1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 4 * 5 * Copyright (C) 2008 Atmel Corporation 6 * 7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 8 * The only Atmel DMA Controller that is not covered by this driver is the one 9 * found on AT91SAM9263. 10 */ 11 12 #include <dt-bindings/dma/at91.h> 13 #include <linux/clk.h> 14 #include <linux/dmaengine.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/dmapool.h> 17 #include <linux/interrupt.h> 18 #include <linux/module.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/of_device.h> 23 #include <linux/of_dma.h> 24 25 #include "at_hdmac_regs.h" 26 #include "dmaengine.h" 27 28 /* 29 * Glossary 30 * -------- 31 * 32 * at_hdmac : Name of the ATmel AHB DMA Controller 33 * at_dma_ / atdma : ATmel DMA controller entity related 34 * atc_ / atchan : ATmel DMA Channel entity related 35 */ 36 37 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) 38 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ 39 |ATC_DIF(AT_DMA_MEM_IF)) 40 #define ATC_DMA_BUSWIDTHS\ 41 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 42 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 43 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 44 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 45 46 #define ATC_MAX_DSCR_TRIALS 10 47 48 /* 49 * Initial number of descriptors to allocate for each channel. This could 50 * be increased during dma usage. 51 */ 52 static unsigned int init_nr_desc_per_channel = 64; 53 module_param(init_nr_desc_per_channel, uint, 0644); 54 MODULE_PARM_DESC(init_nr_desc_per_channel, 55 "initial descriptors per channel (default: 64)"); 56 57 /** 58 * struct at_dma_platform_data - Controller configuration parameters 59 * @nr_channels: Number of channels supported by hardware (max 8) 60 * @cap_mask: dma_capability flags supported by the platform 61 */ 62 struct at_dma_platform_data { 63 unsigned int nr_channels; 64 dma_cap_mask_t cap_mask; 65 }; 66 67 /** 68 * struct at_dma_slave - Controller-specific information about a slave 69 * @dma_dev: required DMA master device 70 * @cfg: Platform-specific initializer for the CFG register 71 */ 72 struct at_dma_slave { 73 struct device *dma_dev; 74 u32 cfg; 75 }; 76 77 /* prototypes */ 78 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); 79 static void atc_issue_pending(struct dma_chan *chan); 80 81 82 /*----------------------------------------------------------------------*/ 83 84 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 85 size_t len) 86 { 87 unsigned int width; 88 89 if (!((src | dst | len) & 3)) 90 width = 2; 91 else if (!((src | dst | len) & 1)) 92 width = 1; 93 else 94 width = 0; 95 96 return width; 97 } 98 99 static struct at_desc *atc_first_active(struct at_dma_chan *atchan) 100 { 101 return list_first_entry(&atchan->active_list, 102 struct at_desc, desc_node); 103 } 104 105 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) 106 { 107 return list_first_entry(&atchan->queue, 108 struct at_desc, desc_node); 109 } 110 111 /** 112 * atc_alloc_descriptor - allocate and return an initialized descriptor 113 * @chan: the channel to allocate descriptors for 114 * @gfp_flags: GFP allocation flags 115 * 116 * Note: The ack-bit is positioned in the descriptor flag at creation time 117 * to make initial allocation more convenient. This bit will be cleared 118 * and control will be given to client at usage time (during 119 * preparation functions). 120 */ 121 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, 122 gfp_t gfp_flags) 123 { 124 struct at_desc *desc = NULL; 125 struct at_dma *atdma = to_at_dma(chan->device); 126 dma_addr_t phys; 127 128 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys); 129 if (desc) { 130 INIT_LIST_HEAD(&desc->tx_list); 131 dma_async_tx_descriptor_init(&desc->txd, chan); 132 /* txd.flags will be overwritten in prep functions */ 133 desc->txd.flags = DMA_CTRL_ACK; 134 desc->txd.tx_submit = atc_tx_submit; 135 desc->txd.phys = phys; 136 } 137 138 return desc; 139 } 140 141 /** 142 * atc_desc_get - get an unused descriptor from free_list 143 * @atchan: channel we want a new descriptor for 144 */ 145 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) 146 { 147 struct at_desc *desc, *_desc; 148 struct at_desc *ret = NULL; 149 unsigned long flags; 150 unsigned int i = 0; 151 152 spin_lock_irqsave(&atchan->lock, flags); 153 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 154 i++; 155 if (async_tx_test_ack(&desc->txd)) { 156 list_del(&desc->desc_node); 157 ret = desc; 158 break; 159 } 160 dev_dbg(chan2dev(&atchan->chan_common), 161 "desc %p not ACKed\n", desc); 162 } 163 spin_unlock_irqrestore(&atchan->lock, flags); 164 dev_vdbg(chan2dev(&atchan->chan_common), 165 "scanned %u descriptors on freelist\n", i); 166 167 /* no more descriptor available in initial pool: create one more */ 168 if (!ret) 169 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_NOWAIT); 170 171 return ret; 172 } 173 174 /** 175 * atc_desc_put - move a descriptor, including any children, to the free list 176 * @atchan: channel we work on 177 * @desc: descriptor, at the head of a chain, to move to free list 178 */ 179 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) 180 { 181 if (desc) { 182 struct at_desc *child; 183 unsigned long flags; 184 185 spin_lock_irqsave(&atchan->lock, flags); 186 list_for_each_entry(child, &desc->tx_list, desc_node) 187 dev_vdbg(chan2dev(&atchan->chan_common), 188 "moving child desc %p to freelist\n", 189 child); 190 list_splice_init(&desc->tx_list, &atchan->free_list); 191 dev_vdbg(chan2dev(&atchan->chan_common), 192 "moving desc %p to freelist\n", desc); 193 list_add(&desc->desc_node, &atchan->free_list); 194 spin_unlock_irqrestore(&atchan->lock, flags); 195 } 196 } 197 198 /** 199 * atc_desc_chain - build chain adding a descriptor 200 * @first: address of first descriptor of the chain 201 * @prev: address of previous descriptor of the chain 202 * @desc: descriptor to queue 203 * 204 * Called from prep_* functions 205 */ 206 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, 207 struct at_desc *desc) 208 { 209 if (!(*first)) { 210 *first = desc; 211 } else { 212 /* inform the HW lli about chaining */ 213 (*prev)->lli.dscr = desc->txd.phys; 214 /* insert the link descriptor to the LD ring */ 215 list_add_tail(&desc->desc_node, 216 &(*first)->tx_list); 217 } 218 *prev = desc; 219 } 220 221 /** 222 * atc_dostart - starts the DMA engine for real 223 * @atchan: the channel we want to start 224 * @first: first descriptor in the list we want to begin with 225 * 226 * Called with atchan->lock held and bh disabled 227 */ 228 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) 229 { 230 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 231 232 /* ASSERT: channel is idle */ 233 if (atc_chan_is_enabled(atchan)) { 234 dev_err(chan2dev(&atchan->chan_common), 235 "BUG: Attempted to start non-idle channel\n"); 236 dev_err(chan2dev(&atchan->chan_common), 237 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", 238 channel_readl(atchan, SADDR), 239 channel_readl(atchan, DADDR), 240 channel_readl(atchan, CTRLA), 241 channel_readl(atchan, CTRLB), 242 channel_readl(atchan, DSCR)); 243 244 /* The tasklet will hopefully advance the queue... */ 245 return; 246 } 247 248 vdbg_dump_regs(atchan); 249 250 channel_writel(atchan, SADDR, 0); 251 channel_writel(atchan, DADDR, 0); 252 channel_writel(atchan, CTRLA, 0); 253 channel_writel(atchan, CTRLB, 0); 254 channel_writel(atchan, DSCR, first->txd.phys); 255 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | 256 ATC_SPIP_BOUNDARY(first->boundary)); 257 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | 258 ATC_DPIP_BOUNDARY(first->boundary)); 259 /* Don't allow CPU to reorder channel enable. */ 260 wmb(); 261 dma_writel(atdma, CHER, atchan->mask); 262 263 vdbg_dump_regs(atchan); 264 } 265 266 /* 267 * atc_get_desc_by_cookie - get the descriptor of a cookie 268 * @atchan: the DMA channel 269 * @cookie: the cookie to get the descriptor for 270 */ 271 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, 272 dma_cookie_t cookie) 273 { 274 struct at_desc *desc, *_desc; 275 276 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { 277 if (desc->txd.cookie == cookie) 278 return desc; 279 } 280 281 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { 282 if (desc->txd.cookie == cookie) 283 return desc; 284 } 285 286 return NULL; 287 } 288 289 /** 290 * atc_calc_bytes_left - calculates the number of bytes left according to the 291 * value read from CTRLA. 292 * 293 * @current_len: the number of bytes left before reading CTRLA 294 * @ctrla: the value of CTRLA 295 */ 296 static inline int atc_calc_bytes_left(int current_len, u32 ctrla) 297 { 298 u32 btsize = (ctrla & ATC_BTSIZE_MAX); 299 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); 300 301 /* 302 * According to the datasheet, when reading the Control A Register 303 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 304 * number of transfers completed on the Source Interface. 305 * So btsize is always a number of source width transfers. 306 */ 307 return current_len - (btsize << src_width); 308 } 309 310 /** 311 * atc_get_bytes_left - get the number of bytes residue for a cookie 312 * @chan: DMA channel 313 * @cookie: transaction identifier to check status of 314 */ 315 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) 316 { 317 struct at_dma_chan *atchan = to_at_dma_chan(chan); 318 struct at_desc *desc_first = atc_first_active(atchan); 319 struct at_desc *desc; 320 int ret; 321 u32 ctrla, dscr; 322 unsigned int i; 323 324 /* 325 * If the cookie doesn't match to the currently running transfer then 326 * we can return the total length of the associated DMA transfer, 327 * because it is still queued. 328 */ 329 desc = atc_get_desc_by_cookie(atchan, cookie); 330 if (desc == NULL) 331 return -EINVAL; 332 else if (desc != desc_first) 333 return desc->total_len; 334 335 /* cookie matches to the currently running transfer */ 336 ret = desc_first->total_len; 337 338 if (desc_first->lli.dscr) { 339 /* hardware linked list transfer */ 340 341 /* 342 * Calculate the residue by removing the length of the child 343 * descriptors already transferred from the total length. 344 * To get the current child descriptor we can use the value of 345 * the channel's DSCR register and compare it against the value 346 * of the hardware linked list structure of each child 347 * descriptor. 348 * 349 * The CTRLA register provides us with the amount of data 350 * already read from the source for the current child 351 * descriptor. So we can compute a more accurate residue by also 352 * removing the number of bytes corresponding to this amount of 353 * data. 354 * 355 * However, the DSCR and CTRLA registers cannot be read both 356 * atomically. Hence a race condition may occur: the first read 357 * register may refer to one child descriptor whereas the second 358 * read may refer to a later child descriptor in the list 359 * because of the DMA transfer progression inbetween the two 360 * reads. 361 * 362 * One solution could have been to pause the DMA transfer, read 363 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless, 364 * this approach presents some drawbacks: 365 * - If the DMA transfer is paused, RX overruns or TX underruns 366 * are more likey to occur depending on the system latency. 367 * Taking the USART driver as an example, it uses a cyclic DMA 368 * transfer to read data from the Receive Holding Register 369 * (RHR) to avoid RX overruns since the RHR is not protected 370 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer 371 * to compute the residue would break the USART driver design. 372 * - The atc_pause() function masks interrupts but we'd rather 373 * avoid to do so for system latency purpose. 374 * 375 * Then we'd rather use another solution: the DSCR is read a 376 * first time, the CTRLA is read in turn, next the DSCR is read 377 * a second time. If the two consecutive read values of the DSCR 378 * are the same then we assume both refers to the very same 379 * child descriptor as well as the CTRLA value read inbetween 380 * does. For cyclic tranfers, the assumption is that a full loop 381 * is "not so fast". 382 * If the two DSCR values are different, we read again the CTRLA 383 * then the DSCR till two consecutive read values from DSCR are 384 * equal or till the maxium trials is reach. 385 * This algorithm is very unlikely not to find a stable value for 386 * DSCR. 387 */ 388 389 dscr = channel_readl(atchan, DSCR); 390 rmb(); /* ensure DSCR is read before CTRLA */ 391 ctrla = channel_readl(atchan, CTRLA); 392 for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) { 393 u32 new_dscr; 394 395 rmb(); /* ensure DSCR is read after CTRLA */ 396 new_dscr = channel_readl(atchan, DSCR); 397 398 /* 399 * If the DSCR register value has not changed inside the 400 * DMA controller since the previous read, we assume 401 * that both the dscr and ctrla values refers to the 402 * very same descriptor. 403 */ 404 if (likely(new_dscr == dscr)) 405 break; 406 407 /* 408 * DSCR has changed inside the DMA controller, so the 409 * previouly read value of CTRLA may refer to an already 410 * processed descriptor hence could be outdated. 411 * We need to update ctrla to match the current 412 * descriptor. 413 */ 414 dscr = new_dscr; 415 rmb(); /* ensure DSCR is read before CTRLA */ 416 ctrla = channel_readl(atchan, CTRLA); 417 } 418 if (unlikely(i == ATC_MAX_DSCR_TRIALS)) 419 return -ETIMEDOUT; 420 421 /* for the first descriptor we can be more accurate */ 422 if (desc_first->lli.dscr == dscr) 423 return atc_calc_bytes_left(ret, ctrla); 424 425 ret -= desc_first->len; 426 list_for_each_entry(desc, &desc_first->tx_list, desc_node) { 427 if (desc->lli.dscr == dscr) 428 break; 429 430 ret -= desc->len; 431 } 432 433 /* 434 * For the current descriptor in the chain we can calculate 435 * the remaining bytes using the channel's register. 436 */ 437 ret = atc_calc_bytes_left(ret, ctrla); 438 } else { 439 /* single transfer */ 440 ctrla = channel_readl(atchan, CTRLA); 441 ret = atc_calc_bytes_left(ret, ctrla); 442 } 443 444 return ret; 445 } 446 447 /** 448 * atc_chain_complete - finish work for one transaction chain 449 * @atchan: channel we work on 450 * @desc: descriptor at the head of the chain we want do complete 451 */ 452 static void 453 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) 454 { 455 struct dma_async_tx_descriptor *txd = &desc->txd; 456 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 457 unsigned long flags; 458 459 dev_vdbg(chan2dev(&atchan->chan_common), 460 "descriptor %u complete\n", txd->cookie); 461 462 spin_lock_irqsave(&atchan->lock, flags); 463 464 /* mark the descriptor as complete for non cyclic cases only */ 465 if (!atc_chan_is_cyclic(atchan)) 466 dma_cookie_complete(txd); 467 468 spin_unlock_irqrestore(&atchan->lock, flags); 469 470 dma_descriptor_unmap(txd); 471 /* for cyclic transfers, 472 * no need to replay callback function while stopping */ 473 if (!atc_chan_is_cyclic(atchan)) 474 dmaengine_desc_get_callback_invoke(txd, NULL); 475 476 dma_run_dependencies(txd); 477 478 spin_lock_irqsave(&atchan->lock, flags); 479 /* move children to free_list */ 480 list_splice_init(&desc->tx_list, &atchan->free_list); 481 /* add myself to free_list */ 482 list_add(&desc->desc_node, &atchan->free_list); 483 spin_unlock_irqrestore(&atchan->lock, flags); 484 485 /* If the transfer was a memset, free our temporary buffer */ 486 if (desc->memset_buffer) { 487 dma_pool_free(atdma->memset_pool, desc->memset_vaddr, 488 desc->memset_paddr); 489 desc->memset_buffer = false; 490 } 491 } 492 493 /** 494 * atc_advance_work - at the end of a transaction, move forward 495 * @atchan: channel where the transaction ended 496 */ 497 static void atc_advance_work(struct at_dma_chan *atchan) 498 { 499 struct at_desc *desc; 500 unsigned long flags; 501 502 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); 503 504 spin_lock_irqsave(&atchan->lock, flags); 505 if (atc_chan_is_enabled(atchan) || list_empty(&atchan->active_list)) 506 return spin_unlock_irqrestore(&atchan->lock, flags); 507 508 desc = atc_first_active(atchan); 509 /* Remove the transfer node from the active list. */ 510 list_del_init(&desc->desc_node); 511 spin_unlock_irqrestore(&atchan->lock, flags); 512 atc_chain_complete(atchan, desc); 513 514 /* advance work */ 515 spin_lock_irqsave(&atchan->lock, flags); 516 if (!list_empty(&atchan->active_list)) { 517 desc = atc_first_queued(atchan); 518 list_move_tail(&desc->desc_node, &atchan->active_list); 519 atc_dostart(atchan, desc); 520 } 521 spin_unlock_irqrestore(&atchan->lock, flags); 522 } 523 524 525 /** 526 * atc_handle_error - handle errors reported by DMA controller 527 * @atchan: channel where error occurs 528 */ 529 static void atc_handle_error(struct at_dma_chan *atchan) 530 { 531 struct at_desc *bad_desc; 532 struct at_desc *desc; 533 struct at_desc *child; 534 unsigned long flags; 535 536 spin_lock_irqsave(&atchan->lock, flags); 537 /* 538 * The descriptor currently at the head of the active list is 539 * broked. Since we don't have any way to report errors, we'll 540 * just have to scream loudly and try to carry on. 541 */ 542 bad_desc = atc_first_active(atchan); 543 list_del_init(&bad_desc->desc_node); 544 545 /* Try to restart the controller */ 546 if (!list_empty(&atchan->active_list)) { 547 desc = atc_first_queued(atchan); 548 list_move_tail(&desc->desc_node, &atchan->active_list); 549 atc_dostart(atchan, desc); 550 } 551 552 /* 553 * KERN_CRITICAL may seem harsh, but since this only happens 554 * when someone submits a bad physical address in a 555 * descriptor, we should consider ourselves lucky that the 556 * controller flagged an error instead of scribbling over 557 * random memory locations. 558 */ 559 dev_crit(chan2dev(&atchan->chan_common), 560 "Bad descriptor submitted for DMA!\n"); 561 dev_crit(chan2dev(&atchan->chan_common), 562 " cookie: %d\n", bad_desc->txd.cookie); 563 atc_dump_lli(atchan, &bad_desc->lli); 564 list_for_each_entry(child, &bad_desc->tx_list, desc_node) 565 atc_dump_lli(atchan, &child->lli); 566 567 spin_unlock_irqrestore(&atchan->lock, flags); 568 569 /* Pretend the descriptor completed successfully */ 570 atc_chain_complete(atchan, bad_desc); 571 } 572 573 /** 574 * atc_handle_cyclic - at the end of a period, run callback function 575 * @atchan: channel used for cyclic operations 576 */ 577 static void atc_handle_cyclic(struct at_dma_chan *atchan) 578 { 579 struct at_desc *first = atc_first_active(atchan); 580 struct dma_async_tx_descriptor *txd = &first->txd; 581 582 dev_vdbg(chan2dev(&atchan->chan_common), 583 "new cyclic period llp 0x%08x\n", 584 channel_readl(atchan, DSCR)); 585 586 dmaengine_desc_get_callback_invoke(txd, NULL); 587 } 588 589 /*-- IRQ & Tasklet ---------------------------------------------------*/ 590 591 static void atc_tasklet(struct tasklet_struct *t) 592 { 593 struct at_dma_chan *atchan = from_tasklet(atchan, t, tasklet); 594 595 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) 596 return atc_handle_error(atchan); 597 598 if (atc_chan_is_cyclic(atchan)) 599 return atc_handle_cyclic(atchan); 600 601 atc_advance_work(atchan); 602 } 603 604 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 605 { 606 struct at_dma *atdma = (struct at_dma *)dev_id; 607 struct at_dma_chan *atchan; 608 int i; 609 u32 status, pending, imr; 610 int ret = IRQ_NONE; 611 612 do { 613 imr = dma_readl(atdma, EBCIMR); 614 status = dma_readl(atdma, EBCISR); 615 pending = status & imr; 616 617 if (!pending) 618 break; 619 620 dev_vdbg(atdma->dma_common.dev, 621 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 622 status, imr, pending); 623 624 for (i = 0; i < atdma->dma_common.chancnt; i++) { 625 atchan = &atdma->chan[i]; 626 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { 627 if (pending & AT_DMA_ERR(i)) { 628 /* Disable channel on AHB error */ 629 dma_writel(atdma, CHDR, 630 AT_DMA_RES(i) | atchan->mask); 631 /* Give information to tasklet */ 632 set_bit(ATC_IS_ERROR, &atchan->status); 633 } 634 tasklet_schedule(&atchan->tasklet); 635 ret = IRQ_HANDLED; 636 } 637 } 638 639 } while (pending); 640 641 return ret; 642 } 643 644 645 /*-- DMA Engine API --------------------------------------------------*/ 646 647 /** 648 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine 649 * @tx: descriptor at the head of the transaction chain 650 * 651 * Queue chain if DMA engine is working already 652 * 653 * Cookie increment and adding to active_list or queue must be atomic 654 */ 655 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) 656 { 657 struct at_desc *desc = txd_to_at_desc(tx); 658 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); 659 dma_cookie_t cookie; 660 unsigned long flags; 661 662 spin_lock_irqsave(&atchan->lock, flags); 663 cookie = dma_cookie_assign(tx); 664 665 list_add_tail(&desc->desc_node, &atchan->queue); 666 spin_unlock_irqrestore(&atchan->lock, flags); 667 668 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", 669 desc->txd.cookie); 670 return cookie; 671 } 672 673 /** 674 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 675 * @chan: the channel to prepare operation on 676 * @xt: Interleaved transfer template 677 * @flags: tx descriptor status flags 678 */ 679 static struct dma_async_tx_descriptor * 680 atc_prep_dma_interleaved(struct dma_chan *chan, 681 struct dma_interleaved_template *xt, 682 unsigned long flags) 683 { 684 struct at_dma_chan *atchan = to_at_dma_chan(chan); 685 struct data_chunk *first; 686 struct at_desc *desc = NULL; 687 size_t xfer_count; 688 unsigned int dwidth; 689 u32 ctrla; 690 u32 ctrlb; 691 size_t len = 0; 692 int i; 693 694 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 695 return NULL; 696 697 first = xt->sgl; 698 699 dev_info(chan2dev(chan), 700 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", 701 __func__, &xt->src_start, &xt->dst_start, xt->numf, 702 xt->frame_size, flags); 703 704 /* 705 * The controller can only "skip" X bytes every Y bytes, so we 706 * need to make sure we are given a template that fit that 707 * description, ie a template with chunks that always have the 708 * same size, with the same ICGs. 709 */ 710 for (i = 0; i < xt->frame_size; i++) { 711 struct data_chunk *chunk = xt->sgl + i; 712 713 if ((chunk->size != xt->sgl->size) || 714 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 715 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 716 dev_err(chan2dev(chan), 717 "%s: the controller can transfer only identical chunks\n", 718 __func__); 719 return NULL; 720 } 721 722 len += chunk->size; 723 } 724 725 dwidth = atc_get_xfer_width(xt->src_start, 726 xt->dst_start, len); 727 728 xfer_count = len >> dwidth; 729 if (xfer_count > ATC_BTSIZE_MAX) { 730 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 731 return NULL; 732 } 733 734 ctrla = ATC_SRC_WIDTH(dwidth) | 735 ATC_DST_WIDTH(dwidth); 736 737 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 738 | ATC_SRC_ADDR_MODE_INCR 739 | ATC_DST_ADDR_MODE_INCR 740 | ATC_SRC_PIP 741 | ATC_DST_PIP 742 | ATC_FC_MEM2MEM; 743 744 /* create the transfer */ 745 desc = atc_desc_get(atchan); 746 if (!desc) { 747 dev_err(chan2dev(chan), 748 "%s: couldn't allocate our descriptor\n", __func__); 749 return NULL; 750 } 751 752 desc->lli.saddr = xt->src_start; 753 desc->lli.daddr = xt->dst_start; 754 desc->lli.ctrla = ctrla | xfer_count; 755 desc->lli.ctrlb = ctrlb; 756 757 desc->boundary = first->size >> dwidth; 758 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 759 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 760 761 desc->txd.cookie = -EBUSY; 762 desc->total_len = desc->len = len; 763 764 /* set end-of-link to the last link descriptor of list*/ 765 set_desc_eol(desc); 766 767 desc->txd.flags = flags; /* client is in control of this ack */ 768 769 return &desc->txd; 770 } 771 772 /** 773 * atc_prep_dma_memcpy - prepare a memcpy operation 774 * @chan: the channel to prepare operation on 775 * @dest: operation virtual destination address 776 * @src: operation virtual source address 777 * @len: operation length 778 * @flags: tx descriptor status flags 779 */ 780 static struct dma_async_tx_descriptor * 781 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 782 size_t len, unsigned long flags) 783 { 784 struct at_dma_chan *atchan = to_at_dma_chan(chan); 785 struct at_desc *desc = NULL; 786 struct at_desc *first = NULL; 787 struct at_desc *prev = NULL; 788 size_t xfer_count; 789 size_t offset; 790 unsigned int src_width; 791 unsigned int dst_width; 792 u32 ctrla; 793 u32 ctrlb; 794 795 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n", 796 &dest, &src, len, flags); 797 798 if (unlikely(!len)) { 799 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 800 return NULL; 801 } 802 803 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 804 | ATC_SRC_ADDR_MODE_INCR 805 | ATC_DST_ADDR_MODE_INCR 806 | ATC_FC_MEM2MEM; 807 808 /* 809 * We can be a lot more clever here, but this should take care 810 * of the most common optimization. 811 */ 812 src_width = dst_width = atc_get_xfer_width(src, dest, len); 813 814 ctrla = ATC_SRC_WIDTH(src_width) | 815 ATC_DST_WIDTH(dst_width); 816 817 for (offset = 0; offset < len; offset += xfer_count << src_width) { 818 xfer_count = min_t(size_t, (len - offset) >> src_width, 819 ATC_BTSIZE_MAX); 820 821 desc = atc_desc_get(atchan); 822 if (!desc) 823 goto err_desc_get; 824 825 desc->lli.saddr = src + offset; 826 desc->lli.daddr = dest + offset; 827 desc->lli.ctrla = ctrla | xfer_count; 828 desc->lli.ctrlb = ctrlb; 829 830 desc->txd.cookie = 0; 831 desc->len = xfer_count << src_width; 832 833 atc_desc_chain(&first, &prev, desc); 834 } 835 836 /* First descriptor of the chain embedds additional information */ 837 first->txd.cookie = -EBUSY; 838 first->total_len = len; 839 840 /* set end-of-link to the last link descriptor of list*/ 841 set_desc_eol(desc); 842 843 first->txd.flags = flags; /* client is in control of this ack */ 844 845 return &first->txd; 846 847 err_desc_get: 848 atc_desc_put(atchan, first); 849 return NULL; 850 } 851 852 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan, 853 dma_addr_t psrc, 854 dma_addr_t pdst, 855 size_t len) 856 { 857 struct at_dma_chan *atchan = to_at_dma_chan(chan); 858 struct at_desc *desc; 859 size_t xfer_count; 860 861 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2); 862 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 863 ATC_SRC_ADDR_MODE_FIXED | 864 ATC_DST_ADDR_MODE_INCR | 865 ATC_FC_MEM2MEM; 866 867 xfer_count = len >> 2; 868 if (xfer_count > ATC_BTSIZE_MAX) { 869 dev_err(chan2dev(chan), "%s: buffer is too big\n", 870 __func__); 871 return NULL; 872 } 873 874 desc = atc_desc_get(atchan); 875 if (!desc) { 876 dev_err(chan2dev(chan), "%s: can't get a descriptor\n", 877 __func__); 878 return NULL; 879 } 880 881 desc->lli.saddr = psrc; 882 desc->lli.daddr = pdst; 883 desc->lli.ctrla = ctrla | xfer_count; 884 desc->lli.ctrlb = ctrlb; 885 886 desc->txd.cookie = 0; 887 desc->len = len; 888 889 return desc; 890 } 891 892 /** 893 * atc_prep_dma_memset - prepare a memcpy operation 894 * @chan: the channel to prepare operation on 895 * @dest: operation virtual destination address 896 * @value: value to set memory buffer to 897 * @len: operation length 898 * @flags: tx descriptor status flags 899 */ 900 static struct dma_async_tx_descriptor * 901 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 902 size_t len, unsigned long flags) 903 { 904 struct at_dma *atdma = to_at_dma(chan->device); 905 struct at_desc *desc; 906 void __iomem *vaddr; 907 dma_addr_t paddr; 908 char fill_pattern; 909 910 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__, 911 &dest, value, len, flags); 912 913 if (unlikely(!len)) { 914 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); 915 return NULL; 916 } 917 918 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 919 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", 920 __func__); 921 return NULL; 922 } 923 924 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); 925 if (!vaddr) { 926 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 927 __func__); 928 return NULL; 929 } 930 931 /* Only the first byte of value is to be used according to dmaengine */ 932 fill_pattern = (char)value; 933 934 *(u32*)vaddr = (fill_pattern << 24) | 935 (fill_pattern << 16) | 936 (fill_pattern << 8) | 937 fill_pattern; 938 939 desc = atc_create_memset_desc(chan, paddr, dest, len); 940 if (!desc) { 941 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n", 942 __func__); 943 goto err_free_buffer; 944 } 945 946 desc->memset_paddr = paddr; 947 desc->memset_vaddr = vaddr; 948 desc->memset_buffer = true; 949 950 desc->txd.cookie = -EBUSY; 951 desc->total_len = len; 952 953 /* set end-of-link on the descriptor */ 954 set_desc_eol(desc); 955 956 desc->txd.flags = flags; 957 958 return &desc->txd; 959 960 err_free_buffer: 961 dma_pool_free(atdma->memset_pool, vaddr, paddr); 962 return NULL; 963 } 964 965 static struct dma_async_tx_descriptor * 966 atc_prep_dma_memset_sg(struct dma_chan *chan, 967 struct scatterlist *sgl, 968 unsigned int sg_len, int value, 969 unsigned long flags) 970 { 971 struct at_dma_chan *atchan = to_at_dma_chan(chan); 972 struct at_dma *atdma = to_at_dma(chan->device); 973 struct at_desc *desc = NULL, *first = NULL, *prev = NULL; 974 struct scatterlist *sg; 975 void __iomem *vaddr; 976 dma_addr_t paddr; 977 size_t total_len = 0; 978 int i; 979 980 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, 981 value, sg_len, flags); 982 983 if (unlikely(!sgl || !sg_len)) { 984 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", 985 __func__); 986 return NULL; 987 } 988 989 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); 990 if (!vaddr) { 991 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 992 __func__); 993 return NULL; 994 } 995 *(u32*)vaddr = value; 996 997 for_each_sg(sgl, sg, sg_len, i) { 998 dma_addr_t dest = sg_dma_address(sg); 999 size_t len = sg_dma_len(sg); 1000 1001 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n", 1002 __func__, &dest, len); 1003 1004 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1005 dev_err(chan2dev(chan), "%s: buffer is not aligned\n", 1006 __func__); 1007 goto err_put_desc; 1008 } 1009 1010 desc = atc_create_memset_desc(chan, paddr, dest, len); 1011 if (!desc) 1012 goto err_put_desc; 1013 1014 atc_desc_chain(&first, &prev, desc); 1015 1016 total_len += len; 1017 } 1018 1019 /* 1020 * Only set the buffer pointers on the last descriptor to 1021 * avoid free'ing while we have our transfer still going 1022 */ 1023 desc->memset_paddr = paddr; 1024 desc->memset_vaddr = vaddr; 1025 desc->memset_buffer = true; 1026 1027 first->txd.cookie = -EBUSY; 1028 first->total_len = total_len; 1029 1030 /* set end-of-link on the descriptor */ 1031 set_desc_eol(desc); 1032 1033 first->txd.flags = flags; 1034 1035 return &first->txd; 1036 1037 err_put_desc: 1038 atc_desc_put(atchan, first); 1039 return NULL; 1040 } 1041 1042 /** 1043 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 1044 * @chan: DMA channel 1045 * @sgl: scatterlist to transfer to/from 1046 * @sg_len: number of entries in @scatterlist 1047 * @direction: DMA direction 1048 * @flags: tx descriptor status flags 1049 * @context: transaction context (ignored) 1050 */ 1051 static struct dma_async_tx_descriptor * 1052 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1053 unsigned int sg_len, enum dma_transfer_direction direction, 1054 unsigned long flags, void *context) 1055 { 1056 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1057 struct at_dma_slave *atslave = chan->private; 1058 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1059 struct at_desc *first = NULL; 1060 struct at_desc *prev = NULL; 1061 u32 ctrla; 1062 u32 ctrlb; 1063 dma_addr_t reg; 1064 unsigned int reg_width; 1065 unsigned int mem_width; 1066 unsigned int i; 1067 struct scatterlist *sg; 1068 size_t total_len = 0; 1069 1070 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 1071 sg_len, 1072 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1073 flags); 1074 1075 if (unlikely(!atslave || !sg_len)) { 1076 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 1077 return NULL; 1078 } 1079 1080 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1081 | ATC_DCSIZE(sconfig->dst_maxburst); 1082 ctrlb = ATC_IEN; 1083 1084 switch (direction) { 1085 case DMA_MEM_TO_DEV: 1086 reg_width = convert_buswidth(sconfig->dst_addr_width); 1087 ctrla |= ATC_DST_WIDTH(reg_width); 1088 ctrlb |= ATC_DST_ADDR_MODE_FIXED 1089 | ATC_SRC_ADDR_MODE_INCR 1090 | ATC_FC_MEM2PER 1091 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); 1092 reg = sconfig->dst_addr; 1093 for_each_sg(sgl, sg, sg_len, i) { 1094 struct at_desc *desc; 1095 u32 len; 1096 u32 mem; 1097 1098 desc = atc_desc_get(atchan); 1099 if (!desc) 1100 goto err_desc_get; 1101 1102 mem = sg_dma_address(sg); 1103 len = sg_dma_len(sg); 1104 if (unlikely(!len)) { 1105 dev_dbg(chan2dev(chan), 1106 "prep_slave_sg: sg(%d) data length is zero\n", i); 1107 goto err; 1108 } 1109 mem_width = 2; 1110 if (unlikely(mem & 3 || len & 3)) 1111 mem_width = 0; 1112 1113 desc->lli.saddr = mem; 1114 desc->lli.daddr = reg; 1115 desc->lli.ctrla = ctrla 1116 | ATC_SRC_WIDTH(mem_width) 1117 | len >> mem_width; 1118 desc->lli.ctrlb = ctrlb; 1119 desc->len = len; 1120 1121 atc_desc_chain(&first, &prev, desc); 1122 total_len += len; 1123 } 1124 break; 1125 case DMA_DEV_TO_MEM: 1126 reg_width = convert_buswidth(sconfig->src_addr_width); 1127 ctrla |= ATC_SRC_WIDTH(reg_width); 1128 ctrlb |= ATC_DST_ADDR_MODE_INCR 1129 | ATC_SRC_ADDR_MODE_FIXED 1130 | ATC_FC_PER2MEM 1131 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); 1132 1133 reg = sconfig->src_addr; 1134 for_each_sg(sgl, sg, sg_len, i) { 1135 struct at_desc *desc; 1136 u32 len; 1137 u32 mem; 1138 1139 desc = atc_desc_get(atchan); 1140 if (!desc) 1141 goto err_desc_get; 1142 1143 mem = sg_dma_address(sg); 1144 len = sg_dma_len(sg); 1145 if (unlikely(!len)) { 1146 dev_dbg(chan2dev(chan), 1147 "prep_slave_sg: sg(%d) data length is zero\n", i); 1148 goto err; 1149 } 1150 mem_width = 2; 1151 if (unlikely(mem & 3 || len & 3)) 1152 mem_width = 0; 1153 1154 desc->lli.saddr = reg; 1155 desc->lli.daddr = mem; 1156 desc->lli.ctrla = ctrla 1157 | ATC_DST_WIDTH(mem_width) 1158 | len >> reg_width; 1159 desc->lli.ctrlb = ctrlb; 1160 desc->len = len; 1161 1162 atc_desc_chain(&first, &prev, desc); 1163 total_len += len; 1164 } 1165 break; 1166 default: 1167 return NULL; 1168 } 1169 1170 /* set end-of-link to the last link descriptor of list*/ 1171 set_desc_eol(prev); 1172 1173 /* First descriptor of the chain embedds additional information */ 1174 first->txd.cookie = -EBUSY; 1175 first->total_len = total_len; 1176 1177 /* first link descriptor of list is responsible of flags */ 1178 first->txd.flags = flags; /* client is in control of this ack */ 1179 1180 return &first->txd; 1181 1182 err_desc_get: 1183 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1184 err: 1185 atc_desc_put(atchan, first); 1186 return NULL; 1187 } 1188 1189 /* 1190 * atc_dma_cyclic_check_values 1191 * Check for too big/unaligned periods and unaligned DMA buffer 1192 */ 1193 static int 1194 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1195 size_t period_len) 1196 { 1197 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1198 goto err_out; 1199 if (unlikely(period_len & ((1 << reg_width) - 1))) 1200 goto err_out; 1201 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1202 goto err_out; 1203 1204 return 0; 1205 1206 err_out: 1207 return -EINVAL; 1208 } 1209 1210 /* 1211 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1212 */ 1213 static int 1214 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1215 unsigned int period_index, dma_addr_t buf_addr, 1216 unsigned int reg_width, size_t period_len, 1217 enum dma_transfer_direction direction) 1218 { 1219 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1220 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1221 u32 ctrla; 1222 1223 /* prepare common CRTLA value */ 1224 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1225 | ATC_DCSIZE(sconfig->dst_maxburst) 1226 | ATC_DST_WIDTH(reg_width) 1227 | ATC_SRC_WIDTH(reg_width) 1228 | period_len >> reg_width; 1229 1230 switch (direction) { 1231 case DMA_MEM_TO_DEV: 1232 desc->lli.saddr = buf_addr + (period_len * period_index); 1233 desc->lli.daddr = sconfig->dst_addr; 1234 desc->lli.ctrla = ctrla; 1235 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED 1236 | ATC_SRC_ADDR_MODE_INCR 1237 | ATC_FC_MEM2PER 1238 | ATC_SIF(atchan->mem_if) 1239 | ATC_DIF(atchan->per_if); 1240 desc->len = period_len; 1241 break; 1242 1243 case DMA_DEV_TO_MEM: 1244 desc->lli.saddr = sconfig->src_addr; 1245 desc->lli.daddr = buf_addr + (period_len * period_index); 1246 desc->lli.ctrla = ctrla; 1247 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR 1248 | ATC_SRC_ADDR_MODE_FIXED 1249 | ATC_FC_PER2MEM 1250 | ATC_SIF(atchan->per_if) 1251 | ATC_DIF(atchan->mem_if); 1252 desc->len = period_len; 1253 break; 1254 1255 default: 1256 return -EINVAL; 1257 } 1258 1259 return 0; 1260 } 1261 1262 /** 1263 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1264 * @chan: the DMA channel to prepare 1265 * @buf_addr: physical DMA address where the buffer starts 1266 * @buf_len: total number of bytes for the entire buffer 1267 * @period_len: number of bytes for each period 1268 * @direction: transfer direction, to or from device 1269 * @flags: tx descriptor status flags 1270 */ 1271 static struct dma_async_tx_descriptor * 1272 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1273 size_t period_len, enum dma_transfer_direction direction, 1274 unsigned long flags) 1275 { 1276 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1277 struct at_dma_slave *atslave = chan->private; 1278 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1279 struct at_desc *first = NULL; 1280 struct at_desc *prev = NULL; 1281 unsigned long was_cyclic; 1282 unsigned int reg_width; 1283 unsigned int periods = buf_len / period_len; 1284 unsigned int i; 1285 1286 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n", 1287 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1288 &buf_addr, 1289 periods, buf_len, period_len); 1290 1291 if (unlikely(!atslave || !buf_len || !period_len)) { 1292 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1293 return NULL; 1294 } 1295 1296 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1297 if (was_cyclic) { 1298 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1299 return NULL; 1300 } 1301 1302 if (unlikely(!is_slave_direction(direction))) 1303 goto err_out; 1304 1305 if (direction == DMA_MEM_TO_DEV) 1306 reg_width = convert_buswidth(sconfig->dst_addr_width); 1307 else 1308 reg_width = convert_buswidth(sconfig->src_addr_width); 1309 1310 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1311 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1312 goto err_out; 1313 1314 /* build cyclic linked list */ 1315 for (i = 0; i < periods; i++) { 1316 struct at_desc *desc; 1317 1318 desc = atc_desc_get(atchan); 1319 if (!desc) 1320 goto err_desc_get; 1321 1322 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1323 reg_width, period_len, direction)) 1324 goto err_desc_get; 1325 1326 atc_desc_chain(&first, &prev, desc); 1327 } 1328 1329 /* lets make a cyclic list */ 1330 prev->lli.dscr = first->txd.phys; 1331 1332 /* First descriptor of the chain embedds additional information */ 1333 first->txd.cookie = -EBUSY; 1334 first->total_len = buf_len; 1335 1336 return &first->txd; 1337 1338 err_desc_get: 1339 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1340 atc_desc_put(atchan, first); 1341 err_out: 1342 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1343 return NULL; 1344 } 1345 1346 static int atc_config(struct dma_chan *chan, 1347 struct dma_slave_config *sconfig) 1348 { 1349 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1350 1351 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1352 1353 /* Check if it is chan is configured for slave transfers */ 1354 if (!chan->private) 1355 return -EINVAL; 1356 1357 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1358 1359 convert_burst(&atchan->dma_sconfig.src_maxburst); 1360 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1361 1362 return 0; 1363 } 1364 1365 static int atc_pause(struct dma_chan *chan) 1366 { 1367 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1368 struct at_dma *atdma = to_at_dma(chan->device); 1369 int chan_id = atchan->chan_common.chan_id; 1370 unsigned long flags; 1371 1372 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1373 1374 spin_lock_irqsave(&atchan->lock, flags); 1375 1376 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1377 set_bit(ATC_IS_PAUSED, &atchan->status); 1378 1379 spin_unlock_irqrestore(&atchan->lock, flags); 1380 1381 return 0; 1382 } 1383 1384 static int atc_resume(struct dma_chan *chan) 1385 { 1386 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1387 struct at_dma *atdma = to_at_dma(chan->device); 1388 int chan_id = atchan->chan_common.chan_id; 1389 unsigned long flags; 1390 1391 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1392 1393 if (!atc_chan_is_paused(atchan)) 1394 return 0; 1395 1396 spin_lock_irqsave(&atchan->lock, flags); 1397 1398 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1399 clear_bit(ATC_IS_PAUSED, &atchan->status); 1400 1401 spin_unlock_irqrestore(&atchan->lock, flags); 1402 1403 return 0; 1404 } 1405 1406 static int atc_terminate_all(struct dma_chan *chan) 1407 { 1408 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1409 struct at_dma *atdma = to_at_dma(chan->device); 1410 int chan_id = atchan->chan_common.chan_id; 1411 unsigned long flags; 1412 1413 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1414 1415 /* 1416 * This is only called when something went wrong elsewhere, so 1417 * we don't really care about the data. Just disable the 1418 * channel. We still have to poll the channel enable bit due 1419 * to AHB/HSB limitations. 1420 */ 1421 spin_lock_irqsave(&atchan->lock, flags); 1422 1423 /* disabling channel: must also remove suspend state */ 1424 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1425 1426 /* confirm that this channel is disabled */ 1427 while (dma_readl(atdma, CHSR) & atchan->mask) 1428 cpu_relax(); 1429 1430 /* active_list entries will end up before queued entries */ 1431 list_splice_tail_init(&atchan->queue, &atchan->free_list); 1432 list_splice_tail_init(&atchan->active_list, &atchan->free_list); 1433 1434 clear_bit(ATC_IS_PAUSED, &atchan->status); 1435 /* if channel dedicated to cyclic operations, free it */ 1436 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1437 1438 spin_unlock_irqrestore(&atchan->lock, flags); 1439 1440 return 0; 1441 } 1442 1443 /** 1444 * atc_tx_status - poll for transaction completion 1445 * @chan: DMA channel 1446 * @cookie: transaction identifier to check status of 1447 * @txstate: if not %NULL updated with transaction state 1448 * 1449 * If @txstate is passed in, upon return it reflect the driver 1450 * internal state and can be used with dma_async_is_complete() to check 1451 * the status of multiple cookies without re-checking hardware state. 1452 */ 1453 static enum dma_status 1454 atc_tx_status(struct dma_chan *chan, 1455 dma_cookie_t cookie, 1456 struct dma_tx_state *txstate) 1457 { 1458 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1459 unsigned long flags; 1460 enum dma_status ret; 1461 int bytes = 0; 1462 1463 ret = dma_cookie_status(chan, cookie, txstate); 1464 if (ret == DMA_COMPLETE) 1465 return ret; 1466 /* 1467 * There's no point calculating the residue if there's 1468 * no txstate to store the value. 1469 */ 1470 if (!txstate) 1471 return DMA_ERROR; 1472 1473 spin_lock_irqsave(&atchan->lock, flags); 1474 1475 /* Get number of bytes left in the active transactions */ 1476 bytes = atc_get_bytes_left(chan, cookie); 1477 1478 spin_unlock_irqrestore(&atchan->lock, flags); 1479 1480 if (unlikely(bytes < 0)) { 1481 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1482 return DMA_ERROR; 1483 } else { 1484 dma_set_residue(txstate, bytes); 1485 } 1486 1487 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", 1488 ret, cookie, bytes); 1489 1490 return ret; 1491 } 1492 1493 /** 1494 * atc_issue_pending - takes the first transaction descriptor in the pending 1495 * queue and starts the transfer. 1496 * @chan: target DMA channel 1497 */ 1498 static void atc_issue_pending(struct dma_chan *chan) 1499 { 1500 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1501 struct at_desc *desc; 1502 unsigned long flags; 1503 1504 dev_vdbg(chan2dev(chan), "issue_pending\n"); 1505 1506 spin_lock_irqsave(&atchan->lock, flags); 1507 if (atc_chan_is_enabled(atchan) || list_empty(&atchan->queue)) 1508 return spin_unlock_irqrestore(&atchan->lock, flags); 1509 1510 desc = atc_first_queued(atchan); 1511 list_move_tail(&desc->desc_node, &atchan->active_list); 1512 atc_dostart(atchan, desc); 1513 spin_unlock_irqrestore(&atchan->lock, flags); 1514 } 1515 1516 /** 1517 * atc_alloc_chan_resources - allocate resources for DMA channel 1518 * @chan: allocate descriptor resources for this channel 1519 * 1520 * return - the number of allocated descriptors 1521 */ 1522 static int atc_alloc_chan_resources(struct dma_chan *chan) 1523 { 1524 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1525 struct at_dma *atdma = to_at_dma(chan->device); 1526 struct at_desc *desc; 1527 struct at_dma_slave *atslave; 1528 int i; 1529 u32 cfg; 1530 1531 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1532 1533 /* ASSERT: channel is idle */ 1534 if (atc_chan_is_enabled(atchan)) { 1535 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1536 return -EIO; 1537 } 1538 1539 if (!list_empty(&atchan->free_list)) { 1540 dev_dbg(chan2dev(chan), "can't allocate channel resources (channel not freed from a previous use)\n"); 1541 return -EIO; 1542 } 1543 1544 cfg = ATC_DEFAULT_CFG; 1545 1546 atslave = chan->private; 1547 if (atslave) { 1548 /* 1549 * We need controller-specific data to set up slave 1550 * transfers. 1551 */ 1552 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); 1553 1554 /* if cfg configuration specified take it instead of default */ 1555 if (atslave->cfg) 1556 cfg = atslave->cfg; 1557 } 1558 1559 /* Allocate initial pool of descriptors */ 1560 for (i = 0; i < init_nr_desc_per_channel; i++) { 1561 desc = atc_alloc_descriptor(chan, GFP_KERNEL); 1562 if (!desc) { 1563 dev_err(atdma->dma_common.dev, 1564 "Only %d initial descriptors\n", i); 1565 break; 1566 } 1567 list_add_tail(&desc->desc_node, &atchan->free_list); 1568 } 1569 1570 dma_cookie_init(chan); 1571 1572 /* channel parameters */ 1573 channel_writel(atchan, CFG, cfg); 1574 1575 dev_dbg(chan2dev(chan), 1576 "alloc_chan_resources: allocated %d descriptors\n", i); 1577 1578 return i; 1579 } 1580 1581 /** 1582 * atc_free_chan_resources - free all channel resources 1583 * @chan: DMA channel 1584 */ 1585 static void atc_free_chan_resources(struct dma_chan *chan) 1586 { 1587 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1588 struct at_dma *atdma = to_at_dma(chan->device); 1589 struct at_desc *desc, *_desc; 1590 LIST_HEAD(list); 1591 1592 /* ASSERT: channel is idle */ 1593 BUG_ON(!list_empty(&atchan->active_list)); 1594 BUG_ON(!list_empty(&atchan->queue)); 1595 BUG_ON(atc_chan_is_enabled(atchan)); 1596 1597 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 1598 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); 1599 list_del(&desc->desc_node); 1600 /* free link descriptor */ 1601 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); 1602 } 1603 list_splice_init(&atchan->free_list, &list); 1604 atchan->status = 0; 1605 1606 /* 1607 * Free atslave allocated in at_dma_xlate() 1608 */ 1609 kfree(chan->private); 1610 chan->private = NULL; 1611 1612 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1613 } 1614 1615 #ifdef CONFIG_OF 1616 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1617 { 1618 struct at_dma_slave *atslave = slave; 1619 1620 if (atslave->dma_dev == chan->device->dev) { 1621 chan->private = atslave; 1622 return true; 1623 } else { 1624 return false; 1625 } 1626 } 1627 1628 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1629 struct of_dma *of_dma) 1630 { 1631 struct dma_chan *chan; 1632 struct at_dma_chan *atchan; 1633 struct at_dma_slave *atslave; 1634 dma_cap_mask_t mask; 1635 unsigned int per_id; 1636 struct platform_device *dmac_pdev; 1637 1638 if (dma_spec->args_count != 2) 1639 return NULL; 1640 1641 dmac_pdev = of_find_device_by_node(dma_spec->np); 1642 if (!dmac_pdev) 1643 return NULL; 1644 1645 dma_cap_zero(mask); 1646 dma_cap_set(DMA_SLAVE, mask); 1647 1648 atslave = kmalloc(sizeof(*atslave), GFP_KERNEL); 1649 if (!atslave) { 1650 put_device(&dmac_pdev->dev); 1651 return NULL; 1652 } 1653 1654 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; 1655 /* 1656 * We can fill both SRC_PER and DST_PER, one of these fields will be 1657 * ignored depending on DMA transfer direction. 1658 */ 1659 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1660 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) 1661 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); 1662 /* 1663 * We have to translate the value we get from the device tree since 1664 * the half FIFO configuration value had to be 0 to keep backward 1665 * compatibility. 1666 */ 1667 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1668 case AT91_DMA_CFG_FIFOCFG_ALAP: 1669 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; 1670 break; 1671 case AT91_DMA_CFG_FIFOCFG_ASAP: 1672 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; 1673 break; 1674 case AT91_DMA_CFG_FIFOCFG_HALF: 1675 default: 1676 atslave->cfg |= ATC_FIFOCFG_HALFFIFO; 1677 } 1678 atslave->dma_dev = &dmac_pdev->dev; 1679 1680 chan = dma_request_channel(mask, at_dma_filter, atslave); 1681 if (!chan) { 1682 put_device(&dmac_pdev->dev); 1683 kfree(atslave); 1684 return NULL; 1685 } 1686 1687 atchan = to_at_dma_chan(chan); 1688 atchan->per_if = dma_spec->args[0] & 0xff; 1689 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1690 1691 return chan; 1692 } 1693 #else 1694 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1695 struct of_dma *of_dma) 1696 { 1697 return NULL; 1698 } 1699 #endif 1700 1701 /*-- Module Management -----------------------------------------------*/ 1702 1703 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1704 static struct at_dma_platform_data at91sam9rl_config = { 1705 .nr_channels = 2, 1706 }; 1707 static struct at_dma_platform_data at91sam9g45_config = { 1708 .nr_channels = 8, 1709 }; 1710 1711 #if defined(CONFIG_OF) 1712 static const struct of_device_id atmel_dma_dt_ids[] = { 1713 { 1714 .compatible = "atmel,at91sam9rl-dma", 1715 .data = &at91sam9rl_config, 1716 }, { 1717 .compatible = "atmel,at91sam9g45-dma", 1718 .data = &at91sam9g45_config, 1719 }, { 1720 /* sentinel */ 1721 } 1722 }; 1723 1724 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1725 #endif 1726 1727 static const struct platform_device_id atdma_devtypes[] = { 1728 { 1729 .name = "at91sam9rl_dma", 1730 .driver_data = (unsigned long) &at91sam9rl_config, 1731 }, { 1732 .name = "at91sam9g45_dma", 1733 .driver_data = (unsigned long) &at91sam9g45_config, 1734 }, { 1735 /* sentinel */ 1736 } 1737 }; 1738 1739 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1740 struct platform_device *pdev) 1741 { 1742 if (pdev->dev.of_node) { 1743 const struct of_device_id *match; 1744 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1745 if (match == NULL) 1746 return NULL; 1747 return match->data; 1748 } 1749 return (struct at_dma_platform_data *) 1750 platform_get_device_id(pdev)->driver_data; 1751 } 1752 1753 /** 1754 * at_dma_off - disable DMA controller 1755 * @atdma: the Atmel HDAMC device 1756 */ 1757 static void at_dma_off(struct at_dma *atdma) 1758 { 1759 dma_writel(atdma, EN, 0); 1760 1761 /* disable all interrupts */ 1762 dma_writel(atdma, EBCIDR, -1L); 1763 1764 /* confirm that all channels are disabled */ 1765 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1766 cpu_relax(); 1767 } 1768 1769 static int __init at_dma_probe(struct platform_device *pdev) 1770 { 1771 struct resource *io; 1772 struct at_dma *atdma; 1773 size_t size; 1774 int irq; 1775 int err; 1776 int i; 1777 const struct at_dma_platform_data *plat_dat; 1778 1779 /* setup platform data for each SoC */ 1780 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1781 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1782 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1783 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); 1784 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); 1785 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); 1786 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1787 1788 /* get DMA parameters from controller type */ 1789 plat_dat = at_dma_get_driver_data(pdev); 1790 if (!plat_dat) 1791 return -ENODEV; 1792 1793 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1794 if (!io) 1795 return -EINVAL; 1796 1797 irq = platform_get_irq(pdev, 0); 1798 if (irq < 0) 1799 return irq; 1800 1801 size = sizeof(struct at_dma); 1802 size += plat_dat->nr_channels * sizeof(struct at_dma_chan); 1803 atdma = kzalloc(size, GFP_KERNEL); 1804 if (!atdma) 1805 return -ENOMEM; 1806 1807 /* discover transaction capabilities */ 1808 atdma->dma_common.cap_mask = plat_dat->cap_mask; 1809 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1810 1811 size = resource_size(io); 1812 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { 1813 err = -EBUSY; 1814 goto err_kfree; 1815 } 1816 1817 atdma->regs = ioremap(io->start, size); 1818 if (!atdma->regs) { 1819 err = -ENOMEM; 1820 goto err_release_r; 1821 } 1822 1823 atdma->clk = clk_get(&pdev->dev, "dma_clk"); 1824 if (IS_ERR(atdma->clk)) { 1825 err = PTR_ERR(atdma->clk); 1826 goto err_clk; 1827 } 1828 err = clk_prepare_enable(atdma->clk); 1829 if (err) 1830 goto err_clk_prepare; 1831 1832 /* force dma off, just in case */ 1833 at_dma_off(atdma); 1834 1835 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1836 if (err) 1837 goto err_irq; 1838 1839 platform_set_drvdata(pdev, atdma); 1840 1841 /* create a pool of consistent memory blocks for hardware descriptors */ 1842 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", 1843 &pdev->dev, sizeof(struct at_desc), 1844 4 /* word alignment */, 0); 1845 if (!atdma->dma_desc_pool) { 1846 dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); 1847 err = -ENOMEM; 1848 goto err_desc_pool_create; 1849 } 1850 1851 /* create a pool of consistent memory blocks for memset blocks */ 1852 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", 1853 &pdev->dev, sizeof(int), 4, 0); 1854 if (!atdma->memset_pool) { 1855 dev_err(&pdev->dev, "No memory for memset dma pool\n"); 1856 err = -ENOMEM; 1857 goto err_memset_pool_create; 1858 } 1859 1860 /* clear any pending interrupt */ 1861 while (dma_readl(atdma, EBCISR)) 1862 cpu_relax(); 1863 1864 /* initialize channels related values */ 1865 INIT_LIST_HEAD(&atdma->dma_common.channels); 1866 for (i = 0; i < plat_dat->nr_channels; i++) { 1867 struct at_dma_chan *atchan = &atdma->chan[i]; 1868 1869 atchan->mem_if = AT_DMA_MEM_IF; 1870 atchan->per_if = AT_DMA_PER_IF; 1871 atchan->chan_common.device = &atdma->dma_common; 1872 dma_cookie_init(&atchan->chan_common); 1873 list_add_tail(&atchan->chan_common.device_node, 1874 &atdma->dma_common.channels); 1875 1876 atchan->ch_regs = atdma->regs + ch_regs(i); 1877 spin_lock_init(&atchan->lock); 1878 atchan->mask = 1 << i; 1879 1880 INIT_LIST_HEAD(&atchan->active_list); 1881 INIT_LIST_HEAD(&atchan->queue); 1882 INIT_LIST_HEAD(&atchan->free_list); 1883 1884 tasklet_setup(&atchan->tasklet, atc_tasklet); 1885 atc_enable_chan_irq(atdma, i); 1886 } 1887 1888 /* set base routines */ 1889 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; 1890 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; 1891 atdma->dma_common.device_tx_status = atc_tx_status; 1892 atdma->dma_common.device_issue_pending = atc_issue_pending; 1893 atdma->dma_common.dev = &pdev->dev; 1894 1895 /* set prep routines based on capability */ 1896 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) 1897 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; 1898 1899 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) 1900 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; 1901 1902 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) { 1903 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset; 1904 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; 1905 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES; 1906 } 1907 1908 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { 1909 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; 1910 /* controller can do slave DMA: can trigger cyclic transfers */ 1911 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); 1912 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; 1913 atdma->dma_common.device_config = atc_config; 1914 atdma->dma_common.device_pause = atc_pause; 1915 atdma->dma_common.device_resume = atc_resume; 1916 atdma->dma_common.device_terminate_all = atc_terminate_all; 1917 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; 1918 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; 1919 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1920 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1921 } 1922 1923 dma_writel(atdma, EN, AT_DMA_ENABLE); 1924 1925 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n", 1926 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", 1927 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "", 1928 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", 1929 plat_dat->nr_channels); 1930 1931 err = dma_async_device_register(&atdma->dma_common); 1932 if (err) { 1933 dev_err(&pdev->dev, "Unable to register: %d.\n", err); 1934 goto err_dma_async_device_register; 1935 } 1936 1937 /* 1938 * Do not return an error if the dmac node is not present in order to 1939 * not break the existing way of requesting channel with 1940 * dma_request_channel(). 1941 */ 1942 if (pdev->dev.of_node) { 1943 err = of_dma_controller_register(pdev->dev.of_node, 1944 at_dma_xlate, atdma); 1945 if (err) { 1946 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 1947 goto err_of_dma_controller_register; 1948 } 1949 } 1950 1951 return 0; 1952 1953 err_of_dma_controller_register: 1954 dma_async_device_unregister(&atdma->dma_common); 1955 err_dma_async_device_register: 1956 dma_pool_destroy(atdma->memset_pool); 1957 err_memset_pool_create: 1958 dma_pool_destroy(atdma->dma_desc_pool); 1959 err_desc_pool_create: 1960 free_irq(platform_get_irq(pdev, 0), atdma); 1961 err_irq: 1962 clk_disable_unprepare(atdma->clk); 1963 err_clk_prepare: 1964 clk_put(atdma->clk); 1965 err_clk: 1966 iounmap(atdma->regs); 1967 atdma->regs = NULL; 1968 err_release_r: 1969 release_mem_region(io->start, size); 1970 err_kfree: 1971 kfree(atdma); 1972 return err; 1973 } 1974 1975 static int at_dma_remove(struct platform_device *pdev) 1976 { 1977 struct at_dma *atdma = platform_get_drvdata(pdev); 1978 struct dma_chan *chan, *_chan; 1979 struct resource *io; 1980 1981 at_dma_off(atdma); 1982 if (pdev->dev.of_node) 1983 of_dma_controller_free(pdev->dev.of_node); 1984 dma_async_device_unregister(&atdma->dma_common); 1985 1986 dma_pool_destroy(atdma->memset_pool); 1987 dma_pool_destroy(atdma->dma_desc_pool); 1988 free_irq(platform_get_irq(pdev, 0), atdma); 1989 1990 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 1991 device_node) { 1992 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1993 1994 /* Disable interrupts */ 1995 atc_disable_chan_irq(atdma, chan->chan_id); 1996 1997 tasklet_kill(&atchan->tasklet); 1998 list_del(&chan->device_node); 1999 } 2000 2001 clk_disable_unprepare(atdma->clk); 2002 clk_put(atdma->clk); 2003 2004 iounmap(atdma->regs); 2005 atdma->regs = NULL; 2006 2007 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2008 release_mem_region(io->start, resource_size(io)); 2009 2010 kfree(atdma); 2011 2012 return 0; 2013 } 2014 2015 static void at_dma_shutdown(struct platform_device *pdev) 2016 { 2017 struct at_dma *atdma = platform_get_drvdata(pdev); 2018 2019 at_dma_off(platform_get_drvdata(pdev)); 2020 clk_disable_unprepare(atdma->clk); 2021 } 2022 2023 static int at_dma_prepare(struct device *dev) 2024 { 2025 struct at_dma *atdma = dev_get_drvdata(dev); 2026 struct dma_chan *chan, *_chan; 2027 2028 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2029 device_node) { 2030 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2031 /* wait for transaction completion (except in cyclic case) */ 2032 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 2033 return -EAGAIN; 2034 } 2035 return 0; 2036 } 2037 2038 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 2039 { 2040 struct dma_chan *chan = &atchan->chan_common; 2041 2042 /* Channel should be paused by user 2043 * do it anyway even if it is not done already */ 2044 if (!atc_chan_is_paused(atchan)) { 2045 dev_warn(chan2dev(chan), 2046 "cyclic channel not paused, should be done by channel user\n"); 2047 atc_pause(chan); 2048 } 2049 2050 /* now preserve additional data for cyclic operations */ 2051 /* next descriptor address in the cyclic list */ 2052 atchan->save_dscr = channel_readl(atchan, DSCR); 2053 2054 vdbg_dump_regs(atchan); 2055 } 2056 2057 static int at_dma_suspend_noirq(struct device *dev) 2058 { 2059 struct at_dma *atdma = dev_get_drvdata(dev); 2060 struct dma_chan *chan, *_chan; 2061 2062 /* preserve data */ 2063 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2064 device_node) { 2065 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2066 2067 if (atc_chan_is_cyclic(atchan)) 2068 atc_suspend_cyclic(atchan); 2069 atchan->save_cfg = channel_readl(atchan, CFG); 2070 } 2071 atdma->save_imr = dma_readl(atdma, EBCIMR); 2072 2073 /* disable DMA controller */ 2074 at_dma_off(atdma); 2075 clk_disable_unprepare(atdma->clk); 2076 return 0; 2077 } 2078 2079 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2080 { 2081 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 2082 2083 /* restore channel status for cyclic descriptors list: 2084 * next descriptor in the cyclic list at the time of suspend */ 2085 channel_writel(atchan, SADDR, 0); 2086 channel_writel(atchan, DADDR, 0); 2087 channel_writel(atchan, CTRLA, 0); 2088 channel_writel(atchan, CTRLB, 0); 2089 channel_writel(atchan, DSCR, atchan->save_dscr); 2090 dma_writel(atdma, CHER, atchan->mask); 2091 2092 /* channel pause status should be removed by channel user 2093 * We cannot take the initiative to do it here */ 2094 2095 vdbg_dump_regs(atchan); 2096 } 2097 2098 static int at_dma_resume_noirq(struct device *dev) 2099 { 2100 struct at_dma *atdma = dev_get_drvdata(dev); 2101 struct dma_chan *chan, *_chan; 2102 2103 /* bring back DMA controller */ 2104 clk_prepare_enable(atdma->clk); 2105 dma_writel(atdma, EN, AT_DMA_ENABLE); 2106 2107 /* clear any pending interrupt */ 2108 while (dma_readl(atdma, EBCISR)) 2109 cpu_relax(); 2110 2111 /* restore saved data */ 2112 dma_writel(atdma, EBCIER, atdma->save_imr); 2113 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2114 device_node) { 2115 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2116 2117 channel_writel(atchan, CFG, atchan->save_cfg); 2118 if (atc_chan_is_cyclic(atchan)) 2119 atc_resume_cyclic(atchan); 2120 } 2121 return 0; 2122 } 2123 2124 static const struct dev_pm_ops at_dma_dev_pm_ops = { 2125 .prepare = at_dma_prepare, 2126 .suspend_noirq = at_dma_suspend_noirq, 2127 .resume_noirq = at_dma_resume_noirq, 2128 }; 2129 2130 static struct platform_driver at_dma_driver = { 2131 .remove = at_dma_remove, 2132 .shutdown = at_dma_shutdown, 2133 .id_table = atdma_devtypes, 2134 .driver = { 2135 .name = "at_hdmac", 2136 .pm = &at_dma_dev_pm_ops, 2137 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2138 }, 2139 }; 2140 2141 static int __init at_dma_init(void) 2142 { 2143 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2144 } 2145 subsys_initcall(at_dma_init); 2146 2147 static void __exit at_dma_exit(void) 2148 { 2149 platform_driver_unregister(&at_dma_driver); 2150 } 2151 module_exit(at_dma_exit); 2152 2153 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2154 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2155 MODULE_LICENSE("GPL"); 2156 MODULE_ALIAS("platform:at_hdmac"); 2157