xref: /openbmc/linux/drivers/dma/amba-pl08x.c (revision 63dc02bd)
1 /*
2  * Copyright (c) 2006 ARM Ltd.
3  * Copyright (c) 2010 ST-Ericsson SA
4  *
5  * Author: Peter Pearse <peter.pearse@arm.com>
6  * Author: Linus Walleij <linus.walleij@stericsson.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 59
20  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
21  *
22  * The full GNU General Public License is in this distribution in the file
23  * called COPYING.
24  *
25  * Documentation: ARM DDI 0196G == PL080
26  * Documentation: ARM DDI 0218E == PL081
27  *
28  * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29  * channel.
30  *
31  * The PL080 has 8 channels available for simultaneous use, and the PL081
32  * has only two channels. So on these DMA controllers the number of channels
33  * and the number of incoming DMA signals are two totally different things.
34  * It is usually not possible to theoretically handle all physical signals,
35  * so a multiplexing scheme with possible denial of use is necessary.
36  *
37  * The PL080 has a dual bus master, PL081 has a single master.
38  *
39  * Memory to peripheral transfer may be visualized as
40  *	Get data from memory to DMAC
41  *	Until no data left
42  *		On burst request from peripheral
43  *			Destination burst from DMAC to peripheral
44  *			Clear burst request
45  *	Raise terminal count interrupt
46  *
47  * For peripherals with a FIFO:
48  * Source      burst size == half the depth of the peripheral FIFO
49  * Destination burst size == the depth of the peripheral FIFO
50  *
51  * (Bursts are irrelevant for mem to mem transfers - there are no burst
52  * signals, the DMA controller will simply facilitate its AHB master.)
53  *
54  * ASSUMES default (little) endianness for DMA transfers
55  *
56  * The PL08x has two flow control settings:
57  *  - DMAC flow control: the transfer size defines the number of transfers
58  *    which occur for the current LLI entry, and the DMAC raises TC at the
59  *    end of every LLI entry.  Observed behaviour shows the DMAC listening
60  *    to both the BREQ and SREQ signals (contrary to documented),
61  *    transferring data if either is active.  The LBREQ and LSREQ signals
62  *    are ignored.
63  *
64  *  - Peripheral flow control: the transfer size is ignored (and should be
65  *    zero).  The data is transferred from the current LLI entry, until
66  *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
67  *    will then move to the next LLI entry.
68  *
69  * Global TODO:
70  * - Break out common code from arch/arm/mach-s3c64xx and share
71  */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
87 
88 #include "dmaengine.h"
89 
90 #define DRIVER_NAME	"pl08xdmac"
91 
92 static struct amba_driver pl08x_amba_driver;
93 
94 /**
95  * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96  * @channels: the number of channels available in this variant
97  * @dualmaster: whether this version supports dual AHB masters or not.
98  */
99 struct vendor_data {
100 	u8 channels;
101 	bool dualmaster;
102 };
103 
104 /*
105  * PL08X private data structures
106  * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
107  * start & end do not - their bus bit info is in cctl.  Also note that these
108  * are fixed 32-bit quantities.
109  */
110 struct pl08x_lli {
111 	u32 src;
112 	u32 dst;
113 	u32 lli;
114 	u32 cctl;
115 };
116 
117 /**
118  * struct pl08x_driver_data - the local state holder for the PL08x
119  * @slave: slave engine for this instance
120  * @memcpy: memcpy engine for this instance
121  * @base: virtual memory base (remapped) for the PL08x
122  * @adev: the corresponding AMBA (PrimeCell) bus entry
123  * @vd: vendor data for this PL08x variant
124  * @pd: platform data passed in from the platform/machine
125  * @phy_chans: array of data for the physical channels
126  * @pool: a pool for the LLI descriptors
127  * @pool_ctr: counter of LLIs in the pool
128  * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
129  * fetches
130  * @mem_buses: set to indicate memory transfers on AHB2.
131  * @lock: a spinlock for this struct
132  */
133 struct pl08x_driver_data {
134 	struct dma_device slave;
135 	struct dma_device memcpy;
136 	void __iomem *base;
137 	struct amba_device *adev;
138 	const struct vendor_data *vd;
139 	struct pl08x_platform_data *pd;
140 	struct pl08x_phy_chan *phy_chans;
141 	struct dma_pool *pool;
142 	int pool_ctr;
143 	u8 lli_buses;
144 	u8 mem_buses;
145 	spinlock_t lock;
146 };
147 
148 /*
149  * PL08X specific defines
150  */
151 
152 /* Size (bytes) of each LLI buffer allocated for one transfer */
153 # define PL08X_LLI_TSFR_SIZE	0x2000
154 
155 /* Maximum times we call dma_pool_alloc on this pool without freeing */
156 #define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
157 #define PL08X_ALIGN		8
158 
159 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
160 {
161 	return container_of(chan, struct pl08x_dma_chan, chan);
162 }
163 
164 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
165 {
166 	return container_of(tx, struct pl08x_txd, tx);
167 }
168 
169 /*
170  * Physical channel handling
171  */
172 
173 /* Whether a certain channel is busy or not */
174 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
175 {
176 	unsigned int val;
177 
178 	val = readl(ch->base + PL080_CH_CONFIG);
179 	return val & PL080_CONFIG_ACTIVE;
180 }
181 
182 /*
183  * Set the initial DMA register values i.e. those for the first LLI
184  * The next LLI pointer and the configuration interrupt bit have
185  * been set when the LLIs were constructed.  Poke them into the hardware
186  * and start the transfer.
187  */
188 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
189 	struct pl08x_txd *txd)
190 {
191 	struct pl08x_driver_data *pl08x = plchan->host;
192 	struct pl08x_phy_chan *phychan = plchan->phychan;
193 	struct pl08x_lli *lli = &txd->llis_va[0];
194 	u32 val;
195 
196 	plchan->at = txd;
197 
198 	/* Wait for channel inactive */
199 	while (pl08x_phy_channel_busy(phychan))
200 		cpu_relax();
201 
202 	dev_vdbg(&pl08x->adev->dev,
203 		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
204 		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
205 		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
206 		txd->ccfg);
207 
208 	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
209 	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
210 	writel(lli->lli, phychan->base + PL080_CH_LLI);
211 	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
212 	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
213 
214 	/* Enable the DMA channel */
215 	/* Do not access config register until channel shows as disabled */
216 	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
217 		cpu_relax();
218 
219 	/* Do not access config register until channel shows as inactive */
220 	val = readl(phychan->base + PL080_CH_CONFIG);
221 	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
222 		val = readl(phychan->base + PL080_CH_CONFIG);
223 
224 	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
225 }
226 
227 /*
228  * Pause the channel by setting the HALT bit.
229  *
230  * For M->P transfers, pause the DMAC first and then stop the peripheral -
231  * the FIFO can only drain if the peripheral is still requesting data.
232  * (note: this can still timeout if the DMAC FIFO never drains of data.)
233  *
234  * For P->M transfers, disable the peripheral first to stop it filling
235  * the DMAC FIFO, and then pause the DMAC.
236  */
237 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
238 {
239 	u32 val;
240 	int timeout;
241 
242 	/* Set the HALT bit and wait for the FIFO to drain */
243 	val = readl(ch->base + PL080_CH_CONFIG);
244 	val |= PL080_CONFIG_HALT;
245 	writel(val, ch->base + PL080_CH_CONFIG);
246 
247 	/* Wait for channel inactive */
248 	for (timeout = 1000; timeout; timeout--) {
249 		if (!pl08x_phy_channel_busy(ch))
250 			break;
251 		udelay(1);
252 	}
253 	if (pl08x_phy_channel_busy(ch))
254 		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
255 }
256 
257 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
258 {
259 	u32 val;
260 
261 	/* Clear the HALT bit */
262 	val = readl(ch->base + PL080_CH_CONFIG);
263 	val &= ~PL080_CONFIG_HALT;
264 	writel(val, ch->base + PL080_CH_CONFIG);
265 }
266 
267 /*
268  * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
269  * clears any pending interrupt status.  This should not be used for
270  * an on-going transfer, but as a method of shutting down a channel
271  * (eg, when it's no longer used) or terminating a transfer.
272  */
273 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
274 	struct pl08x_phy_chan *ch)
275 {
276 	u32 val = readl(ch->base + PL080_CH_CONFIG);
277 
278 	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
279 	         PL080_CONFIG_TC_IRQ_MASK);
280 
281 	writel(val, ch->base + PL080_CH_CONFIG);
282 
283 	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
284 	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
285 }
286 
287 static inline u32 get_bytes_in_cctl(u32 cctl)
288 {
289 	/* The source width defines the number of bytes */
290 	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
291 
292 	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
293 	case PL080_WIDTH_8BIT:
294 		break;
295 	case PL080_WIDTH_16BIT:
296 		bytes *= 2;
297 		break;
298 	case PL080_WIDTH_32BIT:
299 		bytes *= 4;
300 		break;
301 	}
302 	return bytes;
303 }
304 
305 /* The channel should be paused when calling this */
306 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
307 {
308 	struct pl08x_phy_chan *ch;
309 	struct pl08x_txd *txd;
310 	unsigned long flags;
311 	size_t bytes = 0;
312 
313 	spin_lock_irqsave(&plchan->lock, flags);
314 	ch = plchan->phychan;
315 	txd = plchan->at;
316 
317 	/*
318 	 * Follow the LLIs to get the number of remaining
319 	 * bytes in the currently active transaction.
320 	 */
321 	if (ch && txd) {
322 		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
323 
324 		/* First get the remaining bytes in the active transfer */
325 		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
326 
327 		if (clli) {
328 			struct pl08x_lli *llis_va = txd->llis_va;
329 			dma_addr_t llis_bus = txd->llis_bus;
330 			int index;
331 
332 			BUG_ON(clli < llis_bus || clli >= llis_bus +
333 				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
334 
335 			/*
336 			 * Locate the next LLI - as this is an array,
337 			 * it's simple maths to find.
338 			 */
339 			index = (clli - llis_bus) / sizeof(struct pl08x_lli);
340 
341 			for (; index < MAX_NUM_TSFR_LLIS; index++) {
342 				bytes += get_bytes_in_cctl(llis_va[index].cctl);
343 
344 				/*
345 				 * A LLI pointer of 0 terminates the LLI list
346 				 */
347 				if (!llis_va[index].lli)
348 					break;
349 			}
350 		}
351 	}
352 
353 	/* Sum up all queued transactions */
354 	if (!list_empty(&plchan->pend_list)) {
355 		struct pl08x_txd *txdi;
356 		list_for_each_entry(txdi, &plchan->pend_list, node) {
357 			struct pl08x_sg *dsg;
358 			list_for_each_entry(dsg, &txd->dsg_list, node)
359 				bytes += dsg->len;
360 		}
361 	}
362 
363 	spin_unlock_irqrestore(&plchan->lock, flags);
364 
365 	return bytes;
366 }
367 
368 /*
369  * Allocate a physical channel for a virtual channel
370  *
371  * Try to locate a physical channel to be used for this transfer. If all
372  * are taken return NULL and the requester will have to cope by using
373  * some fallback PIO mode or retrying later.
374  */
375 static struct pl08x_phy_chan *
376 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
377 		      struct pl08x_dma_chan *virt_chan)
378 {
379 	struct pl08x_phy_chan *ch = NULL;
380 	unsigned long flags;
381 	int i;
382 
383 	for (i = 0; i < pl08x->vd->channels; i++) {
384 		ch = &pl08x->phy_chans[i];
385 
386 		spin_lock_irqsave(&ch->lock, flags);
387 
388 		if (!ch->serving) {
389 			ch->serving = virt_chan;
390 			ch->signal = -1;
391 			spin_unlock_irqrestore(&ch->lock, flags);
392 			break;
393 		}
394 
395 		spin_unlock_irqrestore(&ch->lock, flags);
396 	}
397 
398 	if (i == pl08x->vd->channels) {
399 		/* No physical channel available, cope with it */
400 		return NULL;
401 	}
402 
403 	pm_runtime_get_sync(&pl08x->adev->dev);
404 	return ch;
405 }
406 
407 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
408 					 struct pl08x_phy_chan *ch)
409 {
410 	unsigned long flags;
411 
412 	spin_lock_irqsave(&ch->lock, flags);
413 
414 	/* Stop the channel and clear its interrupts */
415 	pl08x_terminate_phy_chan(pl08x, ch);
416 
417 	pm_runtime_put(&pl08x->adev->dev);
418 
419 	/* Mark it as free */
420 	ch->serving = NULL;
421 	spin_unlock_irqrestore(&ch->lock, flags);
422 }
423 
424 /*
425  * LLI handling
426  */
427 
428 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
429 {
430 	switch (coded) {
431 	case PL080_WIDTH_8BIT:
432 		return 1;
433 	case PL080_WIDTH_16BIT:
434 		return 2;
435 	case PL080_WIDTH_32BIT:
436 		return 4;
437 	default:
438 		break;
439 	}
440 	BUG();
441 	return 0;
442 }
443 
444 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
445 				  size_t tsize)
446 {
447 	u32 retbits = cctl;
448 
449 	/* Remove all src, dst and transfer size bits */
450 	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
451 	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
452 	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
453 
454 	/* Then set the bits according to the parameters */
455 	switch (srcwidth) {
456 	case 1:
457 		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
458 		break;
459 	case 2:
460 		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
461 		break;
462 	case 4:
463 		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
464 		break;
465 	default:
466 		BUG();
467 		break;
468 	}
469 
470 	switch (dstwidth) {
471 	case 1:
472 		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
473 		break;
474 	case 2:
475 		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
476 		break;
477 	case 4:
478 		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
479 		break;
480 	default:
481 		BUG();
482 		break;
483 	}
484 
485 	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
486 	return retbits;
487 }
488 
489 struct pl08x_lli_build_data {
490 	struct pl08x_txd *txd;
491 	struct pl08x_bus_data srcbus;
492 	struct pl08x_bus_data dstbus;
493 	size_t remainder;
494 	u32 lli_bus;
495 };
496 
497 /*
498  * Autoselect a master bus to use for the transfer. Slave will be the chosen as
499  * victim in case src & dest are not similarly aligned. i.e. If after aligning
500  * masters address with width requirements of transfer (by sending few byte by
501  * byte data), slave is still not aligned, then its width will be reduced to
502  * BYTE.
503  * - prefers the destination bus if both available
504  * - prefers bus with fixed address (i.e. peripheral)
505  */
506 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
507 	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
508 {
509 	if (!(cctl & PL080_CONTROL_DST_INCR)) {
510 		*mbus = &bd->dstbus;
511 		*sbus = &bd->srcbus;
512 	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
513 		*mbus = &bd->srcbus;
514 		*sbus = &bd->dstbus;
515 	} else {
516 		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
517 			*mbus = &bd->dstbus;
518 			*sbus = &bd->srcbus;
519 		} else {
520 			*mbus = &bd->srcbus;
521 			*sbus = &bd->dstbus;
522 		}
523 	}
524 }
525 
526 /*
527  * Fills in one LLI for a certain transfer descriptor and advance the counter
528  */
529 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
530 	int num_llis, int len, u32 cctl)
531 {
532 	struct pl08x_lli *llis_va = bd->txd->llis_va;
533 	dma_addr_t llis_bus = bd->txd->llis_bus;
534 
535 	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
536 
537 	llis_va[num_llis].cctl = cctl;
538 	llis_va[num_llis].src = bd->srcbus.addr;
539 	llis_va[num_llis].dst = bd->dstbus.addr;
540 	llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
541 		sizeof(struct pl08x_lli);
542 	llis_va[num_llis].lli |= bd->lli_bus;
543 
544 	if (cctl & PL080_CONTROL_SRC_INCR)
545 		bd->srcbus.addr += len;
546 	if (cctl & PL080_CONTROL_DST_INCR)
547 		bd->dstbus.addr += len;
548 
549 	BUG_ON(bd->remainder < len);
550 
551 	bd->remainder -= len;
552 }
553 
554 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
555 		u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
556 {
557 	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
558 	pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
559 	(*total_bytes) += len;
560 }
561 
562 /*
563  * This fills in the table of LLIs for the transfer descriptor
564  * Note that we assume we never have to change the burst sizes
565  * Return 0 for error
566  */
567 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
568 			      struct pl08x_txd *txd)
569 {
570 	struct pl08x_bus_data *mbus, *sbus;
571 	struct pl08x_lli_build_data bd;
572 	int num_llis = 0;
573 	u32 cctl, early_bytes = 0;
574 	size_t max_bytes_per_lli, total_bytes;
575 	struct pl08x_lli *llis_va;
576 	struct pl08x_sg *dsg;
577 
578 	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
579 	if (!txd->llis_va) {
580 		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
581 		return 0;
582 	}
583 
584 	pl08x->pool_ctr++;
585 
586 	bd.txd = txd;
587 	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
588 	cctl = txd->cctl;
589 
590 	/* Find maximum width of the source bus */
591 	bd.srcbus.maxwidth =
592 		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
593 				       PL080_CONTROL_SWIDTH_SHIFT);
594 
595 	/* Find maximum width of the destination bus */
596 	bd.dstbus.maxwidth =
597 		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
598 				       PL080_CONTROL_DWIDTH_SHIFT);
599 
600 	list_for_each_entry(dsg, &txd->dsg_list, node) {
601 		total_bytes = 0;
602 		cctl = txd->cctl;
603 
604 		bd.srcbus.addr = dsg->src_addr;
605 		bd.dstbus.addr = dsg->dst_addr;
606 		bd.remainder = dsg->len;
607 		bd.srcbus.buswidth = bd.srcbus.maxwidth;
608 		bd.dstbus.buswidth = bd.dstbus.maxwidth;
609 
610 		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
611 
612 		dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
613 			bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
614 			bd.srcbus.buswidth,
615 			bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
616 			bd.dstbus.buswidth,
617 			bd.remainder);
618 		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
619 			mbus == &bd.srcbus ? "src" : "dst",
620 			sbus == &bd.srcbus ? "src" : "dst");
621 
622 		/*
623 		 * Zero length is only allowed if all these requirements are
624 		 * met:
625 		 * - flow controller is peripheral.
626 		 * - src.addr is aligned to src.width
627 		 * - dst.addr is aligned to dst.width
628 		 *
629 		 * sg_len == 1 should be true, as there can be two cases here:
630 		 *
631 		 * - Memory addresses are contiguous and are not scattered.
632 		 *   Here, Only one sg will be passed by user driver, with
633 		 *   memory address and zero length. We pass this to controller
634 		 *   and after the transfer it will receive the last burst
635 		 *   request from peripheral and so transfer finishes.
636 		 *
637 		 * - Memory addresses are scattered and are not contiguous.
638 		 *   Here, Obviously as DMA controller doesn't know when a lli's
639 		 *   transfer gets over, it can't load next lli. So in this
640 		 *   case, there has to be an assumption that only one lli is
641 		 *   supported. Thus, we can't have scattered addresses.
642 		 */
643 		if (!bd.remainder) {
644 			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
645 				PL080_CONFIG_FLOW_CONTROL_SHIFT;
646 			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
647 					(fc <= PL080_FLOW_SRC2DST_SRC))) {
648 				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
649 					__func__);
650 				return 0;
651 			}
652 
653 			if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
654 					(bd.dstbus.addr % bd.dstbus.buswidth)) {
655 				dev_err(&pl08x->adev->dev,
656 					"%s src & dst address must be aligned to src"
657 					" & dst width if peripheral is flow controller",
658 					__func__);
659 				return 0;
660 			}
661 
662 			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
663 					bd.dstbus.buswidth, 0);
664 			pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
665 			break;
666 		}
667 
668 		/*
669 		 * Send byte by byte for following cases
670 		 * - Less than a bus width available
671 		 * - until master bus is aligned
672 		 */
673 		if (bd.remainder < mbus->buswidth)
674 			early_bytes = bd.remainder;
675 		else if ((mbus->addr) % (mbus->buswidth)) {
676 			early_bytes = mbus->buswidth - (mbus->addr) %
677 				(mbus->buswidth);
678 			if ((bd.remainder - early_bytes) < mbus->buswidth)
679 				early_bytes = bd.remainder;
680 		}
681 
682 		if (early_bytes) {
683 			dev_vdbg(&pl08x->adev->dev,
684 				"%s byte width LLIs (remain 0x%08x)\n",
685 				__func__, bd.remainder);
686 			prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
687 				&total_bytes);
688 		}
689 
690 		if (bd.remainder) {
691 			/*
692 			 * Master now aligned
693 			 * - if slave is not then we must set its width down
694 			 */
695 			if (sbus->addr % sbus->buswidth) {
696 				dev_dbg(&pl08x->adev->dev,
697 					"%s set down bus width to one byte\n",
698 					__func__);
699 
700 				sbus->buswidth = 1;
701 			}
702 
703 			/*
704 			 * Bytes transferred = tsize * src width, not
705 			 * MIN(buswidths)
706 			 */
707 			max_bytes_per_lli = bd.srcbus.buswidth *
708 				PL080_CONTROL_TRANSFER_SIZE_MASK;
709 			dev_vdbg(&pl08x->adev->dev,
710 				"%s max bytes per lli = %zu\n",
711 				__func__, max_bytes_per_lli);
712 
713 			/*
714 			 * Make largest possible LLIs until less than one bus
715 			 * width left
716 			 */
717 			while (bd.remainder > (mbus->buswidth - 1)) {
718 				size_t lli_len, tsize, width;
719 
720 				/*
721 				 * If enough left try to send max possible,
722 				 * otherwise try to send the remainder
723 				 */
724 				lli_len = min(bd.remainder, max_bytes_per_lli);
725 
726 				/*
727 				 * Check against maximum bus alignment:
728 				 * Calculate actual transfer size in relation to
729 				 * bus width an get a maximum remainder of the
730 				 * highest bus width - 1
731 				 */
732 				width = max(mbus->buswidth, sbus->buswidth);
733 				lli_len = (lli_len / width) * width;
734 				tsize = lli_len / bd.srcbus.buswidth;
735 
736 				dev_vdbg(&pl08x->adev->dev,
737 					"%s fill lli with single lli chunk of "
738 					"size 0x%08zx (remainder 0x%08zx)\n",
739 					__func__, lli_len, bd.remainder);
740 
741 				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
742 					bd.dstbus.buswidth, tsize);
743 				pl08x_fill_lli_for_desc(&bd, num_llis++,
744 						lli_len, cctl);
745 				total_bytes += lli_len;
746 			}
747 
748 			/*
749 			 * Send any odd bytes
750 			 */
751 			if (bd.remainder) {
752 				dev_vdbg(&pl08x->adev->dev,
753 					"%s align with boundary, send odd bytes (remain %zu)\n",
754 					__func__, bd.remainder);
755 				prep_byte_width_lli(&bd, &cctl, bd.remainder,
756 						num_llis++, &total_bytes);
757 			}
758 		}
759 
760 		if (total_bytes != dsg->len) {
761 			dev_err(&pl08x->adev->dev,
762 				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
763 				__func__, total_bytes, dsg->len);
764 			return 0;
765 		}
766 
767 		if (num_llis >= MAX_NUM_TSFR_LLIS) {
768 			dev_err(&pl08x->adev->dev,
769 				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
770 				__func__, (u32) MAX_NUM_TSFR_LLIS);
771 			return 0;
772 		}
773 	}
774 
775 	llis_va = txd->llis_va;
776 	/* The final LLI terminates the LLI. */
777 	llis_va[num_llis - 1].lli = 0;
778 	/* The final LLI element shall also fire an interrupt. */
779 	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
780 
781 #ifdef VERBOSE_DEBUG
782 	{
783 		int i;
784 
785 		dev_vdbg(&pl08x->adev->dev,
786 			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
787 			 "lli", "", "csrc", "cdst", "clli", "cctl");
788 		for (i = 0; i < num_llis; i++) {
789 			dev_vdbg(&pl08x->adev->dev,
790 				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
791 				 i, &llis_va[i], llis_va[i].src,
792 				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
793 				);
794 		}
795 	}
796 #endif
797 
798 	return num_llis;
799 }
800 
801 /* You should call this with the struct pl08x lock held */
802 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
803 			   struct pl08x_txd *txd)
804 {
805 	struct pl08x_sg *dsg, *_dsg;
806 
807 	/* Free the LLI */
808 	if (txd->llis_va)
809 		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
810 
811 	pl08x->pool_ctr--;
812 
813 	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
814 		list_del(&dsg->node);
815 		kfree(dsg);
816 	}
817 
818 	kfree(txd);
819 }
820 
821 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
822 				struct pl08x_dma_chan *plchan)
823 {
824 	struct pl08x_txd *txdi = NULL;
825 	struct pl08x_txd *next;
826 
827 	if (!list_empty(&plchan->pend_list)) {
828 		list_for_each_entry_safe(txdi,
829 					 next, &plchan->pend_list, node) {
830 			list_del(&txdi->node);
831 			pl08x_free_txd(pl08x, txdi);
832 		}
833 	}
834 }
835 
836 /*
837  * The DMA ENGINE API
838  */
839 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
840 {
841 	return 0;
842 }
843 
844 static void pl08x_free_chan_resources(struct dma_chan *chan)
845 {
846 }
847 
848 /*
849  * This should be called with the channel plchan->lock held
850  */
851 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
852 			    struct pl08x_txd *txd)
853 {
854 	struct pl08x_driver_data *pl08x = plchan->host;
855 	struct pl08x_phy_chan *ch;
856 	int ret;
857 
858 	/* Check if we already have a channel */
859 	if (plchan->phychan) {
860 		ch = plchan->phychan;
861 		goto got_channel;
862 	}
863 
864 	ch = pl08x_get_phy_channel(pl08x, plchan);
865 	if (!ch) {
866 		/* No physical channel available, cope with it */
867 		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
868 		return -EBUSY;
869 	}
870 
871 	/*
872 	 * OK we have a physical channel: for memcpy() this is all we
873 	 * need, but for slaves the physical signals may be muxed!
874 	 * Can the platform allow us to use this channel?
875 	 */
876 	if (plchan->slave && pl08x->pd->get_signal) {
877 		ret = pl08x->pd->get_signal(plchan);
878 		if (ret < 0) {
879 			dev_dbg(&pl08x->adev->dev,
880 				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
881 				ch->id, plchan->name);
882 			/* Release physical channel & return */
883 			pl08x_put_phy_channel(pl08x, ch);
884 			return -EBUSY;
885 		}
886 		ch->signal = ret;
887 	}
888 
889 	plchan->phychan = ch;
890 	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
891 		 ch->id,
892 		 ch->signal,
893 		 plchan->name);
894 
895 got_channel:
896 	/* Assign the flow control signal to this channel */
897 	if (txd->direction == DMA_MEM_TO_DEV)
898 		txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
899 	else if (txd->direction == DMA_DEV_TO_MEM)
900 		txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
901 
902 	plchan->phychan_hold++;
903 
904 	return 0;
905 }
906 
907 static void release_phy_channel(struct pl08x_dma_chan *plchan)
908 {
909 	struct pl08x_driver_data *pl08x = plchan->host;
910 
911 	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
912 		pl08x->pd->put_signal(plchan);
913 		plchan->phychan->signal = -1;
914 	}
915 	pl08x_put_phy_channel(pl08x, plchan->phychan);
916 	plchan->phychan = NULL;
917 }
918 
919 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
920 {
921 	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
922 	struct pl08x_txd *txd = to_pl08x_txd(tx);
923 	unsigned long flags;
924 	dma_cookie_t cookie;
925 
926 	spin_lock_irqsave(&plchan->lock, flags);
927 	cookie = dma_cookie_assign(tx);
928 
929 	/* Put this onto the pending list */
930 	list_add_tail(&txd->node, &plchan->pend_list);
931 
932 	/*
933 	 * If there was no physical channel available for this memcpy,
934 	 * stack the request up and indicate that the channel is waiting
935 	 * for a free physical channel.
936 	 */
937 	if (!plchan->slave && !plchan->phychan) {
938 		/* Do this memcpy whenever there is a channel ready */
939 		plchan->state = PL08X_CHAN_WAITING;
940 		plchan->waiting = txd;
941 	} else {
942 		plchan->phychan_hold--;
943 	}
944 
945 	spin_unlock_irqrestore(&plchan->lock, flags);
946 
947 	return cookie;
948 }
949 
950 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
951 		struct dma_chan *chan, unsigned long flags)
952 {
953 	struct dma_async_tx_descriptor *retval = NULL;
954 
955 	return retval;
956 }
957 
958 /*
959  * Code accessing dma_async_is_complete() in a tight loop may give problems.
960  * If slaves are relying on interrupts to signal completion this function
961  * must not be called with interrupts disabled.
962  */
963 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
964 		dma_cookie_t cookie, struct dma_tx_state *txstate)
965 {
966 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
967 	enum dma_status ret;
968 
969 	ret = dma_cookie_status(chan, cookie, txstate);
970 	if (ret == DMA_SUCCESS)
971 		return ret;
972 
973 	/*
974 	 * This cookie not complete yet
975 	 * Get number of bytes left in the active transactions and queue
976 	 */
977 	dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
978 
979 	if (plchan->state == PL08X_CHAN_PAUSED)
980 		return DMA_PAUSED;
981 
982 	/* Whether waiting or running, we're in progress */
983 	return DMA_IN_PROGRESS;
984 }
985 
986 /* PrimeCell DMA extension */
987 struct burst_table {
988 	u32 burstwords;
989 	u32 reg;
990 };
991 
992 static const struct burst_table burst_sizes[] = {
993 	{
994 		.burstwords = 256,
995 		.reg = PL080_BSIZE_256,
996 	},
997 	{
998 		.burstwords = 128,
999 		.reg = PL080_BSIZE_128,
1000 	},
1001 	{
1002 		.burstwords = 64,
1003 		.reg = PL080_BSIZE_64,
1004 	},
1005 	{
1006 		.burstwords = 32,
1007 		.reg = PL080_BSIZE_32,
1008 	},
1009 	{
1010 		.burstwords = 16,
1011 		.reg = PL080_BSIZE_16,
1012 	},
1013 	{
1014 		.burstwords = 8,
1015 		.reg = PL080_BSIZE_8,
1016 	},
1017 	{
1018 		.burstwords = 4,
1019 		.reg = PL080_BSIZE_4,
1020 	},
1021 	{
1022 		.burstwords = 0,
1023 		.reg = PL080_BSIZE_1,
1024 	},
1025 };
1026 
1027 /*
1028  * Given the source and destination available bus masks, select which
1029  * will be routed to each port.  We try to have source and destination
1030  * on separate ports, but always respect the allowable settings.
1031  */
1032 static u32 pl08x_select_bus(u8 src, u8 dst)
1033 {
1034 	u32 cctl = 0;
1035 
1036 	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1037 		cctl |= PL080_CONTROL_DST_AHB2;
1038 	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1039 		cctl |= PL080_CONTROL_SRC_AHB2;
1040 
1041 	return cctl;
1042 }
1043 
1044 static u32 pl08x_cctl(u32 cctl)
1045 {
1046 	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1047 		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1048 		  PL080_CONTROL_PROT_MASK);
1049 
1050 	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1051 	return cctl | PL080_CONTROL_PROT_SYS;
1052 }
1053 
1054 static u32 pl08x_width(enum dma_slave_buswidth width)
1055 {
1056 	switch (width) {
1057 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1058 		return PL080_WIDTH_8BIT;
1059 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1060 		return PL080_WIDTH_16BIT;
1061 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1062 		return PL080_WIDTH_32BIT;
1063 	default:
1064 		return ~0;
1065 	}
1066 }
1067 
1068 static u32 pl08x_burst(u32 maxburst)
1069 {
1070 	int i;
1071 
1072 	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1073 		if (burst_sizes[i].burstwords <= maxburst)
1074 			break;
1075 
1076 	return burst_sizes[i].reg;
1077 }
1078 
1079 static int dma_set_runtime_config(struct dma_chan *chan,
1080 				  struct dma_slave_config *config)
1081 {
1082 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1083 	struct pl08x_driver_data *pl08x = plchan->host;
1084 	enum dma_slave_buswidth addr_width;
1085 	u32 width, burst, maxburst;
1086 	u32 cctl = 0;
1087 
1088 	if (!plchan->slave)
1089 		return -EINVAL;
1090 
1091 	/* Transfer direction */
1092 	plchan->runtime_direction = config->direction;
1093 	if (config->direction == DMA_MEM_TO_DEV) {
1094 		addr_width = config->dst_addr_width;
1095 		maxburst = config->dst_maxburst;
1096 	} else if (config->direction == DMA_DEV_TO_MEM) {
1097 		addr_width = config->src_addr_width;
1098 		maxburst = config->src_maxburst;
1099 	} else {
1100 		dev_err(&pl08x->adev->dev,
1101 			"bad runtime_config: alien transfer direction\n");
1102 		return -EINVAL;
1103 	}
1104 
1105 	width = pl08x_width(addr_width);
1106 	if (width == ~0) {
1107 		dev_err(&pl08x->adev->dev,
1108 			"bad runtime_config: alien address width\n");
1109 		return -EINVAL;
1110 	}
1111 
1112 	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1113 	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1114 
1115 	/*
1116 	 * If this channel will only request single transfers, set this
1117 	 * down to ONE element.  Also select one element if no maxburst
1118 	 * is specified.
1119 	 */
1120 	if (plchan->cd->single)
1121 		maxburst = 1;
1122 
1123 	burst = pl08x_burst(maxburst);
1124 	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1125 	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1126 
1127 	plchan->device_fc = config->device_fc;
1128 
1129 	if (plchan->runtime_direction == DMA_DEV_TO_MEM) {
1130 		plchan->src_addr = config->src_addr;
1131 		plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1132 			pl08x_select_bus(plchan->cd->periph_buses,
1133 					 pl08x->mem_buses);
1134 	} else {
1135 		plchan->dst_addr = config->dst_addr;
1136 		plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1137 			pl08x_select_bus(pl08x->mem_buses,
1138 					 plchan->cd->periph_buses);
1139 	}
1140 
1141 	dev_dbg(&pl08x->adev->dev,
1142 		"configured channel %s (%s) for %s, data width %d, "
1143 		"maxburst %d words, LE, CCTL=0x%08x\n",
1144 		dma_chan_name(chan), plchan->name,
1145 		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
1146 		addr_width,
1147 		maxburst,
1148 		cctl);
1149 
1150 	return 0;
1151 }
1152 
1153 /*
1154  * Slave transactions callback to the slave device to allow
1155  * synchronization of slave DMA signals with the DMAC enable
1156  */
1157 static void pl08x_issue_pending(struct dma_chan *chan)
1158 {
1159 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1160 	unsigned long flags;
1161 
1162 	spin_lock_irqsave(&plchan->lock, flags);
1163 	/* Something is already active, or we're waiting for a channel... */
1164 	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1165 		spin_unlock_irqrestore(&plchan->lock, flags);
1166 		return;
1167 	}
1168 
1169 	/* Take the first element in the queue and execute it */
1170 	if (!list_empty(&plchan->pend_list)) {
1171 		struct pl08x_txd *next;
1172 
1173 		next = list_first_entry(&plchan->pend_list,
1174 					struct pl08x_txd,
1175 					node);
1176 		list_del(&next->node);
1177 		plchan->state = PL08X_CHAN_RUNNING;
1178 
1179 		pl08x_start_txd(plchan, next);
1180 	}
1181 
1182 	spin_unlock_irqrestore(&plchan->lock, flags);
1183 }
1184 
1185 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1186 					struct pl08x_txd *txd)
1187 {
1188 	struct pl08x_driver_data *pl08x = plchan->host;
1189 	unsigned long flags;
1190 	int num_llis, ret;
1191 
1192 	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1193 	if (!num_llis) {
1194 		spin_lock_irqsave(&plchan->lock, flags);
1195 		pl08x_free_txd(pl08x, txd);
1196 		spin_unlock_irqrestore(&plchan->lock, flags);
1197 		return -EINVAL;
1198 	}
1199 
1200 	spin_lock_irqsave(&plchan->lock, flags);
1201 
1202 	/*
1203 	 * See if we already have a physical channel allocated,
1204 	 * else this is the time to try to get one.
1205 	 */
1206 	ret = prep_phy_channel(plchan, txd);
1207 	if (ret) {
1208 		/*
1209 		 * No physical channel was available.
1210 		 *
1211 		 * memcpy transfers can be sorted out at submission time.
1212 		 *
1213 		 * Slave transfers may have been denied due to platform
1214 		 * channel muxing restrictions.  Since there is no guarantee
1215 		 * that this will ever be resolved, and the signal must be
1216 		 * acquired AFTER acquiring the physical channel, we will let
1217 		 * them be NACK:ed with -EBUSY here. The drivers can retry
1218 		 * the prep() call if they are eager on doing this using DMA.
1219 		 */
1220 		if (plchan->slave) {
1221 			pl08x_free_txd_list(pl08x, plchan);
1222 			pl08x_free_txd(pl08x, txd);
1223 			spin_unlock_irqrestore(&plchan->lock, flags);
1224 			return -EBUSY;
1225 		}
1226 	} else
1227 		/*
1228 		 * Else we're all set, paused and ready to roll, status
1229 		 * will switch to PL08X_CHAN_RUNNING when we call
1230 		 * issue_pending(). If there is something running on the
1231 		 * channel already we don't change its state.
1232 		 */
1233 		if (plchan->state == PL08X_CHAN_IDLE)
1234 			plchan->state = PL08X_CHAN_PAUSED;
1235 
1236 	spin_unlock_irqrestore(&plchan->lock, flags);
1237 
1238 	return 0;
1239 }
1240 
1241 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1242 	unsigned long flags)
1243 {
1244 	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1245 
1246 	if (txd) {
1247 		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1248 		txd->tx.flags = flags;
1249 		txd->tx.tx_submit = pl08x_tx_submit;
1250 		INIT_LIST_HEAD(&txd->node);
1251 		INIT_LIST_HEAD(&txd->dsg_list);
1252 
1253 		/* Always enable error and terminal interrupts */
1254 		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1255 			    PL080_CONFIG_TC_IRQ_MASK;
1256 	}
1257 	return txd;
1258 }
1259 
1260 /*
1261  * Initialize a descriptor to be used by memcpy submit
1262  */
1263 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1264 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1265 		size_t len, unsigned long flags)
1266 {
1267 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1268 	struct pl08x_driver_data *pl08x = plchan->host;
1269 	struct pl08x_txd *txd;
1270 	struct pl08x_sg *dsg;
1271 	int ret;
1272 
1273 	txd = pl08x_get_txd(plchan, flags);
1274 	if (!txd) {
1275 		dev_err(&pl08x->adev->dev,
1276 			"%s no memory for descriptor\n", __func__);
1277 		return NULL;
1278 	}
1279 
1280 	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1281 	if (!dsg) {
1282 		pl08x_free_txd(pl08x, txd);
1283 		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1284 				__func__);
1285 		return NULL;
1286 	}
1287 	list_add_tail(&dsg->node, &txd->dsg_list);
1288 
1289 	txd->direction = DMA_NONE;
1290 	dsg->src_addr = src;
1291 	dsg->dst_addr = dest;
1292 	dsg->len = len;
1293 
1294 	/* Set platform data for m2m */
1295 	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1296 	txd->cctl = pl08x->pd->memcpy_channel.cctl &
1297 			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1298 
1299 	/* Both to be incremented or the code will break */
1300 	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1301 
1302 	if (pl08x->vd->dualmaster)
1303 		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1304 					      pl08x->mem_buses);
1305 
1306 	ret = pl08x_prep_channel_resources(plchan, txd);
1307 	if (ret)
1308 		return NULL;
1309 
1310 	return &txd->tx;
1311 }
1312 
1313 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1314 		struct dma_chan *chan, struct scatterlist *sgl,
1315 		unsigned int sg_len, enum dma_transfer_direction direction,
1316 		unsigned long flags, void *context)
1317 {
1318 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1319 	struct pl08x_driver_data *pl08x = plchan->host;
1320 	struct pl08x_txd *txd;
1321 	struct pl08x_sg *dsg;
1322 	struct scatterlist *sg;
1323 	dma_addr_t slave_addr;
1324 	int ret, tmp;
1325 
1326 	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1327 			__func__, sgl->length, plchan->name);
1328 
1329 	txd = pl08x_get_txd(plchan, flags);
1330 	if (!txd) {
1331 		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1332 		return NULL;
1333 	}
1334 
1335 	if (direction != plchan->runtime_direction)
1336 		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1337 			"the direction configured for the PrimeCell\n",
1338 			__func__);
1339 
1340 	/*
1341 	 * Set up addresses, the PrimeCell configured address
1342 	 * will take precedence since this may configure the
1343 	 * channel target address dynamically at runtime.
1344 	 */
1345 	txd->direction = direction;
1346 
1347 	if (direction == DMA_MEM_TO_DEV) {
1348 		txd->cctl = plchan->dst_cctl;
1349 		slave_addr = plchan->dst_addr;
1350 	} else if (direction == DMA_DEV_TO_MEM) {
1351 		txd->cctl = plchan->src_cctl;
1352 		slave_addr = plchan->src_addr;
1353 	} else {
1354 		pl08x_free_txd(pl08x, txd);
1355 		dev_err(&pl08x->adev->dev,
1356 			"%s direction unsupported\n", __func__);
1357 		return NULL;
1358 	}
1359 
1360 	if (plchan->device_fc)
1361 		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1362 			PL080_FLOW_PER2MEM_PER;
1363 	else
1364 		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1365 			PL080_FLOW_PER2MEM;
1366 
1367 	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1368 
1369 	for_each_sg(sgl, sg, sg_len, tmp) {
1370 		dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1371 		if (!dsg) {
1372 			pl08x_free_txd(pl08x, txd);
1373 			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1374 					__func__);
1375 			return NULL;
1376 		}
1377 		list_add_tail(&dsg->node, &txd->dsg_list);
1378 
1379 		dsg->len = sg_dma_len(sg);
1380 		if (direction == DMA_MEM_TO_DEV) {
1381 			dsg->src_addr = sg_phys(sg);
1382 			dsg->dst_addr = slave_addr;
1383 		} else {
1384 			dsg->src_addr = slave_addr;
1385 			dsg->dst_addr = sg_phys(sg);
1386 		}
1387 	}
1388 
1389 	ret = pl08x_prep_channel_resources(plchan, txd);
1390 	if (ret)
1391 		return NULL;
1392 
1393 	return &txd->tx;
1394 }
1395 
1396 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1397 			 unsigned long arg)
1398 {
1399 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1400 	struct pl08x_driver_data *pl08x = plchan->host;
1401 	unsigned long flags;
1402 	int ret = 0;
1403 
1404 	/* Controls applicable to inactive channels */
1405 	if (cmd == DMA_SLAVE_CONFIG) {
1406 		return dma_set_runtime_config(chan,
1407 					      (struct dma_slave_config *)arg);
1408 	}
1409 
1410 	/*
1411 	 * Anything succeeds on channels with no physical allocation and
1412 	 * no queued transfers.
1413 	 */
1414 	spin_lock_irqsave(&plchan->lock, flags);
1415 	if (!plchan->phychan && !plchan->at) {
1416 		spin_unlock_irqrestore(&plchan->lock, flags);
1417 		return 0;
1418 	}
1419 
1420 	switch (cmd) {
1421 	case DMA_TERMINATE_ALL:
1422 		plchan->state = PL08X_CHAN_IDLE;
1423 
1424 		if (plchan->phychan) {
1425 			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1426 
1427 			/*
1428 			 * Mark physical channel as free and free any slave
1429 			 * signal
1430 			 */
1431 			release_phy_channel(plchan);
1432 			plchan->phychan_hold = 0;
1433 		}
1434 		/* Dequeue jobs and free LLIs */
1435 		if (plchan->at) {
1436 			pl08x_free_txd(pl08x, plchan->at);
1437 			plchan->at = NULL;
1438 		}
1439 		/* Dequeue jobs not yet fired as well */
1440 		pl08x_free_txd_list(pl08x, plchan);
1441 		break;
1442 	case DMA_PAUSE:
1443 		pl08x_pause_phy_chan(plchan->phychan);
1444 		plchan->state = PL08X_CHAN_PAUSED;
1445 		break;
1446 	case DMA_RESUME:
1447 		pl08x_resume_phy_chan(plchan->phychan);
1448 		plchan->state = PL08X_CHAN_RUNNING;
1449 		break;
1450 	default:
1451 		/* Unknown command */
1452 		ret = -ENXIO;
1453 		break;
1454 	}
1455 
1456 	spin_unlock_irqrestore(&plchan->lock, flags);
1457 
1458 	return ret;
1459 }
1460 
1461 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1462 {
1463 	struct pl08x_dma_chan *plchan;
1464 	char *name = chan_id;
1465 
1466 	/* Reject channels for devices not bound to this driver */
1467 	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1468 		return false;
1469 
1470 	plchan = to_pl08x_chan(chan);
1471 
1472 	/* Check that the channel is not taken! */
1473 	if (!strcmp(plchan->name, name))
1474 		return true;
1475 
1476 	return false;
1477 }
1478 
1479 /*
1480  * Just check that the device is there and active
1481  * TODO: turn this bit on/off depending on the number of physical channels
1482  * actually used, if it is zero... well shut it off. That will save some
1483  * power. Cut the clock at the same time.
1484  */
1485 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1486 {
1487 	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1488 }
1489 
1490 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1491 {
1492 	struct device *dev = txd->tx.chan->device->dev;
1493 	struct pl08x_sg *dsg;
1494 
1495 	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1496 		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1497 			list_for_each_entry(dsg, &txd->dsg_list, node)
1498 				dma_unmap_single(dev, dsg->src_addr, dsg->len,
1499 						DMA_TO_DEVICE);
1500 		else {
1501 			list_for_each_entry(dsg, &txd->dsg_list, node)
1502 				dma_unmap_page(dev, dsg->src_addr, dsg->len,
1503 						DMA_TO_DEVICE);
1504 		}
1505 	}
1506 	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1507 		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1508 			list_for_each_entry(dsg, &txd->dsg_list, node)
1509 				dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1510 						DMA_FROM_DEVICE);
1511 		else
1512 			list_for_each_entry(dsg, &txd->dsg_list, node)
1513 				dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1514 						DMA_FROM_DEVICE);
1515 	}
1516 }
1517 
1518 static void pl08x_tasklet(unsigned long data)
1519 {
1520 	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1521 	struct pl08x_driver_data *pl08x = plchan->host;
1522 	struct pl08x_txd *txd;
1523 	unsigned long flags;
1524 
1525 	spin_lock_irqsave(&plchan->lock, flags);
1526 
1527 	txd = plchan->at;
1528 	plchan->at = NULL;
1529 
1530 	if (txd) {
1531 		/* Update last completed */
1532 		dma_cookie_complete(&txd->tx);
1533 	}
1534 
1535 	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1536 	if (!list_empty(&plchan->pend_list)) {
1537 		struct pl08x_txd *next;
1538 
1539 		next = list_first_entry(&plchan->pend_list,
1540 					struct pl08x_txd,
1541 					node);
1542 		list_del(&next->node);
1543 
1544 		pl08x_start_txd(plchan, next);
1545 	} else if (plchan->phychan_hold) {
1546 		/*
1547 		 * This channel is still in use - we have a new txd being
1548 		 * prepared and will soon be queued.  Don't give up the
1549 		 * physical channel.
1550 		 */
1551 	} else {
1552 		struct pl08x_dma_chan *waiting = NULL;
1553 
1554 		/*
1555 		 * No more jobs, so free up the physical channel
1556 		 * Free any allocated signal on slave transfers too
1557 		 */
1558 		release_phy_channel(plchan);
1559 		plchan->state = PL08X_CHAN_IDLE;
1560 
1561 		/*
1562 		 * And NOW before anyone else can grab that free:d up
1563 		 * physical channel, see if there is some memcpy pending
1564 		 * that seriously needs to start because of being stacked
1565 		 * up while we were choking the physical channels with data.
1566 		 */
1567 		list_for_each_entry(waiting, &pl08x->memcpy.channels,
1568 				    chan.device_node) {
1569 			if (waiting->state == PL08X_CHAN_WAITING &&
1570 				waiting->waiting != NULL) {
1571 				int ret;
1572 
1573 				/* This should REALLY not fail now */
1574 				ret = prep_phy_channel(waiting,
1575 						       waiting->waiting);
1576 				BUG_ON(ret);
1577 				waiting->phychan_hold--;
1578 				waiting->state = PL08X_CHAN_RUNNING;
1579 				waiting->waiting = NULL;
1580 				pl08x_issue_pending(&waiting->chan);
1581 				break;
1582 			}
1583 		}
1584 	}
1585 
1586 	spin_unlock_irqrestore(&plchan->lock, flags);
1587 
1588 	if (txd) {
1589 		dma_async_tx_callback callback = txd->tx.callback;
1590 		void *callback_param = txd->tx.callback_param;
1591 
1592 		/* Don't try to unmap buffers on slave channels */
1593 		if (!plchan->slave)
1594 			pl08x_unmap_buffers(txd);
1595 
1596 		/* Free the descriptor */
1597 		spin_lock_irqsave(&plchan->lock, flags);
1598 		pl08x_free_txd(pl08x, txd);
1599 		spin_unlock_irqrestore(&plchan->lock, flags);
1600 
1601 		/* Callback to signal completion */
1602 		if (callback)
1603 			callback(callback_param);
1604 	}
1605 }
1606 
1607 static irqreturn_t pl08x_irq(int irq, void *dev)
1608 {
1609 	struct pl08x_driver_data *pl08x = dev;
1610 	u32 mask = 0, err, tc, i;
1611 
1612 	/* check & clear - ERR & TC interrupts */
1613 	err = readl(pl08x->base + PL080_ERR_STATUS);
1614 	if (err) {
1615 		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1616 			__func__, err);
1617 		writel(err, pl08x->base + PL080_ERR_CLEAR);
1618 	}
1619 	tc = readl(pl08x->base + PL080_INT_STATUS);
1620 	if (tc)
1621 		writel(tc, pl08x->base + PL080_TC_CLEAR);
1622 
1623 	if (!err && !tc)
1624 		return IRQ_NONE;
1625 
1626 	for (i = 0; i < pl08x->vd->channels; i++) {
1627 		if (((1 << i) & err) || ((1 << i) & tc)) {
1628 			/* Locate physical channel */
1629 			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1630 			struct pl08x_dma_chan *plchan = phychan->serving;
1631 
1632 			if (!plchan) {
1633 				dev_err(&pl08x->adev->dev,
1634 					"%s Error TC interrupt on unused channel: 0x%08x\n",
1635 					__func__, i);
1636 				continue;
1637 			}
1638 
1639 			/* Schedule tasklet on this channel */
1640 			tasklet_schedule(&plchan->tasklet);
1641 			mask |= (1 << i);
1642 		}
1643 	}
1644 
1645 	return mask ? IRQ_HANDLED : IRQ_NONE;
1646 }
1647 
1648 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1649 {
1650 	u32 cctl = pl08x_cctl(chan->cd->cctl);
1651 
1652 	chan->slave = true;
1653 	chan->name = chan->cd->bus_id;
1654 	chan->src_addr = chan->cd->addr;
1655 	chan->dst_addr = chan->cd->addr;
1656 	chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1657 		pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1658 	chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1659 		pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1660 }
1661 
1662 /*
1663  * Initialise the DMAC memcpy/slave channels.
1664  * Make a local wrapper to hold required data
1665  */
1666 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1667 		struct dma_device *dmadev, unsigned int channels, bool slave)
1668 {
1669 	struct pl08x_dma_chan *chan;
1670 	int i;
1671 
1672 	INIT_LIST_HEAD(&dmadev->channels);
1673 
1674 	/*
1675 	 * Register as many many memcpy as we have physical channels,
1676 	 * we won't always be able to use all but the code will have
1677 	 * to cope with that situation.
1678 	 */
1679 	for (i = 0; i < channels; i++) {
1680 		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1681 		if (!chan) {
1682 			dev_err(&pl08x->adev->dev,
1683 				"%s no memory for channel\n", __func__);
1684 			return -ENOMEM;
1685 		}
1686 
1687 		chan->host = pl08x;
1688 		chan->state = PL08X_CHAN_IDLE;
1689 
1690 		if (slave) {
1691 			chan->cd = &pl08x->pd->slave_channels[i];
1692 			pl08x_dma_slave_init(chan);
1693 		} else {
1694 			chan->cd = &pl08x->pd->memcpy_channel;
1695 			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1696 			if (!chan->name) {
1697 				kfree(chan);
1698 				return -ENOMEM;
1699 			}
1700 		}
1701 		if (chan->cd->circular_buffer) {
1702 			dev_err(&pl08x->adev->dev,
1703 				"channel %s: circular buffers not supported\n",
1704 				chan->name);
1705 			kfree(chan);
1706 			continue;
1707 		}
1708 		dev_dbg(&pl08x->adev->dev,
1709 			 "initialize virtual channel \"%s\"\n",
1710 			 chan->name);
1711 
1712 		chan->chan.device = dmadev;
1713 		dma_cookie_init(&chan->chan);
1714 
1715 		spin_lock_init(&chan->lock);
1716 		INIT_LIST_HEAD(&chan->pend_list);
1717 		tasklet_init(&chan->tasklet, pl08x_tasklet,
1718 			     (unsigned long) chan);
1719 
1720 		list_add_tail(&chan->chan.device_node, &dmadev->channels);
1721 	}
1722 	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1723 		 i, slave ? "slave" : "memcpy");
1724 	return i;
1725 }
1726 
1727 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1728 {
1729 	struct pl08x_dma_chan *chan = NULL;
1730 	struct pl08x_dma_chan *next;
1731 
1732 	list_for_each_entry_safe(chan,
1733 				 next, &dmadev->channels, chan.device_node) {
1734 		list_del(&chan->chan.device_node);
1735 		kfree(chan);
1736 	}
1737 }
1738 
1739 #ifdef CONFIG_DEBUG_FS
1740 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1741 {
1742 	switch (state) {
1743 	case PL08X_CHAN_IDLE:
1744 		return "idle";
1745 	case PL08X_CHAN_RUNNING:
1746 		return "running";
1747 	case PL08X_CHAN_PAUSED:
1748 		return "paused";
1749 	case PL08X_CHAN_WAITING:
1750 		return "waiting";
1751 	default:
1752 		break;
1753 	}
1754 	return "UNKNOWN STATE";
1755 }
1756 
1757 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1758 {
1759 	struct pl08x_driver_data *pl08x = s->private;
1760 	struct pl08x_dma_chan *chan;
1761 	struct pl08x_phy_chan *ch;
1762 	unsigned long flags;
1763 	int i;
1764 
1765 	seq_printf(s, "PL08x physical channels:\n");
1766 	seq_printf(s, "CHANNEL:\tUSER:\n");
1767 	seq_printf(s, "--------\t-----\n");
1768 	for (i = 0; i < pl08x->vd->channels; i++) {
1769 		struct pl08x_dma_chan *virt_chan;
1770 
1771 		ch = &pl08x->phy_chans[i];
1772 
1773 		spin_lock_irqsave(&ch->lock, flags);
1774 		virt_chan = ch->serving;
1775 
1776 		seq_printf(s, "%d\t\t%s\n",
1777 			   ch->id, virt_chan ? virt_chan->name : "(none)");
1778 
1779 		spin_unlock_irqrestore(&ch->lock, flags);
1780 	}
1781 
1782 	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1783 	seq_printf(s, "CHANNEL:\tSTATE:\n");
1784 	seq_printf(s, "--------\t------\n");
1785 	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1786 		seq_printf(s, "%s\t\t%s\n", chan->name,
1787 			   pl08x_state_str(chan->state));
1788 	}
1789 
1790 	seq_printf(s, "\nPL08x virtual slave channels:\n");
1791 	seq_printf(s, "CHANNEL:\tSTATE:\n");
1792 	seq_printf(s, "--------\t------\n");
1793 	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1794 		seq_printf(s, "%s\t\t%s\n", chan->name,
1795 			   pl08x_state_str(chan->state));
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1802 {
1803 	return single_open(file, pl08x_debugfs_show, inode->i_private);
1804 }
1805 
1806 static const struct file_operations pl08x_debugfs_operations = {
1807 	.open		= pl08x_debugfs_open,
1808 	.read		= seq_read,
1809 	.llseek		= seq_lseek,
1810 	.release	= single_release,
1811 };
1812 
1813 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1814 {
1815 	/* Expose a simple debugfs interface to view all clocks */
1816 	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1817 			S_IFREG | S_IRUGO, NULL, pl08x,
1818 			&pl08x_debugfs_operations);
1819 }
1820 
1821 #else
1822 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1823 {
1824 }
1825 #endif
1826 
1827 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1828 {
1829 	struct pl08x_driver_data *pl08x;
1830 	const struct vendor_data *vd = id->data;
1831 	int ret = 0;
1832 	int i;
1833 
1834 	ret = amba_request_regions(adev, NULL);
1835 	if (ret)
1836 		return ret;
1837 
1838 	/* Create the driver state holder */
1839 	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1840 	if (!pl08x) {
1841 		ret = -ENOMEM;
1842 		goto out_no_pl08x;
1843 	}
1844 
1845 	pm_runtime_set_active(&adev->dev);
1846 	pm_runtime_enable(&adev->dev);
1847 
1848 	/* Initialize memcpy engine */
1849 	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1850 	pl08x->memcpy.dev = &adev->dev;
1851 	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1852 	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1853 	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1854 	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1855 	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1856 	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1857 	pl08x->memcpy.device_control = pl08x_control;
1858 
1859 	/* Initialize slave engine */
1860 	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1861 	pl08x->slave.dev = &adev->dev;
1862 	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1863 	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1864 	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1865 	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1866 	pl08x->slave.device_issue_pending = pl08x_issue_pending;
1867 	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1868 	pl08x->slave.device_control = pl08x_control;
1869 
1870 	/* Get the platform data */
1871 	pl08x->pd = dev_get_platdata(&adev->dev);
1872 	if (!pl08x->pd) {
1873 		dev_err(&adev->dev, "no platform data supplied\n");
1874 		goto out_no_platdata;
1875 	}
1876 
1877 	/* Assign useful pointers to the driver state */
1878 	pl08x->adev = adev;
1879 	pl08x->vd = vd;
1880 
1881 	/* By default, AHB1 only.  If dualmaster, from platform */
1882 	pl08x->lli_buses = PL08X_AHB1;
1883 	pl08x->mem_buses = PL08X_AHB1;
1884 	if (pl08x->vd->dualmaster) {
1885 		pl08x->lli_buses = pl08x->pd->lli_buses;
1886 		pl08x->mem_buses = pl08x->pd->mem_buses;
1887 	}
1888 
1889 	/* A DMA memory pool for LLIs, align on 1-byte boundary */
1890 	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1891 			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1892 	if (!pl08x->pool) {
1893 		ret = -ENOMEM;
1894 		goto out_no_lli_pool;
1895 	}
1896 
1897 	spin_lock_init(&pl08x->lock);
1898 
1899 	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1900 	if (!pl08x->base) {
1901 		ret = -ENOMEM;
1902 		goto out_no_ioremap;
1903 	}
1904 
1905 	/* Turn on the PL08x */
1906 	pl08x_ensure_on(pl08x);
1907 
1908 	/* Attach the interrupt handler */
1909 	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1910 	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1911 
1912 	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1913 			  DRIVER_NAME, pl08x);
1914 	if (ret) {
1915 		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1916 			__func__, adev->irq[0]);
1917 		goto out_no_irq;
1918 	}
1919 
1920 	/* Initialize physical channels */
1921 	pl08x->phy_chans = kmalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1922 			GFP_KERNEL);
1923 	if (!pl08x->phy_chans) {
1924 		dev_err(&adev->dev, "%s failed to allocate "
1925 			"physical channel holders\n",
1926 			__func__);
1927 		goto out_no_phychans;
1928 	}
1929 
1930 	for (i = 0; i < vd->channels; i++) {
1931 		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1932 
1933 		ch->id = i;
1934 		ch->base = pl08x->base + PL080_Cx_BASE(i);
1935 		spin_lock_init(&ch->lock);
1936 		ch->serving = NULL;
1937 		ch->signal = -1;
1938 		dev_dbg(&adev->dev, "physical channel %d is %s\n",
1939 			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1940 	}
1941 
1942 	/* Register as many memcpy channels as there are physical channels */
1943 	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1944 					      pl08x->vd->channels, false);
1945 	if (ret <= 0) {
1946 		dev_warn(&pl08x->adev->dev,
1947 			 "%s failed to enumerate memcpy channels - %d\n",
1948 			 __func__, ret);
1949 		goto out_no_memcpy;
1950 	}
1951 	pl08x->memcpy.chancnt = ret;
1952 
1953 	/* Register slave channels */
1954 	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1955 			pl08x->pd->num_slave_channels, true);
1956 	if (ret <= 0) {
1957 		dev_warn(&pl08x->adev->dev,
1958 			"%s failed to enumerate slave channels - %d\n",
1959 				__func__, ret);
1960 		goto out_no_slave;
1961 	}
1962 	pl08x->slave.chancnt = ret;
1963 
1964 	ret = dma_async_device_register(&pl08x->memcpy);
1965 	if (ret) {
1966 		dev_warn(&pl08x->adev->dev,
1967 			"%s failed to register memcpy as an async device - %d\n",
1968 			__func__, ret);
1969 		goto out_no_memcpy_reg;
1970 	}
1971 
1972 	ret = dma_async_device_register(&pl08x->slave);
1973 	if (ret) {
1974 		dev_warn(&pl08x->adev->dev,
1975 			"%s failed to register slave as an async device - %d\n",
1976 			__func__, ret);
1977 		goto out_no_slave_reg;
1978 	}
1979 
1980 	amba_set_drvdata(adev, pl08x);
1981 	init_pl08x_debugfs(pl08x);
1982 	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1983 		 amba_part(adev), amba_rev(adev),
1984 		 (unsigned long long)adev->res.start, adev->irq[0]);
1985 
1986 	pm_runtime_put(&adev->dev);
1987 	return 0;
1988 
1989 out_no_slave_reg:
1990 	dma_async_device_unregister(&pl08x->memcpy);
1991 out_no_memcpy_reg:
1992 	pl08x_free_virtual_channels(&pl08x->slave);
1993 out_no_slave:
1994 	pl08x_free_virtual_channels(&pl08x->memcpy);
1995 out_no_memcpy:
1996 	kfree(pl08x->phy_chans);
1997 out_no_phychans:
1998 	free_irq(adev->irq[0], pl08x);
1999 out_no_irq:
2000 	iounmap(pl08x->base);
2001 out_no_ioremap:
2002 	dma_pool_destroy(pl08x->pool);
2003 out_no_lli_pool:
2004 out_no_platdata:
2005 	pm_runtime_put(&adev->dev);
2006 	pm_runtime_disable(&adev->dev);
2007 
2008 	kfree(pl08x);
2009 out_no_pl08x:
2010 	amba_release_regions(adev);
2011 	return ret;
2012 }
2013 
2014 /* PL080 has 8 channels and the PL080 have just 2 */
2015 static struct vendor_data vendor_pl080 = {
2016 	.channels = 8,
2017 	.dualmaster = true,
2018 };
2019 
2020 static struct vendor_data vendor_pl081 = {
2021 	.channels = 2,
2022 	.dualmaster = false,
2023 };
2024 
2025 static struct amba_id pl08x_ids[] = {
2026 	/* PL080 */
2027 	{
2028 		.id	= 0x00041080,
2029 		.mask	= 0x000fffff,
2030 		.data	= &vendor_pl080,
2031 	},
2032 	/* PL081 */
2033 	{
2034 		.id	= 0x00041081,
2035 		.mask	= 0x000fffff,
2036 		.data	= &vendor_pl081,
2037 	},
2038 	/* Nomadik 8815 PL080 variant */
2039 	{
2040 		.id	= 0x00280880,
2041 		.mask	= 0x00ffffff,
2042 		.data	= &vendor_pl080,
2043 	},
2044 	{ 0, 0 },
2045 };
2046 
2047 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2048 
2049 static struct amba_driver pl08x_amba_driver = {
2050 	.drv.name	= DRIVER_NAME,
2051 	.id_table	= pl08x_ids,
2052 	.probe		= pl08x_probe,
2053 };
2054 
2055 static int __init pl08x_init(void)
2056 {
2057 	int retval;
2058 	retval = amba_driver_register(&pl08x_amba_driver);
2059 	if (retval)
2060 		printk(KERN_WARNING DRIVER_NAME
2061 		       "failed to register as an AMBA device (%d)\n",
2062 		       retval);
2063 	return retval;
2064 }
2065 subsys_initcall(pl08x_init);
2066