dma_chan *chan); 66 67 68 /*----------------------------------------------------------------------*/ 69 70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 71 size_t len) 72 { 73 unsigned int width; 74 75 if (!((src | dst | len) & 3)) 76 width = 2; 77 else if (!((src | dst | len) & 1)) 78 width = 1; 79 else 80 width = 0; 81 82 return width; 83 } 84 85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan) 86 { 87 return list_first_entry(&atchan->active_list, 88 struct at_desc, desc_node); 89 } 90 91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) 92 { 93 return list_first_entry(&atchan->queue, 94 struct at_desc, desc_node); 95 } 96 97 /** 98 * atc_alloc_descriptor - allocate and return an initialized descriptor 99 * @chan: the channel to allocate descriptors for 100 * @gfp_flags: GFP allocation flags 101 * 102 * Note: The ack-bit is positioned in the descriptor flag at creation time 103 * to make initial allocation more convenient. This bit will be cleared 104 * and control will be given to client at usage time (during 105 * preparation functions). 106 */ 107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, 108 gfp_t gfp_flags) 109 { 110 struct at_desc *desc = NULL; 111 struct at_dma *atdma = to_at_dma(chan->device); 112 dma_addr_t phys; 113 114 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys); 115 if (desc) { 116 INIT_LIST_HEAD(&desc->tx_list); 117 dma_async_tx_descriptor_init(&desc->txd, chan); 118 /* txd.flags will be overwritten in prep functions */ 119 desc->txd.flags = DMA_CTRL_ACK; 120 desc->txd.tx_submit = atc_tx_submit; 121 desc->txd.phys = phys; 122 } 123 124 return desc; 125 } 126 127 /** 128 * atc_desc_get - get an unused descriptor from free_list 129 * @atchan: channel we want a new descriptor for 130 */ 131 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) 132 { 133 struct at_desc *desc, *_desc; 134 struct at_desc *ret = NULL; 135 unsigned long flags; 136 unsigned int i = 0; 137 LIST_HEAD(tmp_list); 138 139 spin_lock_irqsave(&atchan->lock, flags); 140 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 141 i++; 142 if (async_tx_test_ack(&desc->txd)) { 143 list_del(&desc->desc_node); 144 ret = desc; 145 break; 146 } 147 dev_dbg(chan2dev(&atchan->chan_common), 148 "desc %p not ACKed\n", desc); 149 } 150 spin_unlock_irqrestore(&atchan->lock, flags); 151 dev_vdbg(chan2dev(&atchan->chan_common), 152 "scanned %u descriptors on freelist\n", i); 153 154 /* no more descriptor available in initial pool: create one more */ 155 if (!ret) { 156 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC); 157 if (ret) { 158 spin_lock_irqsave(&atchan->lock, flags); 159 atchan->descs_allocated++; 160 spin_unlock_irqrestore(&atchan->lock, flags); 161 } else { 162 dev_err(chan2dev(&atchan->chan_common), 163 "not enough descriptors available\n"); 164 } 165 } 166 167 return ret; 168 } 169 170 /** 171 * atc_desc_put - move a descriptor, including any children, to the free list 172 * @atchan: channel we work on 173 * @desc: descriptor, at the head of a chain, to move to free list 174 */ 175 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) 176 { 177 if (desc) { 178 struct at_desc *child; 179 unsigned long flags; 180 181 spin_lock_irqsave(&atchan->lock, flags); 182 list_for_each_entry(child, &desc->tx_list, desc_node) 183 dev_vdbg(chan2dev(&atchan->chan_common), 184 "moving child desc %p to freelist\n", 185 child); 186 list_splice_init(&desc->tx_list, &atchan->free_list); 187 dev_vdbg(chan2dev(&atchan->chan_common), 188 "moving desc %p to freelist\n", desc); 189 list_add(&desc->desc_node, &atchan->free_list); 190 spin_unlock_irqrestore(&atchan->lock, flags); 191 } 192 } 193 194 /** 195 * atc_desc_chain - build chain adding a descriptor 196 * @first: address of first descriptor of the chain 197 * @prev: address of previous descriptor of the chain 198 * @desc: descriptor to queue 199 * 200 * Called from prep_* functions 201 */ 202 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, 203 struct at_desc *desc) 204 { 205 if (!(*first)) { 206 *first = desc; 207 } else { 208 /* inform the HW lli about chaining */ 209 (*prev)->lli.dscr = desc->txd.phys; 210 /* insert the link descriptor to the LD ring */ 211 list_add_tail(&desc->desc_node, 212 &(*first)->tx_list); 213 } 214 *prev = desc; 215 } 216 217 /** 218 * atc_dostart - starts the DMA engine for real 219 * @atchan: the channel we want to start 220 * @first: first descriptor in the list we want to begin with 221 * 222 * Called with atchan->lock held and bh disabled 223 */ 224 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) 225 { 226 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 227 228 /* ASSERT: channel is idle */ 229 if (atc_chan_is_enabled(atchan)) { 230 dev_err(chan2dev(&atchan->chan_common), 231 "BUG: Attempted to start non-idle channel\n"); 232 dev_err(chan2dev(&atchan->chan_common), 233 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", 234 channel_readl(atchan, SADDR), 235 channel_readl(atchan, DADDR), 236 channel_readl(atchan, CTRLA), 237 channel_readl(atchan, CTRLB), 238 channel_readl(atchan, DSCR)); 239 240 /* The tasklet will hopefully advance the queue... */ 241 return; 242 } 243 244 vdbg_dump_regs(atchan); 245 246 channel_writel(atchan, SADDR, 0); 247 channel_writel(atchan, DADDR, 0); 248 channel_writel(atchan, CTRLA, 0); 249 channel_writel(atchan, CTRLB, 0); 250 channel_writel(atchan, DSCR, first->txd.phys); 251 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | 252 ATC_SPIP_BOUNDARY(first->boundary)); 253 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | 254 ATC_DPIP_BOUNDARY(first->boundary)); 255 dma_writel(atdma, CHER, atchan->mask); 256 257 vdbg_dump_regs(atchan); 258 } 259 260 /* 261 * atc_get_desc_by_cookie - get the descriptor of a cookie 262 * @atchan: the DMA channel 263 * @cookie: the cookie to get the descriptor for 264 */ 265 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, 266 dma_cookie_t cookie) 267 { 268 struct at_desc *desc, *_desc; 269 270 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { 271 if (desc->txd.cookie == cookie) 272 return desc; 273 } 274 275 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { 276 if (desc->txd.cookie == cookie) 277 return desc; 278 } 279 280 return NULL; 281 } 282 283 /** 284 * atc_calc_bytes_left - calculates the number of bytes left according to the 285 * value read from CTRLA. 286 * 287 * @current_len: the number of bytes left before reading CTRLA 288 * @ctrla: the value of CTRLA 289 */ 290 static inline int atc_calc_bytes_left(int current_len, u32 ctrla) 291 { 292 u32 btsize = (ctrla & ATC_BTSIZE_MAX); 293 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); 294 295 /* 296 * According to the datasheet, when reading the Control A Register 297 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 298 * number of transfers completed on the Source Interface. 299 * So btsize is always a number of source width transfers. 300 */ 301 return current_len - (btsize << src_width); 302 } 303 304 /** 305 * atc_get_bytes_left - get the number of bytes residue for a cookie 306 * @chan: DMA channel 307 * @cookie: transaction identifier to check status of 308 */ 309 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) 310 { 311 struct at_dma_chan *atchan = to_at_dma_chan(chan); 312 struct at_desc *desc_first = atc_first_active(atchan); 313 struct at_desc *desc; 314 int ret; 315 u32 ctrla, dscr, trials; 316 317 /* 318 * If the cookie doesn't match to the currently running transfer then 319 * we can return the total length of the associated DMA transfer, 320 * because it is still queued. 321 */ 322 desc = atc_get_desc_by_cookie(atchan, cookie); 323 if (desc == NULL) 324 return -EINVAL; 325 else if (desc != desc_first) 326 return desc->total_len; 327 328 /* cookie matches to the currently running transfer */ 329 ret = desc_first->total_len; 330 331 if (desc_first->lli.dscr) { 332 /* hardware linked list transfer */ 333 334 /* 335 * Calculate the residue by removing the length of the child 336 * descriptors already transferred from the total length. 337 * To get the current child descriptor we can use the value of 338 * the channel's DSCR register and compare it against the value 339 * of the hardware linked list structure of each child 340 * descriptor. 341 * 342 * The CTRLA register provides us with the amount of data 343 * already read from the source for the current child 344 * descriptor. So we can compute a more accurate residue by also 345 * removing the number of bytes corresponding to this amount of 346 * data. 347 * 348 * However, the DSCR and CTRLA registers cannot be read both 349 * atomically. Hence a race condition may occur: the first read 350 * register may refer to one child descriptor whereas the second 351 * read may refer to a later child descriptor in the list 352 * because of the DMA transfer progression inbetween the two 353 * reads. 354 * 355 * One solution could have been to pause the DMA transfer, read 356 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless, 357 * this approach presents some drawbacks: 358 * - If the DMA transfer is paused, RX overruns or TX underruns 359 * are more likey to occur depending on the system latency. 360 * Taking the USART driver as an example, it uses a cyclic DMA 361 * transfer to read data from the Receive Holding Register 362 * (RHR) to avoid RX overruns since the RHR is not protected 363 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer 364 * to compute the residue would break the USART driver design. 365 * - The atc_pause() function masks interrupts but we'd rather 366 * avoid to do so for system latency purpose. 367 * 368 * Then we'd rather use another solution: the DSCR is read a 369 * first time, the CTRLA is read in turn, next the DSCR is read 370 * a second time. If the two consecutive read values of the DSCR 371 * are the same then we assume both refers to the very same 372 * child descriptor as well as the CTRLA value read inbetween 373 * does. For cyclic tranfers, the assumption is that a full loop 374 * is "not so fast". 375 * If the two DSCR values are different, we read again the CTRLA 376 * then the DSCR till two consecutive read values from DSCR are 377 * equal or till the maxium trials is reach. 378 * This algorithm is very unlikely not to find a stable value for 379 * DSCR. 380 */ 381 382 dscr = channel_readl(atchan, DSCR); 383 rmb(); /* ensure DSCR is read before CTRLA */ 384 ctrla = channel_readl(atchan, CTRLA); 385 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) { 386 u32 new_dscr; 387 388 rmb(); /* ensure DSCR is read after CTRLA */ 389 new_dscr = channel_readl(atchan, DSCR); 390 391 /* 392 * If the DSCR register value has not changed inside the 393 * DMA controller since the previous read, we assume 394 * that both the dscr and ctrla values refers to the 395 * very same descriptor. 396 */ 397 if (likely(new_dscr == dscr)) 398 break; 399 400 /* 401 * DSCR has changed inside the DMA controller, so the 402 * previouly read value of CTRLA may refer to an already 403 * processed descriptor hence could be outdated. 404 * We need to update ctrla to match the current 405 * descriptor. 406 */ 407 dscr = new_dscr; 408 rmb(); /* ensure DSCR is read before CTRLA */ 409 ctrla = channel_readl(atchan, CTRLA); 410 } 411 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS)) 412 return -ETIMEDOUT; 413 414 /* for the first descriptor we can be more accurate */ 415 if (desc_first->lli.dscr == dscr) 416 return atc_calc_bytes_left(ret, ctrla); 417 418 ret -= desc_first->len; 419 list_for_each_entry(desc, &desc_first->tx_list, desc_node) { 420 if (desc->lli.dscr == dscr) 421 break; 422 423 ret -= desc->len; 424 } 425 426 /* 427 * For the current descriptor in the chain we can calculate 428 * the remaining bytes using the channel's register. 429 */ 430 ret = atc_calc_bytes_left(ret, ctrla); 431 } else { 432 /* single transfer */ 433 ctrla = channel_readl(atchan, CTRLA); 434 ret = atc_calc_bytes_left(ret, ctrla); 435 } 436 437 return ret; 438 } 439 440 /** 441 * atc_chain_complete - finish work for one transaction chain 442 * @atchan: channel we work on 443 * @desc: descriptor at the head of the chain we want do complete 444 * 445 * Called with atchan->lock held and bh disabled */ 446 static void 447 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) 448 { 449 struct dma_async_tx_descriptor *txd = &desc->txd; 450 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 451 452 dev_vdbg(chan2dev(&atchan->chan_common), 453 "descriptor %u complete\n", txd->cookie); 454 455 /* mark the descriptor as complete for non cyclic cases only */ 456 if (!atc_chan_is_cyclic(atchan)) 457 dma_cookie_complete(txd); 458 459 /* If the transfer was a memset, free our temporary buffer */ 460 if (desc->memset_buffer) { 461 dma_pool_free(atdma->memset_pool, desc->memset_vaddr, 462 desc->memset_paddr); 463 desc->memset_buffer = false; 464 } 465 466 /* move children to free_list */ 467 list_splice_init(&desc->tx_list, &atchan->free_list); 468 /* move myself to free_list */ 469 list_move(&desc->desc_node, &atchan->free_list); 470 471 dma_descriptor_unmap(txd); 472 /* for cyclic transfers, 473 * no need to replay callback function while stopping */ 474 if (!atc_chan_is_cyclic(atchan)) { 475 /* 476 * The API requires that no submissions are done from a 477 * callback, so we don't need to drop the lock here 478 */ 479 dmaengine_desc_get_callback_invoke(txd, NULL); 480 } 481 482 dma_run_dependencies(txd); 483 } 484 485 /** 486 * atc_complete_all - finish work for all transactions 487 * @atchan: channel to complete transactions for 488 * 489 * Eventually submit queued descriptors if any 490 * 491 * Assume channel is idle while calling this function 492 * Called with atchan->lock held and bh disabled 493 */ 494 static void atc_complete_all(struct at_dma_chan *atchan) 495 { 496 struct at_desc *desc, *_desc; 497 LIST_HEAD(list); 498 499 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n"); 500 501 /* 502 * Submit queued descriptors ASAP, i.e. before we go through 503 * the completed ones. 504 */ 505 if (!list_empty(&atchan->queue)) 506 atc_dostart(atchan, atc_first_queued(atchan)); 507 /* empty active_list now it is completed */ 508 list_splice_init(&atchan->active_list, &list); 509 /* empty queue list by moving descriptors (if any) to active_list */ 510 list_splice_init(&atchan->queue, &atchan->active_list); 511 512 list_for_each_entry_safe(desc, _desc, &list, desc_node) 513 atc_chain_complete(atchan, desc); 514 } 515 516 /** 517 * atc_advance_work - at the end of a transaction, move forward 518 * @atchan: channel where the transaction ended 519 * 520 * Called with atchan->lock held and bh disabled 521 */ 522 static void atc_advance_work(struct at_dma_chan *atchan) 523 { 524 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); 525 526 if (atc_chan_is_enabled(atchan)) 527 return; 528 529 if (list_empty(&atchan->active_list) || 530 list_is_singular(&atchan->active_list)) { 531 atc_complete_all(atchan); 532 } else { 533 atc_chain_complete(atchan, atc_first_active(atchan)); 534 /* advance work */ 535 atc_dostart(atchan, atc_first_active(atchan)); 536 } 537 } 538 539 540 /** 541 * atc_handle_error - handle errors reported by DMA controller 542 * @atchan: channel where error occurs 543 * 544 * Called with atchan->lock held and bh disabled 545 */ 546 static void atc_handle_error(struct at_dma_chan *atchan) 547 { 548 struct at_desc *bad_desc; 549 struct at_desc *child; 550 551 /* 552 * The descriptor currently at the head of the active list is 553 * broked. Since we don't have any way to report errors, we'll 554 * just have to scream loudly and try to carry on. 555 */ 556 bad_desc = atc_first_active(atchan); 557 list_del_init(&bad_desc->desc_node); 558 559 /* As we are stopped, take advantage to push queued descriptors 560 * in active_list */ 561 list_splice_init(&atchan->queue, atchan->active_list.prev); 562 563 /* Try to restart the controller */ 564 if (!list_empty(&atchan->active_list)) 565 atc_dostart(atchan, atc_first_active(atchan)); 566 567 /* 568 * KERN_CRITICAL may seem harsh, but since this only happens 569 * when someone submits a bad physical address in a 570 * descriptor, we should consider ourselves lucky that the 571 * controller flagged an error instead of scribbling over 572 * random memory locations. 573 */ 574 dev_crit(chan2dev(&atchan->chan_common), 575 "Bad descriptor submitted for DMA!\n"); 576 dev_crit(chan2dev(&atchan->chan_common), 577 " cookie: %d\n", bad_desc->txd.cookie); 578 atc_dump_lli(atchan, &bad_desc->lli); 579 list_for_each_entry(child, &bad_desc->tx_list, desc_node) 580 atc_dump_lli(atchan, &child->lli); 581 582 /* Pretend the descriptor completed successfully */ 583 atc_chain_complete(atchan, bad_desc); 584 } 585 586 /** 587 * atc_handle_cyclic - at the end of a period, run callback function 588 * @atchan: channel used for cyclic operations 589 * 590 * Called with atchan->lock held and bh disabled 591 */ 592 static void atc_handle_cyclic(struct at_dma_chan *atchan) 593 { 594 struct at_desc *first = atc_first_active(atchan); 595 struct dma_async_tx_descriptor *txd = &first->txd; 596 597 dev_vdbg(chan2dev(&atchan->chan_common), 598 "new cyclic period llp 0x%08x\n", 599 channel_readl(atchan, DSCR)); 600 601 dmaengine_desc_get_callback_invoke(txd, NULL); 602 } 603 604 /*-- IRQ & Tasklet ---------------------------------------------------*/ 605 606 static void atc_tasklet(unsigned long data) 607 { 608 struct at_dma_chan *atchan = (struct at_dma_chan *)data; 609 unsigned long flags; 610 611 spin_lock_irqsave(&atchan->lock, flags); 612 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) 613 atc_handle_error(atchan); 614 else if (atc_chan_is_cyclic(atchan)) 615 atc_handle_cyclic(atchan); 616 else 617 atc_advance_work(atchan); 618 619 spin_unlock_irqrestore(&atchan->lock, flags); 620 } 621 622 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 623 { 624 struct at_dma *atdma = (struct at_dma *)dev_id; 625 struct at_dma_chan *atchan; 626 int i; 627 u32 status, pending, imr; 628 int ret = IRQ_NONE; 629 630 do { 631 imr = dma_readl(atdma, EBCIMR); 632 status = dma_readl(atdma, EBCISR); 633 pending = status & imr; 634 635 if (!pending) 636 break; 637 638 dev_vdbg(atdma->dma_common.dev, 639 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 640 status, imr, pending); 641 642 for (i = 0; i < atdma->dma_common.chancnt; i++) { 643 atchan = &atdma->chan[i]; 644 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { 645 if (pending & AT_DMA_ERR(i)) { 646 /* Disable channel on AHB error */ 647 dma_writel(atdma, CHDR, 648 AT_DMA_RES(i) | atchan->mask); 649 /* Give information to tasklet */ 650 set_bit(ATC_IS_ERROR, &atchan->status); 651 } 652 tasklet_schedule(&atchan->tasklet); 653 ret = IRQ_HANDLED; 654 } 655 } 656 657 } while (pending); 658 659 return ret; 660 } 661 662 663 /*-- DMA Engine API --------------------------------------------------*/ 664 665 /** 666 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine 667 * @desc: descriptor at the head of the transaction chain 668 * 669 * Queue chain if DMA engine is working already 670 * 671 * Cookie increment and adding to active_list or queue must be atomic 672 */ 673 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) 674 { 675 struct at_desc *desc = txd_to_at_desc(tx); 676 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); 677 dma_cookie_t cookie; 678 unsigned long flags; 679 680 spin_lock_irqsave(&atchan->lock, flags); 681 cookie = dma_cookie_assign(tx); 682 683 if (list_empty(&atchan->active_list)) { 684 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", 685 desc->txd.cookie); 686 atc_dostart(atchan, desc); 687 list_add_tail(&desc->desc_node, &atchan->active_list); 688 } else { 689 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", 690 desc->txd.cookie); 691 list_add_tail(&desc->desc_node, &atchan->queue); 692 } 693 694 spin_unlock_irqrestore(&atchan->lock, flags); 695 696 return cookie; 697 } 698 699 /** 700 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 701 * @chan: the channel to prepare operation on 702 * @xt: Interleaved transfer template 703 * @flags: tx descriptor status flags 704 */ 705 static struct dma_async_tx_descriptor * 706 atc_prep_dma_interleaved(struct dma_chan *chan, 707 struct dma_interleaved_template *xt, 708 unsigned long flags) 709 { 710 struct at_dma_chan *atchan = to_at_dma_chan(chan); 711 struct data_chunk *first = xt->sgl; 712 struct at_desc *desc = NULL; 713 size_t xfer_count; 714 unsigned int dwidth; 715 u32 ctrla; 716 u32 ctrlb; 717 size_t len = 0; 718 int i; 719 720 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 721 return NULL; 722 723 dev_info(chan2dev(chan), 724 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", 725 __func__, &xt->src_start, &xt->dst_start, xt->numf, 726 xt->frame_size, flags); 727 728 /* 729 * The controller can only "skip" X bytes every Y bytes, so we 730 * need to make sure we are given a template that fit that 731 * description, ie a template with chunks that always have the 732 * same size, with the same ICGs. 733 */ 734 for (i = 0; i < xt->frame_size; i++) { 735 struct data_chunk *chunk = xt->sgl + i; 736 737 if ((chunk->size != xt->sgl->size) || 738 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 739 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 740 dev_err(chan2dev(chan), 741 "%s: the controller can transfer only identical chunks\n", 742 __func__); 743 return NULL; 744 } 745 746 len += chunk->size; 747 } 748 749 dwidth = atc_get_xfer_width(xt->src_start, 750 xt->dst_start, len); 751 752 xfer_count = len >> dwidth; 753 if (xfer_count > ATC_BTSIZE_MAX) { 754 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 755 return NULL; 756 } 757 758 ctrla = ATC_SRC_WIDTH(dwidth) | 759 ATC_DST_WIDTH(dwidth); 760 761 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 762 | ATC_SRC_ADDR_MODE_INCR 763 | ATC_DST_ADDR_MODE_INCR 764 | ATC_SRC_PIP 765 | ATC_DST_PIP 766 | ATC_FC_MEM2MEM; 767 768 /* create the transfer */ 769 desc = atc_desc_get(atchan); 770 if (!desc) { 771 dev_err(chan2dev(chan), 772 "%s: couldn't allocate our descriptor\n", __func__); 773 return NULL; 774 } 775 776 desc->lli.saddr = xt->src_start; 777 desc->lli.daddr = xt->dst_start; 778 desc->lli.ctrla = ctrla | xfer_count; 779 desc->lli.ctrlb = ctrlb; 780 781 desc->boundary = first->size >> dwidth; 782 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 783 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 784 785 desc->txd.cookie = -EBUSY; 786 desc->total_len = desc->len = len; 787 788 /* set end-of-link to the last link descriptor of list*/ 789 set_desc_eol(desc); 790 791 desc->txd.flags = flags; /* client is in control of this ack */ 792 793 return &desc->txd; 794 } 795 796 /** 797 * atc_prep_dma_memcpy - prepare a memcpy operation 798 * @chan: the channel to prepare operation on 799 * @dest: operation virtual destination address 800 * @src: operation virtual source address 801 * @len: operation length 802 * @flags: tx descriptor status flags 803 */ 804 static struct dma_async_tx_descriptor * 805 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 806 size_t len, unsigned long flags) 807 { 808 struct at_dma_chan *atchan = to_at_dma_chan(chan); 809 struct at_desc *desc = NULL; 810 struct at_desc *first = NULL; 811 struct at_desc *prev = NULL; 812 size_t xfer_count; 813 size_t offset; 814 unsigned int src_width; 815 unsigned int dst_width; 816 u32 ctrla; 817 u32 ctrlb; 818 819 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n", 820 &dest, &src, len, flags); 821 822 if (unlikely(!len)) { 823 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 824 return NULL; 825 } 826 827 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 828 | ATC_SRC_ADDR_MODE_INCR 829 | ATC_DST_ADDR_MODE_INCR 830 | ATC_FC_MEM2MEM; 831 832 /* 833 * We can be a lot more clever here, but this should take care 834 * of the most common optimization. 835 */ 836 src_width = dst_width = atc_get_xfer_width(src, dest, len); 837 838 ctrla = ATC_SRC_WIDTH(src_width) | 839 ATC_DST_WIDTH(dst_width); 840 841 for (offset = 0; offset < len; offset += xfer_count << src_width) { 842 xfer_count = min_t(size_t, (len - offset) >> src_width, 843 ATC_BTSIZE_MAX); 844 845 desc = atc_desc_get(atchan); 846 if (!desc) 847 goto err_desc_get; 848 849 desc->lli.saddr = src + offset; 850 desc->lli.daddr = dest + offset; 851 desc->lli.ctrla = ctrla | xfer_count; 852 desc->lli.ctrlb = ctrlb; 853 854 desc->txd.cookie = 0; 855 desc->len = xfer_count << src_width; 856 857 atc_desc_chain(&first, &prev, desc); 858 } 859 860 /* First descriptor of the chain embedds additional information */ 861 first->txd.cookie = -EBUSY; 862 first->total_len = len; 863 864 /* set end-of-link to the last link descriptor of list*/ 865 set_desc_eol(desc); 866 867 first->txd.flags = flags; /* client is in control of this ack */ 868 869 return &first->txd; 870 871 err_desc_get: 872 atc_desc_put(atchan, first); 873 return NULL; 874 } 875 876 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan, 877 dma_addr_t psrc, 878 dma_addr_t pdst, 879 size_t len) 880 { 881 struct at_dma_chan *atchan = to_at_dma_chan(chan); 882 struct at_desc *desc; 883 size_t xfer_count; 884 885 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2); 886 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 887 ATC_SRC_ADDR_MODE_FIXED | 888 ATC_DST_ADDR_MODE_INCR | 889 ATC_FC_MEM2MEM; 890 891 xfer_count = len >> 2; 892 if (xfer_count > ATC_BTSIZE_MAX) { 893 dev_err(chan2dev(chan), "%s: buffer is too big\n", 894 __func__); 895 return NULL; 896 } 897 898 desc = atc_desc_get(atchan); 899 if (!desc) { 900 dev_err(chan2dev(chan), "%s: can't get a descriptor\n", 901 __func__); 902 return NULL; 903 } 904 905 desc->lli.saddr = psrc; 906 desc->lli.daddr = pdst; 907 desc->lli.ctrla = ctrla | xfer_count; 908 desc->lli.ctrlb = ctrlb; 909 910 desc->txd.cookie = 0; 911 desc->len = len; 912 913 return desc; 914 } 915 916 /** 917 * atc_prep_dma_memset - prepare a memcpy operation 918 * @chan: the channel to prepare operation on 919 * @dest: operation virtual destination address 920 * @value: value to set memory buffer to 921 * @len: operation length 922 * @flags: tx descriptor status flags 923 */ 924 static struct dma_async_tx_descriptor * 925 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 926 size_t len, unsigned long flags) 927 { 928 struct at_dma *atdma = to_at_dma(chan->device); 929 struct at_desc *desc; 930 void __iomem *vaddr; 931 dma_addr_t paddr; 932 933 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__, 934 &dest, value, len, flags); 935 936 if (unlikely(!len)) { 937 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); 938 return NULL; 939 } 940 941 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 942 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", 943 __func__); 944 return NULL; 945 } 946 947 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 948 if (!vaddr) { 949 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 950 __func__); 951 return NULL; 952 } 953 *(u32*)vaddr = value; 954 955 desc = atc_create_memset_desc(chan, paddr, dest, len); 956 if (!desc) { 957 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n", 958 __func__); 959 goto err_free_buffer; 960 } 961 962 desc->memset_paddr = paddr; 963 desc->memset_vaddr = vaddr; 964 desc->memset_buffer = true; 965 966 desc->txd.cookie = -EBUSY; 967 desc->total_len = len; 968 969 /* set end-of-link on the descriptor */ 970 set_desc_eol(desc); 971 972 desc->txd.flags = flags; 973 974 return &desc->txd; 975 976 err_free_buffer: 977 dma_pool_free(atdma->memset_pool, vaddr, paddr); 978 return NULL; 979 } 980 981 static struct dma_async_tx_descriptor * 982 atc_prep_dma_memset_sg(struct dma_chan *chan, 983 struct scatterlist *sgl, 984 unsigned int sg_len, int value, 985 unsigned long flags) 986 { 987 struct at_dma_chan *atchan = to_at_dma_chan(chan); 988 struct at_dma *atdma = to_at_dma(chan->device); 989 struct at_desc *desc = NULL, *first = NULL, *prev = NULL; 990 struct scatterlist *sg; 991 void __iomem *vaddr; 992 dma_addr_t paddr; 993 size_t total_len = 0; 994 int i; 995 996 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, 997 value, sg_len, flags); 998 999 if (unlikely(!sgl || !sg_len)) { 1000 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", 1001 __func__); 1002 return NULL; 1003 } 1004 1005 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 1006 if (!vaddr) { 1007 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 1008 __func__); 1009 return NULL; 1010 } 1011 *(u32*)vaddr = value; 1012 1013 for_each_sg(sgl, sg, sg_len, i) { 1014 dma_addr_t dest = sg_dma_address(sg); 1015 size_t len = sg_dma_len(sg); 1016 1017 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n", 1018 __func__, &dest, len); 1019 1020 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1021 dev_err(chan2dev(chan), "%s: buffer is not aligned\n", 1022 __func__); 1023 goto err_put_desc; 1024 } 1025 1026 desc = atc_create_memset_desc(chan, paddr, dest, len); 1027 if (!desc) 1028 goto err_put_desc; 1029 1030 atc_desc_chain(&first, &prev, desc); 1031 1032 total_len += len; 1033 } 1034 1035 /* 1036 * Only set the buffer pointers on the last descriptor to 1037 * avoid free'ing while we have our transfer still going 1038 */ 1039 desc->memset_paddr = paddr; 1040 desc->memset_vaddr = vaddr; 1041 desc->memset_buffer = true; 1042 1043 first->txd.cookie = -EBUSY; 1044 first->total_len = total_len; 1045 1046 /* set end-of-link on the descriptor */ 1047 set_desc_eol(desc); 1048 1049 first->txd.flags = flags; 1050 1051 return &first->txd; 1052 1053 err_put_desc: 1054 atc_desc_put(atchan, first); 1055 return NULL; 1056 } 1057 1058 /** 1059 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 1060 * @chan: DMA channel 1061 * @sgl: scatterlist to transfer to/from 1062 * @sg_len: number of entries in @scatterlist 1063 * @direction: DMA direction 1064 * @flags: tx descriptor status flags 1065 * @context: transaction context (ignored) 1066 */ 1067 static struct dma_async_tx_descriptor * 1068 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1069 unsigned int sg_len, enum dma_transfer_direction direction, 1070 unsigned long flags, void *context) 1071 { 1072 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1073 struct at_dma_slave *atslave = chan->private; 1074 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1075 struct at_desc *first = NULL; 1076 struct at_desc *prev = NULL; 1077 u32 ctrla; 1078 u32 ctrlb; 1079 dma_addr_t reg; 1080 unsigned int reg_width; 1081 unsigned int mem_width; 1082 unsigned int i; 1083 struct scatterlist *sg; 1084 size_t total_len = 0; 1085 1086 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 1087 sg_len, 1088 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1089 flags); 1090 1091 if (unlikely(!atslave || !sg_len)) { 1092 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 1093 return NULL; 1094 } 1095 1096 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1097 | ATC_DCSIZE(sconfig->dst_maxburst); 1098 ctrlb = ATC_IEN; 1099 1100 switch (direction) { 1101 case DMA_MEM_TO_DEV: 1102 reg_width = convert_buswidth(sconfig->dst_addr_width); 1103 ctrla |= ATC_DST_WIDTH(reg_width); 1104 ctrlb |= ATC_DST_ADDR_MODE_FIXED 1105 | ATC_SRC_ADDR_MODE_INCR 1106 | ATC_FC_MEM2PER 1107 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); 1108 reg = sconfig->dst_addr; 1109 for_each_sg(sgl, sg, sg_len, i) { 1110 struct at_desc *desc; 1111 u32 len; 1112 u32 mem; 1113 1114 desc = atc_desc_get(atchan); 1115 if (!desc) 1116 goto err_desc_get; 1117 1118 mem = sg_dma_address(sg); 1119 len = sg_dma_len(sg); 1120 if (unlikely(!len)) { 1121 dev_dbg(chan2dev(chan), 1122 "prep_slave_sg: sg(%d) data length is zero\n", i); 1123 goto err; 1124 } 1125 mem_width = 2; 1126 if (unlikely(mem & 3 || len & 3)) 1127 mem_width = 0; 1128 1129 desc->lli.saddr = mem; 1130 desc->lli.daddr = reg; 1131 desc->lli.ctrla = ctrla 1132 | ATC_SRC_WIDTH(mem_width) 1133 | len >> mem_width; 1134 desc->lli.ctrlb = ctrlb; 1135 desc->len = len; 1136 1137 atc_desc_chain(&first, &prev, desc); 1138 total_len += len; 1139 } 1140 break; 1141 case DMA_DEV_TO_MEM: 1142 reg_width = convert_buswidth(sconfig->src_addr_width); 1143 ctrla |= ATC_SRC_WIDTH(reg_width); 1144 ctrlb |= ATC_DST_ADDR_MODE_INCR 1145 | ATC_SRC_ADDR_MODE_FIXED 1146 | ATC_FC_PER2MEM 1147 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); 1148 1149 reg = sconfig->src_addr; 1150 for_each_sg(sgl, sg, sg_len, i) { 1151 struct at_desc *desc; 1152 u32 len; 1153 u32 mem; 1154 1155 desc = atc_desc_get(atchan); 1156 if (!desc) 1157 goto err_desc_get; 1158 1159 mem = sg_dma_address(sg); 1160 len = sg_dma_len(sg); 1161 if (unlikely(!len)) { 1162 dev_dbg(chan2dev(chan), 1163 "prep_slave_sg: sg(%d) data length is zero\n", i); 1164 goto err; 1165 } 1166 mem_width = 2; 1167 if (unlikely(mem & 3 || len & 3)) 1168 mem_width = 0; 1169 1170 desc->lli.saddr = reg; 1171 desc->lli.daddr = mem; 1172 desc->lli.ctrla = ctrla 1173 | ATC_DST_WIDTH(mem_width) 1174 | len >> reg_width; 1175 desc->lli.ctrlb = ctrlb; 1176 desc->len = len; 1177 1178 atc_desc_chain(&first, &prev, desc); 1179 total_len += len; 1180 } 1181 break; 1182 default: 1183 return NULL; 1184 } 1185 1186 /* set end-of-link to the last link descriptor of list*/ 1187 set_desc_eol(prev); 1188 1189 /* First descriptor of the chain embedds additional information */ 1190 first->txd.cookie = -EBUSY; 1191 first->total_len = total_len; 1192 1193 /* first link descriptor of list is responsible of flags */ 1194 first->txd.flags = flags; /* client is in control of this ack */ 1195 1196 return &first->txd; 1197 1198 err_desc_get: 1199 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1200 err: 1201 atc_desc_put(atchan, first); 1202 return NULL; 1203 } 1204 1205 /** 1206 * atc_dma_cyclic_check_values 1207 * Check for too big/unaligned periods and unaligned DMA buffer 1208 */ 1209 static int 1210 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1211 size_t period_len) 1212 { 1213 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1214 goto err_out; 1215 if (unlikely(period_len & ((1 << reg_width) - 1))) 1216 goto err_out; 1217 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1218 goto err_out; 1219 1220 return 0; 1221 1222 err_out: 1223 return -EINVAL; 1224 } 1225 1226 /** 1227 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1228 */ 1229 static int 1230 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1231 unsigned int period_index, dma_addr_t buf_addr, 1232 unsigned int reg_width, size_t period_len, 1233 enum dma_transfer_direction direction) 1234 { 1235 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1236 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1237 u32 ctrla; 1238 1239 /* prepare common CRTLA value */ 1240 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1241 | ATC_DCSIZE(sconfig->dst_maxburst) 1242 | ATC_DST_WIDTH(reg_width) 1243 | ATC_SRC_WIDTH(reg_width) 1244 | period_len >> reg_width; 1245 1246 switch (direction) { 1247 case DMA_MEM_TO_DEV: 1248 desc->lli.saddr = buf_addr + (period_len * period_index); 1249 desc->lli.daddr = sconfig->dst_addr; 1250 desc->lli.ctrla = ctrla; 1251 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED 1252 | ATC_SRC_ADDR_MODE_INCR 1253 | ATC_FC_MEM2PER 1254 | ATC_SIF(atchan->mem_if) 1255 | ATC_DIF(atchan->per_if); 1256 desc->len = period_len; 1257 break; 1258 1259 case DMA_DEV_TO_MEM: 1260 desc->lli.saddr = sconfig->src_addr; 1261 desc->lli.daddr = buf_addr + (period_len * period_index); 1262 desc->lli.ctrla = ctrla; 1263 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR 1264 | ATC_SRC_ADDR_MODE_FIXED 1265 | ATC_FC_PER2MEM 1266 | ATC_SIF(atchan->per_if) 1267 | ATC_DIF(atchan->mem_if); 1268 desc->len = period_len; 1269 break; 1270 1271 default: 1272 return -EINVAL; 1273 } 1274 1275 return 0; 1276 } 1277 1278 /** 1279 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1280 * @chan: the DMA channel to prepare 1281 * @buf_addr: physical DMA address where the buffer starts 1282 * @buf_len: total number of bytes for the entire buffer 1283 * @period_len: number of bytes for each period 1284 * @direction: transfer direction, to or from device 1285 * @flags: tx descriptor status flags 1286 */ 1287 static struct dma_async_tx_descriptor * 1288 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1289 size_t period_len, enum dma_transfer_direction direction, 1290 unsigned long flags) 1291 { 1292 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1293 struct at_dma_slave *atslave = chan->private; 1294 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1295 struct at_desc *first = NULL; 1296 struct at_desc *prev = NULL; 1297 unsigned long was_cyclic; 1298 unsigned int reg_width; 1299 unsigned int periods = buf_len / period_len; 1300 unsigned int i; 1301 1302 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n", 1303 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1304 &buf_addr, 1305 periods, buf_len, period_len); 1306 1307 if (unlikely(!atslave || !buf_len || !period_len)) { 1308 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1309 return NULL; 1310 } 1311 1312 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1313 if (was_cyclic) { 1314 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1315 return NULL; 1316 } 1317 1318 if (unlikely(!is_slave_direction(direction))) 1319 goto err_out; 1320 1321 if (sconfig->direction == DMA_MEM_TO_DEV) 1322 reg_width = convert_buswidth(sconfig->dst_addr_width); 1323 else 1324 reg_width = convert_buswidth(sconfig->src_addr_width); 1325 1326 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1327 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1328 goto err_out; 1329 1330 /* build cyclic linked list */ 1331 for (i = 0; i < periods; i++) { 1332 struct at_desc *desc; 1333 1334 desc = atc_desc_get(atchan); 1335 if (!desc) 1336 goto err_desc_get; 1337 1338 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1339 reg_width, period_len, direction)) 1340 goto err_desc_get; 1341 1342 atc_desc_chain(&first, &prev, desc); 1343 } 1344 1345 /* lets make a cyclic list */ 1346 prev->lli.dscr = first->txd.phys; 1347 1348 /* First descriptor of the chain embedds additional information */ 1349 first->txd.cookie = -EBUSY; 1350 first->total_len = buf_len; 1351 1352 return &first->txd; 1353 1354 err_desc_get: 1355 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1356 atc_desc_put(atchan, first); 1357 err_out: 1358 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1359 return NULL; 1360 } 1361 1362 static int atc_config(struct dma_chan *chan, 1363 struct dma_slave_config *sconfig) 1364 { 1365 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1366 1367 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1368 1369 /* Check if it is chan is configured for slave transfers */ 1370 if (!chan->private) 1371 return -EINVAL; 1372 1373 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1374 1375 convert_burst(&atchan->dma_sconfig.src_maxburst); 1376 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1377 1378 return 0; 1379 } 1380 1381 static int atc_pause(struct dma_chan *chan) 1382 { 1383 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1384 struct at_dma *atdma = to_at_dma(chan->device); 1385 int chan_id = atchan->chan_common.chan_id; 1386 unsigned long flags; 1387 1388 LIST_HEAD(list); 1389 1390 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1391 1392 spin_lock_irqsave(&atchan->lock, flags); 1393 1394 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1395 set_bit(ATC_IS_PAUSED, &atchan->status); 1396 1397 spin_unlock_irqrestore(&atchan->lock, flags); 1398 1399 return 0; 1400 } 1401 1402 static int atc_resume(struct dma_chan *chan) 1403 { 1404 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1405 struct at_dma *atdma = to_at_dma(chan->device); 1406 int chan_id = atchan->chan_common.chan_id; 1407 unsigned long flags; 1408 1409 LIST_HEAD(list); 1410 1411 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1412 1413 if (!atc_chan_is_paused(atchan)) 1414 return 0; 1415 1416 spin_lock_irqsave(&atchan->lock, flags); 1417 1418 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1419 clear_bit(ATC_IS_PAUSED, &atchan->status); 1420 1421 spin_unlock_irqrestore(&atchan->lock, flags); 1422 1423 return 0; 1424 } 1425 1426 static int atc_terminate_all(struct dma_chan *chan) 1427 { 1428 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1429 struct at_dma *atdma = to_at_dma(chan->device); 1430 int chan_id = atchan->chan_common.chan_id; 1431 struct at_desc *desc, *_desc; 1432 unsigned long flags; 1433 1434 LIST_HEAD(list); 1435 1436 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1437 1438 /* 1439 * This is only called when something went wrong elsewhere, so 1440 * we don't really care about the data. Just disable the 1441 * channel. We still have to poll the channel enable bit due 1442 * to AHB/HSB limitations. 1443 */ 1444 spin_lock_irqsave(&atchan->lock, flags); 1445 1446 /* disabling channel: must also remove suspend state */ 1447 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1448 1449 /* confirm that this channel is disabled */ 1450 while (dma_readl(atdma, CHSR) & atchan->mask) 1451 cpu_relax(); 1452 1453 /* active_list entries will end up before queued entries */ 1454 list_splice_init(&atchan->queue, &list); 1455 list_splice_init(&atchan->active_list, &list); 1456 1457 /* Flush all pending and queued descriptors */ 1458 list_for_each_entry_safe(desc, _desc, &list, desc_node) 1459 atc_chain_complete(atchan, desc); 1460 1461 clear_bit(ATC_IS_PAUSED, &atchan->status); 1462 /* if channel dedicated to cyclic operations, free it */ 1463 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1464 1465 spin_unlock_irqrestore(&atchan->lock, flags); 1466 1467 return 0; 1468 } 1469 1470 /** 1471 * atc_tx_status - poll for transaction completion 1472 * @chan: DMA channel 1473 * @cookie: transaction identifier to check status of 1474 * @txstate: if not %NULL updated with transaction state 1475 * 1476 * If @txstate is passed in, upon return it reflect the driver 1477 * internal state and can be used with dma_async_is_complete() to check 1478 * the status of multiple cookies without re-checking hardware state. 1479 */ 1480 static enum dma_status 1481 atc_tx_status(struct dma_chan *chan, 1482 dma_cookie_t cookie, 1483 struct dma_tx_state *txstate) 1484 { 1485 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1486 unsigned long flags; 1487 enum dma_status ret; 1488 int bytes = 0; 1489 1490 ret = dma_cookie_status(chan, cookie, txstate); 1491 if (ret == DMA_COMPLETE) 1492 return ret; 1493 /* 1494 * There's no point calculating the residue if there's 1495 * no txstate to store the value. 1496 */ 1497 if (!txstate) 1498 return DMA_ERROR; 1499 1500 spin_lock_irqsave(&atchan->lock, flags); 1501 1502 /* Get number of bytes left in the active transactions */ 1503 bytes = atc_get_bytes_left(chan, cookie); 1504 1505 spin_unlock_irqrestore(&atchan->lock, flags); 1506 1507 if (unlikely(bytes < 0)) { 1508 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1509 return DMA_ERROR; 1510 } else { 1511 dma_set_residue(txstate, bytes); 1512 } 1513 1514 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", 1515 ret, cookie, bytes); 1516 1517 return ret; 1518 } 1519 1520 /** 1521 * atc_issue_pending - try to finish work 1522 * @chan: target DMA channel 1523 */ 1524 static void atc_issue_pending(struct dma_chan *chan) 1525 { 1526 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1527 unsigned long flags; 1528 1529 dev_vdbg(chan2dev(chan), "issue_pending\n"); 1530 1531 /* Not needed for cyclic transfers */ 1532 if (atc_chan_is_cyclic(atchan)) 1533 return; 1534 1535 spin_lock_irqsave(&atchan->lock, flags); 1536 atc_advance_work(atchan); 1537 spin_unlock_irqrestore(&atchan->lock, flags); 1538 } 1539 1540 /** 1541 * atc_alloc_chan_resources - allocate resources for DMA channel 1542 * @chan: allocate descriptor resources for this channel 1543 * @client: current client requesting the channel be ready for requests 1544 * 1545 * return - the number of allocated descriptors 1546 */ 1547 static int atc_alloc_chan_resources(struct dma_chan *chan) 1548 { 1549 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1550 struct at_dma *atdma = to_at_dma(chan->device); 1551 struct at_desc *desc; 1552 struct at_dma_slave *atslave; 1553 unsigned long flags; 1554 int i; 1555 u32 cfg; 1556 LIST_HEAD(tmp_list); 1557 1558 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1559 1560 /* ASSERT: channel is idle */ 1561 if (atc_chan_is_enabled(atchan)) { 1562 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1563 return -EIO; 1564 } 1565 1566 cfg = ATC_DEFAULT_CFG; 1567 1568 atslave = chan->private; 1569 if (atslave) { 1570 /* 1571 * We need controller-specific data to set up slave 1572 * transfers. 1573 */ 1574 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); 1575 1576 /* if cfg configuration specified take it instead of default */ 1577 if (atslave->cfg) 1578 cfg = atslave->cfg; 1579 } 1580 1581 /* have we already been set up? 1582 * reconfigure channel but no need to reallocate descriptors */ 1583 if (!list_empty(&atchan->free_list)) 1584 return atchan->descs_allocated; 1585 1586 /* Allocate initial pool of descriptors */ 1587 for (i = 0; i < init_nr_desc_per_channel; i++) { 1588 desc = atc_alloc_descriptor(chan, GFP_KERNEL); 1589 if (!desc) { 1590 dev_err(atdma->dma_common.dev, 1591 "Only %d initial descriptors\n", i); 1592 break; 1593 } 1594 list_add_tail(&desc->desc_node, &tmp_list); 1595 } 1596 1597 spin_lock_irqsave(&atchan->lock, flags); 1598 atchan->descs_allocated = i; 1599 list_splice(&tmp_list, &atchan->free_list); 1600 dma_cookie_init(chan); 1601 spin_unlock_irqrestore(&atchan->lock, flags); 1602 1603 /* channel parameters */ 1604 channel_writel(atchan, CFG, cfg); 1605 1606 dev_dbg(chan2dev(chan), 1607 "alloc_chan_resources: allocated %d descriptors\n", 1608 atchan->descs_allocated); 1609 1610 return atchan->descs_allocated; 1611 } 1612 1613 /** 1614 * atc_free_chan_resources - free all channel resources 1615 * @chan: DMA channel 1616 */ 1617 static void atc_free_chan_resources(struct dma_chan *chan) 1618 { 1619 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1620 struct at_dma *atdma = to_at_dma(chan->device); 1621 struct at_desc *desc, *_desc; 1622 LIST_HEAD(list); 1623 1624 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n", 1625 atchan->descs_allocated); 1626 1627 /* ASSERT: channel is idle */ 1628 BUG_ON(!list_empty(&atchan->active_list)); 1629 BUG_ON(!list_empty(&atchan->queue)); 1630 BUG_ON(atc_chan_is_enabled(atchan)); 1631 1632 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 1633 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); 1634 list_del(&desc->desc_node); 1635 /* free link descriptor */ 1636 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); 1637 } 1638 list_splice_init(&atchan->free_list, &list); 1639 atchan->descs_allocated = 0; 1640 atchan->status = 0; 1641 1642 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1643 } 1644 1645 #ifdef CONFIG_OF 1646 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1647 { 1648 struct at_dma_slave *atslave = slave; 1649 1650 if (atslave->dma_dev == chan->device->dev) { 1651 chan->private = atslave; 1652 return true; 1653 } else { 1654 return false; 1655 } 1656 } 1657 1658 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1659 struct of_dma *of_dma) 1660 { 1661 struct dma_chan *chan; 1662 struct at_dma_chan *atchan; 1663 struct at_dma_slave *atslave; 1664 dma_cap_mask_t mask; 1665 unsigned int per_id; 1666 struct platform_device *dmac_pdev; 1667 1668 if (dma_spec->args_count != 2) 1669 return NULL; 1670 1671 dmac_pdev = of_find_device_by_node(dma_spec->np); 1672 1673 dma_cap_zero(mask); 1674 dma_cap_set(DMA_SLAVE, mask); 1675 1676 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL); 1677 if (!atslave) 1678 return NULL; 1679 1680 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; 1681 /* 1682 * We can fill both SRC_PER and DST_PER, one of these fields will be 1683 * ignored depending on DMA transfer direction. 1684 */ 1685 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1686 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) 1687 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); 1688 /* 1689 * We have to translate the value we get from the device tree since 1690 * the half FIFO configuration value had to be 0 to keep backward 1691 * compatibility. 1692 */ 1693 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1694 case AT91_DMA_CFG_FIFOCFG_ALAP: 1695 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; 1696 break; 1697 case AT91_DMA_CFG_FIFOCFG_ASAP: 1698 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; 1699 break; 1700 case AT91_DMA_CFG_FIFOCFG_HALF: 1701 default: 1702 atslave->cfg |= ATC_FIFOCFG_HALFFIFO; 1703 } 1704 atslave->dma_dev = &dmac_pdev->dev; 1705 1706 chan = dma_request_channel(mask, at_dma_filter, atslave); 1707 if (!chan) 1708 return NULL; 1709 1710 atchan = to_at_dma_chan(chan); 1711 atchan->per_if = dma_spec->args[0] & 0xff; 1712 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1713 1714 return chan; 1715 } 1716 #else 1717 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1718 struct of_dma *of_dma) 1719 { 1720 return NULL; 1721 } 1722 #endif 1723 1724 /*-- Module Management -----------------------------------------------*/ 1725 1726 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1727 static struct at_dma_platform_data at91sam9rl_config = { 1728 .nr_channels = 2, 1729 }; 1730 static struct at_dma_platform_data at91sam9g45_config = { 1731 .nr_channels = 8, 1732 }; 1733 1734 #if defined(CONFIG_OF) 1735 static const struct of_device_id atmel_dma_dt_ids[] = { 1736 { 1737 .compatible = "atmel,at91sam9rl-dma", 1738 .data = &at91sam9rl_config, 1739 }, { 1740 .compatible = "atmel,at91sam9g45-dma", 1741 .data = &at91sam9g45_config, 1742 }, { 1743 /* sentinel */ 1744 } 1745 }; 1746 1747 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1748 #endif 1749 1750 static const struct platform_device_id atdma_devtypes[] = { 1751 { 1752 .name = "at91sam9rl_dma", 1753 .driver_data = (unsigned long) &at91sam9rl_config, 1754 }, { 1755 .name = "at91sam9g45_dma", 1756 .driver_data = (unsigned long) &at91sam9g45_config, 1757 }, { 1758 /* sentinel */ 1759 } 1760 }; 1761 1762 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1763 struct platform_device *pdev) 1764 { 1765 if (pdev->dev.of_node) { 1766 const struct of_device_id *match; 1767 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1768 if (match == NULL) 1769 return NULL; 1770 return match->data; 1771 } 1772 return (struct at_dma_platform_data *) 1773 platform_get_device_id(pdev)->driver_data; 1774 } 1775 1776 /** 1777 * at_dma_off - disable DMA controller 1778 * @atdma: the Atmel HDAMC device 1779 */ 1780 static void at_dma_off(struct at_dma *atdma) 1781 { 1782 dma_writel(atdma, EN, 0); 1783 1784 /* disable all interrupts */ 1785 dma_writel(atdma, EBCIDR, -1L); 1786 1787 /* confirm that all channels are disabled */ 1788 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1789 cpu_relax(); 1790 } 1791 1792 static int __init at_dma_probe(struct platform_device *pdev) 1793 { 1794 struct resource *io; 1795 struct at_dma *atdma; 1796 size_t size; 1797 int irq; 1798 int err; 1799 int i; 1800 const struct at_dma_platform_data *plat_dat; 1801 1802 /* setup platform data for each SoC */ 1803 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1804 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1805 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1806 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); 1807 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); 1808 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); 1809 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1810 1811 /* get DMA parameters from controller type */ 1812 plat_dat = at_dma_get_driver_data(pdev); 1813 if (!plat_dat) 1814 return -ENODEV; 1815 1816 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1817 if (!io) 1818 return -EINVAL; 1819 1820 irq = platform_get_irq(pdev, 0); 1821 if (irq < 0) 1822 return irq; 1823 1824 size = sizeof(struct at_dma); 1825 size += plat_dat->nr_channels * sizeof(struct at_dma_chan); 1826 atdma = kzalloc(size, GFP_KERNEL); 1827 if (!atdma) 1828 return -ENOMEM; 1829 1830 /* discover transaction capabilities */ 1831 atdma->dma_common.cap_mask = plat_dat->cap_mask; 1832 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1833 1834 size = resource_size(io); 1835 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { 1836 err = -EBUSY; 1837 goto err_kfree; 1838 } 1839 1840 atdma->regs = ioremap(io->start, size); 1841 if (!atdma->regs) { 1842 err = -ENOMEM; 1843 goto err_release_r; 1844 } 1845 1846 atdma->clk = clk_get(&pdev->dev, "dma_clk"); 1847 if (IS_ERR(atdma->clk)) { 1848 err = PTR_ERR(atdma->clk); 1849 goto err_clk; 1850 } 1851 err = clk_prepare_enable(atdma->clk); 1852 if (err) 1853 goto err_clk_prepare; 1854 1855 /* force dma off, just in case */ 1856 at_dma_off(atdma); 1857 1858 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1859 if (err) 1860 goto err_irq; 1861 1862 platform_set_drvdata(pdev, atdma); 1863 1864 /* create a pool of consistent memory blocks for hardware descriptors */ 1865 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", 1866 &pdev->dev, sizeof(struct at_desc), 1867 4 /* word alignment */, 0); 1868 if (!atdma->dma_desc_pool) { 1869 dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); 1870 err = -ENOMEM; 1871 goto err_desc_pool_create; 1872 } 1873 1874 /* create a pool of consistent memory blocks for memset blocks */ 1875 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", 1876 &pdev->dev, sizeof(int), 4, 0); 1877 if (!atdma->memset_pool) { 1878 dev_err(&pdev->dev, "No memory for memset dma pool\n"); 1879 err = -ENOMEM; 1880 goto err_memset_pool_create; 1881 } 1882 1883 /* clear any pending interrupt */ 1884 while (dma_readl(atdma, EBCISR)) 1885 cpu_relax(); 1886 1887 /* initialize channels related values */ 1888 INIT_LIST_HEAD(&atdma->dma_common.channels); 1889 for (i = 0; i < plat_dat->nr_channels; i++) { 1890 struct at_dma_chan *atchan = &atdma->chan[i]; 1891 1892 atchan->mem_if = AT_DMA_MEM_IF; 1893 atchan->per_if = AT_DMA_PER_IF; 1894 atchan->chan_common.device = &atdma->dma_common; 1895 dma_cookie_init(&atchan->chan_common); 1896 list_add_tail(&atchan->chan_common.device_node, 1897 &atdma->dma_common.channels); 1898 1899 atchan->ch_regs = atdma->regs + ch_regs(i); 1900 spin_lock_init(&atchan->lock); 1901 atchan->mask = 1 << i; 1902 1903 INIT_LIST_HEAD(&atchan->active_list); 1904 INIT_LIST_HEAD(&atchan->queue); 1905 INIT_LIST_HEAD(&atchan->free_list); 1906 1907 tasklet_init(&atchan->tasklet, atc_tasklet, 1908 (unsigned long)atchan); 1909 atc_enable_chan_irq(atdma, i); 1910 } 1911 1912 /* set base routines */ 1913 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; 1914 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; 1915 atdma->dma_common.device_tx_status = atc_tx_status; 1916 atdma->dma_common.device_issue_pending = atc_issue_pending; 1917 atdma->dma_common.dev = &pdev->dev; 1918 1919 /* set prep routines based on capability */ 1920 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) 1921 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; 1922 1923 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) 1924 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; 1925 1926 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) { 1927 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset; 1928 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; 1929 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES; 1930 } 1931 1932 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { 1933 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; 1934 /* controller can do slave DMA: can trigger cyclic transfers */ 1935 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); 1936 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; 1937 atdma->dma_common.device_config = atc_config; 1938 atdma->dma_common.device_pause = atc_pause; 1939 atdma->dma_common.device_resume = atc_resume; 1940 atdma->dma_common.device_terminate_all = atc_terminate_all; 1941 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; 1942 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; 1943 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1944 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1945 } 1946 1947 dma_writel(atdma, EN, AT_DMA_ENABLE); 1948 1949 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n", 1950 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", 1951 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "", 1952 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", 1953 plat_dat->nr_channels); 1954 1955 dma_async_device_register(&atdma->dma_common); 1956 1957 /* 1958 * Do not return an error if the dmac node is not present in order to 1959 * not break the existing way of requesting channel with 1960 * dma_request_channel(). 1961 */ 1962 if (pdev->dev.of_node) { 1963 err = of_dma_controller_register(pdev->dev.of_node, 1964 at_dma_xlate, atdma); 1965 if (err) { 1966 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 1967 goto err_of_dma_controller_register; 1968 } 1969 } 1970 1971 return 0; 1972 1973 err_of_dma_controller_register: 1974 dma_async_device_unregister(&atdma->dma_common); 1975 dma_pool_destroy(atdma->memset_pool); 1976 err_memset_pool_create: 1977 dma_pool_destroy(atdma->dma_desc_pool); 1978 err_desc_pool_create: 1979 free_irq(platform_get_irq(pdev, 0), atdma); 1980 err_irq: 1981 clk_disable_unprepare(atdma->clk); 1982 err_clk_prepare: 1983 clk_put(atdma->clk); 1984 err_clk: 1985 iounmap(atdma->regs); 1986 atdma->regs = NULL; 1987 err_release_r: 1988 release_mem_region(io->start, size); 1989 err_kfree: 1990 kfree(atdma); 1991 return err; 1992 } 1993 1994 static int at_dma_remove(struct platform_device *pdev) 1995 { 1996 struct at_dma *atdma = platform_get_drvdata(pdev); 1997 struct dma_chan *chan, *_chan; 1998 struct resource *io; 1999 2000 at_dma_off(atdma); 2001 dma_async_device_unregister(&atdma->dma_common); 2002 2003 dma_pool_destroy(atdma->memset_pool); 2004 dma_pool_destroy(atdma->dma_desc_pool); 2005 free_irq(platform_get_irq(pdev, 0), atdma); 2006 2007 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2008 device_node) { 2009 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2010 2011 /* Disable interrupts */ 2012 atc_disable_chan_irq(atdma, chan->chan_id); 2013 2014 tasklet_kill(&atchan->tasklet); 2015 list_del(&chan->device_node); 2016 } 2017 2018 clk_disable_unprepare(atdma->clk); 2019 clk_put(atdma->clk); 2020 2021 iounmap(atdma->regs); 2022 atdma->regs = NULL; 2023 2024 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2025 release_mem_region(io->start, resource_size(io)); 2026 2027 kfree(atdma); 2028 2029 return 0; 2030 } 2031 2032 static void at_dma_shutdown(struct platform_device *pdev) 2033 { 2034 struct at_dma *atdma = platform_get_drvdata(pdev); 2035 2036 at_dma_off(platform_get_drvdata(pdev)); 2037 clk_disable_unprepare(atdma->clk); 2038 } 2039 2040 static int at_dma_prepare(struct device *dev) 2041 { 2042 struct platform_device *pdev = to_platform_device(dev); 2043 struct at_dma *atdma = platform_get_drvdata(pdev); 2044 struct dma_chan *chan, *_chan; 2045 2046 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2047 device_node) { 2048 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2049 /* wait for transaction completion (except in cyclic case) */ 2050 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 2051 return -EAGAIN; 2052 } 2053 return 0; 2054 } 2055 2056 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 2057 { 2058 struct dma_chan *chan = &atchan->chan_common; 2059 2060 /* Channel should be paused by user 2061 * do it anyway even if it is not done already */ 2062 if (!atc_chan_is_paused(atchan)) { 2063 dev_warn(chan2dev(chan), 2064 "cyclic channel not paused, should be done by channel user\n"); 2065 atc_pause(chan); 2066 } 2067 2068 /* now preserve additional data for cyclic operations */ 2069 /* next descriptor address in the cyclic list */ 2070 atchan->save_dscr = channel_readl(atchan, DSCR); 2071 2072 vdbg_dump_regs(atchan); 2073 } 2074 2075 static int at_dma_suspend_noirq(struct device *dev) 2076 { 2077 struct platform_device *pdev = to_platform_device(dev); 2078 struct at_dma *atdma = platform_get_drvdata(pdev); 2079 struct dma_chan *chan, *_chan; 2080 2081 /* preserve data */ 2082 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2083 device_node) { 2084 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2085 2086 if (atc_chan_is_cyclic(atchan)) 2087 atc_suspend_cyclic(atchan); 2088 atchan->save_cfg = channel_readl(atchan, CFG); 2089 } 2090 atdma->save_imr = dma_readl(atdma, EBCIMR); 2091 2092 /* disable DMA controller */ 2093 at_dma_off(atdma); 2094 clk_disable_unprepare(atdma->clk); 2095 return 0; 2096 } 2097 2098 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2099 { 2100 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 2101 2102 /* restore channel status for cyclic descriptors list: 2103 * next descriptor in the cyclic list at the time of suspend */ 2104 channel_writel(atchan, SADDR, 0); 2105 channel_writel(atchan, DADDR, 0); 2106 channel_writel(atchan, CTRLA, 0); 2107 channel_writel(atchan, CTRLB, 0); 2108 channel_writel(atchan, DSCR, atchan->save_dscr); 2109 dma_writel(atdma, CHER, atchan->mask); 2110 2111 /* channel pause status should be removed by channel user 2112 * We cannot take the initiative to do it here */ 2113 2114 vdbg_dump_regs(atchan); 2115 } 2116 2117 static int at_dma_resume_noirq(struct device *dev) 2118 { 2119 struct platform_device *pdev = to_platform_device(dev); 2120 struct at_dma *atdma = platform_get_drvdata(pdev); 2121 struct dma_chan *chan, *_chan; 2122 2123 /* bring back DMA controller */ 2124 clk_prepare_enable(atdma->clk); 2125 dma_writel(atdma, EN, AT_DMA_ENABLE); 2126 2127 /* clear any pending interrupt */ 2128 while (dma_readl(atdma, EBCISR)) 2129 cpu_relax(); 2130 2131 /* restore saved data */ 2132 dma_writel(atdma, EBCIER, atdma->save_imr); 2133 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2134 device_node) { 2135 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2136 2137 channel_writel(atchan, CFG, atchan->save_cfg); 2138 if (atc_chan_is_cyclic(atchan)) 2139 atc_resume_cyclic(atchan); 2140 } 2141 return 0; 2142 } 2143 2144 static const struct dev_pm_ops at_dma_dev_pm_ops = { 2145 .prepare = at_dma_prepare, 2146 .suspend_noirq = at_dma_suspend_noirq, 2147 .resume_noirq = at_dma_resume_noirq, 2148 }; 2149 2150 static struct platform_driver at_dma_driver = { 2151 .remove = at_dma_remove, 2152 .shutdown = at_dma_shutdown, 2153 .id_table = atdma_devtypes, 2154 .driver = { 2155 .name = "at_hdmac", 2156 .pm = &at_dma_dev_pm_ops, 2157 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2158 }, 2159 }; 2160 2161 static int __init at_dma_init(void) 2162 { 2163 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2164 } 2165 subsys_initcall(at_dma_init); 2166 2167 static void __exit at_dma_exit(void) 2168 { 2169 platform_driver_unregister(&at_dma_driver); 2170 } 2171 module_exit(at_dma_exit); 2172 2173 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2174 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2175 MODULE_LICENSE("GPL"); 2176 MODULE_ALIAS("platform:at_hdmac"); 2177