1 /* 2 * Copyright (c) 2006 ARM Ltd. 3 * Copyright (c) 2010 ST-Ericsson SA 4 * 5 * Author: Peter Pearse <peter.pearse@arm.com> 6 * Author: Linus Walleij <linus.walleij@stericsson.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the Free 10 * Software Foundation; either version 2 of the License, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * You should have received a copy of the GNU General Public License along with 19 * this program; if not, write to the Free Software Foundation, Inc., 59 20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 21 * 22 * The full GNU General Public License is in this distribution in the file 23 * called COPYING. 24 * 25 * Documentation: ARM DDI 0196G == PL080 26 * Documentation: ARM DDI 0218E == PL081 27 * 28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any 29 * channel. 30 * 31 * The PL080 has 8 channels available for simultaneous use, and the PL081 32 * has only two channels. So on these DMA controllers the number of channels 33 * and the number of incoming DMA signals are two totally different things. 34 * It is usually not possible to theoretically handle all physical signals, 35 * so a multiplexing scheme with possible denial of use is necessary. 36 * 37 * The PL080 has a dual bus master, PL081 has a single master. 38 * 39 * Memory to peripheral transfer may be visualized as 40 * Get data from memory to DMAC 41 * Until no data left 42 * On burst request from peripheral 43 * Destination burst from DMAC to peripheral 44 * Clear burst request 45 * Raise terminal count interrupt 46 * 47 * For peripherals with a FIFO: 48 * Source burst size == half the depth of the peripheral FIFO 49 * Destination burst size == the depth of the peripheral FIFO 50 * 51 * (Bursts are irrelevant for mem to mem transfers - there are no burst 52 * signals, the DMA controller will simply facilitate its AHB master.) 53 * 54 * ASSUMES default (little) endianness for DMA transfers 55 * 56 * The PL08x has two flow control settings: 57 * - DMAC flow control: the transfer size defines the number of transfers 58 * which occur for the current LLI entry, and the DMAC raises TC at the 59 * end of every LLI entry. Observed behaviour shows the DMAC listening 60 * to both the BREQ and SREQ signals (contrary to documented), 61 * transferring data if either is active. The LBREQ and LSREQ signals 62 * are ignored. 63 * 64 * - Peripheral flow control: the transfer size is ignored (and should be 65 * zero). The data is transferred from the current LLI entry, until 66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC 67 * will then move to the next LLI entry. 68 * 69 * Only the former works sanely with scatter lists, so we only implement 70 * the DMAC flow control method. However, peripherals which use the LBREQ 71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through 72 * these hardware restrictions prevents them from using scatter DMA. 73 * 74 * Global TODO: 75 * - Break out common code from arch/arm/mach-s3c64xx and share 76 */ 77 #include <linux/device.h> 78 #include <linux/init.h> 79 #include <linux/module.h> 80 #include <linux/interrupt.h> 81 #include <linux/slab.h> 82 #include <linux/delay.h> 83 #include <linux/dmapool.h> 84 #include <linux/dmaengine.h> 85 #include <linux/amba/bus.h> 86 #include <linux/amba/pl08x.h> 87 #include <linux/debugfs.h> 88 #include <linux/seq_file.h> 89 90 #include <asm/hardware/pl080.h> 91 92 #define DRIVER_NAME "pl08xdmac" 93 94 /** 95 * struct vendor_data - vendor-specific config parameters for PL08x derivatives 96 * @channels: the number of channels available in this variant 97 * @dualmaster: whether this version supports dual AHB masters or not. 98 */ 99 struct vendor_data { 100 u8 channels; 101 bool dualmaster; 102 }; 103 104 /* 105 * PL08X private data structures 106 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit, 107 * start & end do not - their bus bit info is in cctl. Also note that these 108 * are fixed 32-bit quantities. 109 */ 110 struct pl08x_lli { 111 u32 src; 112 u32 dst; 113 u32 lli; 114 u32 cctl; 115 }; 116 117 /** 118 * struct pl08x_driver_data - the local state holder for the PL08x 119 * @slave: slave engine for this instance 120 * @memcpy: memcpy engine for this instance 121 * @base: virtual memory base (remapped) for the PL08x 122 * @adev: the corresponding AMBA (PrimeCell) bus entry 123 * @vd: vendor data for this PL08x variant 124 * @pd: platform data passed in from the platform/machine 125 * @phy_chans: array of data for the physical channels 126 * @pool: a pool for the LLI descriptors 127 * @pool_ctr: counter of LLIs in the pool 128 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches 129 * @mem_buses: set to indicate memory transfers on AHB2. 130 * @lock: a spinlock for this struct 131 */ 132 struct pl08x_driver_data { 133 struct dma_device slave; 134 struct dma_device memcpy; 135 void __iomem *base; 136 struct amba_device *adev; 137 const struct vendor_data *vd; 138 struct pl08x_platform_data *pd; 139 struct pl08x_phy_chan *phy_chans; 140 struct dma_pool *pool; 141 int pool_ctr; 142 u8 lli_buses; 143 u8 mem_buses; 144 spinlock_t lock; 145 }; 146 147 /* 148 * PL08X specific defines 149 */ 150 151 /* 152 * Memory boundaries: the manual for PL08x says that the controller 153 * cannot read past a 1KiB boundary, so these defines are used to 154 * create transfer LLIs that do not cross such boundaries. 155 */ 156 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */ 157 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT) 158 159 /* Minimum period between work queue runs */ 160 #define PL08X_WQ_PERIODMIN 20 161 162 /* Size (bytes) of each LLI buffer allocated for one transfer */ 163 # define PL08X_LLI_TSFR_SIZE 0x2000 164 165 /* Maximum times we call dma_pool_alloc on this pool without freeing */ 166 #define PL08X_MAX_ALLOCS 0x40 167 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli)) 168 #define PL08X_ALIGN 8 169 170 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan) 171 { 172 return container_of(chan, struct pl08x_dma_chan, chan); 173 } 174 175 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx) 176 { 177 return container_of(tx, struct pl08x_txd, tx); 178 } 179 180 /* 181 * Physical channel handling 182 */ 183 184 /* Whether a certain channel is busy or not */ 185 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch) 186 { 187 unsigned int val; 188 189 val = readl(ch->base + PL080_CH_CONFIG); 190 return val & PL080_CONFIG_ACTIVE; 191 } 192 193 /* 194 * Set the initial DMA register values i.e. those for the first LLI 195 * The next LLI pointer and the configuration interrupt bit have 196 * been set when the LLIs were constructed. Poke them into the hardware 197 * and start the transfer. 198 */ 199 static void pl08x_start_txd(struct pl08x_dma_chan *plchan, 200 struct pl08x_txd *txd) 201 { 202 struct pl08x_driver_data *pl08x = plchan->host; 203 struct pl08x_phy_chan *phychan = plchan->phychan; 204 struct pl08x_lli *lli = &txd->llis_va[0]; 205 u32 val; 206 207 plchan->at = txd; 208 209 /* Wait for channel inactive */ 210 while (pl08x_phy_channel_busy(phychan)) 211 cpu_relax(); 212 213 dev_vdbg(&pl08x->adev->dev, 214 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, " 215 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n", 216 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl, 217 txd->ccfg); 218 219 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR); 220 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR); 221 writel(lli->lli, phychan->base + PL080_CH_LLI); 222 writel(lli->cctl, phychan->base + PL080_CH_CONTROL); 223 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG); 224 225 /* Enable the DMA channel */ 226 /* Do not access config register until channel shows as disabled */ 227 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id)) 228 cpu_relax(); 229 230 /* Do not access config register until channel shows as inactive */ 231 val = readl(phychan->base + PL080_CH_CONFIG); 232 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE)) 233 val = readl(phychan->base + PL080_CH_CONFIG); 234 235 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG); 236 } 237 238 /* 239 * Pause the channel by setting the HALT bit. 240 * 241 * For M->P transfers, pause the DMAC first and then stop the peripheral - 242 * the FIFO can only drain if the peripheral is still requesting data. 243 * (note: this can still timeout if the DMAC FIFO never drains of data.) 244 * 245 * For P->M transfers, disable the peripheral first to stop it filling 246 * the DMAC FIFO, and then pause the DMAC. 247 */ 248 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch) 249 { 250 u32 val; 251 int timeout; 252 253 /* Set the HALT bit and wait for the FIFO to drain */ 254 val = readl(ch->base + PL080_CH_CONFIG); 255 val |= PL080_CONFIG_HALT; 256 writel(val, ch->base + PL080_CH_CONFIG); 257 258 /* Wait for channel inactive */ 259 for (timeout = 1000; timeout; timeout--) { 260 if (!pl08x_phy_channel_busy(ch)) 261 break; 262 udelay(1); 263 } 264 if (pl08x_phy_channel_busy(ch)) 265 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id); 266 } 267 268 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch) 269 { 270 u32 val; 271 272 /* Clear the HALT bit */ 273 val = readl(ch->base + PL080_CH_CONFIG); 274 val &= ~PL080_CONFIG_HALT; 275 writel(val, ch->base + PL080_CH_CONFIG); 276 } 277 278 279 /* 280 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and 281 * clears any pending interrupt status. This should not be used for 282 * an on-going transfer, but as a method of shutting down a channel 283 * (eg, when it's no longer used) or terminating a transfer. 284 */ 285 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x, 286 struct pl08x_phy_chan *ch) 287 { 288 u32 val = readl(ch->base + PL080_CH_CONFIG); 289 290 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK | 291 PL080_CONFIG_TC_IRQ_MASK); 292 293 writel(val, ch->base + PL080_CH_CONFIG); 294 295 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR); 296 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR); 297 } 298 299 static inline u32 get_bytes_in_cctl(u32 cctl) 300 { 301 /* The source width defines the number of bytes */ 302 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK; 303 304 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) { 305 case PL080_WIDTH_8BIT: 306 break; 307 case PL080_WIDTH_16BIT: 308 bytes *= 2; 309 break; 310 case PL080_WIDTH_32BIT: 311 bytes *= 4; 312 break; 313 } 314 return bytes; 315 } 316 317 /* The channel should be paused when calling this */ 318 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan) 319 { 320 struct pl08x_phy_chan *ch; 321 struct pl08x_txd *txd; 322 unsigned long flags; 323 size_t bytes = 0; 324 325 spin_lock_irqsave(&plchan->lock, flags); 326 ch = plchan->phychan; 327 txd = plchan->at; 328 329 /* 330 * Follow the LLIs to get the number of remaining 331 * bytes in the currently active transaction. 332 */ 333 if (ch && txd) { 334 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2; 335 336 /* First get the remaining bytes in the active transfer */ 337 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL)); 338 339 if (clli) { 340 struct pl08x_lli *llis_va = txd->llis_va; 341 dma_addr_t llis_bus = txd->llis_bus; 342 int index; 343 344 BUG_ON(clli < llis_bus || clli >= llis_bus + 345 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS); 346 347 /* 348 * Locate the next LLI - as this is an array, 349 * it's simple maths to find. 350 */ 351 index = (clli - llis_bus) / sizeof(struct pl08x_lli); 352 353 for (; index < MAX_NUM_TSFR_LLIS; index++) { 354 bytes += get_bytes_in_cctl(llis_va[index].cctl); 355 356 /* 357 * A LLI pointer of 0 terminates the LLI list 358 */ 359 if (!llis_va[index].lli) 360 break; 361 } 362 } 363 } 364 365 /* Sum up all queued transactions */ 366 if (!list_empty(&plchan->pend_list)) { 367 struct pl08x_txd *txdi; 368 list_for_each_entry(txdi, &plchan->pend_list, node) { 369 bytes += txdi->len; 370 } 371 } 372 373 spin_unlock_irqrestore(&plchan->lock, flags); 374 375 return bytes; 376 } 377 378 /* 379 * Allocate a physical channel for a virtual channel 380 * 381 * Try to locate a physical channel to be used for this transfer. If all 382 * are taken return NULL and the requester will have to cope by using 383 * some fallback PIO mode or retrying later. 384 */ 385 static struct pl08x_phy_chan * 386 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x, 387 struct pl08x_dma_chan *virt_chan) 388 { 389 struct pl08x_phy_chan *ch = NULL; 390 unsigned long flags; 391 int i; 392 393 for (i = 0; i < pl08x->vd->channels; i++) { 394 ch = &pl08x->phy_chans[i]; 395 396 spin_lock_irqsave(&ch->lock, flags); 397 398 if (!ch->serving) { 399 ch->serving = virt_chan; 400 ch->signal = -1; 401 spin_unlock_irqrestore(&ch->lock, flags); 402 break; 403 } 404 405 spin_unlock_irqrestore(&ch->lock, flags); 406 } 407 408 if (i == pl08x->vd->channels) { 409 /* No physical channel available, cope with it */ 410 return NULL; 411 } 412 413 return ch; 414 } 415 416 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x, 417 struct pl08x_phy_chan *ch) 418 { 419 unsigned long flags; 420 421 spin_lock_irqsave(&ch->lock, flags); 422 423 /* Stop the channel and clear its interrupts */ 424 pl08x_terminate_phy_chan(pl08x, ch); 425 426 /* Mark it as free */ 427 ch->serving = NULL; 428 spin_unlock_irqrestore(&ch->lock, flags); 429 } 430 431 /* 432 * LLI handling 433 */ 434 435 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded) 436 { 437 switch (coded) { 438 case PL080_WIDTH_8BIT: 439 return 1; 440 case PL080_WIDTH_16BIT: 441 return 2; 442 case PL080_WIDTH_32BIT: 443 return 4; 444 default: 445 break; 446 } 447 BUG(); 448 return 0; 449 } 450 451 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth, 452 size_t tsize) 453 { 454 u32 retbits = cctl; 455 456 /* Remove all src, dst and transfer size bits */ 457 retbits &= ~PL080_CONTROL_DWIDTH_MASK; 458 retbits &= ~PL080_CONTROL_SWIDTH_MASK; 459 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK; 460 461 /* Then set the bits according to the parameters */ 462 switch (srcwidth) { 463 case 1: 464 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT; 465 break; 466 case 2: 467 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT; 468 break; 469 case 4: 470 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT; 471 break; 472 default: 473 BUG(); 474 break; 475 } 476 477 switch (dstwidth) { 478 case 1: 479 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT; 480 break; 481 case 2: 482 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT; 483 break; 484 case 4: 485 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT; 486 break; 487 default: 488 BUG(); 489 break; 490 } 491 492 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT; 493 return retbits; 494 } 495 496 struct pl08x_lli_build_data { 497 struct pl08x_txd *txd; 498 struct pl08x_driver_data *pl08x; 499 struct pl08x_bus_data srcbus; 500 struct pl08x_bus_data dstbus; 501 size_t remainder; 502 }; 503 504 /* 505 * Autoselect a master bus to use for the transfer this prefers the 506 * destination bus if both available if fixed address on one bus the 507 * other will be chosen 508 */ 509 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd, 510 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl) 511 { 512 if (!(cctl & PL080_CONTROL_DST_INCR)) { 513 *mbus = &bd->srcbus; 514 *sbus = &bd->dstbus; 515 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) { 516 *mbus = &bd->dstbus; 517 *sbus = &bd->srcbus; 518 } else { 519 if (bd->dstbus.buswidth == 4) { 520 *mbus = &bd->dstbus; 521 *sbus = &bd->srcbus; 522 } else if (bd->srcbus.buswidth == 4) { 523 *mbus = &bd->srcbus; 524 *sbus = &bd->dstbus; 525 } else if (bd->dstbus.buswidth == 2) { 526 *mbus = &bd->dstbus; 527 *sbus = &bd->srcbus; 528 } else if (bd->srcbus.buswidth == 2) { 529 *mbus = &bd->srcbus; 530 *sbus = &bd->dstbus; 531 } else { 532 /* bd->srcbus.buswidth == 1 */ 533 *mbus = &bd->dstbus; 534 *sbus = &bd->srcbus; 535 } 536 } 537 } 538 539 /* 540 * Fills in one LLI for a certain transfer descriptor and advance the counter 541 */ 542 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd, 543 int num_llis, int len, u32 cctl) 544 { 545 struct pl08x_lli *llis_va = bd->txd->llis_va; 546 dma_addr_t llis_bus = bd->txd->llis_bus; 547 548 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS); 549 550 llis_va[num_llis].cctl = cctl; 551 llis_va[num_llis].src = bd->srcbus.addr; 552 llis_va[num_llis].dst = bd->dstbus.addr; 553 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli); 554 if (bd->pl08x->lli_buses & PL08X_AHB2) 555 llis_va[num_llis].lli |= PL080_LLI_LM_AHB2; 556 557 if (cctl & PL080_CONTROL_SRC_INCR) 558 bd->srcbus.addr += len; 559 if (cctl & PL080_CONTROL_DST_INCR) 560 bd->dstbus.addr += len; 561 562 BUG_ON(bd->remainder < len); 563 564 bd->remainder -= len; 565 } 566 567 /* 568 * Return number of bytes to fill to boundary, or len. 569 * This calculation works for any value of addr. 570 */ 571 static inline size_t pl08x_pre_boundary(u32 addr, size_t len) 572 { 573 size_t boundary_len = PL08X_BOUNDARY_SIZE - 574 (addr & (PL08X_BOUNDARY_SIZE - 1)); 575 576 return min(boundary_len, len); 577 } 578 579 /* 580 * This fills in the table of LLIs for the transfer descriptor 581 * Note that we assume we never have to change the burst sizes 582 * Return 0 for error 583 */ 584 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x, 585 struct pl08x_txd *txd) 586 { 587 struct pl08x_bus_data *mbus, *sbus; 588 struct pl08x_lli_build_data bd; 589 int num_llis = 0; 590 u32 cctl; 591 size_t max_bytes_per_lli; 592 size_t total_bytes = 0; 593 struct pl08x_lli *llis_va; 594 595 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, 596 &txd->llis_bus); 597 if (!txd->llis_va) { 598 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__); 599 return 0; 600 } 601 602 pl08x->pool_ctr++; 603 604 /* Get the default CCTL */ 605 cctl = txd->cctl; 606 607 bd.txd = txd; 608 bd.pl08x = pl08x; 609 bd.srcbus.addr = txd->src_addr; 610 bd.dstbus.addr = txd->dst_addr; 611 612 /* Find maximum width of the source bus */ 613 bd.srcbus.maxwidth = 614 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >> 615 PL080_CONTROL_SWIDTH_SHIFT); 616 617 /* Find maximum width of the destination bus */ 618 bd.dstbus.maxwidth = 619 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >> 620 PL080_CONTROL_DWIDTH_SHIFT); 621 622 /* Set up the bus widths to the maximum */ 623 bd.srcbus.buswidth = bd.srcbus.maxwidth; 624 bd.dstbus.buswidth = bd.dstbus.maxwidth; 625 dev_vdbg(&pl08x->adev->dev, 626 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n", 627 __func__, bd.srcbus.buswidth, bd.dstbus.buswidth); 628 629 630 /* 631 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths) 632 */ 633 max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) * 634 PL080_CONTROL_TRANSFER_SIZE_MASK; 635 dev_vdbg(&pl08x->adev->dev, 636 "%s max bytes per lli = %zu\n", 637 __func__, max_bytes_per_lli); 638 639 /* We need to count this down to zero */ 640 bd.remainder = txd->len; 641 dev_vdbg(&pl08x->adev->dev, 642 "%s remainder = %zu\n", 643 __func__, bd.remainder); 644 645 /* 646 * Choose bus to align to 647 * - prefers destination bus if both available 648 * - if fixed address on one bus chooses other 649 */ 650 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl); 651 652 if (txd->len < mbus->buswidth) { 653 /* Less than a bus width available - send as single bytes */ 654 while (bd.remainder) { 655 dev_vdbg(&pl08x->adev->dev, 656 "%s single byte LLIs for a transfer of " 657 "less than a bus width (remain 0x%08x)\n", 658 __func__, bd.remainder); 659 cctl = pl08x_cctl_bits(cctl, 1, 1, 1); 660 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl); 661 total_bytes++; 662 } 663 } else { 664 /* Make one byte LLIs until master bus is aligned */ 665 while ((mbus->addr) % (mbus->buswidth)) { 666 dev_vdbg(&pl08x->adev->dev, 667 "%s adjustment lli for less than bus width " 668 "(remain 0x%08x)\n", 669 __func__, bd.remainder); 670 cctl = pl08x_cctl_bits(cctl, 1, 1, 1); 671 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl); 672 total_bytes++; 673 } 674 675 /* 676 * Master now aligned 677 * - if slave is not then we must set its width down 678 */ 679 if (sbus->addr % sbus->buswidth) { 680 dev_dbg(&pl08x->adev->dev, 681 "%s set down bus width to one byte\n", 682 __func__); 683 684 sbus->buswidth = 1; 685 } 686 687 /* 688 * Make largest possible LLIs until less than one bus 689 * width left 690 */ 691 while (bd.remainder > (mbus->buswidth - 1)) { 692 size_t lli_len, target_len, tsize, odd_bytes; 693 694 /* 695 * If enough left try to send max possible, 696 * otherwise try to send the remainder 697 */ 698 target_len = min(bd.remainder, max_bytes_per_lli); 699 700 /* 701 * Set bus lengths for incrementing buses to the 702 * number of bytes which fill to next memory boundary, 703 * limiting on the target length calculated above. 704 */ 705 if (cctl & PL080_CONTROL_SRC_INCR) 706 bd.srcbus.fill_bytes = 707 pl08x_pre_boundary(bd.srcbus.addr, 708 target_len); 709 else 710 bd.srcbus.fill_bytes = target_len; 711 712 if (cctl & PL080_CONTROL_DST_INCR) 713 bd.dstbus.fill_bytes = 714 pl08x_pre_boundary(bd.dstbus.addr, 715 target_len); 716 else 717 bd.dstbus.fill_bytes = target_len; 718 719 /* Find the nearest */ 720 lli_len = min(bd.srcbus.fill_bytes, 721 bd.dstbus.fill_bytes); 722 723 BUG_ON(lli_len > bd.remainder); 724 725 if (lli_len <= 0) { 726 dev_err(&pl08x->adev->dev, 727 "%s lli_len is %zu, <= 0\n", 728 __func__, lli_len); 729 return 0; 730 } 731 732 if (lli_len == target_len) { 733 /* 734 * Can send what we wanted. 735 * Maintain alignment 736 */ 737 lli_len = (lli_len/mbus->buswidth) * 738 mbus->buswidth; 739 odd_bytes = 0; 740 } else { 741 /* 742 * So now we know how many bytes to transfer 743 * to get to the nearest boundary. The next 744 * LLI will past the boundary. However, we 745 * may be working to a boundary on the slave 746 * bus. We need to ensure the master stays 747 * aligned, and that we are working in 748 * multiples of the bus widths. 749 */ 750 odd_bytes = lli_len % mbus->buswidth; 751 lli_len -= odd_bytes; 752 753 } 754 755 if (lli_len) { 756 /* 757 * Check against minimum bus alignment: 758 * Calculate actual transfer size in relation 759 * to bus width an get a maximum remainder of 760 * the smallest bus width - 1 761 */ 762 /* FIXME: use round_down()? */ 763 tsize = lli_len / min(mbus->buswidth, 764 sbus->buswidth); 765 lli_len = tsize * min(mbus->buswidth, 766 sbus->buswidth); 767 768 if (target_len != lli_len) { 769 dev_vdbg(&pl08x->adev->dev, 770 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n", 771 __func__, target_len, lli_len, txd->len); 772 } 773 774 cctl = pl08x_cctl_bits(cctl, 775 bd.srcbus.buswidth, 776 bd.dstbus.buswidth, 777 tsize); 778 779 dev_vdbg(&pl08x->adev->dev, 780 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n", 781 __func__, lli_len, bd.remainder); 782 pl08x_fill_lli_for_desc(&bd, num_llis++, 783 lli_len, cctl); 784 total_bytes += lli_len; 785 } 786 787 788 if (odd_bytes) { 789 /* 790 * Creep past the boundary, maintaining 791 * master alignment 792 */ 793 int j; 794 for (j = 0; (j < mbus->buswidth) 795 && (bd.remainder); j++) { 796 cctl = pl08x_cctl_bits(cctl, 1, 1, 1); 797 dev_vdbg(&pl08x->adev->dev, 798 "%s align with boundary, single byte (remain 0x%08zx)\n", 799 __func__, bd.remainder); 800 pl08x_fill_lli_for_desc(&bd, 801 num_llis++, 1, cctl); 802 total_bytes++; 803 } 804 } 805 } 806 807 /* 808 * Send any odd bytes 809 */ 810 while (bd.remainder) { 811 cctl = pl08x_cctl_bits(cctl, 1, 1, 1); 812 dev_vdbg(&pl08x->adev->dev, 813 "%s align with boundary, single odd byte (remain %zu)\n", 814 __func__, bd.remainder); 815 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl); 816 total_bytes++; 817 } 818 } 819 if (total_bytes != txd->len) { 820 dev_err(&pl08x->adev->dev, 821 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n", 822 __func__, total_bytes, txd->len); 823 return 0; 824 } 825 826 if (num_llis >= MAX_NUM_TSFR_LLIS) { 827 dev_err(&pl08x->adev->dev, 828 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n", 829 __func__, (u32) MAX_NUM_TSFR_LLIS); 830 return 0; 831 } 832 833 llis_va = txd->llis_va; 834 /* The final LLI terminates the LLI. */ 835 llis_va[num_llis - 1].lli = 0; 836 /* The final LLI element shall also fire an interrupt. */ 837 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN; 838 839 #ifdef VERBOSE_DEBUG 840 { 841 int i; 842 843 for (i = 0; i < num_llis; i++) { 844 dev_vdbg(&pl08x->adev->dev, 845 "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n", 846 i, 847 &llis_va[i], 848 llis_va[i].src, 849 llis_va[i].dst, 850 llis_va[i].cctl, 851 llis_va[i].lli 852 ); 853 } 854 } 855 #endif 856 857 return num_llis; 858 } 859 860 /* You should call this with the struct pl08x lock held */ 861 static void pl08x_free_txd(struct pl08x_driver_data *pl08x, 862 struct pl08x_txd *txd) 863 { 864 /* Free the LLI */ 865 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus); 866 867 pl08x->pool_ctr--; 868 869 kfree(txd); 870 } 871 872 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x, 873 struct pl08x_dma_chan *plchan) 874 { 875 struct pl08x_txd *txdi = NULL; 876 struct pl08x_txd *next; 877 878 if (!list_empty(&plchan->pend_list)) { 879 list_for_each_entry_safe(txdi, 880 next, &plchan->pend_list, node) { 881 list_del(&txdi->node); 882 pl08x_free_txd(pl08x, txdi); 883 } 884 } 885 } 886 887 /* 888 * The DMA ENGINE API 889 */ 890 static int pl08x_alloc_chan_resources(struct dma_chan *chan) 891 { 892 return 0; 893 } 894 895 static void pl08x_free_chan_resources(struct dma_chan *chan) 896 { 897 } 898 899 /* 900 * This should be called with the channel plchan->lock held 901 */ 902 static int prep_phy_channel(struct pl08x_dma_chan *plchan, 903 struct pl08x_txd *txd) 904 { 905 struct pl08x_driver_data *pl08x = plchan->host; 906 struct pl08x_phy_chan *ch; 907 int ret; 908 909 /* Check if we already have a channel */ 910 if (plchan->phychan) 911 return 0; 912 913 ch = pl08x_get_phy_channel(pl08x, plchan); 914 if (!ch) { 915 /* No physical channel available, cope with it */ 916 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name); 917 return -EBUSY; 918 } 919 920 /* 921 * OK we have a physical channel: for memcpy() this is all we 922 * need, but for slaves the physical signals may be muxed! 923 * Can the platform allow us to use this channel? 924 */ 925 if (plchan->slave && 926 ch->signal < 0 && 927 pl08x->pd->get_signal) { 928 ret = pl08x->pd->get_signal(plchan); 929 if (ret < 0) { 930 dev_dbg(&pl08x->adev->dev, 931 "unable to use physical channel %d for transfer on %s due to platform restrictions\n", 932 ch->id, plchan->name); 933 /* Release physical channel & return */ 934 pl08x_put_phy_channel(pl08x, ch); 935 return -EBUSY; 936 } 937 ch->signal = ret; 938 939 /* Assign the flow control signal to this channel */ 940 if (txd->direction == DMA_TO_DEVICE) 941 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT; 942 else if (txd->direction == DMA_FROM_DEVICE) 943 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT; 944 } 945 946 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n", 947 ch->id, 948 ch->signal, 949 plchan->name); 950 951 plchan->phychan_hold++; 952 plchan->phychan = ch; 953 954 return 0; 955 } 956 957 static void release_phy_channel(struct pl08x_dma_chan *plchan) 958 { 959 struct pl08x_driver_data *pl08x = plchan->host; 960 961 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) { 962 pl08x->pd->put_signal(plchan); 963 plchan->phychan->signal = -1; 964 } 965 pl08x_put_phy_channel(pl08x, plchan->phychan); 966 plchan->phychan = NULL; 967 } 968 969 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx) 970 { 971 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan); 972 struct pl08x_txd *txd = to_pl08x_txd(tx); 973 unsigned long flags; 974 975 spin_lock_irqsave(&plchan->lock, flags); 976 977 plchan->chan.cookie += 1; 978 if (plchan->chan.cookie < 0) 979 plchan->chan.cookie = 1; 980 tx->cookie = plchan->chan.cookie; 981 982 /* Put this onto the pending list */ 983 list_add_tail(&txd->node, &plchan->pend_list); 984 985 /* 986 * If there was no physical channel available for this memcpy, 987 * stack the request up and indicate that the channel is waiting 988 * for a free physical channel. 989 */ 990 if (!plchan->slave && !plchan->phychan) { 991 /* Do this memcpy whenever there is a channel ready */ 992 plchan->state = PL08X_CHAN_WAITING; 993 plchan->waiting = txd; 994 } else { 995 plchan->phychan_hold--; 996 } 997 998 spin_unlock_irqrestore(&plchan->lock, flags); 999 1000 return tx->cookie; 1001 } 1002 1003 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt( 1004 struct dma_chan *chan, unsigned long flags) 1005 { 1006 struct dma_async_tx_descriptor *retval = NULL; 1007 1008 return retval; 1009 } 1010 1011 /* 1012 * Code accessing dma_async_is_complete() in a tight loop may give problems. 1013 * If slaves are relying on interrupts to signal completion this function 1014 * must not be called with interrupts disabled. 1015 */ 1016 static enum dma_status 1017 pl08x_dma_tx_status(struct dma_chan *chan, 1018 dma_cookie_t cookie, 1019 struct dma_tx_state *txstate) 1020 { 1021 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); 1022 dma_cookie_t last_used; 1023 dma_cookie_t last_complete; 1024 enum dma_status ret; 1025 u32 bytesleft = 0; 1026 1027 last_used = plchan->chan.cookie; 1028 last_complete = plchan->lc; 1029 1030 ret = dma_async_is_complete(cookie, last_complete, last_used); 1031 if (ret == DMA_SUCCESS) { 1032 dma_set_tx_state(txstate, last_complete, last_used, 0); 1033 return ret; 1034 } 1035 1036 /* 1037 * This cookie not complete yet 1038 */ 1039 last_used = plchan->chan.cookie; 1040 last_complete = plchan->lc; 1041 1042 /* Get number of bytes left in the active transactions and queue */ 1043 bytesleft = pl08x_getbytes_chan(plchan); 1044 1045 dma_set_tx_state(txstate, last_complete, last_used, 1046 bytesleft); 1047 1048 if (plchan->state == PL08X_CHAN_PAUSED) 1049 return DMA_PAUSED; 1050 1051 /* Whether waiting or running, we're in progress */ 1052 return DMA_IN_PROGRESS; 1053 } 1054 1055 /* PrimeCell DMA extension */ 1056 struct burst_table { 1057 int burstwords; 1058 u32 reg; 1059 }; 1060 1061 static const struct burst_table burst_sizes[] = { 1062 { 1063 .burstwords = 256, 1064 .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) | 1065 (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT), 1066 }, 1067 { 1068 .burstwords = 128, 1069 .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) | 1070 (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT), 1071 }, 1072 { 1073 .burstwords = 64, 1074 .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) | 1075 (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT), 1076 }, 1077 { 1078 .burstwords = 32, 1079 .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) | 1080 (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT), 1081 }, 1082 { 1083 .burstwords = 16, 1084 .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) | 1085 (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT), 1086 }, 1087 { 1088 .burstwords = 8, 1089 .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) | 1090 (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT), 1091 }, 1092 { 1093 .burstwords = 4, 1094 .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) | 1095 (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT), 1096 }, 1097 { 1098 .burstwords = 1, 1099 .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) | 1100 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT), 1101 }, 1102 }; 1103 1104 static int dma_set_runtime_config(struct dma_chan *chan, 1105 struct dma_slave_config *config) 1106 { 1107 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); 1108 struct pl08x_driver_data *pl08x = plchan->host; 1109 struct pl08x_channel_data *cd = plchan->cd; 1110 enum dma_slave_buswidth addr_width; 1111 dma_addr_t addr; 1112 u32 maxburst; 1113 u32 cctl = 0; 1114 int i; 1115 1116 if (!plchan->slave) 1117 return -EINVAL; 1118 1119 /* Transfer direction */ 1120 plchan->runtime_direction = config->direction; 1121 if (config->direction == DMA_TO_DEVICE) { 1122 addr = config->dst_addr; 1123 addr_width = config->dst_addr_width; 1124 maxburst = config->dst_maxburst; 1125 } else if (config->direction == DMA_FROM_DEVICE) { 1126 addr = config->src_addr; 1127 addr_width = config->src_addr_width; 1128 maxburst = config->src_maxburst; 1129 } else { 1130 dev_err(&pl08x->adev->dev, 1131 "bad runtime_config: alien transfer direction\n"); 1132 return -EINVAL; 1133 } 1134 1135 switch (addr_width) { 1136 case DMA_SLAVE_BUSWIDTH_1_BYTE: 1137 cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) | 1138 (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT); 1139 break; 1140 case DMA_SLAVE_BUSWIDTH_2_BYTES: 1141 cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) | 1142 (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT); 1143 break; 1144 case DMA_SLAVE_BUSWIDTH_4_BYTES: 1145 cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) | 1146 (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT); 1147 break; 1148 default: 1149 dev_err(&pl08x->adev->dev, 1150 "bad runtime_config: alien address width\n"); 1151 return -EINVAL; 1152 } 1153 1154 /* 1155 * Now decide on a maxburst: 1156 * If this channel will only request single transfers, set this 1157 * down to ONE element. Also select one element if no maxburst 1158 * is specified. 1159 */ 1160 if (plchan->cd->single || maxburst == 0) { 1161 cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) | 1162 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT); 1163 } else { 1164 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++) 1165 if (burst_sizes[i].burstwords <= maxburst) 1166 break; 1167 cctl |= burst_sizes[i].reg; 1168 } 1169 1170 plchan->runtime_addr = addr; 1171 1172 /* Modify the default channel data to fit PrimeCell request */ 1173 cd->cctl = cctl; 1174 1175 dev_dbg(&pl08x->adev->dev, 1176 "configured channel %s (%s) for %s, data width %d, " 1177 "maxburst %d words, LE, CCTL=0x%08x\n", 1178 dma_chan_name(chan), plchan->name, 1179 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX", 1180 addr_width, 1181 maxburst, 1182 cctl); 1183 1184 return 0; 1185 } 1186 1187 /* 1188 * Slave transactions callback to the slave device to allow 1189 * synchronization of slave DMA signals with the DMAC enable 1190 */ 1191 static void pl08x_issue_pending(struct dma_chan *chan) 1192 { 1193 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); 1194 unsigned long flags; 1195 1196 spin_lock_irqsave(&plchan->lock, flags); 1197 /* Something is already active, or we're waiting for a channel... */ 1198 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) { 1199 spin_unlock_irqrestore(&plchan->lock, flags); 1200 return; 1201 } 1202 1203 /* Take the first element in the queue and execute it */ 1204 if (!list_empty(&plchan->pend_list)) { 1205 struct pl08x_txd *next; 1206 1207 next = list_first_entry(&plchan->pend_list, 1208 struct pl08x_txd, 1209 node); 1210 list_del(&next->node); 1211 plchan->state = PL08X_CHAN_RUNNING; 1212 1213 pl08x_start_txd(plchan, next); 1214 } 1215 1216 spin_unlock_irqrestore(&plchan->lock, flags); 1217 } 1218 1219 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan, 1220 struct pl08x_txd *txd) 1221 { 1222 struct pl08x_driver_data *pl08x = plchan->host; 1223 unsigned long flags; 1224 int num_llis, ret; 1225 1226 num_llis = pl08x_fill_llis_for_desc(pl08x, txd); 1227 if (!num_llis) { 1228 kfree(txd); 1229 return -EINVAL; 1230 } 1231 1232 spin_lock_irqsave(&plchan->lock, flags); 1233 1234 /* 1235 * See if we already have a physical channel allocated, 1236 * else this is the time to try to get one. 1237 */ 1238 ret = prep_phy_channel(plchan, txd); 1239 if (ret) { 1240 /* 1241 * No physical channel was available. 1242 * 1243 * memcpy transfers can be sorted out at submission time. 1244 * 1245 * Slave transfers may have been denied due to platform 1246 * channel muxing restrictions. Since there is no guarantee 1247 * that this will ever be resolved, and the signal must be 1248 * acquired AFTER acquiring the physical channel, we will let 1249 * them be NACK:ed with -EBUSY here. The drivers can retry 1250 * the prep() call if they are eager on doing this using DMA. 1251 */ 1252 if (plchan->slave) { 1253 pl08x_free_txd_list(pl08x, plchan); 1254 pl08x_free_txd(pl08x, txd); 1255 spin_unlock_irqrestore(&plchan->lock, flags); 1256 return -EBUSY; 1257 } 1258 } else 1259 /* 1260 * Else we're all set, paused and ready to roll, status 1261 * will switch to PL08X_CHAN_RUNNING when we call 1262 * issue_pending(). If there is something running on the 1263 * channel already we don't change its state. 1264 */ 1265 if (plchan->state == PL08X_CHAN_IDLE) 1266 plchan->state = PL08X_CHAN_PAUSED; 1267 1268 spin_unlock_irqrestore(&plchan->lock, flags); 1269 1270 return 0; 1271 } 1272 1273 /* 1274 * Given the source and destination available bus masks, select which 1275 * will be routed to each port. We try to have source and destination 1276 * on separate ports, but always respect the allowable settings. 1277 */ 1278 static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst) 1279 { 1280 u32 cctl = 0; 1281 1282 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1))) 1283 cctl |= PL080_CONTROL_DST_AHB2; 1284 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2))) 1285 cctl |= PL080_CONTROL_SRC_AHB2; 1286 1287 return cctl; 1288 } 1289 1290 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan, 1291 unsigned long flags) 1292 { 1293 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT); 1294 1295 if (txd) { 1296 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan); 1297 txd->tx.flags = flags; 1298 txd->tx.tx_submit = pl08x_tx_submit; 1299 INIT_LIST_HEAD(&txd->node); 1300 1301 /* Always enable error and terminal interrupts */ 1302 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK | 1303 PL080_CONFIG_TC_IRQ_MASK; 1304 } 1305 return txd; 1306 } 1307 1308 /* 1309 * Initialize a descriptor to be used by memcpy submit 1310 */ 1311 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy( 1312 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1313 size_t len, unsigned long flags) 1314 { 1315 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); 1316 struct pl08x_driver_data *pl08x = plchan->host; 1317 struct pl08x_txd *txd; 1318 int ret; 1319 1320 txd = pl08x_get_txd(plchan, flags); 1321 if (!txd) { 1322 dev_err(&pl08x->adev->dev, 1323 "%s no memory for descriptor\n", __func__); 1324 return NULL; 1325 } 1326 1327 txd->direction = DMA_NONE; 1328 txd->src_addr = src; 1329 txd->dst_addr = dest; 1330 txd->len = len; 1331 1332 /* Set platform data for m2m */ 1333 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT; 1334 txd->cctl = pl08x->pd->memcpy_channel.cctl & 1335 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2); 1336 1337 /* Both to be incremented or the code will break */ 1338 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR; 1339 1340 if (pl08x->vd->dualmaster) 1341 txd->cctl |= pl08x_select_bus(pl08x, 1342 pl08x->mem_buses, pl08x->mem_buses); 1343 1344 ret = pl08x_prep_channel_resources(plchan, txd); 1345 if (ret) 1346 return NULL; 1347 1348 return &txd->tx; 1349 } 1350 1351 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg( 1352 struct dma_chan *chan, struct scatterlist *sgl, 1353 unsigned int sg_len, enum dma_data_direction direction, 1354 unsigned long flags) 1355 { 1356 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); 1357 struct pl08x_driver_data *pl08x = plchan->host; 1358 struct pl08x_txd *txd; 1359 u8 src_buses, dst_buses; 1360 int ret; 1361 1362 /* 1363 * Current implementation ASSUMES only one sg 1364 */ 1365 if (sg_len != 1) { 1366 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n", 1367 __func__); 1368 BUG(); 1369 } 1370 1371 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n", 1372 __func__, sgl->length, plchan->name); 1373 1374 txd = pl08x_get_txd(plchan, flags); 1375 if (!txd) { 1376 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__); 1377 return NULL; 1378 } 1379 1380 if (direction != plchan->runtime_direction) 1381 dev_err(&pl08x->adev->dev, "%s DMA setup does not match " 1382 "the direction configured for the PrimeCell\n", 1383 __func__); 1384 1385 /* 1386 * Set up addresses, the PrimeCell configured address 1387 * will take precedence since this may configure the 1388 * channel target address dynamically at runtime. 1389 */ 1390 txd->direction = direction; 1391 txd->len = sgl->length; 1392 1393 txd->cctl = plchan->cd->cctl & 1394 ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 | 1395 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR | 1396 PL080_CONTROL_PROT_MASK); 1397 1398 /* Access the cell in privileged mode, non-bufferable, non-cacheable */ 1399 txd->cctl |= PL080_CONTROL_PROT_SYS; 1400 1401 if (direction == DMA_TO_DEVICE) { 1402 txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT; 1403 txd->cctl |= PL080_CONTROL_SRC_INCR; 1404 txd->src_addr = sgl->dma_address; 1405 if (plchan->runtime_addr) 1406 txd->dst_addr = plchan->runtime_addr; 1407 else 1408 txd->dst_addr = plchan->cd->addr; 1409 src_buses = pl08x->mem_buses; 1410 dst_buses = plchan->cd->periph_buses; 1411 } else if (direction == DMA_FROM_DEVICE) { 1412 txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT; 1413 txd->cctl |= PL080_CONTROL_DST_INCR; 1414 if (plchan->runtime_addr) 1415 txd->src_addr = plchan->runtime_addr; 1416 else 1417 txd->src_addr = plchan->cd->addr; 1418 txd->dst_addr = sgl->dma_address; 1419 src_buses = plchan->cd->periph_buses; 1420 dst_buses = pl08x->mem_buses; 1421 } else { 1422 dev_err(&pl08x->adev->dev, 1423 "%s direction unsupported\n", __func__); 1424 return NULL; 1425 } 1426 1427 txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses); 1428 1429 ret = pl08x_prep_channel_resources(plchan, txd); 1430 if (ret) 1431 return NULL; 1432 1433 return &txd->tx; 1434 } 1435 1436 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 1437 unsigned long arg) 1438 { 1439 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); 1440 struct pl08x_driver_data *pl08x = plchan->host; 1441 unsigned long flags; 1442 int ret = 0; 1443 1444 /* Controls applicable to inactive channels */ 1445 if (cmd == DMA_SLAVE_CONFIG) { 1446 return dma_set_runtime_config(chan, 1447 (struct dma_slave_config *)arg); 1448 } 1449 1450 /* 1451 * Anything succeeds on channels with no physical allocation and 1452 * no queued transfers. 1453 */ 1454 spin_lock_irqsave(&plchan->lock, flags); 1455 if (!plchan->phychan && !plchan->at) { 1456 spin_unlock_irqrestore(&plchan->lock, flags); 1457 return 0; 1458 } 1459 1460 switch (cmd) { 1461 case DMA_TERMINATE_ALL: 1462 plchan->state = PL08X_CHAN_IDLE; 1463 1464 if (plchan->phychan) { 1465 pl08x_terminate_phy_chan(pl08x, plchan->phychan); 1466 1467 /* 1468 * Mark physical channel as free and free any slave 1469 * signal 1470 */ 1471 release_phy_channel(plchan); 1472 } 1473 /* Dequeue jobs and free LLIs */ 1474 if (plchan->at) { 1475 pl08x_free_txd(pl08x, plchan->at); 1476 plchan->at = NULL; 1477 } 1478 /* Dequeue jobs not yet fired as well */ 1479 pl08x_free_txd_list(pl08x, plchan); 1480 break; 1481 case DMA_PAUSE: 1482 pl08x_pause_phy_chan(plchan->phychan); 1483 plchan->state = PL08X_CHAN_PAUSED; 1484 break; 1485 case DMA_RESUME: 1486 pl08x_resume_phy_chan(plchan->phychan); 1487 plchan->state = PL08X_CHAN_RUNNING; 1488 break; 1489 default: 1490 /* Unknown command */ 1491 ret = -ENXIO; 1492 break; 1493 } 1494 1495 spin_unlock_irqrestore(&plchan->lock, flags); 1496 1497 return ret; 1498 } 1499 1500 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id) 1501 { 1502 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); 1503 char *name = chan_id; 1504 1505 /* Check that the channel is not taken! */ 1506 if (!strcmp(plchan->name, name)) 1507 return true; 1508 1509 return false; 1510 } 1511 1512 /* 1513 * Just check that the device is there and active 1514 * TODO: turn this bit on/off depending on the number of physical channels 1515 * actually used, if it is zero... well shut it off. That will save some 1516 * power. Cut the clock at the same time. 1517 */ 1518 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x) 1519 { 1520 u32 val; 1521 1522 val = readl(pl08x->base + PL080_CONFIG); 1523 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE); 1524 /* We implicitly clear bit 1 and that means little-endian mode */ 1525 val |= PL080_CONFIG_ENABLE; 1526 writel(val, pl08x->base + PL080_CONFIG); 1527 } 1528 1529 static void pl08x_unmap_buffers(struct pl08x_txd *txd) 1530 { 1531 struct device *dev = txd->tx.chan->device->dev; 1532 1533 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) { 1534 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE) 1535 dma_unmap_single(dev, txd->src_addr, txd->len, 1536 DMA_TO_DEVICE); 1537 else 1538 dma_unmap_page(dev, txd->src_addr, txd->len, 1539 DMA_TO_DEVICE); 1540 } 1541 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) { 1542 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE) 1543 dma_unmap_single(dev, txd->dst_addr, txd->len, 1544 DMA_FROM_DEVICE); 1545 else 1546 dma_unmap_page(dev, txd->dst_addr, txd->len, 1547 DMA_FROM_DEVICE); 1548 } 1549 } 1550 1551 static void pl08x_tasklet(unsigned long data) 1552 { 1553 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data; 1554 struct pl08x_driver_data *pl08x = plchan->host; 1555 struct pl08x_txd *txd; 1556 unsigned long flags; 1557 1558 spin_lock_irqsave(&plchan->lock, flags); 1559 1560 txd = plchan->at; 1561 plchan->at = NULL; 1562 1563 if (txd) { 1564 /* Update last completed */ 1565 plchan->lc = txd->tx.cookie; 1566 } 1567 1568 /* If a new descriptor is queued, set it up plchan->at is NULL here */ 1569 if (!list_empty(&plchan->pend_list)) { 1570 struct pl08x_txd *next; 1571 1572 next = list_first_entry(&plchan->pend_list, 1573 struct pl08x_txd, 1574 node); 1575 list_del(&next->node); 1576 1577 pl08x_start_txd(plchan, next); 1578 } else if (plchan->phychan_hold) { 1579 /* 1580 * This channel is still in use - we have a new txd being 1581 * prepared and will soon be queued. Don't give up the 1582 * physical channel. 1583 */ 1584 } else { 1585 struct pl08x_dma_chan *waiting = NULL; 1586 1587 /* 1588 * No more jobs, so free up the physical channel 1589 * Free any allocated signal on slave transfers too 1590 */ 1591 release_phy_channel(plchan); 1592 plchan->state = PL08X_CHAN_IDLE; 1593 1594 /* 1595 * And NOW before anyone else can grab that free:d up 1596 * physical channel, see if there is some memcpy pending 1597 * that seriously needs to start because of being stacked 1598 * up while we were choking the physical channels with data. 1599 */ 1600 list_for_each_entry(waiting, &pl08x->memcpy.channels, 1601 chan.device_node) { 1602 if (waiting->state == PL08X_CHAN_WAITING && 1603 waiting->waiting != NULL) { 1604 int ret; 1605 1606 /* This should REALLY not fail now */ 1607 ret = prep_phy_channel(waiting, 1608 waiting->waiting); 1609 BUG_ON(ret); 1610 waiting->phychan_hold--; 1611 waiting->state = PL08X_CHAN_RUNNING; 1612 waiting->waiting = NULL; 1613 pl08x_issue_pending(&waiting->chan); 1614 break; 1615 } 1616 } 1617 } 1618 1619 spin_unlock_irqrestore(&plchan->lock, flags); 1620 1621 if (txd) { 1622 dma_async_tx_callback callback = txd->tx.callback; 1623 void *callback_param = txd->tx.callback_param; 1624 1625 /* Don't try to unmap buffers on slave channels */ 1626 if (!plchan->slave) 1627 pl08x_unmap_buffers(txd); 1628 1629 /* Free the descriptor */ 1630 spin_lock_irqsave(&plchan->lock, flags); 1631 pl08x_free_txd(pl08x, txd); 1632 spin_unlock_irqrestore(&plchan->lock, flags); 1633 1634 /* Callback to signal completion */ 1635 if (callback) 1636 callback(callback_param); 1637 } 1638 } 1639 1640 static irqreturn_t pl08x_irq(int irq, void *dev) 1641 { 1642 struct pl08x_driver_data *pl08x = dev; 1643 u32 mask = 0; 1644 u32 val; 1645 int i; 1646 1647 val = readl(pl08x->base + PL080_ERR_STATUS); 1648 if (val) { 1649 /* An error interrupt (on one or more channels) */ 1650 dev_err(&pl08x->adev->dev, 1651 "%s error interrupt, register value 0x%08x\n", 1652 __func__, val); 1653 /* 1654 * Simply clear ALL PL08X error interrupts, 1655 * regardless of channel and cause 1656 * FIXME: should be 0x00000003 on PL081 really. 1657 */ 1658 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); 1659 } 1660 val = readl(pl08x->base + PL080_INT_STATUS); 1661 for (i = 0; i < pl08x->vd->channels; i++) { 1662 if ((1 << i) & val) { 1663 /* Locate physical channel */ 1664 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i]; 1665 struct pl08x_dma_chan *plchan = phychan->serving; 1666 1667 /* Schedule tasklet on this channel */ 1668 tasklet_schedule(&plchan->tasklet); 1669 1670 mask |= (1 << i); 1671 } 1672 } 1673 /* Clear only the terminal interrupts on channels we processed */ 1674 writel(mask, pl08x->base + PL080_TC_CLEAR); 1675 1676 return mask ? IRQ_HANDLED : IRQ_NONE; 1677 } 1678 1679 /* 1680 * Initialise the DMAC memcpy/slave channels. 1681 * Make a local wrapper to hold required data 1682 */ 1683 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x, 1684 struct dma_device *dmadev, 1685 unsigned int channels, 1686 bool slave) 1687 { 1688 struct pl08x_dma_chan *chan; 1689 int i; 1690 1691 INIT_LIST_HEAD(&dmadev->channels); 1692 1693 /* 1694 * Register as many many memcpy as we have physical channels, 1695 * we won't always be able to use all but the code will have 1696 * to cope with that situation. 1697 */ 1698 for (i = 0; i < channels; i++) { 1699 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL); 1700 if (!chan) { 1701 dev_err(&pl08x->adev->dev, 1702 "%s no memory for channel\n", __func__); 1703 return -ENOMEM; 1704 } 1705 1706 chan->host = pl08x; 1707 chan->state = PL08X_CHAN_IDLE; 1708 1709 if (slave) { 1710 chan->slave = true; 1711 chan->name = pl08x->pd->slave_channels[i].bus_id; 1712 chan->cd = &pl08x->pd->slave_channels[i]; 1713 } else { 1714 chan->cd = &pl08x->pd->memcpy_channel; 1715 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i); 1716 if (!chan->name) { 1717 kfree(chan); 1718 return -ENOMEM; 1719 } 1720 } 1721 if (chan->cd->circular_buffer) { 1722 dev_err(&pl08x->adev->dev, 1723 "channel %s: circular buffers not supported\n", 1724 chan->name); 1725 kfree(chan); 1726 continue; 1727 } 1728 dev_info(&pl08x->adev->dev, 1729 "initialize virtual channel \"%s\"\n", 1730 chan->name); 1731 1732 chan->chan.device = dmadev; 1733 chan->chan.cookie = 0; 1734 chan->lc = 0; 1735 1736 spin_lock_init(&chan->lock); 1737 INIT_LIST_HEAD(&chan->pend_list); 1738 tasklet_init(&chan->tasklet, pl08x_tasklet, 1739 (unsigned long) chan); 1740 1741 list_add_tail(&chan->chan.device_node, &dmadev->channels); 1742 } 1743 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n", 1744 i, slave ? "slave" : "memcpy"); 1745 return i; 1746 } 1747 1748 static void pl08x_free_virtual_channels(struct dma_device *dmadev) 1749 { 1750 struct pl08x_dma_chan *chan = NULL; 1751 struct pl08x_dma_chan *next; 1752 1753 list_for_each_entry_safe(chan, 1754 next, &dmadev->channels, chan.device_node) { 1755 list_del(&chan->chan.device_node); 1756 kfree(chan); 1757 } 1758 } 1759 1760 #ifdef CONFIG_DEBUG_FS 1761 static const char *pl08x_state_str(enum pl08x_dma_chan_state state) 1762 { 1763 switch (state) { 1764 case PL08X_CHAN_IDLE: 1765 return "idle"; 1766 case PL08X_CHAN_RUNNING: 1767 return "running"; 1768 case PL08X_CHAN_PAUSED: 1769 return "paused"; 1770 case PL08X_CHAN_WAITING: 1771 return "waiting"; 1772 default: 1773 break; 1774 } 1775 return "UNKNOWN STATE"; 1776 } 1777 1778 static int pl08x_debugfs_show(struct seq_file *s, void *data) 1779 { 1780 struct pl08x_driver_data *pl08x = s->private; 1781 struct pl08x_dma_chan *chan; 1782 struct pl08x_phy_chan *ch; 1783 unsigned long flags; 1784 int i; 1785 1786 seq_printf(s, "PL08x physical channels:\n"); 1787 seq_printf(s, "CHANNEL:\tUSER:\n"); 1788 seq_printf(s, "--------\t-----\n"); 1789 for (i = 0; i < pl08x->vd->channels; i++) { 1790 struct pl08x_dma_chan *virt_chan; 1791 1792 ch = &pl08x->phy_chans[i]; 1793 1794 spin_lock_irqsave(&ch->lock, flags); 1795 virt_chan = ch->serving; 1796 1797 seq_printf(s, "%d\t\t%s\n", 1798 ch->id, virt_chan ? virt_chan->name : "(none)"); 1799 1800 spin_unlock_irqrestore(&ch->lock, flags); 1801 } 1802 1803 seq_printf(s, "\nPL08x virtual memcpy channels:\n"); 1804 seq_printf(s, "CHANNEL:\tSTATE:\n"); 1805 seq_printf(s, "--------\t------\n"); 1806 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) { 1807 seq_printf(s, "%s\t\t%s\n", chan->name, 1808 pl08x_state_str(chan->state)); 1809 } 1810 1811 seq_printf(s, "\nPL08x virtual slave channels:\n"); 1812 seq_printf(s, "CHANNEL:\tSTATE:\n"); 1813 seq_printf(s, "--------\t------\n"); 1814 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) { 1815 seq_printf(s, "%s\t\t%s\n", chan->name, 1816 pl08x_state_str(chan->state)); 1817 } 1818 1819 return 0; 1820 } 1821 1822 static int pl08x_debugfs_open(struct inode *inode, struct file *file) 1823 { 1824 return single_open(file, pl08x_debugfs_show, inode->i_private); 1825 } 1826 1827 static const struct file_operations pl08x_debugfs_operations = { 1828 .open = pl08x_debugfs_open, 1829 .read = seq_read, 1830 .llseek = seq_lseek, 1831 .release = single_release, 1832 }; 1833 1834 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) 1835 { 1836 /* Expose a simple debugfs interface to view all clocks */ 1837 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO, 1838 NULL, pl08x, 1839 &pl08x_debugfs_operations); 1840 } 1841 1842 #else 1843 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) 1844 { 1845 } 1846 #endif 1847 1848 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id) 1849 { 1850 struct pl08x_driver_data *pl08x; 1851 const struct vendor_data *vd = id->data; 1852 int ret = 0; 1853 int i; 1854 1855 ret = amba_request_regions(adev, NULL); 1856 if (ret) 1857 return ret; 1858 1859 /* Create the driver state holder */ 1860 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL); 1861 if (!pl08x) { 1862 ret = -ENOMEM; 1863 goto out_no_pl08x; 1864 } 1865 1866 /* Initialize memcpy engine */ 1867 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask); 1868 pl08x->memcpy.dev = &adev->dev; 1869 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources; 1870 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources; 1871 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy; 1872 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; 1873 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status; 1874 pl08x->memcpy.device_issue_pending = pl08x_issue_pending; 1875 pl08x->memcpy.device_control = pl08x_control; 1876 1877 /* Initialize slave engine */ 1878 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask); 1879 pl08x->slave.dev = &adev->dev; 1880 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources; 1881 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources; 1882 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; 1883 pl08x->slave.device_tx_status = pl08x_dma_tx_status; 1884 pl08x->slave.device_issue_pending = pl08x_issue_pending; 1885 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg; 1886 pl08x->slave.device_control = pl08x_control; 1887 1888 /* Get the platform data */ 1889 pl08x->pd = dev_get_platdata(&adev->dev); 1890 if (!pl08x->pd) { 1891 dev_err(&adev->dev, "no platform data supplied\n"); 1892 goto out_no_platdata; 1893 } 1894 1895 /* Assign useful pointers to the driver state */ 1896 pl08x->adev = adev; 1897 pl08x->vd = vd; 1898 1899 /* By default, AHB1 only. If dualmaster, from platform */ 1900 pl08x->lli_buses = PL08X_AHB1; 1901 pl08x->mem_buses = PL08X_AHB1; 1902 if (pl08x->vd->dualmaster) { 1903 pl08x->lli_buses = pl08x->pd->lli_buses; 1904 pl08x->mem_buses = pl08x->pd->mem_buses; 1905 } 1906 1907 /* A DMA memory pool for LLIs, align on 1-byte boundary */ 1908 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev, 1909 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0); 1910 if (!pl08x->pool) { 1911 ret = -ENOMEM; 1912 goto out_no_lli_pool; 1913 } 1914 1915 spin_lock_init(&pl08x->lock); 1916 1917 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res)); 1918 if (!pl08x->base) { 1919 ret = -ENOMEM; 1920 goto out_no_ioremap; 1921 } 1922 1923 /* Turn on the PL08x */ 1924 pl08x_ensure_on(pl08x); 1925 1926 /* Attach the interrupt handler */ 1927 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); 1928 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR); 1929 1930 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED, 1931 DRIVER_NAME, pl08x); 1932 if (ret) { 1933 dev_err(&adev->dev, "%s failed to request interrupt %d\n", 1934 __func__, adev->irq[0]); 1935 goto out_no_irq; 1936 } 1937 1938 /* Initialize physical channels */ 1939 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)), 1940 GFP_KERNEL); 1941 if (!pl08x->phy_chans) { 1942 dev_err(&adev->dev, "%s failed to allocate " 1943 "physical channel holders\n", 1944 __func__); 1945 goto out_no_phychans; 1946 } 1947 1948 for (i = 0; i < vd->channels; i++) { 1949 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i]; 1950 1951 ch->id = i; 1952 ch->base = pl08x->base + PL080_Cx_BASE(i); 1953 spin_lock_init(&ch->lock); 1954 ch->serving = NULL; 1955 ch->signal = -1; 1956 dev_info(&adev->dev, 1957 "physical channel %d is %s\n", i, 1958 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE"); 1959 } 1960 1961 /* Register as many memcpy channels as there are physical channels */ 1962 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy, 1963 pl08x->vd->channels, false); 1964 if (ret <= 0) { 1965 dev_warn(&pl08x->adev->dev, 1966 "%s failed to enumerate memcpy channels - %d\n", 1967 __func__, ret); 1968 goto out_no_memcpy; 1969 } 1970 pl08x->memcpy.chancnt = ret; 1971 1972 /* Register slave channels */ 1973 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave, 1974 pl08x->pd->num_slave_channels, 1975 true); 1976 if (ret <= 0) { 1977 dev_warn(&pl08x->adev->dev, 1978 "%s failed to enumerate slave channels - %d\n", 1979 __func__, ret); 1980 goto out_no_slave; 1981 } 1982 pl08x->slave.chancnt = ret; 1983 1984 ret = dma_async_device_register(&pl08x->memcpy); 1985 if (ret) { 1986 dev_warn(&pl08x->adev->dev, 1987 "%s failed to register memcpy as an async device - %d\n", 1988 __func__, ret); 1989 goto out_no_memcpy_reg; 1990 } 1991 1992 ret = dma_async_device_register(&pl08x->slave); 1993 if (ret) { 1994 dev_warn(&pl08x->adev->dev, 1995 "%s failed to register slave as an async device - %d\n", 1996 __func__, ret); 1997 goto out_no_slave_reg; 1998 } 1999 2000 amba_set_drvdata(adev, pl08x); 2001 init_pl08x_debugfs(pl08x); 2002 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n", 2003 amba_part(adev), amba_rev(adev), 2004 (unsigned long long)adev->res.start, adev->irq[0]); 2005 return 0; 2006 2007 out_no_slave_reg: 2008 dma_async_device_unregister(&pl08x->memcpy); 2009 out_no_memcpy_reg: 2010 pl08x_free_virtual_channels(&pl08x->slave); 2011 out_no_slave: 2012 pl08x_free_virtual_channels(&pl08x->memcpy); 2013 out_no_memcpy: 2014 kfree(pl08x->phy_chans); 2015 out_no_phychans: 2016 free_irq(adev->irq[0], pl08x); 2017 out_no_irq: 2018 iounmap(pl08x->base); 2019 out_no_ioremap: 2020 dma_pool_destroy(pl08x->pool); 2021 out_no_lli_pool: 2022 out_no_platdata: 2023 kfree(pl08x); 2024 out_no_pl08x: 2025 amba_release_regions(adev); 2026 return ret; 2027 } 2028 2029 /* PL080 has 8 channels and the PL080 have just 2 */ 2030 static struct vendor_data vendor_pl080 = { 2031 .channels = 8, 2032 .dualmaster = true, 2033 }; 2034 2035 static struct vendor_data vendor_pl081 = { 2036 .channels = 2, 2037 .dualmaster = false, 2038 }; 2039 2040 static struct amba_id pl08x_ids[] = { 2041 /* PL080 */ 2042 { 2043 .id = 0x00041080, 2044 .mask = 0x000fffff, 2045 .data = &vendor_pl080, 2046 }, 2047 /* PL081 */ 2048 { 2049 .id = 0x00041081, 2050 .mask = 0x000fffff, 2051 .data = &vendor_pl081, 2052 }, 2053 /* Nomadik 8815 PL080 variant */ 2054 { 2055 .id = 0x00280880, 2056 .mask = 0x00ffffff, 2057 .data = &vendor_pl080, 2058 }, 2059 { 0, 0 }, 2060 }; 2061 2062 static struct amba_driver pl08x_amba_driver = { 2063 .drv.name = DRIVER_NAME, 2064 .id_table = pl08x_ids, 2065 .probe = pl08x_probe, 2066 }; 2067 2068 static int __init pl08x_init(void) 2069 { 2070 int retval; 2071 retval = amba_driver_register(&pl08x_amba_driver); 2072 if (retval) 2073 printk(KERN_WARNING DRIVER_NAME 2074 "failed to register as an AMBA device (%d)\n", 2075 retval); 2076 return retval; 2077 } 2078 subsys_initcall(pl08x_init); 2079