xref: /openbmc/linux/drivers/dma/at_hdmac.c (revision 165f2d28)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4  *
5  * Copyright (C) 2008 Atmel Corporation
6  *
7  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
8  * The only Atmel DMA Controller that is not covered by this driver is the one
9  * found on AT91SAM9263.
10  */
11 
12 #include <dt-bindings/dma/at91.h>
13 #include <linux/clk.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_dma.h>
24 
25 #include "at_hdmac_regs.h"
26 #include "dmaengine.h"
27 
28 /*
29  * Glossary
30  * --------
31  *
32  * at_hdmac		: Name of the ATmel AHB DMA Controller
33  * at_dma_ / atdma	: ATmel DMA controller entity related
34  * atc_	/ atchan	: ATmel DMA Channel entity related
35  */
36 
37 #define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
38 #define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
39 				|ATC_DIF(AT_DMA_MEM_IF))
40 #define ATC_DMA_BUSWIDTHS\
41 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
42 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
43 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
44 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
45 
46 #define ATC_MAX_DSCR_TRIALS	10
47 
48 /*
49  * Initial number of descriptors to allocate for each channel. This could
50  * be increased during dma usage.
51  */
52 static unsigned int init_nr_desc_per_channel = 64;
53 module_param(init_nr_desc_per_channel, uint, 0644);
54 MODULE_PARM_DESC(init_nr_desc_per_channel,
55 		 "initial descriptors per channel (default: 64)");
56 
57 
58 /* prototypes */
59 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
60 static void atc_issue_pending(struct dma_chan *chan);
61 
62 
63 /*----------------------------------------------------------------------*/
64 
65 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
66 						size_t len)
67 {
68 	unsigned int width;
69 
70 	if (!((src | dst  | len) & 3))
71 		width = 2;
72 	else if (!((src | dst | len) & 1))
73 		width = 1;
74 	else
75 		width = 0;
76 
77 	return width;
78 }
79 
80 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
81 {
82 	return list_first_entry(&atchan->active_list,
83 				struct at_desc, desc_node);
84 }
85 
86 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
87 {
88 	return list_first_entry(&atchan->queue,
89 				struct at_desc, desc_node);
90 }
91 
92 /**
93  * atc_alloc_descriptor - allocate and return an initialized descriptor
94  * @chan: the channel to allocate descriptors for
95  * @gfp_flags: GFP allocation flags
96  *
97  * Note: The ack-bit is positioned in the descriptor flag at creation time
98  *       to make initial allocation more convenient. This bit will be cleared
99  *       and control will be given to client at usage time (during
100  *       preparation functions).
101  */
102 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
103 					    gfp_t gfp_flags)
104 {
105 	struct at_desc	*desc = NULL;
106 	struct at_dma	*atdma = to_at_dma(chan->device);
107 	dma_addr_t phys;
108 
109 	desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
110 	if (desc) {
111 		INIT_LIST_HEAD(&desc->tx_list);
112 		dma_async_tx_descriptor_init(&desc->txd, chan);
113 		/* txd.flags will be overwritten in prep functions */
114 		desc->txd.flags = DMA_CTRL_ACK;
115 		desc->txd.tx_submit = atc_tx_submit;
116 		desc->txd.phys = phys;
117 	}
118 
119 	return desc;
120 }
121 
122 /**
123  * atc_desc_get - get an unused descriptor from free_list
124  * @atchan: channel we want a new descriptor for
125  */
126 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
127 {
128 	struct at_desc *desc, *_desc;
129 	struct at_desc *ret = NULL;
130 	unsigned long flags;
131 	unsigned int i = 0;
132 
133 	spin_lock_irqsave(&atchan->lock, flags);
134 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
135 		i++;
136 		if (async_tx_test_ack(&desc->txd)) {
137 			list_del(&desc->desc_node);
138 			ret = desc;
139 			break;
140 		}
141 		dev_dbg(chan2dev(&atchan->chan_common),
142 				"desc %p not ACKed\n", desc);
143 	}
144 	spin_unlock_irqrestore(&atchan->lock, flags);
145 	dev_vdbg(chan2dev(&atchan->chan_common),
146 		"scanned %u descriptors on freelist\n", i);
147 
148 	/* no more descriptor available in initial pool: create one more */
149 	if (!ret)
150 		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_NOWAIT);
151 
152 	return ret;
153 }
154 
155 /**
156  * atc_desc_put - move a descriptor, including any children, to the free list
157  * @atchan: channel we work on
158  * @desc: descriptor, at the head of a chain, to move to free list
159  */
160 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
161 {
162 	if (desc) {
163 		struct at_desc *child;
164 		unsigned long flags;
165 
166 		spin_lock_irqsave(&atchan->lock, flags);
167 		list_for_each_entry(child, &desc->tx_list, desc_node)
168 			dev_vdbg(chan2dev(&atchan->chan_common),
169 					"moving child desc %p to freelist\n",
170 					child);
171 		list_splice_init(&desc->tx_list, &atchan->free_list);
172 		dev_vdbg(chan2dev(&atchan->chan_common),
173 			 "moving desc %p to freelist\n", desc);
174 		list_add(&desc->desc_node, &atchan->free_list);
175 		spin_unlock_irqrestore(&atchan->lock, flags);
176 	}
177 }
178 
179 /**
180  * atc_desc_chain - build chain adding a descriptor
181  * @first: address of first descriptor of the chain
182  * @prev: address of previous descriptor of the chain
183  * @desc: descriptor to queue
184  *
185  * Called from prep_* functions
186  */
187 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
188 			   struct at_desc *desc)
189 {
190 	if (!(*first)) {
191 		*first = desc;
192 	} else {
193 		/* inform the HW lli about chaining */
194 		(*prev)->lli.dscr = desc->txd.phys;
195 		/* insert the link descriptor to the LD ring */
196 		list_add_tail(&desc->desc_node,
197 				&(*first)->tx_list);
198 	}
199 	*prev = desc;
200 }
201 
202 /**
203  * atc_dostart - starts the DMA engine for real
204  * @atchan: the channel we want to start
205  * @first: first descriptor in the list we want to begin with
206  *
207  * Called with atchan->lock held and bh disabled
208  */
209 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
210 {
211 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
212 
213 	/* ASSERT:  channel is idle */
214 	if (atc_chan_is_enabled(atchan)) {
215 		dev_err(chan2dev(&atchan->chan_common),
216 			"BUG: Attempted to start non-idle channel\n");
217 		dev_err(chan2dev(&atchan->chan_common),
218 			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
219 			channel_readl(atchan, SADDR),
220 			channel_readl(atchan, DADDR),
221 			channel_readl(atchan, CTRLA),
222 			channel_readl(atchan, CTRLB),
223 			channel_readl(atchan, DSCR));
224 
225 		/* The tasklet will hopefully advance the queue... */
226 		return;
227 	}
228 
229 	vdbg_dump_regs(atchan);
230 
231 	channel_writel(atchan, SADDR, 0);
232 	channel_writel(atchan, DADDR, 0);
233 	channel_writel(atchan, CTRLA, 0);
234 	channel_writel(atchan, CTRLB, 0);
235 	channel_writel(atchan, DSCR, first->txd.phys);
236 	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
237 		       ATC_SPIP_BOUNDARY(first->boundary));
238 	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
239 		       ATC_DPIP_BOUNDARY(first->boundary));
240 	dma_writel(atdma, CHER, atchan->mask);
241 
242 	vdbg_dump_regs(atchan);
243 }
244 
245 /*
246  * atc_get_desc_by_cookie - get the descriptor of a cookie
247  * @atchan: the DMA channel
248  * @cookie: the cookie to get the descriptor for
249  */
250 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
251 						dma_cookie_t cookie)
252 {
253 	struct at_desc *desc, *_desc;
254 
255 	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
256 		if (desc->txd.cookie == cookie)
257 			return desc;
258 	}
259 
260 	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
261 		if (desc->txd.cookie == cookie)
262 			return desc;
263 	}
264 
265 	return NULL;
266 }
267 
268 /**
269  * atc_calc_bytes_left - calculates the number of bytes left according to the
270  * value read from CTRLA.
271  *
272  * @current_len: the number of bytes left before reading CTRLA
273  * @ctrla: the value of CTRLA
274  */
275 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
276 {
277 	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
278 	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
279 
280 	/*
281 	 * According to the datasheet, when reading the Control A Register
282 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
283 	 * number of transfers completed on the Source Interface.
284 	 * So btsize is always a number of source width transfers.
285 	 */
286 	return current_len - (btsize << src_width);
287 }
288 
289 /**
290  * atc_get_bytes_left - get the number of bytes residue for a cookie
291  * @chan: DMA channel
292  * @cookie: transaction identifier to check status of
293  */
294 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
295 {
296 	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
297 	struct at_desc *desc_first = atc_first_active(atchan);
298 	struct at_desc *desc;
299 	int ret;
300 	u32 ctrla, dscr, trials;
301 
302 	/*
303 	 * If the cookie doesn't match to the currently running transfer then
304 	 * we can return the total length of the associated DMA transfer,
305 	 * because it is still queued.
306 	 */
307 	desc = atc_get_desc_by_cookie(atchan, cookie);
308 	if (desc == NULL)
309 		return -EINVAL;
310 	else if (desc != desc_first)
311 		return desc->total_len;
312 
313 	/* cookie matches to the currently running transfer */
314 	ret = desc_first->total_len;
315 
316 	if (desc_first->lli.dscr) {
317 		/* hardware linked list transfer */
318 
319 		/*
320 		 * Calculate the residue by removing the length of the child
321 		 * descriptors already transferred from the total length.
322 		 * To get the current child descriptor we can use the value of
323 		 * the channel's DSCR register and compare it against the value
324 		 * of the hardware linked list structure of each child
325 		 * descriptor.
326 		 *
327 		 * The CTRLA register provides us with the amount of data
328 		 * already read from the source for the current child
329 		 * descriptor. So we can compute a more accurate residue by also
330 		 * removing the number of bytes corresponding to this amount of
331 		 * data.
332 		 *
333 		 * However, the DSCR and CTRLA registers cannot be read both
334 		 * atomically. Hence a race condition may occur: the first read
335 		 * register may refer to one child descriptor whereas the second
336 		 * read may refer to a later child descriptor in the list
337 		 * because of the DMA transfer progression inbetween the two
338 		 * reads.
339 		 *
340 		 * One solution could have been to pause the DMA transfer, read
341 		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
342 		 * this approach presents some drawbacks:
343 		 * - If the DMA transfer is paused, RX overruns or TX underruns
344 		 *   are more likey to occur depending on the system latency.
345 		 *   Taking the USART driver as an example, it uses a cyclic DMA
346 		 *   transfer to read data from the Receive Holding Register
347 		 *   (RHR) to avoid RX overruns since the RHR is not protected
348 		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
349 		 *   to compute the residue would break the USART driver design.
350 		 * - The atc_pause() function masks interrupts but we'd rather
351 		 *   avoid to do so for system latency purpose.
352 		 *
353 		 * Then we'd rather use another solution: the DSCR is read a
354 		 * first time, the CTRLA is read in turn, next the DSCR is read
355 		 * a second time. If the two consecutive read values of the DSCR
356 		 * are the same then we assume both refers to the very same
357 		 * child descriptor as well as the CTRLA value read inbetween
358 		 * does. For cyclic tranfers, the assumption is that a full loop
359 		 * is "not so fast".
360 		 * If the two DSCR values are different, we read again the CTRLA
361 		 * then the DSCR till two consecutive read values from DSCR are
362 		 * equal or till the maxium trials is reach.
363 		 * This algorithm is very unlikely not to find a stable value for
364 		 * DSCR.
365 		 */
366 
367 		dscr = channel_readl(atchan, DSCR);
368 		rmb(); /* ensure DSCR is read before CTRLA */
369 		ctrla = channel_readl(atchan, CTRLA);
370 		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
371 			u32 new_dscr;
372 
373 			rmb(); /* ensure DSCR is read after CTRLA */
374 			new_dscr = channel_readl(atchan, DSCR);
375 
376 			/*
377 			 * If the DSCR register value has not changed inside the
378 			 * DMA controller since the previous read, we assume
379 			 * that both the dscr and ctrla values refers to the
380 			 * very same descriptor.
381 			 */
382 			if (likely(new_dscr == dscr))
383 				break;
384 
385 			/*
386 			 * DSCR has changed inside the DMA controller, so the
387 			 * previouly read value of CTRLA may refer to an already
388 			 * processed descriptor hence could be outdated.
389 			 * We need to update ctrla to match the current
390 			 * descriptor.
391 			 */
392 			dscr = new_dscr;
393 			rmb(); /* ensure DSCR is read before CTRLA */
394 			ctrla = channel_readl(atchan, CTRLA);
395 		}
396 		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
397 			return -ETIMEDOUT;
398 
399 		/* for the first descriptor we can be more accurate */
400 		if (desc_first->lli.dscr == dscr)
401 			return atc_calc_bytes_left(ret, ctrla);
402 
403 		ret -= desc_first->len;
404 		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
405 			if (desc->lli.dscr == dscr)
406 				break;
407 
408 			ret -= desc->len;
409 		}
410 
411 		/*
412 		 * For the current descriptor in the chain we can calculate
413 		 * the remaining bytes using the channel's register.
414 		 */
415 		ret = atc_calc_bytes_left(ret, ctrla);
416 	} else {
417 		/* single transfer */
418 		ctrla = channel_readl(atchan, CTRLA);
419 		ret = atc_calc_bytes_left(ret, ctrla);
420 	}
421 
422 	return ret;
423 }
424 
425 /**
426  * atc_chain_complete - finish work for one transaction chain
427  * @atchan: channel we work on
428  * @desc: descriptor at the head of the chain we want do complete
429  */
430 static void
431 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
432 {
433 	struct dma_async_tx_descriptor	*txd = &desc->txd;
434 	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
435 	unsigned long flags;
436 
437 	dev_vdbg(chan2dev(&atchan->chan_common),
438 		"descriptor %u complete\n", txd->cookie);
439 
440 	spin_lock_irqsave(&atchan->lock, flags);
441 
442 	/* mark the descriptor as complete for non cyclic cases only */
443 	if (!atc_chan_is_cyclic(atchan))
444 		dma_cookie_complete(txd);
445 
446 	/* If the transfer was a memset, free our temporary buffer */
447 	if (desc->memset_buffer) {
448 		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
449 			      desc->memset_paddr);
450 		desc->memset_buffer = false;
451 	}
452 
453 	/* move children to free_list */
454 	list_splice_init(&desc->tx_list, &atchan->free_list);
455 	/* move myself to free_list */
456 	list_move(&desc->desc_node, &atchan->free_list);
457 
458 	spin_unlock_irqrestore(&atchan->lock, flags);
459 
460 	dma_descriptor_unmap(txd);
461 	/* for cyclic transfers,
462 	 * no need to replay callback function while stopping */
463 	if (!atc_chan_is_cyclic(atchan))
464 		dmaengine_desc_get_callback_invoke(txd, NULL);
465 
466 	dma_run_dependencies(txd);
467 }
468 
469 /**
470  * atc_complete_all - finish work for all transactions
471  * @atchan: channel to complete transactions for
472  *
473  * Eventually submit queued descriptors if any
474  *
475  * Assume channel is idle while calling this function
476  * Called with atchan->lock held and bh disabled
477  */
478 static void atc_complete_all(struct at_dma_chan *atchan)
479 {
480 	struct at_desc *desc, *_desc;
481 	LIST_HEAD(list);
482 	unsigned long flags;
483 
484 	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
485 
486 	spin_lock_irqsave(&atchan->lock, flags);
487 
488 	/*
489 	 * Submit queued descriptors ASAP, i.e. before we go through
490 	 * the completed ones.
491 	 */
492 	if (!list_empty(&atchan->queue))
493 		atc_dostart(atchan, atc_first_queued(atchan));
494 	/* empty active_list now it is completed */
495 	list_splice_init(&atchan->active_list, &list);
496 	/* empty queue list by moving descriptors (if any) to active_list */
497 	list_splice_init(&atchan->queue, &atchan->active_list);
498 
499 	spin_unlock_irqrestore(&atchan->lock, flags);
500 
501 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
502 		atc_chain_complete(atchan, desc);
503 }
504 
505 /**
506  * atc_advance_work - at the end of a transaction, move forward
507  * @atchan: channel where the transaction ended
508  */
509 static void atc_advance_work(struct at_dma_chan *atchan)
510 {
511 	unsigned long flags;
512 	int ret;
513 
514 	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
515 
516 	spin_lock_irqsave(&atchan->lock, flags);
517 	ret = atc_chan_is_enabled(atchan);
518 	spin_unlock_irqrestore(&atchan->lock, flags);
519 	if (ret)
520 		return;
521 
522 	if (list_empty(&atchan->active_list) ||
523 	    list_is_singular(&atchan->active_list))
524 		return atc_complete_all(atchan);
525 
526 	atc_chain_complete(atchan, atc_first_active(atchan));
527 
528 	/* advance work */
529 	spin_lock_irqsave(&atchan->lock, flags);
530 	atc_dostart(atchan, atc_first_active(atchan));
531 	spin_unlock_irqrestore(&atchan->lock, flags);
532 }
533 
534 
535 /**
536  * atc_handle_error - handle errors reported by DMA controller
537  * @atchan: channel where error occurs
538  */
539 static void atc_handle_error(struct at_dma_chan *atchan)
540 {
541 	struct at_desc *bad_desc;
542 	struct at_desc *child;
543 	unsigned long flags;
544 
545 	spin_lock_irqsave(&atchan->lock, flags);
546 	/*
547 	 * The descriptor currently at the head of the active list is
548 	 * broked. Since we don't have any way to report errors, we'll
549 	 * just have to scream loudly and try to carry on.
550 	 */
551 	bad_desc = atc_first_active(atchan);
552 	list_del_init(&bad_desc->desc_node);
553 
554 	/* As we are stopped, take advantage to push queued descriptors
555 	 * in active_list */
556 	list_splice_init(&atchan->queue, atchan->active_list.prev);
557 
558 	/* Try to restart the controller */
559 	if (!list_empty(&atchan->active_list))
560 		atc_dostart(atchan, atc_first_active(atchan));
561 
562 	/*
563 	 * KERN_CRITICAL may seem harsh, but since this only happens
564 	 * when someone submits a bad physical address in a
565 	 * descriptor, we should consider ourselves lucky that the
566 	 * controller flagged an error instead of scribbling over
567 	 * random memory locations.
568 	 */
569 	dev_crit(chan2dev(&atchan->chan_common),
570 			"Bad descriptor submitted for DMA!\n");
571 	dev_crit(chan2dev(&atchan->chan_common),
572 			"  cookie: %d\n", bad_desc->txd.cookie);
573 	atc_dump_lli(atchan, &bad_desc->lli);
574 	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
575 		atc_dump_lli(atchan, &child->lli);
576 
577 	spin_unlock_irqrestore(&atchan->lock, flags);
578 
579 	/* Pretend the descriptor completed successfully */
580 	atc_chain_complete(atchan, bad_desc);
581 }
582 
583 /**
584  * atc_handle_cyclic - at the end of a period, run callback function
585  * @atchan: channel used for cyclic operations
586  */
587 static void atc_handle_cyclic(struct at_dma_chan *atchan)
588 {
589 	struct at_desc			*first = atc_first_active(atchan);
590 	struct dma_async_tx_descriptor	*txd = &first->txd;
591 
592 	dev_vdbg(chan2dev(&atchan->chan_common),
593 			"new cyclic period llp 0x%08x\n",
594 			channel_readl(atchan, DSCR));
595 
596 	dmaengine_desc_get_callback_invoke(txd, NULL);
597 }
598 
599 /*--  IRQ & Tasklet  ---------------------------------------------------*/
600 
601 static void atc_tasklet(unsigned long data)
602 {
603 	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
604 
605 	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
606 		return atc_handle_error(atchan);
607 
608 	if (atc_chan_is_cyclic(atchan))
609 		return atc_handle_cyclic(atchan);
610 
611 	atc_advance_work(atchan);
612 }
613 
614 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
615 {
616 	struct at_dma		*atdma = (struct at_dma *)dev_id;
617 	struct at_dma_chan	*atchan;
618 	int			i;
619 	u32			status, pending, imr;
620 	int			ret = IRQ_NONE;
621 
622 	do {
623 		imr = dma_readl(atdma, EBCIMR);
624 		status = dma_readl(atdma, EBCISR);
625 		pending = status & imr;
626 
627 		if (!pending)
628 			break;
629 
630 		dev_vdbg(atdma->dma_common.dev,
631 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
632 			 status, imr, pending);
633 
634 		for (i = 0; i < atdma->dma_common.chancnt; i++) {
635 			atchan = &atdma->chan[i];
636 			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
637 				if (pending & AT_DMA_ERR(i)) {
638 					/* Disable channel on AHB error */
639 					dma_writel(atdma, CHDR,
640 						AT_DMA_RES(i) | atchan->mask);
641 					/* Give information to tasklet */
642 					set_bit(ATC_IS_ERROR, &atchan->status);
643 				}
644 				tasklet_schedule(&atchan->tasklet);
645 				ret = IRQ_HANDLED;
646 			}
647 		}
648 
649 	} while (pending);
650 
651 	return ret;
652 }
653 
654 
655 /*--  DMA Engine API  --------------------------------------------------*/
656 
657 /**
658  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
659  * @desc: descriptor at the head of the transaction chain
660  *
661  * Queue chain if DMA engine is working already
662  *
663  * Cookie increment and adding to active_list or queue must be atomic
664  */
665 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
666 {
667 	struct at_desc		*desc = txd_to_at_desc(tx);
668 	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
669 	dma_cookie_t		cookie;
670 	unsigned long		flags;
671 
672 	spin_lock_irqsave(&atchan->lock, flags);
673 	cookie = dma_cookie_assign(tx);
674 
675 	if (list_empty(&atchan->active_list)) {
676 		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
677 				desc->txd.cookie);
678 		atc_dostart(atchan, desc);
679 		list_add_tail(&desc->desc_node, &atchan->active_list);
680 	} else {
681 		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
682 				desc->txd.cookie);
683 		list_add_tail(&desc->desc_node, &atchan->queue);
684 	}
685 
686 	spin_unlock_irqrestore(&atchan->lock, flags);
687 
688 	return cookie;
689 }
690 
691 /**
692  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
693  * @chan: the channel to prepare operation on
694  * @xt: Interleaved transfer template
695  * @flags: tx descriptor status flags
696  */
697 static struct dma_async_tx_descriptor *
698 atc_prep_dma_interleaved(struct dma_chan *chan,
699 			 struct dma_interleaved_template *xt,
700 			 unsigned long flags)
701 {
702 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
703 	struct data_chunk	*first;
704 	struct at_desc		*desc = NULL;
705 	size_t			xfer_count;
706 	unsigned int		dwidth;
707 	u32			ctrla;
708 	u32			ctrlb;
709 	size_t			len = 0;
710 	int			i;
711 
712 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
713 		return NULL;
714 
715 	first = xt->sgl;
716 
717 	dev_info(chan2dev(chan),
718 		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
719 		__func__, &xt->src_start, &xt->dst_start, xt->numf,
720 		xt->frame_size, flags);
721 
722 	/*
723 	 * The controller can only "skip" X bytes every Y bytes, so we
724 	 * need to make sure we are given a template that fit that
725 	 * description, ie a template with chunks that always have the
726 	 * same size, with the same ICGs.
727 	 */
728 	for (i = 0; i < xt->frame_size; i++) {
729 		struct data_chunk *chunk = xt->sgl + i;
730 
731 		if ((chunk->size != xt->sgl->size) ||
732 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
733 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
734 			dev_err(chan2dev(chan),
735 				"%s: the controller can transfer only identical chunks\n",
736 				__func__);
737 			return NULL;
738 		}
739 
740 		len += chunk->size;
741 	}
742 
743 	dwidth = atc_get_xfer_width(xt->src_start,
744 				    xt->dst_start, len);
745 
746 	xfer_count = len >> dwidth;
747 	if (xfer_count > ATC_BTSIZE_MAX) {
748 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
749 		return NULL;
750 	}
751 
752 	ctrla = ATC_SRC_WIDTH(dwidth) |
753 		ATC_DST_WIDTH(dwidth);
754 
755 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
756 		| ATC_SRC_ADDR_MODE_INCR
757 		| ATC_DST_ADDR_MODE_INCR
758 		| ATC_SRC_PIP
759 		| ATC_DST_PIP
760 		| ATC_FC_MEM2MEM;
761 
762 	/* create the transfer */
763 	desc = atc_desc_get(atchan);
764 	if (!desc) {
765 		dev_err(chan2dev(chan),
766 			"%s: couldn't allocate our descriptor\n", __func__);
767 		return NULL;
768 	}
769 
770 	desc->lli.saddr = xt->src_start;
771 	desc->lli.daddr = xt->dst_start;
772 	desc->lli.ctrla = ctrla | xfer_count;
773 	desc->lli.ctrlb = ctrlb;
774 
775 	desc->boundary = first->size >> dwidth;
776 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
777 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
778 
779 	desc->txd.cookie = -EBUSY;
780 	desc->total_len = desc->len = len;
781 
782 	/* set end-of-link to the last link descriptor of list*/
783 	set_desc_eol(desc);
784 
785 	desc->txd.flags = flags; /* client is in control of this ack */
786 
787 	return &desc->txd;
788 }
789 
790 /**
791  * atc_prep_dma_memcpy - prepare a memcpy operation
792  * @chan: the channel to prepare operation on
793  * @dest: operation virtual destination address
794  * @src: operation virtual source address
795  * @len: operation length
796  * @flags: tx descriptor status flags
797  */
798 static struct dma_async_tx_descriptor *
799 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
800 		size_t len, unsigned long flags)
801 {
802 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
803 	struct at_desc		*desc = NULL;
804 	struct at_desc		*first = NULL;
805 	struct at_desc		*prev = NULL;
806 	size_t			xfer_count;
807 	size_t			offset;
808 	unsigned int		src_width;
809 	unsigned int		dst_width;
810 	u32			ctrla;
811 	u32			ctrlb;
812 
813 	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
814 			&dest, &src, len, flags);
815 
816 	if (unlikely(!len)) {
817 		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
818 		return NULL;
819 	}
820 
821 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
822 		| ATC_SRC_ADDR_MODE_INCR
823 		| ATC_DST_ADDR_MODE_INCR
824 		| ATC_FC_MEM2MEM;
825 
826 	/*
827 	 * We can be a lot more clever here, but this should take care
828 	 * of the most common optimization.
829 	 */
830 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
831 
832 	ctrla = ATC_SRC_WIDTH(src_width) |
833 		ATC_DST_WIDTH(dst_width);
834 
835 	for (offset = 0; offset < len; offset += xfer_count << src_width) {
836 		xfer_count = min_t(size_t, (len - offset) >> src_width,
837 				ATC_BTSIZE_MAX);
838 
839 		desc = atc_desc_get(atchan);
840 		if (!desc)
841 			goto err_desc_get;
842 
843 		desc->lli.saddr = src + offset;
844 		desc->lli.daddr = dest + offset;
845 		desc->lli.ctrla = ctrla | xfer_count;
846 		desc->lli.ctrlb = ctrlb;
847 
848 		desc->txd.cookie = 0;
849 		desc->len = xfer_count << src_width;
850 
851 		atc_desc_chain(&first, &prev, desc);
852 	}
853 
854 	/* First descriptor of the chain embedds additional information */
855 	first->txd.cookie = -EBUSY;
856 	first->total_len = len;
857 
858 	/* set end-of-link to the last link descriptor of list*/
859 	set_desc_eol(desc);
860 
861 	first->txd.flags = flags; /* client is in control of this ack */
862 
863 	return &first->txd;
864 
865 err_desc_get:
866 	atc_desc_put(atchan, first);
867 	return NULL;
868 }
869 
870 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
871 					      dma_addr_t psrc,
872 					      dma_addr_t pdst,
873 					      size_t len)
874 {
875 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
876 	struct at_desc *desc;
877 	size_t xfer_count;
878 
879 	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
880 	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
881 		ATC_SRC_ADDR_MODE_FIXED |
882 		ATC_DST_ADDR_MODE_INCR |
883 		ATC_FC_MEM2MEM;
884 
885 	xfer_count = len >> 2;
886 	if (xfer_count > ATC_BTSIZE_MAX) {
887 		dev_err(chan2dev(chan), "%s: buffer is too big\n",
888 			__func__);
889 		return NULL;
890 	}
891 
892 	desc = atc_desc_get(atchan);
893 	if (!desc) {
894 		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
895 			__func__);
896 		return NULL;
897 	}
898 
899 	desc->lli.saddr = psrc;
900 	desc->lli.daddr = pdst;
901 	desc->lli.ctrla = ctrla | xfer_count;
902 	desc->lli.ctrlb = ctrlb;
903 
904 	desc->txd.cookie = 0;
905 	desc->len = len;
906 
907 	return desc;
908 }
909 
910 /**
911  * atc_prep_dma_memset - prepare a memcpy operation
912  * @chan: the channel to prepare operation on
913  * @dest: operation virtual destination address
914  * @value: value to set memory buffer to
915  * @len: operation length
916  * @flags: tx descriptor status flags
917  */
918 static struct dma_async_tx_descriptor *
919 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
920 		    size_t len, unsigned long flags)
921 {
922 	struct at_dma		*atdma = to_at_dma(chan->device);
923 	struct at_desc		*desc;
924 	void __iomem		*vaddr;
925 	dma_addr_t		paddr;
926 
927 	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
928 		&dest, value, len, flags);
929 
930 	if (unlikely(!len)) {
931 		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
932 		return NULL;
933 	}
934 
935 	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
936 		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
937 			__func__);
938 		return NULL;
939 	}
940 
941 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
942 	if (!vaddr) {
943 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
944 			__func__);
945 		return NULL;
946 	}
947 	*(u32*)vaddr = value;
948 
949 	desc = atc_create_memset_desc(chan, paddr, dest, len);
950 	if (!desc) {
951 		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
952 			__func__);
953 		goto err_free_buffer;
954 	}
955 
956 	desc->memset_paddr = paddr;
957 	desc->memset_vaddr = vaddr;
958 	desc->memset_buffer = true;
959 
960 	desc->txd.cookie = -EBUSY;
961 	desc->total_len = len;
962 
963 	/* set end-of-link on the descriptor */
964 	set_desc_eol(desc);
965 
966 	desc->txd.flags = flags;
967 
968 	return &desc->txd;
969 
970 err_free_buffer:
971 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
972 	return NULL;
973 }
974 
975 static struct dma_async_tx_descriptor *
976 atc_prep_dma_memset_sg(struct dma_chan *chan,
977 		       struct scatterlist *sgl,
978 		       unsigned int sg_len, int value,
979 		       unsigned long flags)
980 {
981 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
982 	struct at_dma		*atdma = to_at_dma(chan->device);
983 	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
984 	struct scatterlist	*sg;
985 	void __iomem		*vaddr;
986 	dma_addr_t		paddr;
987 	size_t			total_len = 0;
988 	int			i;
989 
990 	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
991 		 value, sg_len, flags);
992 
993 	if (unlikely(!sgl || !sg_len)) {
994 		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
995 			__func__);
996 		return NULL;
997 	}
998 
999 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1000 	if (!vaddr) {
1001 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1002 			__func__);
1003 		return NULL;
1004 	}
1005 	*(u32*)vaddr = value;
1006 
1007 	for_each_sg(sgl, sg, sg_len, i) {
1008 		dma_addr_t dest = sg_dma_address(sg);
1009 		size_t len = sg_dma_len(sg);
1010 
1011 		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1012 			 __func__, &dest, len);
1013 
1014 		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1015 			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1016 				__func__);
1017 			goto err_put_desc;
1018 		}
1019 
1020 		desc = atc_create_memset_desc(chan, paddr, dest, len);
1021 		if (!desc)
1022 			goto err_put_desc;
1023 
1024 		atc_desc_chain(&first, &prev, desc);
1025 
1026 		total_len += len;
1027 	}
1028 
1029 	/*
1030 	 * Only set the buffer pointers on the last descriptor to
1031 	 * avoid free'ing while we have our transfer still going
1032 	 */
1033 	desc->memset_paddr = paddr;
1034 	desc->memset_vaddr = vaddr;
1035 	desc->memset_buffer = true;
1036 
1037 	first->txd.cookie = -EBUSY;
1038 	first->total_len = total_len;
1039 
1040 	/* set end-of-link on the descriptor */
1041 	set_desc_eol(desc);
1042 
1043 	first->txd.flags = flags;
1044 
1045 	return &first->txd;
1046 
1047 err_put_desc:
1048 	atc_desc_put(atchan, first);
1049 	return NULL;
1050 }
1051 
1052 /**
1053  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1054  * @chan: DMA channel
1055  * @sgl: scatterlist to transfer to/from
1056  * @sg_len: number of entries in @scatterlist
1057  * @direction: DMA direction
1058  * @flags: tx descriptor status flags
1059  * @context: transaction context (ignored)
1060  */
1061 static struct dma_async_tx_descriptor *
1062 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1063 		unsigned int sg_len, enum dma_transfer_direction direction,
1064 		unsigned long flags, void *context)
1065 {
1066 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1067 	struct at_dma_slave	*atslave = chan->private;
1068 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1069 	struct at_desc		*first = NULL;
1070 	struct at_desc		*prev = NULL;
1071 	u32			ctrla;
1072 	u32			ctrlb;
1073 	dma_addr_t		reg;
1074 	unsigned int		reg_width;
1075 	unsigned int		mem_width;
1076 	unsigned int		i;
1077 	struct scatterlist	*sg;
1078 	size_t			total_len = 0;
1079 
1080 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1081 			sg_len,
1082 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1083 			flags);
1084 
1085 	if (unlikely(!atslave || !sg_len)) {
1086 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1087 		return NULL;
1088 	}
1089 
1090 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1091 		| ATC_DCSIZE(sconfig->dst_maxburst);
1092 	ctrlb = ATC_IEN;
1093 
1094 	switch (direction) {
1095 	case DMA_MEM_TO_DEV:
1096 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1097 		ctrla |=  ATC_DST_WIDTH(reg_width);
1098 		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1099 			| ATC_SRC_ADDR_MODE_INCR
1100 			| ATC_FC_MEM2PER
1101 			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1102 		reg = sconfig->dst_addr;
1103 		for_each_sg(sgl, sg, sg_len, i) {
1104 			struct at_desc	*desc;
1105 			u32		len;
1106 			u32		mem;
1107 
1108 			desc = atc_desc_get(atchan);
1109 			if (!desc)
1110 				goto err_desc_get;
1111 
1112 			mem = sg_dma_address(sg);
1113 			len = sg_dma_len(sg);
1114 			if (unlikely(!len)) {
1115 				dev_dbg(chan2dev(chan),
1116 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1117 				goto err;
1118 			}
1119 			mem_width = 2;
1120 			if (unlikely(mem & 3 || len & 3))
1121 				mem_width = 0;
1122 
1123 			desc->lli.saddr = mem;
1124 			desc->lli.daddr = reg;
1125 			desc->lli.ctrla = ctrla
1126 					| ATC_SRC_WIDTH(mem_width)
1127 					| len >> mem_width;
1128 			desc->lli.ctrlb = ctrlb;
1129 			desc->len = len;
1130 
1131 			atc_desc_chain(&first, &prev, desc);
1132 			total_len += len;
1133 		}
1134 		break;
1135 	case DMA_DEV_TO_MEM:
1136 		reg_width = convert_buswidth(sconfig->src_addr_width);
1137 		ctrla |=  ATC_SRC_WIDTH(reg_width);
1138 		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1139 			| ATC_SRC_ADDR_MODE_FIXED
1140 			| ATC_FC_PER2MEM
1141 			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1142 
1143 		reg = sconfig->src_addr;
1144 		for_each_sg(sgl, sg, sg_len, i) {
1145 			struct at_desc	*desc;
1146 			u32		len;
1147 			u32		mem;
1148 
1149 			desc = atc_desc_get(atchan);
1150 			if (!desc)
1151 				goto err_desc_get;
1152 
1153 			mem = sg_dma_address(sg);
1154 			len = sg_dma_len(sg);
1155 			if (unlikely(!len)) {
1156 				dev_dbg(chan2dev(chan),
1157 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1158 				goto err;
1159 			}
1160 			mem_width = 2;
1161 			if (unlikely(mem & 3 || len & 3))
1162 				mem_width = 0;
1163 
1164 			desc->lli.saddr = reg;
1165 			desc->lli.daddr = mem;
1166 			desc->lli.ctrla = ctrla
1167 					| ATC_DST_WIDTH(mem_width)
1168 					| len >> reg_width;
1169 			desc->lli.ctrlb = ctrlb;
1170 			desc->len = len;
1171 
1172 			atc_desc_chain(&first, &prev, desc);
1173 			total_len += len;
1174 		}
1175 		break;
1176 	default:
1177 		return NULL;
1178 	}
1179 
1180 	/* set end-of-link to the last link descriptor of list*/
1181 	set_desc_eol(prev);
1182 
1183 	/* First descriptor of the chain embedds additional information */
1184 	first->txd.cookie = -EBUSY;
1185 	first->total_len = total_len;
1186 
1187 	/* first link descriptor of list is responsible of flags */
1188 	first->txd.flags = flags; /* client is in control of this ack */
1189 
1190 	return &first->txd;
1191 
1192 err_desc_get:
1193 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1194 err:
1195 	atc_desc_put(atchan, first);
1196 	return NULL;
1197 }
1198 
1199 /**
1200  * atc_dma_cyclic_check_values
1201  * Check for too big/unaligned periods and unaligned DMA buffer
1202  */
1203 static int
1204 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1205 		size_t period_len)
1206 {
1207 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1208 		goto err_out;
1209 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1210 		goto err_out;
1211 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1212 		goto err_out;
1213 
1214 	return 0;
1215 
1216 err_out:
1217 	return -EINVAL;
1218 }
1219 
1220 /**
1221  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1222  */
1223 static int
1224 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1225 		unsigned int period_index, dma_addr_t buf_addr,
1226 		unsigned int reg_width, size_t period_len,
1227 		enum dma_transfer_direction direction)
1228 {
1229 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1230 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1231 	u32			ctrla;
1232 
1233 	/* prepare common CRTLA value */
1234 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1235 		| ATC_DCSIZE(sconfig->dst_maxburst)
1236 		| ATC_DST_WIDTH(reg_width)
1237 		| ATC_SRC_WIDTH(reg_width)
1238 		| period_len >> reg_width;
1239 
1240 	switch (direction) {
1241 	case DMA_MEM_TO_DEV:
1242 		desc->lli.saddr = buf_addr + (period_len * period_index);
1243 		desc->lli.daddr = sconfig->dst_addr;
1244 		desc->lli.ctrla = ctrla;
1245 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1246 				| ATC_SRC_ADDR_MODE_INCR
1247 				| ATC_FC_MEM2PER
1248 				| ATC_SIF(atchan->mem_if)
1249 				| ATC_DIF(atchan->per_if);
1250 		desc->len = period_len;
1251 		break;
1252 
1253 	case DMA_DEV_TO_MEM:
1254 		desc->lli.saddr = sconfig->src_addr;
1255 		desc->lli.daddr = buf_addr + (period_len * period_index);
1256 		desc->lli.ctrla = ctrla;
1257 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1258 				| ATC_SRC_ADDR_MODE_FIXED
1259 				| ATC_FC_PER2MEM
1260 				| ATC_SIF(atchan->per_if)
1261 				| ATC_DIF(atchan->mem_if);
1262 		desc->len = period_len;
1263 		break;
1264 
1265 	default:
1266 		return -EINVAL;
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 /**
1273  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1274  * @chan: the DMA channel to prepare
1275  * @buf_addr: physical DMA address where the buffer starts
1276  * @buf_len: total number of bytes for the entire buffer
1277  * @period_len: number of bytes for each period
1278  * @direction: transfer direction, to or from device
1279  * @flags: tx descriptor status flags
1280  */
1281 static struct dma_async_tx_descriptor *
1282 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1283 		size_t period_len, enum dma_transfer_direction direction,
1284 		unsigned long flags)
1285 {
1286 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1287 	struct at_dma_slave	*atslave = chan->private;
1288 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1289 	struct at_desc		*first = NULL;
1290 	struct at_desc		*prev = NULL;
1291 	unsigned long		was_cyclic;
1292 	unsigned int		reg_width;
1293 	unsigned int		periods = buf_len / period_len;
1294 	unsigned int		i;
1295 
1296 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1297 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1298 			&buf_addr,
1299 			periods, buf_len, period_len);
1300 
1301 	if (unlikely(!atslave || !buf_len || !period_len)) {
1302 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1303 		return NULL;
1304 	}
1305 
1306 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1307 	if (was_cyclic) {
1308 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1309 		return NULL;
1310 	}
1311 
1312 	if (unlikely(!is_slave_direction(direction)))
1313 		goto err_out;
1314 
1315 	if (direction == DMA_MEM_TO_DEV)
1316 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1317 	else
1318 		reg_width = convert_buswidth(sconfig->src_addr_width);
1319 
1320 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1321 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1322 		goto err_out;
1323 
1324 	/* build cyclic linked list */
1325 	for (i = 0; i < periods; i++) {
1326 		struct at_desc	*desc;
1327 
1328 		desc = atc_desc_get(atchan);
1329 		if (!desc)
1330 			goto err_desc_get;
1331 
1332 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1333 					     reg_width, period_len, direction))
1334 			goto err_desc_get;
1335 
1336 		atc_desc_chain(&first, &prev, desc);
1337 	}
1338 
1339 	/* lets make a cyclic list */
1340 	prev->lli.dscr = first->txd.phys;
1341 
1342 	/* First descriptor of the chain embedds additional information */
1343 	first->txd.cookie = -EBUSY;
1344 	first->total_len = buf_len;
1345 
1346 	return &first->txd;
1347 
1348 err_desc_get:
1349 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1350 	atc_desc_put(atchan, first);
1351 err_out:
1352 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1353 	return NULL;
1354 }
1355 
1356 static int atc_config(struct dma_chan *chan,
1357 		      struct dma_slave_config *sconfig)
1358 {
1359 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1360 
1361 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1362 
1363 	/* Check if it is chan is configured for slave transfers */
1364 	if (!chan->private)
1365 		return -EINVAL;
1366 
1367 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1368 
1369 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1370 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1371 
1372 	return 0;
1373 }
1374 
1375 static int atc_pause(struct dma_chan *chan)
1376 {
1377 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1378 	struct at_dma		*atdma = to_at_dma(chan->device);
1379 	int			chan_id = atchan->chan_common.chan_id;
1380 	unsigned long		flags;
1381 
1382 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1383 
1384 	spin_lock_irqsave(&atchan->lock, flags);
1385 
1386 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1387 	set_bit(ATC_IS_PAUSED, &atchan->status);
1388 
1389 	spin_unlock_irqrestore(&atchan->lock, flags);
1390 
1391 	return 0;
1392 }
1393 
1394 static int atc_resume(struct dma_chan *chan)
1395 {
1396 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1397 	struct at_dma		*atdma = to_at_dma(chan->device);
1398 	int			chan_id = atchan->chan_common.chan_id;
1399 	unsigned long		flags;
1400 
1401 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1402 
1403 	if (!atc_chan_is_paused(atchan))
1404 		return 0;
1405 
1406 	spin_lock_irqsave(&atchan->lock, flags);
1407 
1408 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1409 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1410 
1411 	spin_unlock_irqrestore(&atchan->lock, flags);
1412 
1413 	return 0;
1414 }
1415 
1416 static int atc_terminate_all(struct dma_chan *chan)
1417 {
1418 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1419 	struct at_dma		*atdma = to_at_dma(chan->device);
1420 	int			chan_id = atchan->chan_common.chan_id;
1421 	struct at_desc		*desc, *_desc;
1422 	unsigned long		flags;
1423 
1424 	LIST_HEAD(list);
1425 
1426 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1427 
1428 	/*
1429 	 * This is only called when something went wrong elsewhere, so
1430 	 * we don't really care about the data. Just disable the
1431 	 * channel. We still have to poll the channel enable bit due
1432 	 * to AHB/HSB limitations.
1433 	 */
1434 	spin_lock_irqsave(&atchan->lock, flags);
1435 
1436 	/* disabling channel: must also remove suspend state */
1437 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1438 
1439 	/* confirm that this channel is disabled */
1440 	while (dma_readl(atdma, CHSR) & atchan->mask)
1441 		cpu_relax();
1442 
1443 	/* active_list entries will end up before queued entries */
1444 	list_splice_init(&atchan->queue, &list);
1445 	list_splice_init(&atchan->active_list, &list);
1446 
1447 	spin_unlock_irqrestore(&atchan->lock, flags);
1448 
1449 	/* Flush all pending and queued descriptors */
1450 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1451 		atc_chain_complete(atchan, desc);
1452 
1453 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1454 	/* if channel dedicated to cyclic operations, free it */
1455 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1456 
1457 	return 0;
1458 }
1459 
1460 /**
1461  * atc_tx_status - poll for transaction completion
1462  * @chan: DMA channel
1463  * @cookie: transaction identifier to check status of
1464  * @txstate: if not %NULL updated with transaction state
1465  *
1466  * If @txstate is passed in, upon return it reflect the driver
1467  * internal state and can be used with dma_async_is_complete() to check
1468  * the status of multiple cookies without re-checking hardware state.
1469  */
1470 static enum dma_status
1471 atc_tx_status(struct dma_chan *chan,
1472 		dma_cookie_t cookie,
1473 		struct dma_tx_state *txstate)
1474 {
1475 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1476 	unsigned long		flags;
1477 	enum dma_status		ret;
1478 	int bytes = 0;
1479 
1480 	ret = dma_cookie_status(chan, cookie, txstate);
1481 	if (ret == DMA_COMPLETE)
1482 		return ret;
1483 	/*
1484 	 * There's no point calculating the residue if there's
1485 	 * no txstate to store the value.
1486 	 */
1487 	if (!txstate)
1488 		return DMA_ERROR;
1489 
1490 	spin_lock_irqsave(&atchan->lock, flags);
1491 
1492 	/*  Get number of bytes left in the active transactions */
1493 	bytes = atc_get_bytes_left(chan, cookie);
1494 
1495 	spin_unlock_irqrestore(&atchan->lock, flags);
1496 
1497 	if (unlikely(bytes < 0)) {
1498 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1499 		return DMA_ERROR;
1500 	} else {
1501 		dma_set_residue(txstate, bytes);
1502 	}
1503 
1504 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1505 		 ret, cookie, bytes);
1506 
1507 	return ret;
1508 }
1509 
1510 /**
1511  * atc_issue_pending - try to finish work
1512  * @chan: target DMA channel
1513  */
1514 static void atc_issue_pending(struct dma_chan *chan)
1515 {
1516 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1517 
1518 	dev_vdbg(chan2dev(chan), "issue_pending\n");
1519 
1520 	/* Not needed for cyclic transfers */
1521 	if (atc_chan_is_cyclic(atchan))
1522 		return;
1523 
1524 	atc_advance_work(atchan);
1525 }
1526 
1527 /**
1528  * atc_alloc_chan_resources - allocate resources for DMA channel
1529  * @chan: allocate descriptor resources for this channel
1530  *
1531  * return - the number of allocated descriptors
1532  */
1533 static int atc_alloc_chan_resources(struct dma_chan *chan)
1534 {
1535 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1536 	struct at_dma		*atdma = to_at_dma(chan->device);
1537 	struct at_desc		*desc;
1538 	struct at_dma_slave	*atslave;
1539 	int			i;
1540 	u32			cfg;
1541 
1542 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1543 
1544 	/* ASSERT:  channel is idle */
1545 	if (atc_chan_is_enabled(atchan)) {
1546 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1547 		return -EIO;
1548 	}
1549 
1550 	if (!list_empty(&atchan->free_list)) {
1551 		dev_dbg(chan2dev(chan), "can't allocate channel resources (channel not freed from a previous use)\n");
1552 		return -EIO;
1553 	}
1554 
1555 	cfg = ATC_DEFAULT_CFG;
1556 
1557 	atslave = chan->private;
1558 	if (atslave) {
1559 		/*
1560 		 * We need controller-specific data to set up slave
1561 		 * transfers.
1562 		 */
1563 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1564 
1565 		/* if cfg configuration specified take it instead of default */
1566 		if (atslave->cfg)
1567 			cfg = atslave->cfg;
1568 	}
1569 
1570 	/* Allocate initial pool of descriptors */
1571 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1572 		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1573 		if (!desc) {
1574 			dev_err(atdma->dma_common.dev,
1575 				"Only %d initial descriptors\n", i);
1576 			break;
1577 		}
1578 		list_add_tail(&desc->desc_node, &atchan->free_list);
1579 	}
1580 
1581 	dma_cookie_init(chan);
1582 
1583 	/* channel parameters */
1584 	channel_writel(atchan, CFG, cfg);
1585 
1586 	dev_dbg(chan2dev(chan),
1587 		"alloc_chan_resources: allocated %d descriptors\n", i);
1588 
1589 	return i;
1590 }
1591 
1592 /**
1593  * atc_free_chan_resources - free all channel resources
1594  * @chan: DMA channel
1595  */
1596 static void atc_free_chan_resources(struct dma_chan *chan)
1597 {
1598 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1599 	struct at_dma		*atdma = to_at_dma(chan->device);
1600 	struct at_desc		*desc, *_desc;
1601 	LIST_HEAD(list);
1602 
1603 	/* ASSERT:  channel is idle */
1604 	BUG_ON(!list_empty(&atchan->active_list));
1605 	BUG_ON(!list_empty(&atchan->queue));
1606 	BUG_ON(atc_chan_is_enabled(atchan));
1607 
1608 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1609 		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1610 		list_del(&desc->desc_node);
1611 		/* free link descriptor */
1612 		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1613 	}
1614 	list_splice_init(&atchan->free_list, &list);
1615 	atchan->status = 0;
1616 
1617 	/*
1618 	 * Free atslave allocated in at_dma_xlate()
1619 	 */
1620 	kfree(chan->private);
1621 	chan->private = NULL;
1622 
1623 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1624 }
1625 
1626 #ifdef CONFIG_OF
1627 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1628 {
1629 	struct at_dma_slave *atslave = slave;
1630 
1631 	if (atslave->dma_dev == chan->device->dev) {
1632 		chan->private = atslave;
1633 		return true;
1634 	} else {
1635 		return false;
1636 	}
1637 }
1638 
1639 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1640 				     struct of_dma *of_dma)
1641 {
1642 	struct dma_chan *chan;
1643 	struct at_dma_chan *atchan;
1644 	struct at_dma_slave *atslave;
1645 	dma_cap_mask_t mask;
1646 	unsigned int per_id;
1647 	struct platform_device *dmac_pdev;
1648 
1649 	if (dma_spec->args_count != 2)
1650 		return NULL;
1651 
1652 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1653 
1654 	dma_cap_zero(mask);
1655 	dma_cap_set(DMA_SLAVE, mask);
1656 
1657 	atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1658 	if (!atslave)
1659 		return NULL;
1660 
1661 	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1662 	/*
1663 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1664 	 * ignored depending on DMA transfer direction.
1665 	 */
1666 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1667 	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1668 		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1669 	/*
1670 	 * We have to translate the value we get from the device tree since
1671 	 * the half FIFO configuration value had to be 0 to keep backward
1672 	 * compatibility.
1673 	 */
1674 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1675 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1676 		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1677 		break;
1678 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1679 		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1680 		break;
1681 	case AT91_DMA_CFG_FIFOCFG_HALF:
1682 	default:
1683 		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1684 	}
1685 	atslave->dma_dev = &dmac_pdev->dev;
1686 
1687 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1688 	if (!chan)
1689 		return NULL;
1690 
1691 	atchan = to_at_dma_chan(chan);
1692 	atchan->per_if = dma_spec->args[0] & 0xff;
1693 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1694 
1695 	return chan;
1696 }
1697 #else
1698 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1699 				     struct of_dma *of_dma)
1700 {
1701 	return NULL;
1702 }
1703 #endif
1704 
1705 /*--  Module Management  -----------------------------------------------*/
1706 
1707 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1708 static struct at_dma_platform_data at91sam9rl_config = {
1709 	.nr_channels = 2,
1710 };
1711 static struct at_dma_platform_data at91sam9g45_config = {
1712 	.nr_channels = 8,
1713 };
1714 
1715 #if defined(CONFIG_OF)
1716 static const struct of_device_id atmel_dma_dt_ids[] = {
1717 	{
1718 		.compatible = "atmel,at91sam9rl-dma",
1719 		.data = &at91sam9rl_config,
1720 	}, {
1721 		.compatible = "atmel,at91sam9g45-dma",
1722 		.data = &at91sam9g45_config,
1723 	}, {
1724 		/* sentinel */
1725 	}
1726 };
1727 
1728 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1729 #endif
1730 
1731 static const struct platform_device_id atdma_devtypes[] = {
1732 	{
1733 		.name = "at91sam9rl_dma",
1734 		.driver_data = (unsigned long) &at91sam9rl_config,
1735 	}, {
1736 		.name = "at91sam9g45_dma",
1737 		.driver_data = (unsigned long) &at91sam9g45_config,
1738 	}, {
1739 		/* sentinel */
1740 	}
1741 };
1742 
1743 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1744 						struct platform_device *pdev)
1745 {
1746 	if (pdev->dev.of_node) {
1747 		const struct of_device_id *match;
1748 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1749 		if (match == NULL)
1750 			return NULL;
1751 		return match->data;
1752 	}
1753 	return (struct at_dma_platform_data *)
1754 			platform_get_device_id(pdev)->driver_data;
1755 }
1756 
1757 /**
1758  * at_dma_off - disable DMA controller
1759  * @atdma: the Atmel HDAMC device
1760  */
1761 static void at_dma_off(struct at_dma *atdma)
1762 {
1763 	dma_writel(atdma, EN, 0);
1764 
1765 	/* disable all interrupts */
1766 	dma_writel(atdma, EBCIDR, -1L);
1767 
1768 	/* confirm that all channels are disabled */
1769 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1770 		cpu_relax();
1771 }
1772 
1773 static int __init at_dma_probe(struct platform_device *pdev)
1774 {
1775 	struct resource		*io;
1776 	struct at_dma		*atdma;
1777 	size_t			size;
1778 	int			irq;
1779 	int			err;
1780 	int			i;
1781 	const struct at_dma_platform_data *plat_dat;
1782 
1783 	/* setup platform data for each SoC */
1784 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1785 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1786 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1787 	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1788 	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1789 	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1790 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1791 
1792 	/* get DMA parameters from controller type */
1793 	plat_dat = at_dma_get_driver_data(pdev);
1794 	if (!plat_dat)
1795 		return -ENODEV;
1796 
1797 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1798 	if (!io)
1799 		return -EINVAL;
1800 
1801 	irq = platform_get_irq(pdev, 0);
1802 	if (irq < 0)
1803 		return irq;
1804 
1805 	size = sizeof(struct at_dma);
1806 	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1807 	atdma = kzalloc(size, GFP_KERNEL);
1808 	if (!atdma)
1809 		return -ENOMEM;
1810 
1811 	/* discover transaction capabilities */
1812 	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1813 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1814 
1815 	size = resource_size(io);
1816 	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1817 		err = -EBUSY;
1818 		goto err_kfree;
1819 	}
1820 
1821 	atdma->regs = ioremap(io->start, size);
1822 	if (!atdma->regs) {
1823 		err = -ENOMEM;
1824 		goto err_release_r;
1825 	}
1826 
1827 	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1828 	if (IS_ERR(atdma->clk)) {
1829 		err = PTR_ERR(atdma->clk);
1830 		goto err_clk;
1831 	}
1832 	err = clk_prepare_enable(atdma->clk);
1833 	if (err)
1834 		goto err_clk_prepare;
1835 
1836 	/* force dma off, just in case */
1837 	at_dma_off(atdma);
1838 
1839 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1840 	if (err)
1841 		goto err_irq;
1842 
1843 	platform_set_drvdata(pdev, atdma);
1844 
1845 	/* create a pool of consistent memory blocks for hardware descriptors */
1846 	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1847 			&pdev->dev, sizeof(struct at_desc),
1848 			4 /* word alignment */, 0);
1849 	if (!atdma->dma_desc_pool) {
1850 		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1851 		err = -ENOMEM;
1852 		goto err_desc_pool_create;
1853 	}
1854 
1855 	/* create a pool of consistent memory blocks for memset blocks */
1856 	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1857 					     &pdev->dev, sizeof(int), 4, 0);
1858 	if (!atdma->memset_pool) {
1859 		dev_err(&pdev->dev, "No memory for memset dma pool\n");
1860 		err = -ENOMEM;
1861 		goto err_memset_pool_create;
1862 	}
1863 
1864 	/* clear any pending interrupt */
1865 	while (dma_readl(atdma, EBCISR))
1866 		cpu_relax();
1867 
1868 	/* initialize channels related values */
1869 	INIT_LIST_HEAD(&atdma->dma_common.channels);
1870 	for (i = 0; i < plat_dat->nr_channels; i++) {
1871 		struct at_dma_chan	*atchan = &atdma->chan[i];
1872 
1873 		atchan->mem_if = AT_DMA_MEM_IF;
1874 		atchan->per_if = AT_DMA_PER_IF;
1875 		atchan->chan_common.device = &atdma->dma_common;
1876 		dma_cookie_init(&atchan->chan_common);
1877 		list_add_tail(&atchan->chan_common.device_node,
1878 				&atdma->dma_common.channels);
1879 
1880 		atchan->ch_regs = atdma->regs + ch_regs(i);
1881 		spin_lock_init(&atchan->lock);
1882 		atchan->mask = 1 << i;
1883 
1884 		INIT_LIST_HEAD(&atchan->active_list);
1885 		INIT_LIST_HEAD(&atchan->queue);
1886 		INIT_LIST_HEAD(&atchan->free_list);
1887 
1888 		tasklet_init(&atchan->tasklet, atc_tasklet,
1889 				(unsigned long)atchan);
1890 		atc_enable_chan_irq(atdma, i);
1891 	}
1892 
1893 	/* set base routines */
1894 	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1895 	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1896 	atdma->dma_common.device_tx_status = atc_tx_status;
1897 	atdma->dma_common.device_issue_pending = atc_issue_pending;
1898 	atdma->dma_common.dev = &pdev->dev;
1899 
1900 	/* set prep routines based on capability */
1901 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1902 		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1903 
1904 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1905 		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1906 
1907 	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1908 		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1909 		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1910 		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1911 	}
1912 
1913 	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1914 		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1915 		/* controller can do slave DMA: can trigger cyclic transfers */
1916 		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1917 		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1918 		atdma->dma_common.device_config = atc_config;
1919 		atdma->dma_common.device_pause = atc_pause;
1920 		atdma->dma_common.device_resume = atc_resume;
1921 		atdma->dma_common.device_terminate_all = atc_terminate_all;
1922 		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1923 		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1924 		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1925 		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1926 	}
1927 
1928 	dma_writel(atdma, EN, AT_DMA_ENABLE);
1929 
1930 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1931 	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1932 	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1933 	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
1934 	  plat_dat->nr_channels);
1935 
1936 	dma_async_device_register(&atdma->dma_common);
1937 
1938 	/*
1939 	 * Do not return an error if the dmac node is not present in order to
1940 	 * not break the existing way of requesting channel with
1941 	 * dma_request_channel().
1942 	 */
1943 	if (pdev->dev.of_node) {
1944 		err = of_dma_controller_register(pdev->dev.of_node,
1945 						 at_dma_xlate, atdma);
1946 		if (err) {
1947 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
1948 			goto err_of_dma_controller_register;
1949 		}
1950 	}
1951 
1952 	return 0;
1953 
1954 err_of_dma_controller_register:
1955 	dma_async_device_unregister(&atdma->dma_common);
1956 	dma_pool_destroy(atdma->memset_pool);
1957 err_memset_pool_create:
1958 	dma_pool_destroy(atdma->dma_desc_pool);
1959 err_desc_pool_create:
1960 	free_irq(platform_get_irq(pdev, 0), atdma);
1961 err_irq:
1962 	clk_disable_unprepare(atdma->clk);
1963 err_clk_prepare:
1964 	clk_put(atdma->clk);
1965 err_clk:
1966 	iounmap(atdma->regs);
1967 	atdma->regs = NULL;
1968 err_release_r:
1969 	release_mem_region(io->start, size);
1970 err_kfree:
1971 	kfree(atdma);
1972 	return err;
1973 }
1974 
1975 static int at_dma_remove(struct platform_device *pdev)
1976 {
1977 	struct at_dma		*atdma = platform_get_drvdata(pdev);
1978 	struct dma_chan		*chan, *_chan;
1979 	struct resource		*io;
1980 
1981 	at_dma_off(atdma);
1982 	if (pdev->dev.of_node)
1983 		of_dma_controller_free(pdev->dev.of_node);
1984 	dma_async_device_unregister(&atdma->dma_common);
1985 
1986 	dma_pool_destroy(atdma->memset_pool);
1987 	dma_pool_destroy(atdma->dma_desc_pool);
1988 	free_irq(platform_get_irq(pdev, 0), atdma);
1989 
1990 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1991 			device_node) {
1992 		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1993 
1994 		/* Disable interrupts */
1995 		atc_disable_chan_irq(atdma, chan->chan_id);
1996 
1997 		tasklet_kill(&atchan->tasklet);
1998 		list_del(&chan->device_node);
1999 	}
2000 
2001 	clk_disable_unprepare(atdma->clk);
2002 	clk_put(atdma->clk);
2003 
2004 	iounmap(atdma->regs);
2005 	atdma->regs = NULL;
2006 
2007 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2008 	release_mem_region(io->start, resource_size(io));
2009 
2010 	kfree(atdma);
2011 
2012 	return 0;
2013 }
2014 
2015 static void at_dma_shutdown(struct platform_device *pdev)
2016 {
2017 	struct at_dma	*atdma = platform_get_drvdata(pdev);
2018 
2019 	at_dma_off(platform_get_drvdata(pdev));
2020 	clk_disable_unprepare(atdma->clk);
2021 }
2022 
2023 static int at_dma_prepare(struct device *dev)
2024 {
2025 	struct at_dma *atdma = dev_get_drvdata(dev);
2026 	struct dma_chan *chan, *_chan;
2027 
2028 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2029 			device_node) {
2030 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2031 		/* wait for transaction completion (except in cyclic case) */
2032 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2033 			return -EAGAIN;
2034 	}
2035 	return 0;
2036 }
2037 
2038 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2039 {
2040 	struct dma_chan	*chan = &atchan->chan_common;
2041 
2042 	/* Channel should be paused by user
2043 	 * do it anyway even if it is not done already */
2044 	if (!atc_chan_is_paused(atchan)) {
2045 		dev_warn(chan2dev(chan),
2046 		"cyclic channel not paused, should be done by channel user\n");
2047 		atc_pause(chan);
2048 	}
2049 
2050 	/* now preserve additional data for cyclic operations */
2051 	/* next descriptor address in the cyclic list */
2052 	atchan->save_dscr = channel_readl(atchan, DSCR);
2053 
2054 	vdbg_dump_regs(atchan);
2055 }
2056 
2057 static int at_dma_suspend_noirq(struct device *dev)
2058 {
2059 	struct at_dma *atdma = dev_get_drvdata(dev);
2060 	struct dma_chan *chan, *_chan;
2061 
2062 	/* preserve data */
2063 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2064 			device_node) {
2065 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2066 
2067 		if (atc_chan_is_cyclic(atchan))
2068 			atc_suspend_cyclic(atchan);
2069 		atchan->save_cfg = channel_readl(atchan, CFG);
2070 	}
2071 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2072 
2073 	/* disable DMA controller */
2074 	at_dma_off(atdma);
2075 	clk_disable_unprepare(atdma->clk);
2076 	return 0;
2077 }
2078 
2079 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2080 {
2081 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2082 
2083 	/* restore channel status for cyclic descriptors list:
2084 	 * next descriptor in the cyclic list at the time of suspend */
2085 	channel_writel(atchan, SADDR, 0);
2086 	channel_writel(atchan, DADDR, 0);
2087 	channel_writel(atchan, CTRLA, 0);
2088 	channel_writel(atchan, CTRLB, 0);
2089 	channel_writel(atchan, DSCR, atchan->save_dscr);
2090 	dma_writel(atdma, CHER, atchan->mask);
2091 
2092 	/* channel pause status should be removed by channel user
2093 	 * We cannot take the initiative to do it here */
2094 
2095 	vdbg_dump_regs(atchan);
2096 }
2097 
2098 static int at_dma_resume_noirq(struct device *dev)
2099 {
2100 	struct at_dma *atdma = dev_get_drvdata(dev);
2101 	struct dma_chan *chan, *_chan;
2102 
2103 	/* bring back DMA controller */
2104 	clk_prepare_enable(atdma->clk);
2105 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2106 
2107 	/* clear any pending interrupt */
2108 	while (dma_readl(atdma, EBCISR))
2109 		cpu_relax();
2110 
2111 	/* restore saved data */
2112 	dma_writel(atdma, EBCIER, atdma->save_imr);
2113 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2114 			device_node) {
2115 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2116 
2117 		channel_writel(atchan, CFG, atchan->save_cfg);
2118 		if (atc_chan_is_cyclic(atchan))
2119 			atc_resume_cyclic(atchan);
2120 	}
2121 	return 0;
2122 }
2123 
2124 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2125 	.prepare = at_dma_prepare,
2126 	.suspend_noirq = at_dma_suspend_noirq,
2127 	.resume_noirq = at_dma_resume_noirq,
2128 };
2129 
2130 static struct platform_driver at_dma_driver = {
2131 	.remove		= at_dma_remove,
2132 	.shutdown	= at_dma_shutdown,
2133 	.id_table	= atdma_devtypes,
2134 	.driver = {
2135 		.name	= "at_hdmac",
2136 		.pm	= &at_dma_dev_pm_ops,
2137 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2138 	},
2139 };
2140 
2141 static int __init at_dma_init(void)
2142 {
2143 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2144 }
2145 subsys_initcall(at_dma_init);
2146 
2147 static void __exit at_dma_exit(void)
2148 {
2149 	platform_driver_unregister(&at_dma_driver);
2150 }
2151 module_exit(at_dma_exit);
2152 
2153 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2154 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2155 MODULE_LICENSE("GPL");
2156 MODULE_ALIAS("platform:at_hdmac");
2157