xref: /openbmc/linux/drivers/dma/apple-admac.c (revision 519b58bbfa825f042fcf80261cc18e1e35f85ffd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Audio DMA Controller (ADMAC) on t8103 (M1) and other Apple chips
4  *
5  * Copyright (C) The Asahi Linux Contributors
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/of_dma.h>
15 #include <linux/reset.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 
19 #include "dmaengine.h"
20 
21 #define NCHANNELS_MAX	64
22 #define IRQ_NOUTPUTS	4
23 
24 #define RING_WRITE_SLOT		GENMASK(1, 0)
25 #define RING_READ_SLOT		GENMASK(5, 4)
26 #define RING_FULL		BIT(9)
27 #define RING_EMPTY		BIT(8)
28 #define RING_ERR		BIT(10)
29 
30 #define STATUS_DESC_DONE	BIT(0)
31 #define STATUS_ERR		BIT(6)
32 
33 #define FLAG_DESC_NOTIFY	BIT(16)
34 
35 #define REG_TX_START		0x0000
36 #define REG_TX_STOP		0x0004
37 #define REG_RX_START		0x0008
38 #define REG_RX_STOP		0x000c
39 
40 #define REG_CHAN_CTL(ch)	(0x8000 + (ch) * 0x200)
41 #define REG_CHAN_CTL_RST_RINGS	BIT(0)
42 
43 #define REG_DESC_RING(ch)	(0x8070 + (ch) * 0x200)
44 #define REG_REPORT_RING(ch)	(0x8074 + (ch) * 0x200)
45 
46 #define REG_RESIDUE(ch)		(0x8064 + (ch) * 0x200)
47 
48 #define REG_BUS_WIDTH(ch)	(0x8040 + (ch) * 0x200)
49 
50 #define BUS_WIDTH_8BIT		0x00
51 #define BUS_WIDTH_16BIT		0x01
52 #define BUS_WIDTH_32BIT		0x02
53 #define BUS_WIDTH_FRAME_2_WORDS	0x10
54 #define BUS_WIDTH_FRAME_4_WORDS	0x20
55 
56 #define CHAN_BUFSIZE		0x8000
57 
58 #define REG_CHAN_FIFOCTL(ch)	(0x8054 + (ch) * 0x200)
59 #define CHAN_FIFOCTL_LIMIT	GENMASK(31, 16)
60 #define CHAN_FIFOCTL_THRESHOLD	GENMASK(15, 0)
61 
62 #define REG_DESC_WRITE(ch)	(0x10000 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000)
63 #define REG_REPORT_READ(ch)	(0x10100 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000)
64 
65 #define REG_TX_INTSTATE(idx)		(0x0030 + (idx) * 4)
66 #define REG_RX_INTSTATE(idx)		(0x0040 + (idx) * 4)
67 #define REG_CHAN_INTSTATUS(ch, idx)	(0x8010 + (ch) * 0x200 + (idx) * 4)
68 #define REG_CHAN_INTMASK(ch, idx)	(0x8020 + (ch) * 0x200 + (idx) * 4)
69 
70 struct admac_data;
71 struct admac_tx;
72 
73 struct admac_chan {
74 	unsigned int no;
75 	struct admac_data *host;
76 	struct dma_chan chan;
77 	struct tasklet_struct tasklet;
78 
79 	spinlock_t lock;
80 	struct admac_tx *current_tx;
81 	int nperiod_acks;
82 
83 	/*
84 	 * We maintain a 'submitted' and 'issued' list mainly for interface
85 	 * correctness. Typical use of the driver (per channel) will be
86 	 * prepping, submitting and issuing a single cyclic transaction which
87 	 * will stay current until terminate_all is called.
88 	 */
89 	struct list_head submitted;
90 	struct list_head issued;
91 
92 	struct list_head to_free;
93 };
94 
95 struct admac_data {
96 	struct dma_device dma;
97 	struct device *dev;
98 	__iomem void *base;
99 	struct reset_control *rstc;
100 
101 	int irq;
102 	int irq_index;
103 	int nchannels;
104 	struct admac_chan channels[];
105 };
106 
107 struct admac_tx {
108 	struct dma_async_tx_descriptor tx;
109 	bool cyclic;
110 	dma_addr_t buf_addr;
111 	dma_addr_t buf_end;
112 	size_t buf_len;
113 	size_t period_len;
114 
115 	size_t submitted_pos;
116 	size_t reclaimed_pos;
117 
118 	struct list_head node;
119 };
120 
121 static void admac_modify(struct admac_data *ad, int reg, u32 mask, u32 val)
122 {
123 	void __iomem *addr = ad->base + reg;
124 	u32 curr = readl_relaxed(addr);
125 
126 	writel_relaxed((curr & ~mask) | (val & mask), addr);
127 }
128 
129 static struct admac_chan *to_admac_chan(struct dma_chan *chan)
130 {
131 	return container_of(chan, struct admac_chan, chan);
132 }
133 
134 static struct admac_tx *to_admac_tx(struct dma_async_tx_descriptor *tx)
135 {
136 	return container_of(tx, struct admac_tx, tx);
137 }
138 
139 static enum dma_transfer_direction admac_chan_direction(int channo)
140 {
141 	/* Channel directions are hardwired */
142 	return (channo & 1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
143 }
144 
145 static dma_cookie_t admac_tx_submit(struct dma_async_tx_descriptor *tx)
146 {
147 	struct admac_tx *adtx = to_admac_tx(tx);
148 	struct admac_chan *adchan = to_admac_chan(tx->chan);
149 	unsigned long flags;
150 	dma_cookie_t cookie;
151 
152 	spin_lock_irqsave(&adchan->lock, flags);
153 	cookie = dma_cookie_assign(tx);
154 	list_add_tail(&adtx->node, &adchan->submitted);
155 	spin_unlock_irqrestore(&adchan->lock, flags);
156 
157 	return cookie;
158 }
159 
160 static int admac_desc_free(struct dma_async_tx_descriptor *tx)
161 {
162 	kfree(to_admac_tx(tx));
163 
164 	return 0;
165 }
166 
167 static struct dma_async_tx_descriptor *admac_prep_dma_cyclic(
168 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
169 		size_t period_len, enum dma_transfer_direction direction,
170 		unsigned long flags)
171 {
172 	struct admac_chan *adchan = container_of(chan, struct admac_chan, chan);
173 	struct admac_tx *adtx;
174 
175 	if (direction != admac_chan_direction(adchan->no))
176 		return NULL;
177 
178 	adtx = kzalloc(sizeof(*adtx), GFP_NOWAIT);
179 	if (!adtx)
180 		return NULL;
181 
182 	adtx->cyclic = true;
183 
184 	adtx->buf_addr = buf_addr;
185 	adtx->buf_len = buf_len;
186 	adtx->buf_end = buf_addr + buf_len;
187 	adtx->period_len = period_len;
188 
189 	adtx->submitted_pos = 0;
190 	adtx->reclaimed_pos = 0;
191 
192 	dma_async_tx_descriptor_init(&adtx->tx, chan);
193 	adtx->tx.tx_submit = admac_tx_submit;
194 	adtx->tx.desc_free = admac_desc_free;
195 
196 	return &adtx->tx;
197 }
198 
199 /*
200  * Write one hardware descriptor for a dmaengine cyclic transaction.
201  */
202 static void admac_cyclic_write_one_desc(struct admac_data *ad, int channo,
203 					struct admac_tx *tx)
204 {
205 	dma_addr_t addr;
206 
207 	addr = tx->buf_addr + (tx->submitted_pos % tx->buf_len);
208 
209 	/* If happens means we have buggy code */
210 	WARN_ON_ONCE(addr + tx->period_len > tx->buf_end);
211 
212 	dev_dbg(ad->dev, "ch%d descriptor: addr=0x%pad len=0x%zx flags=0x%lx\n",
213 		channo, &addr, tx->period_len, FLAG_DESC_NOTIFY);
214 
215 	writel_relaxed(lower_32_bits(addr), ad->base + REG_DESC_WRITE(channo));
216 	writel_relaxed(upper_32_bits(addr), ad->base + REG_DESC_WRITE(channo));
217 	writel_relaxed(tx->period_len,      ad->base + REG_DESC_WRITE(channo));
218 	writel_relaxed(FLAG_DESC_NOTIFY,    ad->base + REG_DESC_WRITE(channo));
219 
220 	tx->submitted_pos += tx->period_len;
221 	tx->submitted_pos %= 2 * tx->buf_len;
222 }
223 
224 /*
225  * Write all the hardware descriptors for a dmaengine cyclic
226  * transaction there is space for.
227  */
228 static void admac_cyclic_write_desc(struct admac_data *ad, int channo,
229 				    struct admac_tx *tx)
230 {
231 	int i;
232 
233 	for (i = 0; i < 4; i++) {
234 		if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_FULL)
235 			break;
236 		admac_cyclic_write_one_desc(ad, channo, tx);
237 	}
238 }
239 
240 static int admac_ring_noccupied_slots(int ringval)
241 {
242 	int wrslot = FIELD_GET(RING_WRITE_SLOT, ringval);
243 	int rdslot = FIELD_GET(RING_READ_SLOT, ringval);
244 
245 	if (wrslot != rdslot) {
246 		return (wrslot + 4 - rdslot) % 4;
247 	} else {
248 		WARN_ON((ringval & (RING_FULL | RING_EMPTY)) == 0);
249 
250 		if (ringval & RING_FULL)
251 			return 4;
252 		else
253 			return 0;
254 	}
255 }
256 
257 /*
258  * Read from hardware the residue of a cyclic dmaengine transaction.
259  */
260 static u32 admac_cyclic_read_residue(struct admac_data *ad, int channo,
261 				     struct admac_tx *adtx)
262 {
263 	u32 ring1, ring2;
264 	u32 residue1, residue2;
265 	int nreports;
266 	size_t pos;
267 
268 	ring1 =    readl_relaxed(ad->base + REG_REPORT_RING(channo));
269 	residue1 = readl_relaxed(ad->base + REG_RESIDUE(channo));
270 	ring2 =    readl_relaxed(ad->base + REG_REPORT_RING(channo));
271 	residue2 = readl_relaxed(ad->base + REG_RESIDUE(channo));
272 
273 	if (residue2 > residue1) {
274 		/*
275 		 * Controller must have loaded next descriptor between
276 		 * the two residue reads
277 		 */
278 		nreports = admac_ring_noccupied_slots(ring1) + 1;
279 	} else {
280 		/* No descriptor load between the two reads, ring2 is safe to use */
281 		nreports = admac_ring_noccupied_slots(ring2);
282 	}
283 
284 	pos = adtx->reclaimed_pos + adtx->period_len * (nreports + 1) - residue2;
285 
286 	return adtx->buf_len - pos % adtx->buf_len;
287 }
288 
289 static enum dma_status admac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
290 				       struct dma_tx_state *txstate)
291 {
292 	struct admac_chan *adchan = to_admac_chan(chan);
293 	struct admac_data *ad = adchan->host;
294 	struct admac_tx *adtx;
295 
296 	enum dma_status ret;
297 	size_t residue;
298 	unsigned long flags;
299 
300 	ret = dma_cookie_status(chan, cookie, txstate);
301 	if (ret == DMA_COMPLETE || !txstate)
302 		return ret;
303 
304 	spin_lock_irqsave(&adchan->lock, flags);
305 	adtx = adchan->current_tx;
306 
307 	if (adtx && adtx->tx.cookie == cookie) {
308 		ret = DMA_IN_PROGRESS;
309 		residue = admac_cyclic_read_residue(ad, adchan->no, adtx);
310 	} else {
311 		ret = DMA_IN_PROGRESS;
312 		residue = 0;
313 		list_for_each_entry(adtx, &adchan->issued, node) {
314 			if (adtx->tx.cookie == cookie) {
315 				residue = adtx->buf_len;
316 				break;
317 			}
318 		}
319 	}
320 	spin_unlock_irqrestore(&adchan->lock, flags);
321 
322 	dma_set_residue(txstate, residue);
323 	return ret;
324 }
325 
326 static void admac_start_chan(struct admac_chan *adchan)
327 {
328 	struct admac_data *ad = adchan->host;
329 	u32 startbit = 1 << (adchan->no / 2);
330 
331 	writel_relaxed(STATUS_DESC_DONE | STATUS_ERR,
332 		       ad->base + REG_CHAN_INTSTATUS(adchan->no, ad->irq_index));
333 	writel_relaxed(STATUS_DESC_DONE | STATUS_ERR,
334 		       ad->base + REG_CHAN_INTMASK(adchan->no, ad->irq_index));
335 
336 	switch (admac_chan_direction(adchan->no)) {
337 	case DMA_MEM_TO_DEV:
338 		writel_relaxed(startbit, ad->base + REG_TX_START);
339 		break;
340 	case DMA_DEV_TO_MEM:
341 		writel_relaxed(startbit, ad->base + REG_RX_START);
342 		break;
343 	default:
344 		break;
345 	}
346 	dev_dbg(adchan->host->dev, "ch%d start\n", adchan->no);
347 }
348 
349 static void admac_stop_chan(struct admac_chan *adchan)
350 {
351 	struct admac_data *ad = adchan->host;
352 	u32 stopbit = 1 << (adchan->no / 2);
353 
354 	switch (admac_chan_direction(adchan->no)) {
355 	case DMA_MEM_TO_DEV:
356 		writel_relaxed(stopbit, ad->base + REG_TX_STOP);
357 		break;
358 	case DMA_DEV_TO_MEM:
359 		writel_relaxed(stopbit, ad->base + REG_RX_STOP);
360 		break;
361 	default:
362 		break;
363 	}
364 	dev_dbg(adchan->host->dev, "ch%d stop\n", adchan->no);
365 }
366 
367 static void admac_reset_rings(struct admac_chan *adchan)
368 {
369 	struct admac_data *ad = adchan->host;
370 
371 	writel_relaxed(REG_CHAN_CTL_RST_RINGS,
372 		       ad->base + REG_CHAN_CTL(adchan->no));
373 	writel_relaxed(0, ad->base + REG_CHAN_CTL(adchan->no));
374 }
375 
376 static void admac_start_current_tx(struct admac_chan *adchan)
377 {
378 	struct admac_data *ad = adchan->host;
379 	int ch = adchan->no;
380 
381 	admac_reset_rings(adchan);
382 	writel_relaxed(0, ad->base + REG_CHAN_CTL(ch));
383 
384 	admac_cyclic_write_one_desc(ad, ch, adchan->current_tx);
385 	admac_start_chan(adchan);
386 	admac_cyclic_write_desc(ad, ch, adchan->current_tx);
387 }
388 
389 static void admac_issue_pending(struct dma_chan *chan)
390 {
391 	struct admac_chan *adchan = to_admac_chan(chan);
392 	struct admac_tx *tx;
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&adchan->lock, flags);
396 	list_splice_tail_init(&adchan->submitted, &adchan->issued);
397 	if (!list_empty(&adchan->issued) && !adchan->current_tx) {
398 		tx = list_first_entry(&adchan->issued, struct admac_tx, node);
399 		list_del(&tx->node);
400 
401 		adchan->current_tx = tx;
402 		adchan->nperiod_acks = 0;
403 		admac_start_current_tx(adchan);
404 	}
405 	spin_unlock_irqrestore(&adchan->lock, flags);
406 }
407 
408 static int admac_pause(struct dma_chan *chan)
409 {
410 	struct admac_chan *adchan = to_admac_chan(chan);
411 
412 	admac_stop_chan(adchan);
413 
414 	return 0;
415 }
416 
417 static int admac_resume(struct dma_chan *chan)
418 {
419 	struct admac_chan *adchan = to_admac_chan(chan);
420 
421 	admac_start_chan(adchan);
422 
423 	return 0;
424 }
425 
426 static int admac_terminate_all(struct dma_chan *chan)
427 {
428 	struct admac_chan *adchan = to_admac_chan(chan);
429 	unsigned long flags;
430 
431 	spin_lock_irqsave(&adchan->lock, flags);
432 	admac_stop_chan(adchan);
433 	admac_reset_rings(adchan);
434 
435 	adchan->current_tx = NULL;
436 	/*
437 	 * Descriptors can only be freed after the tasklet
438 	 * has been killed (in admac_synchronize).
439 	 */
440 	list_splice_tail_init(&adchan->submitted, &adchan->to_free);
441 	list_splice_tail_init(&adchan->issued, &adchan->to_free);
442 	spin_unlock_irqrestore(&adchan->lock, flags);
443 
444 	return 0;
445 }
446 
447 static void admac_synchronize(struct dma_chan *chan)
448 {
449 	struct admac_chan *adchan = to_admac_chan(chan);
450 	struct admac_tx *adtx, *_adtx;
451 	unsigned long flags;
452 	LIST_HEAD(head);
453 
454 	spin_lock_irqsave(&adchan->lock, flags);
455 	list_splice_tail_init(&adchan->to_free, &head);
456 	spin_unlock_irqrestore(&adchan->lock, flags);
457 
458 	tasklet_kill(&adchan->tasklet);
459 
460 	list_for_each_entry_safe(adtx, _adtx, &head, node) {
461 		list_del(&adtx->node);
462 		admac_desc_free(&adtx->tx);
463 	}
464 }
465 
466 static int admac_alloc_chan_resources(struct dma_chan *chan)
467 {
468 	struct admac_chan *adchan = to_admac_chan(chan);
469 
470 	dma_cookie_init(&adchan->chan);
471 	return 0;
472 }
473 
474 static void admac_free_chan_resources(struct dma_chan *chan)
475 {
476 	admac_terminate_all(chan);
477 	admac_synchronize(chan);
478 }
479 
480 static struct dma_chan *admac_dma_of_xlate(struct of_phandle_args *dma_spec,
481 					   struct of_dma *ofdma)
482 {
483 	struct admac_data *ad = (struct admac_data *) ofdma->of_dma_data;
484 	unsigned int index;
485 
486 	if (dma_spec->args_count != 1)
487 		return NULL;
488 
489 	index = dma_spec->args[0];
490 
491 	if (index >= ad->nchannels) {
492 		dev_err(ad->dev, "channel index %u out of bounds\n", index);
493 		return NULL;
494 	}
495 
496 	return &ad->channels[index].chan;
497 }
498 
499 static int admac_drain_reports(struct admac_data *ad, int channo)
500 {
501 	int count;
502 
503 	for (count = 0; count < 4; count++) {
504 		u32 countval_hi, countval_lo, unk1, flags;
505 
506 		if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_EMPTY)
507 			break;
508 
509 		countval_lo = readl_relaxed(ad->base + REG_REPORT_READ(channo));
510 		countval_hi = readl_relaxed(ad->base + REG_REPORT_READ(channo));
511 		unk1 =        readl_relaxed(ad->base + REG_REPORT_READ(channo));
512 		flags =       readl_relaxed(ad->base + REG_REPORT_READ(channo));
513 
514 		dev_dbg(ad->dev, "ch%d report: countval=0x%llx unk1=0x%x flags=0x%x\n",
515 			channo, ((u64) countval_hi) << 32 | countval_lo, unk1, flags);
516 	}
517 
518 	return count;
519 }
520 
521 static void admac_handle_status_err(struct admac_data *ad, int channo)
522 {
523 	bool handled = false;
524 
525 	if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_ERR) {
526 		writel_relaxed(RING_ERR, ad->base + REG_DESC_RING(channo));
527 		dev_err_ratelimited(ad->dev, "ch%d descriptor ring error\n", channo);
528 		handled = true;
529 	}
530 
531 	if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_ERR) {
532 		writel_relaxed(RING_ERR, ad->base + REG_REPORT_RING(channo));
533 		dev_err_ratelimited(ad->dev, "ch%d report ring error\n", channo);
534 		handled = true;
535 	}
536 
537 	if (unlikely(!handled)) {
538 		dev_err(ad->dev, "ch%d unknown error, masking errors as cause of IRQs\n", channo);
539 		admac_modify(ad, REG_CHAN_INTMASK(channo, ad->irq_index),
540 			     STATUS_ERR, 0);
541 	}
542 }
543 
544 static void admac_handle_status_desc_done(struct admac_data *ad, int channo)
545 {
546 	struct admac_chan *adchan = &ad->channels[channo];
547 	unsigned long flags;
548 	int nreports;
549 
550 	writel_relaxed(STATUS_DESC_DONE,
551 		       ad->base + REG_CHAN_INTSTATUS(channo, ad->irq_index));
552 
553 	spin_lock_irqsave(&adchan->lock, flags);
554 	nreports = admac_drain_reports(ad, channo);
555 
556 	if (adchan->current_tx) {
557 		struct admac_tx *tx = adchan->current_tx;
558 
559 		adchan->nperiod_acks += nreports;
560 		tx->reclaimed_pos += nreports * tx->period_len;
561 		tx->reclaimed_pos %= 2 * tx->buf_len;
562 
563 		admac_cyclic_write_desc(ad, channo, tx);
564 		tasklet_schedule(&adchan->tasklet);
565 	}
566 	spin_unlock_irqrestore(&adchan->lock, flags);
567 }
568 
569 static void admac_handle_chan_int(struct admac_data *ad, int no)
570 {
571 	u32 cause = readl_relaxed(ad->base + REG_CHAN_INTSTATUS(no, ad->irq_index));
572 
573 	if (cause & STATUS_ERR)
574 		admac_handle_status_err(ad, no);
575 
576 	if (cause & STATUS_DESC_DONE)
577 		admac_handle_status_desc_done(ad, no);
578 }
579 
580 static irqreturn_t admac_interrupt(int irq, void *devid)
581 {
582 	struct admac_data *ad = devid;
583 	u32 rx_intstate, tx_intstate;
584 	int i;
585 
586 	rx_intstate = readl_relaxed(ad->base + REG_RX_INTSTATE(ad->irq_index));
587 	tx_intstate = readl_relaxed(ad->base + REG_TX_INTSTATE(ad->irq_index));
588 
589 	if (!tx_intstate && !rx_intstate)
590 		return IRQ_NONE;
591 
592 	for (i = 0; i < ad->nchannels; i += 2) {
593 		if (tx_intstate & 1)
594 			admac_handle_chan_int(ad, i);
595 		tx_intstate >>= 1;
596 	}
597 
598 	for (i = 1; i < ad->nchannels; i += 2) {
599 		if (rx_intstate & 1)
600 			admac_handle_chan_int(ad, i);
601 		rx_intstate >>= 1;
602 	}
603 
604 	return IRQ_HANDLED;
605 }
606 
607 static void admac_chan_tasklet(struct tasklet_struct *t)
608 {
609 	struct admac_chan *adchan = from_tasklet(adchan, t, tasklet);
610 	struct admac_tx *adtx;
611 	struct dmaengine_desc_callback cb;
612 	struct dmaengine_result tx_result;
613 	int nacks;
614 
615 	spin_lock_irq(&adchan->lock);
616 	adtx = adchan->current_tx;
617 	nacks = adchan->nperiod_acks;
618 	adchan->nperiod_acks = 0;
619 	spin_unlock_irq(&adchan->lock);
620 
621 	if (!adtx || !nacks)
622 		return;
623 
624 	tx_result.result = DMA_TRANS_NOERROR;
625 	tx_result.residue = 0;
626 
627 	dmaengine_desc_get_callback(&adtx->tx, &cb);
628 	while (nacks--)
629 		dmaengine_desc_callback_invoke(&cb, &tx_result);
630 }
631 
632 static int admac_device_config(struct dma_chan *chan,
633 			       struct dma_slave_config *config)
634 {
635 	struct admac_chan *adchan = to_admac_chan(chan);
636 	struct admac_data *ad = adchan->host;
637 	bool is_tx = admac_chan_direction(adchan->no) == DMA_MEM_TO_DEV;
638 	int wordsize = 0;
639 	u32 bus_width = 0;
640 
641 	switch (is_tx ? config->dst_addr_width : config->src_addr_width) {
642 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
643 		wordsize = 1;
644 		bus_width |= BUS_WIDTH_8BIT;
645 		break;
646 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
647 		wordsize = 2;
648 		bus_width |= BUS_WIDTH_16BIT;
649 		break;
650 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
651 		wordsize = 4;
652 		bus_width |= BUS_WIDTH_32BIT;
653 		break;
654 	default:
655 		return -EINVAL;
656 	}
657 
658 	/*
659 	 * We take port_window_size to be the number of words in a frame.
660 	 *
661 	 * The controller has some means of out-of-band signalling, to the peripheral,
662 	 * of words position in a frame. That's where the importance of this control
663 	 * comes from.
664 	 */
665 	switch (is_tx ? config->dst_port_window_size : config->src_port_window_size) {
666 	case 0 ... 1:
667 		break;
668 	case 2:
669 		bus_width |= BUS_WIDTH_FRAME_2_WORDS;
670 		break;
671 	case 4:
672 		bus_width |= BUS_WIDTH_FRAME_4_WORDS;
673 		break;
674 	default:
675 		return -EINVAL;
676 	}
677 
678 	writel_relaxed(bus_width, ad->base + REG_BUS_WIDTH(adchan->no));
679 
680 	/*
681 	 * By FIFOCTL_LIMIT we seem to set the maximal number of bytes allowed to be
682 	 * held in controller's per-channel FIFO. Transfers seem to be triggered
683 	 * around the time FIFO occupancy touches FIFOCTL_THRESHOLD.
684 	 *
685 	 * The numbers we set are more or less arbitrary.
686 	 */
687 	writel_relaxed(FIELD_PREP(CHAN_FIFOCTL_LIMIT, 0x30 * wordsize)
688 		       | FIELD_PREP(CHAN_FIFOCTL_THRESHOLD, 0x18 * wordsize),
689 		       ad->base + REG_CHAN_FIFOCTL(adchan->no));
690 
691 	return 0;
692 }
693 
694 static int admac_probe(struct platform_device *pdev)
695 {
696 	struct device_node *np = pdev->dev.of_node;
697 	struct admac_data *ad;
698 	struct dma_device *dma;
699 	int nchannels;
700 	int err, irq, i;
701 
702 	err = of_property_read_u32(np, "dma-channels", &nchannels);
703 	if (err || nchannels > NCHANNELS_MAX) {
704 		dev_err(&pdev->dev, "missing or invalid dma-channels property\n");
705 		return -EINVAL;
706 	}
707 
708 	ad = devm_kzalloc(&pdev->dev, struct_size(ad, channels, nchannels), GFP_KERNEL);
709 	if (!ad)
710 		return -ENOMEM;
711 
712 	platform_set_drvdata(pdev, ad);
713 	ad->dev = &pdev->dev;
714 	ad->nchannels = nchannels;
715 
716 	/*
717 	 * The controller has 4 IRQ outputs. Try them all until
718 	 * we find one we can use.
719 	 */
720 	for (i = 0; i < IRQ_NOUTPUTS; i++) {
721 		irq = platform_get_irq_optional(pdev, i);
722 		if (irq >= 0) {
723 			ad->irq_index = i;
724 			break;
725 		}
726 	}
727 
728 	if (irq < 0)
729 		return dev_err_probe(&pdev->dev, irq, "no usable interrupt\n");
730 	ad->irq = irq;
731 
732 	ad->base = devm_platform_ioremap_resource(pdev, 0);
733 	if (IS_ERR(ad->base))
734 		return dev_err_probe(&pdev->dev, PTR_ERR(ad->base),
735 				     "unable to obtain MMIO resource\n");
736 
737 	ad->rstc = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
738 	if (IS_ERR(ad->rstc))
739 		return PTR_ERR(ad->rstc);
740 
741 	dma = &ad->dma;
742 
743 	dma_cap_set(DMA_PRIVATE, dma->cap_mask);
744 	dma_cap_set(DMA_CYCLIC, dma->cap_mask);
745 
746 	dma->dev = &pdev->dev;
747 	dma->device_alloc_chan_resources = admac_alloc_chan_resources;
748 	dma->device_free_chan_resources = admac_free_chan_resources;
749 	dma->device_tx_status = admac_tx_status;
750 	dma->device_issue_pending = admac_issue_pending;
751 	dma->device_terminate_all = admac_terminate_all;
752 	dma->device_synchronize = admac_synchronize;
753 	dma->device_prep_dma_cyclic = admac_prep_dma_cyclic;
754 	dma->device_config = admac_device_config;
755 	dma->device_pause = admac_pause;
756 	dma->device_resume = admac_resume;
757 
758 	dma->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
759 	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
760 	dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
761 			BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
762 			BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
763 
764 	INIT_LIST_HEAD(&dma->channels);
765 	for (i = 0; i < nchannels; i++) {
766 		struct admac_chan *adchan = &ad->channels[i];
767 
768 		adchan->host = ad;
769 		adchan->no = i;
770 		adchan->chan.device = &ad->dma;
771 		spin_lock_init(&adchan->lock);
772 		INIT_LIST_HEAD(&adchan->submitted);
773 		INIT_LIST_HEAD(&adchan->issued);
774 		INIT_LIST_HEAD(&adchan->to_free);
775 		list_add_tail(&adchan->chan.device_node, &dma->channels);
776 		tasklet_setup(&adchan->tasklet, admac_chan_tasklet);
777 	}
778 
779 	err = reset_control_reset(ad->rstc);
780 	if (err)
781 		return dev_err_probe(&pdev->dev, err,
782 				     "unable to trigger reset\n");
783 
784 	err = request_irq(irq, admac_interrupt, 0, dev_name(&pdev->dev), ad);
785 	if (err) {
786 		dev_err_probe(&pdev->dev, err,
787 				"unable to register interrupt\n");
788 		goto free_reset;
789 	}
790 
791 	err = dma_async_device_register(&ad->dma);
792 	if (err) {
793 		dev_err_probe(&pdev->dev, err, "failed to register DMA device\n");
794 		goto free_irq;
795 	}
796 
797 	err = of_dma_controller_register(pdev->dev.of_node, admac_dma_of_xlate, ad);
798 	if (err) {
799 		dma_async_device_unregister(&ad->dma);
800 		dev_err_probe(&pdev->dev, err, "failed to register with OF\n");
801 		goto free_irq;
802 	}
803 
804 	return 0;
805 
806 free_irq:
807 	free_irq(ad->irq, ad);
808 free_reset:
809 	reset_control_rearm(ad->rstc);
810 	return err;
811 }
812 
813 static int admac_remove(struct platform_device *pdev)
814 {
815 	struct admac_data *ad = platform_get_drvdata(pdev);
816 
817 	of_dma_controller_free(pdev->dev.of_node);
818 	dma_async_device_unregister(&ad->dma);
819 	free_irq(ad->irq, ad);
820 	reset_control_rearm(ad->rstc);
821 
822 	return 0;
823 }
824 
825 static const struct of_device_id admac_of_match[] = {
826 	{ .compatible = "apple,admac", },
827 	{ }
828 };
829 MODULE_DEVICE_TABLE(of, admac_of_match);
830 
831 static struct platform_driver apple_admac_driver = {
832 	.driver = {
833 		.name = "apple-admac",
834 		.of_match_table = admac_of_match,
835 	},
836 	.probe = admac_probe,
837 	.remove = admac_remove,
838 };
839 module_platform_driver(apple_admac_driver);
840 
841 MODULE_AUTHOR("Martin Povišer <povik+lin@cutebit.org>");
842 MODULE_DESCRIPTION("Driver for Audio DMA Controller (ADMAC) on Apple SoCs");
843 MODULE_LICENSE("GPL");
844