xref: /openbmc/linux/drivers/dma/at_hdmac.c (revision 3ac14b39)
1 /*
2  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3  *
4  * Copyright (C) 2008 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  *
12  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13  * The only Atmel DMA Controller that is not covered by this driver is the one
14  * found on AT91SAM9263.
15  */
16 
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29 
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32 
33 /*
34  * Glossary
35  * --------
36  *
37  * at_hdmac		: Name of the ATmel AHB DMA Controller
38  * at_dma_ / atdma	: ATmel DMA controller entity related
39  * atc_	/ atchan	: ATmel DMA Channel entity related
40  */
41 
42 #define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
43 #define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
44 				|ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50 
51 #define ATC_MAX_DSCR_TRIALS	10
52 
53 /*
54  * Initial number of descriptors to allocate for each channel. This could
55  * be increased during dma usage.
56  */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 		 "initial descriptors per channel (default: 64)");
61 
62 
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66 
67 
68 /*----------------------------------------------------------------------*/
69 
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 						size_t len)
72 {
73 	unsigned int width;
74 
75 	if (!((src | dst  | len) & 3))
76 		width = 2;
77 	else if (!((src | dst | len) & 1))
78 		width = 1;
79 	else
80 		width = 0;
81 
82 	return width;
83 }
84 
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 	return list_first_entry(&atchan->active_list,
88 				struct at_desc, desc_node);
89 }
90 
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 	return list_first_entry(&atchan->queue,
94 				struct at_desc, desc_node);
95 }
96 
97 /**
98  * atc_alloc_descriptor - allocate and return an initialized descriptor
99  * @chan: the channel to allocate descriptors for
100  * @gfp_flags: GFP allocation flags
101  *
102  * Note: The ack-bit is positioned in the descriptor flag at creation time
103  *       to make initial allocation more convenient. This bit will be cleared
104  *       and control will be given to client at usage time (during
105  *       preparation functions).
106  */
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 					    gfp_t gfp_flags)
109 {
110 	struct at_desc	*desc = NULL;
111 	struct at_dma	*atdma = to_at_dma(chan->device);
112 	dma_addr_t phys;
113 
114 	desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 	if (desc) {
116 		INIT_LIST_HEAD(&desc->tx_list);
117 		dma_async_tx_descriptor_init(&desc->txd, chan);
118 		/* txd.flags will be overwritten in prep functions */
119 		desc->txd.flags = DMA_CTRL_ACK;
120 		desc->txd.tx_submit = atc_tx_submit;
121 		desc->txd.phys = phys;
122 	}
123 
124 	return desc;
125 }
126 
127 /**
128  * atc_desc_get - get an unused descriptor from free_list
129  * @atchan: channel we want a new descriptor for
130  */
131 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
132 {
133 	struct at_desc *desc, *_desc;
134 	struct at_desc *ret = NULL;
135 	unsigned long flags;
136 	unsigned int i = 0;
137 	LIST_HEAD(tmp_list);
138 
139 	spin_lock_irqsave(&atchan->lock, flags);
140 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
141 		i++;
142 		if (async_tx_test_ack(&desc->txd)) {
143 			list_del(&desc->desc_node);
144 			ret = desc;
145 			break;
146 		}
147 		dev_dbg(chan2dev(&atchan->chan_common),
148 				"desc %p not ACKed\n", desc);
149 	}
150 	spin_unlock_irqrestore(&atchan->lock, flags);
151 	dev_vdbg(chan2dev(&atchan->chan_common),
152 		"scanned %u descriptors on freelist\n", i);
153 
154 	/* no more descriptor available in initial pool: create one more */
155 	if (!ret) {
156 		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
157 		if (ret) {
158 			spin_lock_irqsave(&atchan->lock, flags);
159 			atchan->descs_allocated++;
160 			spin_unlock_irqrestore(&atchan->lock, flags);
161 		} else {
162 			dev_err(chan2dev(&atchan->chan_common),
163 					"not enough descriptors available\n");
164 		}
165 	}
166 
167 	return ret;
168 }
169 
170 /**
171  * atc_desc_put - move a descriptor, including any children, to the free list
172  * @atchan: channel we work on
173  * @desc: descriptor, at the head of a chain, to move to free list
174  */
175 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
176 {
177 	if (desc) {
178 		struct at_desc *child;
179 		unsigned long flags;
180 
181 		spin_lock_irqsave(&atchan->lock, flags);
182 		list_for_each_entry(child, &desc->tx_list, desc_node)
183 			dev_vdbg(chan2dev(&atchan->chan_common),
184 					"moving child desc %p to freelist\n",
185 					child);
186 		list_splice_init(&desc->tx_list, &atchan->free_list);
187 		dev_vdbg(chan2dev(&atchan->chan_common),
188 			 "moving desc %p to freelist\n", desc);
189 		list_add(&desc->desc_node, &atchan->free_list);
190 		spin_unlock_irqrestore(&atchan->lock, flags);
191 	}
192 }
193 
194 /**
195  * atc_desc_chain - build chain adding a descriptor
196  * @first: address of first descriptor of the chain
197  * @prev: address of previous descriptor of the chain
198  * @desc: descriptor to queue
199  *
200  * Called from prep_* functions
201  */
202 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
203 			   struct at_desc *desc)
204 {
205 	if (!(*first)) {
206 		*first = desc;
207 	} else {
208 		/* inform the HW lli about chaining */
209 		(*prev)->lli.dscr = desc->txd.phys;
210 		/* insert the link descriptor to the LD ring */
211 		list_add_tail(&desc->desc_node,
212 				&(*first)->tx_list);
213 	}
214 	*prev = desc;
215 }
216 
217 /**
218  * atc_dostart - starts the DMA engine for real
219  * @atchan: the channel we want to start
220  * @first: first descriptor in the list we want to begin with
221  *
222  * Called with atchan->lock held and bh disabled
223  */
224 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
225 {
226 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
227 
228 	/* ASSERT:  channel is idle */
229 	if (atc_chan_is_enabled(atchan)) {
230 		dev_err(chan2dev(&atchan->chan_common),
231 			"BUG: Attempted to start non-idle channel\n");
232 		dev_err(chan2dev(&atchan->chan_common),
233 			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
234 			channel_readl(atchan, SADDR),
235 			channel_readl(atchan, DADDR),
236 			channel_readl(atchan, CTRLA),
237 			channel_readl(atchan, CTRLB),
238 			channel_readl(atchan, DSCR));
239 
240 		/* The tasklet will hopefully advance the queue... */
241 		return;
242 	}
243 
244 	vdbg_dump_regs(atchan);
245 
246 	channel_writel(atchan, SADDR, 0);
247 	channel_writel(atchan, DADDR, 0);
248 	channel_writel(atchan, CTRLA, 0);
249 	channel_writel(atchan, CTRLB, 0);
250 	channel_writel(atchan, DSCR, first->txd.phys);
251 	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
252 		       ATC_SPIP_BOUNDARY(first->boundary));
253 	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
254 		       ATC_DPIP_BOUNDARY(first->boundary));
255 	dma_writel(atdma, CHER, atchan->mask);
256 
257 	vdbg_dump_regs(atchan);
258 }
259 
260 /*
261  * atc_get_desc_by_cookie - get the descriptor of a cookie
262  * @atchan: the DMA channel
263  * @cookie: the cookie to get the descriptor for
264  */
265 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
266 						dma_cookie_t cookie)
267 {
268 	struct at_desc *desc, *_desc;
269 
270 	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
271 		if (desc->txd.cookie == cookie)
272 			return desc;
273 	}
274 
275 	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
276 		if (desc->txd.cookie == cookie)
277 			return desc;
278 	}
279 
280 	return NULL;
281 }
282 
283 /**
284  * atc_calc_bytes_left - calculates the number of bytes left according to the
285  * value read from CTRLA.
286  *
287  * @current_len: the number of bytes left before reading CTRLA
288  * @ctrla: the value of CTRLA
289  */
290 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
291 {
292 	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
293 	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
294 
295 	/*
296 	 * According to the datasheet, when reading the Control A Register
297 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
298 	 * number of transfers completed on the Source Interface.
299 	 * So btsize is always a number of source width transfers.
300 	 */
301 	return current_len - (btsize << src_width);
302 }
303 
304 /**
305  * atc_get_bytes_left - get the number of bytes residue for a cookie
306  * @chan: DMA channel
307  * @cookie: transaction identifier to check status of
308  */
309 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
310 {
311 	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
312 	struct at_desc *desc_first = atc_first_active(atchan);
313 	struct at_desc *desc;
314 	int ret;
315 	u32 ctrla, dscr, trials;
316 
317 	/*
318 	 * If the cookie doesn't match to the currently running transfer then
319 	 * we can return the total length of the associated DMA transfer,
320 	 * because it is still queued.
321 	 */
322 	desc = atc_get_desc_by_cookie(atchan, cookie);
323 	if (desc == NULL)
324 		return -EINVAL;
325 	else if (desc != desc_first)
326 		return desc->total_len;
327 
328 	/* cookie matches to the currently running transfer */
329 	ret = desc_first->total_len;
330 
331 	if (desc_first->lli.dscr) {
332 		/* hardware linked list transfer */
333 
334 		/*
335 		 * Calculate the residue by removing the length of the child
336 		 * descriptors already transferred from the total length.
337 		 * To get the current child descriptor we can use the value of
338 		 * the channel's DSCR register and compare it against the value
339 		 * of the hardware linked list structure of each child
340 		 * descriptor.
341 		 *
342 		 * The CTRLA register provides us with the amount of data
343 		 * already read from the source for the current child
344 		 * descriptor. So we can compute a more accurate residue by also
345 		 * removing the number of bytes corresponding to this amount of
346 		 * data.
347 		 *
348 		 * However, the DSCR and CTRLA registers cannot be read both
349 		 * atomically. Hence a race condition may occur: the first read
350 		 * register may refer to one child descriptor whereas the second
351 		 * read may refer to a later child descriptor in the list
352 		 * because of the DMA transfer progression inbetween the two
353 		 * reads.
354 		 *
355 		 * One solution could have been to pause the DMA transfer, read
356 		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
357 		 * this approach presents some drawbacks:
358 		 * - If the DMA transfer is paused, RX overruns or TX underruns
359 		 *   are more likey to occur depending on the system latency.
360 		 *   Taking the USART driver as an example, it uses a cyclic DMA
361 		 *   transfer to read data from the Receive Holding Register
362 		 *   (RHR) to avoid RX overruns since the RHR is not protected
363 		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
364 		 *   to compute the residue would break the USART driver design.
365 		 * - The atc_pause() function masks interrupts but we'd rather
366 		 *   avoid to do so for system latency purpose.
367 		 *
368 		 * Then we'd rather use another solution: the DSCR is read a
369 		 * first time, the CTRLA is read in turn, next the DSCR is read
370 		 * a second time. If the two consecutive read values of the DSCR
371 		 * are the same then we assume both refers to the very same
372 		 * child descriptor as well as the CTRLA value read inbetween
373 		 * does. For cyclic tranfers, the assumption is that a full loop
374 		 * is "not so fast".
375 		 * If the two DSCR values are different, we read again the CTRLA
376 		 * then the DSCR till two consecutive read values from DSCR are
377 		 * equal or till the maxium trials is reach.
378 		 * This algorithm is very unlikely not to find a stable value for
379 		 * DSCR.
380 		 */
381 
382 		dscr = channel_readl(atchan, DSCR);
383 		rmb(); /* ensure DSCR is read before CTRLA */
384 		ctrla = channel_readl(atchan, CTRLA);
385 		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
386 			u32 new_dscr;
387 
388 			rmb(); /* ensure DSCR is read after CTRLA */
389 			new_dscr = channel_readl(atchan, DSCR);
390 
391 			/*
392 			 * If the DSCR register value has not changed inside the
393 			 * DMA controller since the previous read, we assume
394 			 * that both the dscr and ctrla values refers to the
395 			 * very same descriptor.
396 			 */
397 			if (likely(new_dscr == dscr))
398 				break;
399 
400 			/*
401 			 * DSCR has changed inside the DMA controller, so the
402 			 * previouly read value of CTRLA may refer to an already
403 			 * processed descriptor hence could be outdated.
404 			 * We need to update ctrla to match the current
405 			 * descriptor.
406 			 */
407 			dscr = new_dscr;
408 			rmb(); /* ensure DSCR is read before CTRLA */
409 			ctrla = channel_readl(atchan, CTRLA);
410 		}
411 		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
412 			return -ETIMEDOUT;
413 
414 		/* for the first descriptor we can be more accurate */
415 		if (desc_first->lli.dscr == dscr)
416 			return atc_calc_bytes_left(ret, ctrla);
417 
418 		ret -= desc_first->len;
419 		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
420 			if (desc->lli.dscr == dscr)
421 				break;
422 
423 			ret -= desc->len;
424 		}
425 
426 		/*
427 		 * For the current descriptor in the chain we can calculate
428 		 * the remaining bytes using the channel's register.
429 		 */
430 		ret = atc_calc_bytes_left(ret, ctrla);
431 	} else {
432 		/* single transfer */
433 		ctrla = channel_readl(atchan, CTRLA);
434 		ret = atc_calc_bytes_left(ret, ctrla);
435 	}
436 
437 	return ret;
438 }
439 
440 /**
441  * atc_chain_complete - finish work for one transaction chain
442  * @atchan: channel we work on
443  * @desc: descriptor at the head of the chain we want do complete
444  *
445  * Called with atchan->lock held and bh disabled */
446 static void
447 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
448 {
449 	struct dma_async_tx_descriptor	*txd = &desc->txd;
450 	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
451 
452 	dev_vdbg(chan2dev(&atchan->chan_common),
453 		"descriptor %u complete\n", txd->cookie);
454 
455 	/* mark the descriptor as complete for non cyclic cases only */
456 	if (!atc_chan_is_cyclic(atchan))
457 		dma_cookie_complete(txd);
458 
459 	/* If the transfer was a memset, free our temporary buffer */
460 	if (desc->memset_buffer) {
461 		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
462 			      desc->memset_paddr);
463 		desc->memset_buffer = false;
464 	}
465 
466 	/* move children to free_list */
467 	list_splice_init(&desc->tx_list, &atchan->free_list);
468 	/* move myself to free_list */
469 	list_move(&desc->desc_node, &atchan->free_list);
470 
471 	dma_descriptor_unmap(txd);
472 	/* for cyclic transfers,
473 	 * no need to replay callback function while stopping */
474 	if (!atc_chan_is_cyclic(atchan)) {
475 		/*
476 		 * The API requires that no submissions are done from a
477 		 * callback, so we don't need to drop the lock here
478 		 */
479 		dmaengine_desc_get_callback_invoke(txd, NULL);
480 	}
481 
482 	dma_run_dependencies(txd);
483 }
484 
485 /**
486  * atc_complete_all - finish work for all transactions
487  * @atchan: channel to complete transactions for
488  *
489  * Eventually submit queued descriptors if any
490  *
491  * Assume channel is idle while calling this function
492  * Called with atchan->lock held and bh disabled
493  */
494 static void atc_complete_all(struct at_dma_chan *atchan)
495 {
496 	struct at_desc *desc, *_desc;
497 	LIST_HEAD(list);
498 
499 	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
500 
501 	/*
502 	 * Submit queued descriptors ASAP, i.e. before we go through
503 	 * the completed ones.
504 	 */
505 	if (!list_empty(&atchan->queue))
506 		atc_dostart(atchan, atc_first_queued(atchan));
507 	/* empty active_list now it is completed */
508 	list_splice_init(&atchan->active_list, &list);
509 	/* empty queue list by moving descriptors (if any) to active_list */
510 	list_splice_init(&atchan->queue, &atchan->active_list);
511 
512 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
513 		atc_chain_complete(atchan, desc);
514 }
515 
516 /**
517  * atc_advance_work - at the end of a transaction, move forward
518  * @atchan: channel where the transaction ended
519  *
520  * Called with atchan->lock held and bh disabled
521  */
522 static void atc_advance_work(struct at_dma_chan *atchan)
523 {
524 	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
525 
526 	if (atc_chan_is_enabled(atchan))
527 		return;
528 
529 	if (list_empty(&atchan->active_list) ||
530 	    list_is_singular(&atchan->active_list)) {
531 		atc_complete_all(atchan);
532 	} else {
533 		atc_chain_complete(atchan, atc_first_active(atchan));
534 		/* advance work */
535 		atc_dostart(atchan, atc_first_active(atchan));
536 	}
537 }
538 
539 
540 /**
541  * atc_handle_error - handle errors reported by DMA controller
542  * @atchan: channel where error occurs
543  *
544  * Called with atchan->lock held and bh disabled
545  */
546 static void atc_handle_error(struct at_dma_chan *atchan)
547 {
548 	struct at_desc *bad_desc;
549 	struct at_desc *child;
550 
551 	/*
552 	 * The descriptor currently at the head of the active list is
553 	 * broked. Since we don't have any way to report errors, we'll
554 	 * just have to scream loudly and try to carry on.
555 	 */
556 	bad_desc = atc_first_active(atchan);
557 	list_del_init(&bad_desc->desc_node);
558 
559 	/* As we are stopped, take advantage to push queued descriptors
560 	 * in active_list */
561 	list_splice_init(&atchan->queue, atchan->active_list.prev);
562 
563 	/* Try to restart the controller */
564 	if (!list_empty(&atchan->active_list))
565 		atc_dostart(atchan, atc_first_active(atchan));
566 
567 	/*
568 	 * KERN_CRITICAL may seem harsh, but since this only happens
569 	 * when someone submits a bad physical address in a
570 	 * descriptor, we should consider ourselves lucky that the
571 	 * controller flagged an error instead of scribbling over
572 	 * random memory locations.
573 	 */
574 	dev_crit(chan2dev(&atchan->chan_common),
575 			"Bad descriptor submitted for DMA!\n");
576 	dev_crit(chan2dev(&atchan->chan_common),
577 			"  cookie: %d\n", bad_desc->txd.cookie);
578 	atc_dump_lli(atchan, &bad_desc->lli);
579 	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
580 		atc_dump_lli(atchan, &child->lli);
581 
582 	/* Pretend the descriptor completed successfully */
583 	atc_chain_complete(atchan, bad_desc);
584 }
585 
586 /**
587  * atc_handle_cyclic - at the end of a period, run callback function
588  * @atchan: channel used for cyclic operations
589  *
590  * Called with atchan->lock held and bh disabled
591  */
592 static void atc_handle_cyclic(struct at_dma_chan *atchan)
593 {
594 	struct at_desc			*first = atc_first_active(atchan);
595 	struct dma_async_tx_descriptor	*txd = &first->txd;
596 
597 	dev_vdbg(chan2dev(&atchan->chan_common),
598 			"new cyclic period llp 0x%08x\n",
599 			channel_readl(atchan, DSCR));
600 
601 	dmaengine_desc_get_callback_invoke(txd, NULL);
602 }
603 
604 /*--  IRQ & Tasklet  ---------------------------------------------------*/
605 
606 static void atc_tasklet(unsigned long data)
607 {
608 	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
609 	unsigned long flags;
610 
611 	spin_lock_irqsave(&atchan->lock, flags);
612 	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
613 		atc_handle_error(atchan);
614 	else if (atc_chan_is_cyclic(atchan))
615 		atc_handle_cyclic(atchan);
616 	else
617 		atc_advance_work(atchan);
618 
619 	spin_unlock_irqrestore(&atchan->lock, flags);
620 }
621 
622 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
623 {
624 	struct at_dma		*atdma = (struct at_dma *)dev_id;
625 	struct at_dma_chan	*atchan;
626 	int			i;
627 	u32			status, pending, imr;
628 	int			ret = IRQ_NONE;
629 
630 	do {
631 		imr = dma_readl(atdma, EBCIMR);
632 		status = dma_readl(atdma, EBCISR);
633 		pending = status & imr;
634 
635 		if (!pending)
636 			break;
637 
638 		dev_vdbg(atdma->dma_common.dev,
639 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
640 			 status, imr, pending);
641 
642 		for (i = 0; i < atdma->dma_common.chancnt; i++) {
643 			atchan = &atdma->chan[i];
644 			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
645 				if (pending & AT_DMA_ERR(i)) {
646 					/* Disable channel on AHB error */
647 					dma_writel(atdma, CHDR,
648 						AT_DMA_RES(i) | atchan->mask);
649 					/* Give information to tasklet */
650 					set_bit(ATC_IS_ERROR, &atchan->status);
651 				}
652 				tasklet_schedule(&atchan->tasklet);
653 				ret = IRQ_HANDLED;
654 			}
655 		}
656 
657 	} while (pending);
658 
659 	return ret;
660 }
661 
662 
663 /*--  DMA Engine API  --------------------------------------------------*/
664 
665 /**
666  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
667  * @desc: descriptor at the head of the transaction chain
668  *
669  * Queue chain if DMA engine is working already
670  *
671  * Cookie increment and adding to active_list or queue must be atomic
672  */
673 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
674 {
675 	struct at_desc		*desc = txd_to_at_desc(tx);
676 	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
677 	dma_cookie_t		cookie;
678 	unsigned long		flags;
679 
680 	spin_lock_irqsave(&atchan->lock, flags);
681 	cookie = dma_cookie_assign(tx);
682 
683 	if (list_empty(&atchan->active_list)) {
684 		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
685 				desc->txd.cookie);
686 		atc_dostart(atchan, desc);
687 		list_add_tail(&desc->desc_node, &atchan->active_list);
688 	} else {
689 		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
690 				desc->txd.cookie);
691 		list_add_tail(&desc->desc_node, &atchan->queue);
692 	}
693 
694 	spin_unlock_irqrestore(&atchan->lock, flags);
695 
696 	return cookie;
697 }
698 
699 /**
700  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
701  * @chan: the channel to prepare operation on
702  * @xt: Interleaved transfer template
703  * @flags: tx descriptor status flags
704  */
705 static struct dma_async_tx_descriptor *
706 atc_prep_dma_interleaved(struct dma_chan *chan,
707 			 struct dma_interleaved_template *xt,
708 			 unsigned long flags)
709 {
710 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
711 	struct data_chunk	*first;
712 	struct at_desc		*desc = NULL;
713 	size_t			xfer_count;
714 	unsigned int		dwidth;
715 	u32			ctrla;
716 	u32			ctrlb;
717 	size_t			len = 0;
718 	int			i;
719 
720 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
721 		return NULL;
722 
723 	first = xt->sgl;
724 
725 	dev_info(chan2dev(chan),
726 		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
727 		__func__, &xt->src_start, &xt->dst_start, xt->numf,
728 		xt->frame_size, flags);
729 
730 	/*
731 	 * The controller can only "skip" X bytes every Y bytes, so we
732 	 * need to make sure we are given a template that fit that
733 	 * description, ie a template with chunks that always have the
734 	 * same size, with the same ICGs.
735 	 */
736 	for (i = 0; i < xt->frame_size; i++) {
737 		struct data_chunk *chunk = xt->sgl + i;
738 
739 		if ((chunk->size != xt->sgl->size) ||
740 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
741 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
742 			dev_err(chan2dev(chan),
743 				"%s: the controller can transfer only identical chunks\n",
744 				__func__);
745 			return NULL;
746 		}
747 
748 		len += chunk->size;
749 	}
750 
751 	dwidth = atc_get_xfer_width(xt->src_start,
752 				    xt->dst_start, len);
753 
754 	xfer_count = len >> dwidth;
755 	if (xfer_count > ATC_BTSIZE_MAX) {
756 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
757 		return NULL;
758 	}
759 
760 	ctrla = ATC_SRC_WIDTH(dwidth) |
761 		ATC_DST_WIDTH(dwidth);
762 
763 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
764 		| ATC_SRC_ADDR_MODE_INCR
765 		| ATC_DST_ADDR_MODE_INCR
766 		| ATC_SRC_PIP
767 		| ATC_DST_PIP
768 		| ATC_FC_MEM2MEM;
769 
770 	/* create the transfer */
771 	desc = atc_desc_get(atchan);
772 	if (!desc) {
773 		dev_err(chan2dev(chan),
774 			"%s: couldn't allocate our descriptor\n", __func__);
775 		return NULL;
776 	}
777 
778 	desc->lli.saddr = xt->src_start;
779 	desc->lli.daddr = xt->dst_start;
780 	desc->lli.ctrla = ctrla | xfer_count;
781 	desc->lli.ctrlb = ctrlb;
782 
783 	desc->boundary = first->size >> dwidth;
784 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
785 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
786 
787 	desc->txd.cookie = -EBUSY;
788 	desc->total_len = desc->len = len;
789 
790 	/* set end-of-link to the last link descriptor of list*/
791 	set_desc_eol(desc);
792 
793 	desc->txd.flags = flags; /* client is in control of this ack */
794 
795 	return &desc->txd;
796 }
797 
798 /**
799  * atc_prep_dma_memcpy - prepare a memcpy operation
800  * @chan: the channel to prepare operation on
801  * @dest: operation virtual destination address
802  * @src: operation virtual source address
803  * @len: operation length
804  * @flags: tx descriptor status flags
805  */
806 static struct dma_async_tx_descriptor *
807 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
808 		size_t len, unsigned long flags)
809 {
810 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
811 	struct at_desc		*desc = NULL;
812 	struct at_desc		*first = NULL;
813 	struct at_desc		*prev = NULL;
814 	size_t			xfer_count;
815 	size_t			offset;
816 	unsigned int		src_width;
817 	unsigned int		dst_width;
818 	u32			ctrla;
819 	u32			ctrlb;
820 
821 	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
822 			&dest, &src, len, flags);
823 
824 	if (unlikely(!len)) {
825 		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
826 		return NULL;
827 	}
828 
829 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
830 		| ATC_SRC_ADDR_MODE_INCR
831 		| ATC_DST_ADDR_MODE_INCR
832 		| ATC_FC_MEM2MEM;
833 
834 	/*
835 	 * We can be a lot more clever here, but this should take care
836 	 * of the most common optimization.
837 	 */
838 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
839 
840 	ctrla = ATC_SRC_WIDTH(src_width) |
841 		ATC_DST_WIDTH(dst_width);
842 
843 	for (offset = 0; offset < len; offset += xfer_count << src_width) {
844 		xfer_count = min_t(size_t, (len - offset) >> src_width,
845 				ATC_BTSIZE_MAX);
846 
847 		desc = atc_desc_get(atchan);
848 		if (!desc)
849 			goto err_desc_get;
850 
851 		desc->lli.saddr = src + offset;
852 		desc->lli.daddr = dest + offset;
853 		desc->lli.ctrla = ctrla | xfer_count;
854 		desc->lli.ctrlb = ctrlb;
855 
856 		desc->txd.cookie = 0;
857 		desc->len = xfer_count << src_width;
858 
859 		atc_desc_chain(&first, &prev, desc);
860 	}
861 
862 	/* First descriptor of the chain embedds additional information */
863 	first->txd.cookie = -EBUSY;
864 	first->total_len = len;
865 
866 	/* set end-of-link to the last link descriptor of list*/
867 	set_desc_eol(desc);
868 
869 	first->txd.flags = flags; /* client is in control of this ack */
870 
871 	return &first->txd;
872 
873 err_desc_get:
874 	atc_desc_put(atchan, first);
875 	return NULL;
876 }
877 
878 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
879 					      dma_addr_t psrc,
880 					      dma_addr_t pdst,
881 					      size_t len)
882 {
883 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
884 	struct at_desc *desc;
885 	size_t xfer_count;
886 
887 	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
888 	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
889 		ATC_SRC_ADDR_MODE_FIXED |
890 		ATC_DST_ADDR_MODE_INCR |
891 		ATC_FC_MEM2MEM;
892 
893 	xfer_count = len >> 2;
894 	if (xfer_count > ATC_BTSIZE_MAX) {
895 		dev_err(chan2dev(chan), "%s: buffer is too big\n",
896 			__func__);
897 		return NULL;
898 	}
899 
900 	desc = atc_desc_get(atchan);
901 	if (!desc) {
902 		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
903 			__func__);
904 		return NULL;
905 	}
906 
907 	desc->lli.saddr = psrc;
908 	desc->lli.daddr = pdst;
909 	desc->lli.ctrla = ctrla | xfer_count;
910 	desc->lli.ctrlb = ctrlb;
911 
912 	desc->txd.cookie = 0;
913 	desc->len = len;
914 
915 	return desc;
916 }
917 
918 /**
919  * atc_prep_dma_memset - prepare a memcpy operation
920  * @chan: the channel to prepare operation on
921  * @dest: operation virtual destination address
922  * @value: value to set memory buffer to
923  * @len: operation length
924  * @flags: tx descriptor status flags
925  */
926 static struct dma_async_tx_descriptor *
927 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
928 		    size_t len, unsigned long flags)
929 {
930 	struct at_dma		*atdma = to_at_dma(chan->device);
931 	struct at_desc		*desc;
932 	void __iomem		*vaddr;
933 	dma_addr_t		paddr;
934 
935 	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
936 		&dest, value, len, flags);
937 
938 	if (unlikely(!len)) {
939 		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
940 		return NULL;
941 	}
942 
943 	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
944 		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
945 			__func__);
946 		return NULL;
947 	}
948 
949 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
950 	if (!vaddr) {
951 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
952 			__func__);
953 		return NULL;
954 	}
955 	*(u32*)vaddr = value;
956 
957 	desc = atc_create_memset_desc(chan, paddr, dest, len);
958 	if (!desc) {
959 		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
960 			__func__);
961 		goto err_free_buffer;
962 	}
963 
964 	desc->memset_paddr = paddr;
965 	desc->memset_vaddr = vaddr;
966 	desc->memset_buffer = true;
967 
968 	desc->txd.cookie = -EBUSY;
969 	desc->total_len = len;
970 
971 	/* set end-of-link on the descriptor */
972 	set_desc_eol(desc);
973 
974 	desc->txd.flags = flags;
975 
976 	return &desc->txd;
977 
978 err_free_buffer:
979 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
980 	return NULL;
981 }
982 
983 static struct dma_async_tx_descriptor *
984 atc_prep_dma_memset_sg(struct dma_chan *chan,
985 		       struct scatterlist *sgl,
986 		       unsigned int sg_len, int value,
987 		       unsigned long flags)
988 {
989 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
990 	struct at_dma		*atdma = to_at_dma(chan->device);
991 	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
992 	struct scatterlist	*sg;
993 	void __iomem		*vaddr;
994 	dma_addr_t		paddr;
995 	size_t			total_len = 0;
996 	int			i;
997 
998 	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
999 		 value, sg_len, flags);
1000 
1001 	if (unlikely(!sgl || !sg_len)) {
1002 		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1003 			__func__);
1004 		return NULL;
1005 	}
1006 
1007 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1008 	if (!vaddr) {
1009 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1010 			__func__);
1011 		return NULL;
1012 	}
1013 	*(u32*)vaddr = value;
1014 
1015 	for_each_sg(sgl, sg, sg_len, i) {
1016 		dma_addr_t dest = sg_dma_address(sg);
1017 		size_t len = sg_dma_len(sg);
1018 
1019 		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1020 			 __func__, &dest, len);
1021 
1022 		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1023 			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1024 				__func__);
1025 			goto err_put_desc;
1026 		}
1027 
1028 		desc = atc_create_memset_desc(chan, paddr, dest, len);
1029 		if (!desc)
1030 			goto err_put_desc;
1031 
1032 		atc_desc_chain(&first, &prev, desc);
1033 
1034 		total_len += len;
1035 	}
1036 
1037 	/*
1038 	 * Only set the buffer pointers on the last descriptor to
1039 	 * avoid free'ing while we have our transfer still going
1040 	 */
1041 	desc->memset_paddr = paddr;
1042 	desc->memset_vaddr = vaddr;
1043 	desc->memset_buffer = true;
1044 
1045 	first->txd.cookie = -EBUSY;
1046 	first->total_len = total_len;
1047 
1048 	/* set end-of-link on the descriptor */
1049 	set_desc_eol(desc);
1050 
1051 	first->txd.flags = flags;
1052 
1053 	return &first->txd;
1054 
1055 err_put_desc:
1056 	atc_desc_put(atchan, first);
1057 	return NULL;
1058 }
1059 
1060 /**
1061  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1062  * @chan: DMA channel
1063  * @sgl: scatterlist to transfer to/from
1064  * @sg_len: number of entries in @scatterlist
1065  * @direction: DMA direction
1066  * @flags: tx descriptor status flags
1067  * @context: transaction context (ignored)
1068  */
1069 static struct dma_async_tx_descriptor *
1070 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1071 		unsigned int sg_len, enum dma_transfer_direction direction,
1072 		unsigned long flags, void *context)
1073 {
1074 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1075 	struct at_dma_slave	*atslave = chan->private;
1076 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1077 	struct at_desc		*first = NULL;
1078 	struct at_desc		*prev = NULL;
1079 	u32			ctrla;
1080 	u32			ctrlb;
1081 	dma_addr_t		reg;
1082 	unsigned int		reg_width;
1083 	unsigned int		mem_width;
1084 	unsigned int		i;
1085 	struct scatterlist	*sg;
1086 	size_t			total_len = 0;
1087 
1088 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1089 			sg_len,
1090 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1091 			flags);
1092 
1093 	if (unlikely(!atslave || !sg_len)) {
1094 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1095 		return NULL;
1096 	}
1097 
1098 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1099 		| ATC_DCSIZE(sconfig->dst_maxburst);
1100 	ctrlb = ATC_IEN;
1101 
1102 	switch (direction) {
1103 	case DMA_MEM_TO_DEV:
1104 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1105 		ctrla |=  ATC_DST_WIDTH(reg_width);
1106 		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1107 			| ATC_SRC_ADDR_MODE_INCR
1108 			| ATC_FC_MEM2PER
1109 			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1110 		reg = sconfig->dst_addr;
1111 		for_each_sg(sgl, sg, sg_len, i) {
1112 			struct at_desc	*desc;
1113 			u32		len;
1114 			u32		mem;
1115 
1116 			desc = atc_desc_get(atchan);
1117 			if (!desc)
1118 				goto err_desc_get;
1119 
1120 			mem = sg_dma_address(sg);
1121 			len = sg_dma_len(sg);
1122 			if (unlikely(!len)) {
1123 				dev_dbg(chan2dev(chan),
1124 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1125 				goto err;
1126 			}
1127 			mem_width = 2;
1128 			if (unlikely(mem & 3 || len & 3))
1129 				mem_width = 0;
1130 
1131 			desc->lli.saddr = mem;
1132 			desc->lli.daddr = reg;
1133 			desc->lli.ctrla = ctrla
1134 					| ATC_SRC_WIDTH(mem_width)
1135 					| len >> mem_width;
1136 			desc->lli.ctrlb = ctrlb;
1137 			desc->len = len;
1138 
1139 			atc_desc_chain(&first, &prev, desc);
1140 			total_len += len;
1141 		}
1142 		break;
1143 	case DMA_DEV_TO_MEM:
1144 		reg_width = convert_buswidth(sconfig->src_addr_width);
1145 		ctrla |=  ATC_SRC_WIDTH(reg_width);
1146 		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1147 			| ATC_SRC_ADDR_MODE_FIXED
1148 			| ATC_FC_PER2MEM
1149 			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1150 
1151 		reg = sconfig->src_addr;
1152 		for_each_sg(sgl, sg, sg_len, i) {
1153 			struct at_desc	*desc;
1154 			u32		len;
1155 			u32		mem;
1156 
1157 			desc = atc_desc_get(atchan);
1158 			if (!desc)
1159 				goto err_desc_get;
1160 
1161 			mem = sg_dma_address(sg);
1162 			len = sg_dma_len(sg);
1163 			if (unlikely(!len)) {
1164 				dev_dbg(chan2dev(chan),
1165 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1166 				goto err;
1167 			}
1168 			mem_width = 2;
1169 			if (unlikely(mem & 3 || len & 3))
1170 				mem_width = 0;
1171 
1172 			desc->lli.saddr = reg;
1173 			desc->lli.daddr = mem;
1174 			desc->lli.ctrla = ctrla
1175 					| ATC_DST_WIDTH(mem_width)
1176 					| len >> reg_width;
1177 			desc->lli.ctrlb = ctrlb;
1178 			desc->len = len;
1179 
1180 			atc_desc_chain(&first, &prev, desc);
1181 			total_len += len;
1182 		}
1183 		break;
1184 	default:
1185 		return NULL;
1186 	}
1187 
1188 	/* set end-of-link to the last link descriptor of list*/
1189 	set_desc_eol(prev);
1190 
1191 	/* First descriptor of the chain embedds additional information */
1192 	first->txd.cookie = -EBUSY;
1193 	first->total_len = total_len;
1194 
1195 	/* first link descriptor of list is responsible of flags */
1196 	first->txd.flags = flags; /* client is in control of this ack */
1197 
1198 	return &first->txd;
1199 
1200 err_desc_get:
1201 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1202 err:
1203 	atc_desc_put(atchan, first);
1204 	return NULL;
1205 }
1206 
1207 /**
1208  * atc_dma_cyclic_check_values
1209  * Check for too big/unaligned periods and unaligned DMA buffer
1210  */
1211 static int
1212 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1213 		size_t period_len)
1214 {
1215 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1216 		goto err_out;
1217 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1218 		goto err_out;
1219 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1220 		goto err_out;
1221 
1222 	return 0;
1223 
1224 err_out:
1225 	return -EINVAL;
1226 }
1227 
1228 /**
1229  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1230  */
1231 static int
1232 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1233 		unsigned int period_index, dma_addr_t buf_addr,
1234 		unsigned int reg_width, size_t period_len,
1235 		enum dma_transfer_direction direction)
1236 {
1237 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1238 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1239 	u32			ctrla;
1240 
1241 	/* prepare common CRTLA value */
1242 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1243 		| ATC_DCSIZE(sconfig->dst_maxburst)
1244 		| ATC_DST_WIDTH(reg_width)
1245 		| ATC_SRC_WIDTH(reg_width)
1246 		| period_len >> reg_width;
1247 
1248 	switch (direction) {
1249 	case DMA_MEM_TO_DEV:
1250 		desc->lli.saddr = buf_addr + (period_len * period_index);
1251 		desc->lli.daddr = sconfig->dst_addr;
1252 		desc->lli.ctrla = ctrla;
1253 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1254 				| ATC_SRC_ADDR_MODE_INCR
1255 				| ATC_FC_MEM2PER
1256 				| ATC_SIF(atchan->mem_if)
1257 				| ATC_DIF(atchan->per_if);
1258 		desc->len = period_len;
1259 		break;
1260 
1261 	case DMA_DEV_TO_MEM:
1262 		desc->lli.saddr = sconfig->src_addr;
1263 		desc->lli.daddr = buf_addr + (period_len * period_index);
1264 		desc->lli.ctrla = ctrla;
1265 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1266 				| ATC_SRC_ADDR_MODE_FIXED
1267 				| ATC_FC_PER2MEM
1268 				| ATC_SIF(atchan->per_if)
1269 				| ATC_DIF(atchan->mem_if);
1270 		desc->len = period_len;
1271 		break;
1272 
1273 	default:
1274 		return -EINVAL;
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 /**
1281  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1282  * @chan: the DMA channel to prepare
1283  * @buf_addr: physical DMA address where the buffer starts
1284  * @buf_len: total number of bytes for the entire buffer
1285  * @period_len: number of bytes for each period
1286  * @direction: transfer direction, to or from device
1287  * @flags: tx descriptor status flags
1288  */
1289 static struct dma_async_tx_descriptor *
1290 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1291 		size_t period_len, enum dma_transfer_direction direction,
1292 		unsigned long flags)
1293 {
1294 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1295 	struct at_dma_slave	*atslave = chan->private;
1296 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1297 	struct at_desc		*first = NULL;
1298 	struct at_desc		*prev = NULL;
1299 	unsigned long		was_cyclic;
1300 	unsigned int		reg_width;
1301 	unsigned int		periods = buf_len / period_len;
1302 	unsigned int		i;
1303 
1304 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1305 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1306 			&buf_addr,
1307 			periods, buf_len, period_len);
1308 
1309 	if (unlikely(!atslave || !buf_len || !period_len)) {
1310 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1311 		return NULL;
1312 	}
1313 
1314 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1315 	if (was_cyclic) {
1316 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1317 		return NULL;
1318 	}
1319 
1320 	if (unlikely(!is_slave_direction(direction)))
1321 		goto err_out;
1322 
1323 	if (sconfig->direction == DMA_MEM_TO_DEV)
1324 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1325 	else
1326 		reg_width = convert_buswidth(sconfig->src_addr_width);
1327 
1328 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1329 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1330 		goto err_out;
1331 
1332 	/* build cyclic linked list */
1333 	for (i = 0; i < periods; i++) {
1334 		struct at_desc	*desc;
1335 
1336 		desc = atc_desc_get(atchan);
1337 		if (!desc)
1338 			goto err_desc_get;
1339 
1340 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1341 					     reg_width, period_len, direction))
1342 			goto err_desc_get;
1343 
1344 		atc_desc_chain(&first, &prev, desc);
1345 	}
1346 
1347 	/* lets make a cyclic list */
1348 	prev->lli.dscr = first->txd.phys;
1349 
1350 	/* First descriptor of the chain embedds additional information */
1351 	first->txd.cookie = -EBUSY;
1352 	first->total_len = buf_len;
1353 
1354 	return &first->txd;
1355 
1356 err_desc_get:
1357 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1358 	atc_desc_put(atchan, first);
1359 err_out:
1360 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1361 	return NULL;
1362 }
1363 
1364 static int atc_config(struct dma_chan *chan,
1365 		      struct dma_slave_config *sconfig)
1366 {
1367 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1368 
1369 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1370 
1371 	/* Check if it is chan is configured for slave transfers */
1372 	if (!chan->private)
1373 		return -EINVAL;
1374 
1375 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1376 
1377 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1378 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1379 
1380 	return 0;
1381 }
1382 
1383 static int atc_pause(struct dma_chan *chan)
1384 {
1385 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1386 	struct at_dma		*atdma = to_at_dma(chan->device);
1387 	int			chan_id = atchan->chan_common.chan_id;
1388 	unsigned long		flags;
1389 
1390 	LIST_HEAD(list);
1391 
1392 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1393 
1394 	spin_lock_irqsave(&atchan->lock, flags);
1395 
1396 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1397 	set_bit(ATC_IS_PAUSED, &atchan->status);
1398 
1399 	spin_unlock_irqrestore(&atchan->lock, flags);
1400 
1401 	return 0;
1402 }
1403 
1404 static int atc_resume(struct dma_chan *chan)
1405 {
1406 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1407 	struct at_dma		*atdma = to_at_dma(chan->device);
1408 	int			chan_id = atchan->chan_common.chan_id;
1409 	unsigned long		flags;
1410 
1411 	LIST_HEAD(list);
1412 
1413 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1414 
1415 	if (!atc_chan_is_paused(atchan))
1416 		return 0;
1417 
1418 	spin_lock_irqsave(&atchan->lock, flags);
1419 
1420 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1421 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1422 
1423 	spin_unlock_irqrestore(&atchan->lock, flags);
1424 
1425 	return 0;
1426 }
1427 
1428 static int atc_terminate_all(struct dma_chan *chan)
1429 {
1430 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1431 	struct at_dma		*atdma = to_at_dma(chan->device);
1432 	int			chan_id = atchan->chan_common.chan_id;
1433 	struct at_desc		*desc, *_desc;
1434 	unsigned long		flags;
1435 
1436 	LIST_HEAD(list);
1437 
1438 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1439 
1440 	/*
1441 	 * This is only called when something went wrong elsewhere, so
1442 	 * we don't really care about the data. Just disable the
1443 	 * channel. We still have to poll the channel enable bit due
1444 	 * to AHB/HSB limitations.
1445 	 */
1446 	spin_lock_irqsave(&atchan->lock, flags);
1447 
1448 	/* disabling channel: must also remove suspend state */
1449 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1450 
1451 	/* confirm that this channel is disabled */
1452 	while (dma_readl(atdma, CHSR) & atchan->mask)
1453 		cpu_relax();
1454 
1455 	/* active_list entries will end up before queued entries */
1456 	list_splice_init(&atchan->queue, &list);
1457 	list_splice_init(&atchan->active_list, &list);
1458 
1459 	/* Flush all pending and queued descriptors */
1460 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1461 		atc_chain_complete(atchan, desc);
1462 
1463 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1464 	/* if channel dedicated to cyclic operations, free it */
1465 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1466 
1467 	spin_unlock_irqrestore(&atchan->lock, flags);
1468 
1469 	return 0;
1470 }
1471 
1472 /**
1473  * atc_tx_status - poll for transaction completion
1474  * @chan: DMA channel
1475  * @cookie: transaction identifier to check status of
1476  * @txstate: if not %NULL updated with transaction state
1477  *
1478  * If @txstate is passed in, upon return it reflect the driver
1479  * internal state and can be used with dma_async_is_complete() to check
1480  * the status of multiple cookies without re-checking hardware state.
1481  */
1482 static enum dma_status
1483 atc_tx_status(struct dma_chan *chan,
1484 		dma_cookie_t cookie,
1485 		struct dma_tx_state *txstate)
1486 {
1487 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1488 	unsigned long		flags;
1489 	enum dma_status		ret;
1490 	int bytes = 0;
1491 
1492 	ret = dma_cookie_status(chan, cookie, txstate);
1493 	if (ret == DMA_COMPLETE)
1494 		return ret;
1495 	/*
1496 	 * There's no point calculating the residue if there's
1497 	 * no txstate to store the value.
1498 	 */
1499 	if (!txstate)
1500 		return DMA_ERROR;
1501 
1502 	spin_lock_irqsave(&atchan->lock, flags);
1503 
1504 	/*  Get number of bytes left in the active transactions */
1505 	bytes = atc_get_bytes_left(chan, cookie);
1506 
1507 	spin_unlock_irqrestore(&atchan->lock, flags);
1508 
1509 	if (unlikely(bytes < 0)) {
1510 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1511 		return DMA_ERROR;
1512 	} else {
1513 		dma_set_residue(txstate, bytes);
1514 	}
1515 
1516 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1517 		 ret, cookie, bytes);
1518 
1519 	return ret;
1520 }
1521 
1522 /**
1523  * atc_issue_pending - try to finish work
1524  * @chan: target DMA channel
1525  */
1526 static void atc_issue_pending(struct dma_chan *chan)
1527 {
1528 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1529 	unsigned long		flags;
1530 
1531 	dev_vdbg(chan2dev(chan), "issue_pending\n");
1532 
1533 	/* Not needed for cyclic transfers */
1534 	if (atc_chan_is_cyclic(atchan))
1535 		return;
1536 
1537 	spin_lock_irqsave(&atchan->lock, flags);
1538 	atc_advance_work(atchan);
1539 	spin_unlock_irqrestore(&atchan->lock, flags);
1540 }
1541 
1542 /**
1543  * atc_alloc_chan_resources - allocate resources for DMA channel
1544  * @chan: allocate descriptor resources for this channel
1545  * @client: current client requesting the channel be ready for requests
1546  *
1547  * return - the number of allocated descriptors
1548  */
1549 static int atc_alloc_chan_resources(struct dma_chan *chan)
1550 {
1551 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1552 	struct at_dma		*atdma = to_at_dma(chan->device);
1553 	struct at_desc		*desc;
1554 	struct at_dma_slave	*atslave;
1555 	unsigned long		flags;
1556 	int			i;
1557 	u32			cfg;
1558 	LIST_HEAD(tmp_list);
1559 
1560 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1561 
1562 	/* ASSERT:  channel is idle */
1563 	if (atc_chan_is_enabled(atchan)) {
1564 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1565 		return -EIO;
1566 	}
1567 
1568 	cfg = ATC_DEFAULT_CFG;
1569 
1570 	atslave = chan->private;
1571 	if (atslave) {
1572 		/*
1573 		 * We need controller-specific data to set up slave
1574 		 * transfers.
1575 		 */
1576 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1577 
1578 		/* if cfg configuration specified take it instead of default */
1579 		if (atslave->cfg)
1580 			cfg = atslave->cfg;
1581 	}
1582 
1583 	/* have we already been set up?
1584 	 * reconfigure channel but no need to reallocate descriptors */
1585 	if (!list_empty(&atchan->free_list))
1586 		return atchan->descs_allocated;
1587 
1588 	/* Allocate initial pool of descriptors */
1589 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1590 		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1591 		if (!desc) {
1592 			dev_err(atdma->dma_common.dev,
1593 				"Only %d initial descriptors\n", i);
1594 			break;
1595 		}
1596 		list_add_tail(&desc->desc_node, &tmp_list);
1597 	}
1598 
1599 	spin_lock_irqsave(&atchan->lock, flags);
1600 	atchan->descs_allocated = i;
1601 	list_splice(&tmp_list, &atchan->free_list);
1602 	dma_cookie_init(chan);
1603 	spin_unlock_irqrestore(&atchan->lock, flags);
1604 
1605 	/* channel parameters */
1606 	channel_writel(atchan, CFG, cfg);
1607 
1608 	dev_dbg(chan2dev(chan),
1609 		"alloc_chan_resources: allocated %d descriptors\n",
1610 		atchan->descs_allocated);
1611 
1612 	return atchan->descs_allocated;
1613 }
1614 
1615 /**
1616  * atc_free_chan_resources - free all channel resources
1617  * @chan: DMA channel
1618  */
1619 static void atc_free_chan_resources(struct dma_chan *chan)
1620 {
1621 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1622 	struct at_dma		*atdma = to_at_dma(chan->device);
1623 	struct at_desc		*desc, *_desc;
1624 	LIST_HEAD(list);
1625 
1626 	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1627 		atchan->descs_allocated);
1628 
1629 	/* ASSERT:  channel is idle */
1630 	BUG_ON(!list_empty(&atchan->active_list));
1631 	BUG_ON(!list_empty(&atchan->queue));
1632 	BUG_ON(atc_chan_is_enabled(atchan));
1633 
1634 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1635 		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1636 		list_del(&desc->desc_node);
1637 		/* free link descriptor */
1638 		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1639 	}
1640 	list_splice_init(&atchan->free_list, &list);
1641 	atchan->descs_allocated = 0;
1642 	atchan->status = 0;
1643 
1644 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1645 }
1646 
1647 #ifdef CONFIG_OF
1648 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1649 {
1650 	struct at_dma_slave *atslave = slave;
1651 
1652 	if (atslave->dma_dev == chan->device->dev) {
1653 		chan->private = atslave;
1654 		return true;
1655 	} else {
1656 		return false;
1657 	}
1658 }
1659 
1660 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1661 				     struct of_dma *of_dma)
1662 {
1663 	struct dma_chan *chan;
1664 	struct at_dma_chan *atchan;
1665 	struct at_dma_slave *atslave;
1666 	dma_cap_mask_t mask;
1667 	unsigned int per_id;
1668 	struct platform_device *dmac_pdev;
1669 
1670 	if (dma_spec->args_count != 2)
1671 		return NULL;
1672 
1673 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1674 
1675 	dma_cap_zero(mask);
1676 	dma_cap_set(DMA_SLAVE, mask);
1677 
1678 	atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1679 	if (!atslave)
1680 		return NULL;
1681 
1682 	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1683 	/*
1684 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1685 	 * ignored depending on DMA transfer direction.
1686 	 */
1687 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1688 	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1689 		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1690 	/*
1691 	 * We have to translate the value we get from the device tree since
1692 	 * the half FIFO configuration value had to be 0 to keep backward
1693 	 * compatibility.
1694 	 */
1695 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1696 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1697 		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1698 		break;
1699 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1700 		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1701 		break;
1702 	case AT91_DMA_CFG_FIFOCFG_HALF:
1703 	default:
1704 		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1705 	}
1706 	atslave->dma_dev = &dmac_pdev->dev;
1707 
1708 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1709 	if (!chan)
1710 		return NULL;
1711 
1712 	atchan = to_at_dma_chan(chan);
1713 	atchan->per_if = dma_spec->args[0] & 0xff;
1714 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1715 
1716 	return chan;
1717 }
1718 #else
1719 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1720 				     struct of_dma *of_dma)
1721 {
1722 	return NULL;
1723 }
1724 #endif
1725 
1726 /*--  Module Management  -----------------------------------------------*/
1727 
1728 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1729 static struct at_dma_platform_data at91sam9rl_config = {
1730 	.nr_channels = 2,
1731 };
1732 static struct at_dma_platform_data at91sam9g45_config = {
1733 	.nr_channels = 8,
1734 };
1735 
1736 #if defined(CONFIG_OF)
1737 static const struct of_device_id atmel_dma_dt_ids[] = {
1738 	{
1739 		.compatible = "atmel,at91sam9rl-dma",
1740 		.data = &at91sam9rl_config,
1741 	}, {
1742 		.compatible = "atmel,at91sam9g45-dma",
1743 		.data = &at91sam9g45_config,
1744 	}, {
1745 		/* sentinel */
1746 	}
1747 };
1748 
1749 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1750 #endif
1751 
1752 static const struct platform_device_id atdma_devtypes[] = {
1753 	{
1754 		.name = "at91sam9rl_dma",
1755 		.driver_data = (unsigned long) &at91sam9rl_config,
1756 	}, {
1757 		.name = "at91sam9g45_dma",
1758 		.driver_data = (unsigned long) &at91sam9g45_config,
1759 	}, {
1760 		/* sentinel */
1761 	}
1762 };
1763 
1764 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1765 						struct platform_device *pdev)
1766 {
1767 	if (pdev->dev.of_node) {
1768 		const struct of_device_id *match;
1769 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1770 		if (match == NULL)
1771 			return NULL;
1772 		return match->data;
1773 	}
1774 	return (struct at_dma_platform_data *)
1775 			platform_get_device_id(pdev)->driver_data;
1776 }
1777 
1778 /**
1779  * at_dma_off - disable DMA controller
1780  * @atdma: the Atmel HDAMC device
1781  */
1782 static void at_dma_off(struct at_dma *atdma)
1783 {
1784 	dma_writel(atdma, EN, 0);
1785 
1786 	/* disable all interrupts */
1787 	dma_writel(atdma, EBCIDR, -1L);
1788 
1789 	/* confirm that all channels are disabled */
1790 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1791 		cpu_relax();
1792 }
1793 
1794 static int __init at_dma_probe(struct platform_device *pdev)
1795 {
1796 	struct resource		*io;
1797 	struct at_dma		*atdma;
1798 	size_t			size;
1799 	int			irq;
1800 	int			err;
1801 	int			i;
1802 	const struct at_dma_platform_data *plat_dat;
1803 
1804 	/* setup platform data for each SoC */
1805 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1806 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1807 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1808 	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1809 	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1810 	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1811 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1812 
1813 	/* get DMA parameters from controller type */
1814 	plat_dat = at_dma_get_driver_data(pdev);
1815 	if (!plat_dat)
1816 		return -ENODEV;
1817 
1818 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1819 	if (!io)
1820 		return -EINVAL;
1821 
1822 	irq = platform_get_irq(pdev, 0);
1823 	if (irq < 0)
1824 		return irq;
1825 
1826 	size = sizeof(struct at_dma);
1827 	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1828 	atdma = kzalloc(size, GFP_KERNEL);
1829 	if (!atdma)
1830 		return -ENOMEM;
1831 
1832 	/* discover transaction capabilities */
1833 	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1834 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1835 
1836 	size = resource_size(io);
1837 	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1838 		err = -EBUSY;
1839 		goto err_kfree;
1840 	}
1841 
1842 	atdma->regs = ioremap(io->start, size);
1843 	if (!atdma->regs) {
1844 		err = -ENOMEM;
1845 		goto err_release_r;
1846 	}
1847 
1848 	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1849 	if (IS_ERR(atdma->clk)) {
1850 		err = PTR_ERR(atdma->clk);
1851 		goto err_clk;
1852 	}
1853 	err = clk_prepare_enable(atdma->clk);
1854 	if (err)
1855 		goto err_clk_prepare;
1856 
1857 	/* force dma off, just in case */
1858 	at_dma_off(atdma);
1859 
1860 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1861 	if (err)
1862 		goto err_irq;
1863 
1864 	platform_set_drvdata(pdev, atdma);
1865 
1866 	/* create a pool of consistent memory blocks for hardware descriptors */
1867 	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1868 			&pdev->dev, sizeof(struct at_desc),
1869 			4 /* word alignment */, 0);
1870 	if (!atdma->dma_desc_pool) {
1871 		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1872 		err = -ENOMEM;
1873 		goto err_desc_pool_create;
1874 	}
1875 
1876 	/* create a pool of consistent memory blocks for memset blocks */
1877 	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1878 					     &pdev->dev, sizeof(int), 4, 0);
1879 	if (!atdma->memset_pool) {
1880 		dev_err(&pdev->dev, "No memory for memset dma pool\n");
1881 		err = -ENOMEM;
1882 		goto err_memset_pool_create;
1883 	}
1884 
1885 	/* clear any pending interrupt */
1886 	while (dma_readl(atdma, EBCISR))
1887 		cpu_relax();
1888 
1889 	/* initialize channels related values */
1890 	INIT_LIST_HEAD(&atdma->dma_common.channels);
1891 	for (i = 0; i < plat_dat->nr_channels; i++) {
1892 		struct at_dma_chan	*atchan = &atdma->chan[i];
1893 
1894 		atchan->mem_if = AT_DMA_MEM_IF;
1895 		atchan->per_if = AT_DMA_PER_IF;
1896 		atchan->chan_common.device = &atdma->dma_common;
1897 		dma_cookie_init(&atchan->chan_common);
1898 		list_add_tail(&atchan->chan_common.device_node,
1899 				&atdma->dma_common.channels);
1900 
1901 		atchan->ch_regs = atdma->regs + ch_regs(i);
1902 		spin_lock_init(&atchan->lock);
1903 		atchan->mask = 1 << i;
1904 
1905 		INIT_LIST_HEAD(&atchan->active_list);
1906 		INIT_LIST_HEAD(&atchan->queue);
1907 		INIT_LIST_HEAD(&atchan->free_list);
1908 
1909 		tasklet_init(&atchan->tasklet, atc_tasklet,
1910 				(unsigned long)atchan);
1911 		atc_enable_chan_irq(atdma, i);
1912 	}
1913 
1914 	/* set base routines */
1915 	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1916 	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1917 	atdma->dma_common.device_tx_status = atc_tx_status;
1918 	atdma->dma_common.device_issue_pending = atc_issue_pending;
1919 	atdma->dma_common.dev = &pdev->dev;
1920 
1921 	/* set prep routines based on capability */
1922 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1923 		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1924 
1925 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1926 		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1927 
1928 	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1929 		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1930 		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1931 		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1932 	}
1933 
1934 	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1935 		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1936 		/* controller can do slave DMA: can trigger cyclic transfers */
1937 		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1938 		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1939 		atdma->dma_common.device_config = atc_config;
1940 		atdma->dma_common.device_pause = atc_pause;
1941 		atdma->dma_common.device_resume = atc_resume;
1942 		atdma->dma_common.device_terminate_all = atc_terminate_all;
1943 		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1944 		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1945 		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1946 		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1947 	}
1948 
1949 	dma_writel(atdma, EN, AT_DMA_ENABLE);
1950 
1951 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1952 	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1953 	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1954 	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
1955 	  plat_dat->nr_channels);
1956 
1957 	dma_async_device_register(&atdma->dma_common);
1958 
1959 	/*
1960 	 * Do not return an error if the dmac node is not present in order to
1961 	 * not break the existing way of requesting channel with
1962 	 * dma_request_channel().
1963 	 */
1964 	if (pdev->dev.of_node) {
1965 		err = of_dma_controller_register(pdev->dev.of_node,
1966 						 at_dma_xlate, atdma);
1967 		if (err) {
1968 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
1969 			goto err_of_dma_controller_register;
1970 		}
1971 	}
1972 
1973 	return 0;
1974 
1975 err_of_dma_controller_register:
1976 	dma_async_device_unregister(&atdma->dma_common);
1977 	dma_pool_destroy(atdma->memset_pool);
1978 err_memset_pool_create:
1979 	dma_pool_destroy(atdma->dma_desc_pool);
1980 err_desc_pool_create:
1981 	free_irq(platform_get_irq(pdev, 0), atdma);
1982 err_irq:
1983 	clk_disable_unprepare(atdma->clk);
1984 err_clk_prepare:
1985 	clk_put(atdma->clk);
1986 err_clk:
1987 	iounmap(atdma->regs);
1988 	atdma->regs = NULL;
1989 err_release_r:
1990 	release_mem_region(io->start, size);
1991 err_kfree:
1992 	kfree(atdma);
1993 	return err;
1994 }
1995 
1996 static int at_dma_remove(struct platform_device *pdev)
1997 {
1998 	struct at_dma		*atdma = platform_get_drvdata(pdev);
1999 	struct dma_chan		*chan, *_chan;
2000 	struct resource		*io;
2001 
2002 	at_dma_off(atdma);
2003 	dma_async_device_unregister(&atdma->dma_common);
2004 
2005 	dma_pool_destroy(atdma->memset_pool);
2006 	dma_pool_destroy(atdma->dma_desc_pool);
2007 	free_irq(platform_get_irq(pdev, 0), atdma);
2008 
2009 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2010 			device_node) {
2011 		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
2012 
2013 		/* Disable interrupts */
2014 		atc_disable_chan_irq(atdma, chan->chan_id);
2015 
2016 		tasklet_kill(&atchan->tasklet);
2017 		list_del(&chan->device_node);
2018 	}
2019 
2020 	clk_disable_unprepare(atdma->clk);
2021 	clk_put(atdma->clk);
2022 
2023 	iounmap(atdma->regs);
2024 	atdma->regs = NULL;
2025 
2026 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2027 	release_mem_region(io->start, resource_size(io));
2028 
2029 	kfree(atdma);
2030 
2031 	return 0;
2032 }
2033 
2034 static void at_dma_shutdown(struct platform_device *pdev)
2035 {
2036 	struct at_dma	*atdma = platform_get_drvdata(pdev);
2037 
2038 	at_dma_off(platform_get_drvdata(pdev));
2039 	clk_disable_unprepare(atdma->clk);
2040 }
2041 
2042 static int at_dma_prepare(struct device *dev)
2043 {
2044 	struct at_dma *atdma = dev_get_drvdata(dev);
2045 	struct dma_chan *chan, *_chan;
2046 
2047 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2048 			device_node) {
2049 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2050 		/* wait for transaction completion (except in cyclic case) */
2051 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2052 			return -EAGAIN;
2053 	}
2054 	return 0;
2055 }
2056 
2057 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2058 {
2059 	struct dma_chan	*chan = &atchan->chan_common;
2060 
2061 	/* Channel should be paused by user
2062 	 * do it anyway even if it is not done already */
2063 	if (!atc_chan_is_paused(atchan)) {
2064 		dev_warn(chan2dev(chan),
2065 		"cyclic channel not paused, should be done by channel user\n");
2066 		atc_pause(chan);
2067 	}
2068 
2069 	/* now preserve additional data for cyclic operations */
2070 	/* next descriptor address in the cyclic list */
2071 	atchan->save_dscr = channel_readl(atchan, DSCR);
2072 
2073 	vdbg_dump_regs(atchan);
2074 }
2075 
2076 static int at_dma_suspend_noirq(struct device *dev)
2077 {
2078 	struct at_dma *atdma = dev_get_drvdata(dev);
2079 	struct dma_chan *chan, *_chan;
2080 
2081 	/* preserve data */
2082 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2083 			device_node) {
2084 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2085 
2086 		if (atc_chan_is_cyclic(atchan))
2087 			atc_suspend_cyclic(atchan);
2088 		atchan->save_cfg = channel_readl(atchan, CFG);
2089 	}
2090 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2091 
2092 	/* disable DMA controller */
2093 	at_dma_off(atdma);
2094 	clk_disable_unprepare(atdma->clk);
2095 	return 0;
2096 }
2097 
2098 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2099 {
2100 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2101 
2102 	/* restore channel status for cyclic descriptors list:
2103 	 * next descriptor in the cyclic list at the time of suspend */
2104 	channel_writel(atchan, SADDR, 0);
2105 	channel_writel(atchan, DADDR, 0);
2106 	channel_writel(atchan, CTRLA, 0);
2107 	channel_writel(atchan, CTRLB, 0);
2108 	channel_writel(atchan, DSCR, atchan->save_dscr);
2109 	dma_writel(atdma, CHER, atchan->mask);
2110 
2111 	/* channel pause status should be removed by channel user
2112 	 * We cannot take the initiative to do it here */
2113 
2114 	vdbg_dump_regs(atchan);
2115 }
2116 
2117 static int at_dma_resume_noirq(struct device *dev)
2118 {
2119 	struct at_dma *atdma = dev_get_drvdata(dev);
2120 	struct dma_chan *chan, *_chan;
2121 
2122 	/* bring back DMA controller */
2123 	clk_prepare_enable(atdma->clk);
2124 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2125 
2126 	/* clear any pending interrupt */
2127 	while (dma_readl(atdma, EBCISR))
2128 		cpu_relax();
2129 
2130 	/* restore saved data */
2131 	dma_writel(atdma, EBCIER, atdma->save_imr);
2132 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2133 			device_node) {
2134 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2135 
2136 		channel_writel(atchan, CFG, atchan->save_cfg);
2137 		if (atc_chan_is_cyclic(atchan))
2138 			atc_resume_cyclic(atchan);
2139 	}
2140 	return 0;
2141 }
2142 
2143 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2144 	.prepare = at_dma_prepare,
2145 	.suspend_noirq = at_dma_suspend_noirq,
2146 	.resume_noirq = at_dma_resume_noirq,
2147 };
2148 
2149 static struct platform_driver at_dma_driver = {
2150 	.remove		= at_dma_remove,
2151 	.shutdown	= at_dma_shutdown,
2152 	.id_table	= atdma_devtypes,
2153 	.driver = {
2154 		.name	= "at_hdmac",
2155 		.pm	= &at_dma_dev_pm_ops,
2156 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2157 	},
2158 };
2159 
2160 static int __init at_dma_init(void)
2161 {
2162 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2163 }
2164 subsys_initcall(at_dma_init);
2165 
2166 static void __exit at_dma_exit(void)
2167 {
2168 	platform_driver_unregister(&at_dma_driver);
2169 }
2170 module_exit(at_dma_exit);
2171 
2172 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2173 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2174 MODULE_LICENSE("GPL");
2175 MODULE_ALIAS("platform:at_hdmac");
2176