xref: /openbmc/linux/drivers/dma/amba-pl08x.c (revision 465191d6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2006 ARM Ltd.
4  * Copyright (c) 2010 ST-Ericsson SA
5  * Copyirght (c) 2017 Linaro Ltd.
6  *
7  * Author: Peter Pearse <peter.pearse@arm.com>
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Documentation: ARM DDI 0196G == PL080
11  * Documentation: ARM DDI 0218E == PL081
12  * Documentation: S3C6410 User's Manual == PL080S
13  *
14  * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
15  * channel.
16  *
17  * The PL080 has 8 channels available for simultaneous use, and the PL081
18  * has only two channels. So on these DMA controllers the number of channels
19  * and the number of incoming DMA signals are two totally different things.
20  * It is usually not possible to theoretically handle all physical signals,
21  * so a multiplexing scheme with possible denial of use is necessary.
22  *
23  * The PL080 has a dual bus master, PL081 has a single master.
24  *
25  * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
26  * It differs in following aspects:
27  * - CH_CONFIG register at different offset,
28  * - separate CH_CONTROL2 register for transfer size,
29  * - bigger maximum transfer size,
30  * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
31  * - no support for peripheral flow control.
32  *
33  * Memory to peripheral transfer may be visualized as
34  *	Get data from memory to DMAC
35  *	Until no data left
36  *		On burst request from peripheral
37  *			Destination burst from DMAC to peripheral
38  *			Clear burst request
39  *	Raise terminal count interrupt
40  *
41  * For peripherals with a FIFO:
42  * Source      burst size == half the depth of the peripheral FIFO
43  * Destination burst size == the depth of the peripheral FIFO
44  *
45  * (Bursts are irrelevant for mem to mem transfers - there are no burst
46  * signals, the DMA controller will simply facilitate its AHB master.)
47  *
48  * ASSUMES default (little) endianness for DMA transfers
49  *
50  * The PL08x has two flow control settings:
51  *  - DMAC flow control: the transfer size defines the number of transfers
52  *    which occur for the current LLI entry, and the DMAC raises TC at the
53  *    end of every LLI entry.  Observed behaviour shows the DMAC listening
54  *    to both the BREQ and SREQ signals (contrary to documented),
55  *    transferring data if either is active.  The LBREQ and LSREQ signals
56  *    are ignored.
57  *
58  *  - Peripheral flow control: the transfer size is ignored (and should be
59  *    zero).  The data is transferred from the current LLI entry, until
60  *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
61  *    will then move to the next LLI entry. Unsupported by PL080S.
62  */
63 #include <linux/amba/bus.h>
64 #include <linux/amba/pl08x.h>
65 #include <linux/debugfs.h>
66 #include <linux/delay.h>
67 #include <linux/device.h>
68 #include <linux/dmaengine.h>
69 #include <linux/dmapool.h>
70 #include <linux/dma-mapping.h>
71 #include <linux/export.h>
72 #include <linux/init.h>
73 #include <linux/interrupt.h>
74 #include <linux/module.h>
75 #include <linux/of.h>
76 #include <linux/of_dma.h>
77 #include <linux/pm_runtime.h>
78 #include <linux/seq_file.h>
79 #include <linux/slab.h>
80 #include <linux/amba/pl080.h>
81 
82 #include "dmaengine.h"
83 #include "virt-dma.h"
84 
85 #define DRIVER_NAME	"pl08xdmac"
86 
87 #define PL80X_DMA_BUSWIDTHS \
88 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
89 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
90 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
91 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
92 
93 static struct amba_driver pl08x_amba_driver;
94 struct pl08x_driver_data;
95 
96 /**
97  * struct vendor_data - vendor-specific config parameters for PL08x derivatives
98  * @config_offset: offset to the configuration register
99  * @channels: the number of channels available in this variant
100  * @signals: the number of request signals available from the hardware
101  * @dualmaster: whether this version supports dual AHB masters or not.
102  * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
103  *	channels have Nomadik security extension bits that need to be checked
104  *	for permission before use and some registers are missing
105  * @pl080s: whether this variant is a Samsung PL080S, which has separate
106  *	register and LLI word for transfer size.
107  * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
108  * @max_transfer_size: the maximum single element transfer size for this
109  *	PL08x variant.
110  */
111 struct vendor_data {
112 	u8 config_offset;
113 	u8 channels;
114 	u8 signals;
115 	bool dualmaster;
116 	bool nomadik;
117 	bool pl080s;
118 	bool ftdmac020;
119 	u32 max_transfer_size;
120 };
121 
122 /**
123  * struct pl08x_bus_data - information of source or destination
124  * busses for a transfer
125  * @addr: current address
126  * @maxwidth: the maximum width of a transfer on this bus
127  * @buswidth: the width of this bus in bytes: 1, 2 or 4
128  */
129 struct pl08x_bus_data {
130 	dma_addr_t addr;
131 	u8 maxwidth;
132 	u8 buswidth;
133 };
134 
135 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
136 
137 /**
138  * struct pl08x_phy_chan - holder for the physical channels
139  * @id: physical index to this channel
140  * @base: memory base address for this physical channel
141  * @reg_config: configuration address for this physical channel
142  * @reg_control: control address for this physical channel
143  * @reg_src: transfer source address register
144  * @reg_dst: transfer destination address register
145  * @reg_lli: transfer LLI address register
146  * @reg_busy: if the variant has a special per-channel busy register,
147  * this contains a pointer to it
148  * @lock: a lock to use when altering an instance of this struct
149  * @serving: the virtual channel currently being served by this physical
150  * channel
151  * @locked: channel unavailable for the system, e.g. dedicated to secure
152  * world
153  * @ftdmac020: channel is on a FTDMAC020
154  * @pl080s: channel is on a PL08s
155  */
156 struct pl08x_phy_chan {
157 	unsigned int id;
158 	void __iomem *base;
159 	void __iomem *reg_config;
160 	void __iomem *reg_control;
161 	void __iomem *reg_src;
162 	void __iomem *reg_dst;
163 	void __iomem *reg_lli;
164 	void __iomem *reg_busy;
165 	spinlock_t lock;
166 	struct pl08x_dma_chan *serving;
167 	bool locked;
168 	bool ftdmac020;
169 	bool pl080s;
170 };
171 
172 /**
173  * struct pl08x_sg - structure containing data per sg
174  * @src_addr: src address of sg
175  * @dst_addr: dst address of sg
176  * @len: transfer len in bytes
177  * @node: node for txd's dsg_list
178  */
179 struct pl08x_sg {
180 	dma_addr_t src_addr;
181 	dma_addr_t dst_addr;
182 	size_t len;
183 	struct list_head node;
184 };
185 
186 /**
187  * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
188  * @vd: virtual DMA descriptor
189  * @dsg_list: list of children sg's
190  * @llis_bus: DMA memory address (physical) start for the LLIs
191  * @llis_va: virtual memory address start for the LLIs
192  * @cctl: control reg values for current txd
193  * @ccfg: config reg values for current txd
194  * @done: this marks completed descriptors, which should not have their
195  *   mux released.
196  * @cyclic: indicate cyclic transfers
197  */
198 struct pl08x_txd {
199 	struct virt_dma_desc vd;
200 	struct list_head dsg_list;
201 	dma_addr_t llis_bus;
202 	u32 *llis_va;
203 	/* Default cctl value for LLIs */
204 	u32 cctl;
205 	/*
206 	 * Settings to be put into the physical channel when we
207 	 * trigger this txd.  Other registers are in llis_va[0].
208 	 */
209 	u32 ccfg;
210 	bool done;
211 	bool cyclic;
212 };
213 
214 /**
215  * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
216  * states
217  * @PL08X_CHAN_IDLE: the channel is idle
218  * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
219  * channel and is running a transfer on it
220  * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
221  * channel, but the transfer is currently paused
222  * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
223  * channel to become available (only pertains to memcpy channels)
224  */
225 enum pl08x_dma_chan_state {
226 	PL08X_CHAN_IDLE,
227 	PL08X_CHAN_RUNNING,
228 	PL08X_CHAN_PAUSED,
229 	PL08X_CHAN_WAITING,
230 };
231 
232 /**
233  * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
234  * @vc: wrappped virtual channel
235  * @phychan: the physical channel utilized by this channel, if there is one
236  * @name: name of channel
237  * @cd: channel platform data
238  * @cfg: slave configuration
239  * @at: active transaction on this channel
240  * @host: a pointer to the host (internal use)
241  * @state: whether the channel is idle, paused, running etc
242  * @slave: whether this channel is a device (slave) or for memcpy
243  * @signal: the physical DMA request signal which this channel is using
244  * @mux_use: count of descriptors using this DMA request signal setting
245  * @waiting_at: time in jiffies when this channel moved to waiting state
246  */
247 struct pl08x_dma_chan {
248 	struct virt_dma_chan vc;
249 	struct pl08x_phy_chan *phychan;
250 	const char *name;
251 	struct pl08x_channel_data *cd;
252 	struct dma_slave_config cfg;
253 	struct pl08x_txd *at;
254 	struct pl08x_driver_data *host;
255 	enum pl08x_dma_chan_state state;
256 	bool slave;
257 	int signal;
258 	unsigned mux_use;
259 	unsigned long waiting_at;
260 };
261 
262 /**
263  * struct pl08x_driver_data - the local state holder for the PL08x
264  * @slave: optional slave engine for this instance
265  * @memcpy: memcpy engine for this instance
266  * @has_slave: the PL08x has a slave engine (routed signals)
267  * @base: virtual memory base (remapped) for the PL08x
268  * @adev: the corresponding AMBA (PrimeCell) bus entry
269  * @vd: vendor data for this PL08x variant
270  * @pd: platform data passed in from the platform/machine
271  * @phy_chans: array of data for the physical channels
272  * @pool: a pool for the LLI descriptors
273  * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
274  * fetches
275  * @mem_buses: set to indicate memory transfers on AHB2.
276  * @lli_words: how many words are used in each LLI item for this variant
277  */
278 struct pl08x_driver_data {
279 	struct dma_device slave;
280 	struct dma_device memcpy;
281 	bool has_slave;
282 	void __iomem *base;
283 	struct amba_device *adev;
284 	const struct vendor_data *vd;
285 	struct pl08x_platform_data *pd;
286 	struct pl08x_phy_chan *phy_chans;
287 	struct dma_pool *pool;
288 	u8 lli_buses;
289 	u8 mem_buses;
290 	u8 lli_words;
291 };
292 
293 /*
294  * PL08X specific defines
295  */
296 
297 /* The order of words in an LLI. */
298 #define PL080_LLI_SRC		0
299 #define PL080_LLI_DST		1
300 #define PL080_LLI_LLI		2
301 #define PL080_LLI_CCTL		3
302 #define PL080S_LLI_CCTL2	4
303 
304 /* Total words in an LLI. */
305 #define PL080_LLI_WORDS		4
306 #define PL080S_LLI_WORDS	8
307 
308 /*
309  * Number of LLIs in each LLI buffer allocated for one transfer
310  * (maximum times we call dma_pool_alloc on this pool without freeing)
311  */
312 #define MAX_NUM_TSFR_LLIS	512
313 #define PL08X_ALIGN		8
314 
315 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
316 {
317 	return container_of(chan, struct pl08x_dma_chan, vc.chan);
318 }
319 
320 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
321 {
322 	return container_of(tx, struct pl08x_txd, vd.tx);
323 }
324 
325 /*
326  * Mux handling.
327  *
328  * This gives us the DMA request input to the PL08x primecell which the
329  * peripheral described by the channel data will be routed to, possibly
330  * via a board/SoC specific external MUX.  One important point to note
331  * here is that this does not depend on the physical channel.
332  */
333 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
334 {
335 	const struct pl08x_platform_data *pd = plchan->host->pd;
336 	int ret;
337 
338 	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
339 		ret = pd->get_xfer_signal(plchan->cd);
340 		if (ret < 0) {
341 			plchan->mux_use = 0;
342 			return ret;
343 		}
344 
345 		plchan->signal = ret;
346 	}
347 	return 0;
348 }
349 
350 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
351 {
352 	const struct pl08x_platform_data *pd = plchan->host->pd;
353 
354 	if (plchan->signal >= 0) {
355 		WARN_ON(plchan->mux_use == 0);
356 
357 		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
358 			pd->put_xfer_signal(plchan->cd, plchan->signal);
359 			plchan->signal = -1;
360 		}
361 	}
362 }
363 
364 /*
365  * Physical channel handling
366  */
367 
368 /* Whether a certain channel is busy or not */
369 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
370 {
371 	unsigned int val;
372 
373 	/* If we have a special busy register, take a shortcut */
374 	if (ch->reg_busy) {
375 		val = readl(ch->reg_busy);
376 		return !!(val & BIT(ch->id));
377 	}
378 	val = readl(ch->reg_config);
379 	return val & PL080_CONFIG_ACTIVE;
380 }
381 
382 /*
383  * pl08x_write_lli() - Write an LLI into the DMA controller.
384  *
385  * The PL08x derivatives support linked lists, but the first item of the
386  * list containing the source, destination, control word and next LLI is
387  * ignored. Instead the driver has to write those values directly into the
388  * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
389  * register need to be set up for the first transfer.
390  */
391 static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
392 		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
393 {
394 	if (pl08x->vd->pl080s)
395 		dev_vdbg(&pl08x->adev->dev,
396 			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
397 			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
398 			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
399 			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
400 			lli[PL080S_LLI_CCTL2], ccfg);
401 	else
402 		dev_vdbg(&pl08x->adev->dev,
403 			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
404 			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
405 			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
406 			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
407 
408 	writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
409 	writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
410 	writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
411 
412 	/*
413 	 * The FTMAC020 has a different layout in the CCTL word of the LLI
414 	 * and the CCTL register which is split in CSR and SIZE registers.
415 	 * Convert the LLI item CCTL into the proper values to write into
416 	 * the CSR and SIZE registers.
417 	 */
418 	if (phychan->ftdmac020) {
419 		u32 llictl = lli[PL080_LLI_CCTL];
420 		u32 val = 0;
421 
422 		/* Write the transfer size (12 bits) to the size register */
423 		writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
424 			       phychan->base + FTDMAC020_CH_SIZE);
425 		/*
426 		 * Then write the control bits 28..16 to the control register
427 		 * by shuffleing the bits around to where they are in the
428 		 * main register. The mapping is as follows:
429 		 * Bit 28: TC_MSK - mask on all except last LLI
430 		 * Bit 27..25: SRC_WIDTH
431 		 * Bit 24..22: DST_WIDTH
432 		 * Bit 21..20: SRCAD_CTRL
433 		 * Bit 19..17: DSTAD_CTRL
434 		 * Bit 17: SRC_SEL
435 		 * Bit 16: DST_SEL
436 		 */
437 		if (llictl & FTDMAC020_LLI_TC_MSK)
438 			val |= FTDMAC020_CH_CSR_TC_MSK;
439 		val |= ((llictl  & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
440 			(FTDMAC020_LLI_SRC_WIDTH_SHIFT -
441 			 FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
442 		val |= ((llictl  & FTDMAC020_LLI_DST_WIDTH_MSK) >>
443 			(FTDMAC020_LLI_DST_WIDTH_SHIFT -
444 			 FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
445 		val |= ((llictl  & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
446 			(FTDMAC020_LLI_SRCAD_CTL_SHIFT -
447 			 FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
448 		val |= ((llictl  & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
449 			(FTDMAC020_LLI_DSTAD_CTL_SHIFT -
450 			 FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
451 		if (llictl & FTDMAC020_LLI_SRC_SEL)
452 			val |= FTDMAC020_CH_CSR_SRC_SEL;
453 		if (llictl & FTDMAC020_LLI_DST_SEL)
454 			val |= FTDMAC020_CH_CSR_DST_SEL;
455 
456 		/*
457 		 * Set up the bits that exist in the CSR but are not
458 		 * part the LLI, i.e. only gets written to the control
459 		 * register right here.
460 		 *
461 		 * FIXME: do not just handle memcpy, also handle slave DMA.
462 		 */
463 		switch (pl08x->pd->memcpy_burst_size) {
464 		default:
465 		case PL08X_BURST_SZ_1:
466 			val |= PL080_BSIZE_1 <<
467 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
468 			break;
469 		case PL08X_BURST_SZ_4:
470 			val |= PL080_BSIZE_4 <<
471 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
472 			break;
473 		case PL08X_BURST_SZ_8:
474 			val |= PL080_BSIZE_8 <<
475 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
476 			break;
477 		case PL08X_BURST_SZ_16:
478 			val |= PL080_BSIZE_16 <<
479 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
480 			break;
481 		case PL08X_BURST_SZ_32:
482 			val |= PL080_BSIZE_32 <<
483 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
484 			break;
485 		case PL08X_BURST_SZ_64:
486 			val |= PL080_BSIZE_64 <<
487 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
488 			break;
489 		case PL08X_BURST_SZ_128:
490 			val |= PL080_BSIZE_128 <<
491 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
492 			break;
493 		case PL08X_BURST_SZ_256:
494 			val |= PL080_BSIZE_256 <<
495 				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
496 			break;
497 		}
498 
499 		/* Protection flags */
500 		if (pl08x->pd->memcpy_prot_buff)
501 			val |= FTDMAC020_CH_CSR_PROT2;
502 		if (pl08x->pd->memcpy_prot_cache)
503 			val |= FTDMAC020_CH_CSR_PROT3;
504 		/* We are the kernel, so we are in privileged mode */
505 		val |= FTDMAC020_CH_CSR_PROT1;
506 
507 		writel_relaxed(val, phychan->reg_control);
508 	} else {
509 		/* Bits are just identical */
510 		writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
511 	}
512 
513 	/* Second control word on the PL080s */
514 	if (pl08x->vd->pl080s)
515 		writel_relaxed(lli[PL080S_LLI_CCTL2],
516 				phychan->base + PL080S_CH_CONTROL2);
517 
518 	writel(ccfg, phychan->reg_config);
519 }
520 
521 /*
522  * Set the initial DMA register values i.e. those for the first LLI
523  * The next LLI pointer and the configuration interrupt bit have
524  * been set when the LLIs were constructed.  Poke them into the hardware
525  * and start the transfer.
526  */
527 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
528 {
529 	struct pl08x_driver_data *pl08x = plchan->host;
530 	struct pl08x_phy_chan *phychan = plchan->phychan;
531 	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
532 	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
533 	u32 val;
534 
535 	list_del(&txd->vd.node);
536 
537 	plchan->at = txd;
538 
539 	/* Wait for channel inactive */
540 	while (pl08x_phy_channel_busy(phychan))
541 		cpu_relax();
542 
543 	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
544 
545 	/* Enable the DMA channel */
546 	/* Do not access config register until channel shows as disabled */
547 	while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
548 		cpu_relax();
549 
550 	/* Do not access config register until channel shows as inactive */
551 	if (phychan->ftdmac020) {
552 		val = readl(phychan->reg_config);
553 		while (val & FTDMAC020_CH_CFG_BUSY)
554 			val = readl(phychan->reg_config);
555 
556 		val = readl(phychan->reg_control);
557 		while (val & FTDMAC020_CH_CSR_EN)
558 			val = readl(phychan->reg_control);
559 
560 		writel(val | FTDMAC020_CH_CSR_EN,
561 		       phychan->reg_control);
562 	} else {
563 		val = readl(phychan->reg_config);
564 		while ((val & PL080_CONFIG_ACTIVE) ||
565 		       (val & PL080_CONFIG_ENABLE))
566 			val = readl(phychan->reg_config);
567 
568 		writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
569 	}
570 }
571 
572 /*
573  * Pause the channel by setting the HALT bit.
574  *
575  * For M->P transfers, pause the DMAC first and then stop the peripheral -
576  * the FIFO can only drain if the peripheral is still requesting data.
577  * (note: this can still timeout if the DMAC FIFO never drains of data.)
578  *
579  * For P->M transfers, disable the peripheral first to stop it filling
580  * the DMAC FIFO, and then pause the DMAC.
581  */
582 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
583 {
584 	u32 val;
585 	int timeout;
586 
587 	if (ch->ftdmac020) {
588 		/* Use the enable bit on the FTDMAC020 */
589 		val = readl(ch->reg_control);
590 		val &= ~FTDMAC020_CH_CSR_EN;
591 		writel(val, ch->reg_control);
592 		return;
593 	}
594 
595 	/* Set the HALT bit and wait for the FIFO to drain */
596 	val = readl(ch->reg_config);
597 	val |= PL080_CONFIG_HALT;
598 	writel(val, ch->reg_config);
599 
600 	/* Wait for channel inactive */
601 	for (timeout = 1000; timeout; timeout--) {
602 		if (!pl08x_phy_channel_busy(ch))
603 			break;
604 		udelay(1);
605 	}
606 	if (pl08x_phy_channel_busy(ch))
607 		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
608 }
609 
610 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
611 {
612 	u32 val;
613 
614 	/* Use the enable bit on the FTDMAC020 */
615 	if (ch->ftdmac020) {
616 		val = readl(ch->reg_control);
617 		val |= FTDMAC020_CH_CSR_EN;
618 		writel(val, ch->reg_control);
619 		return;
620 	}
621 
622 	/* Clear the HALT bit */
623 	val = readl(ch->reg_config);
624 	val &= ~PL080_CONFIG_HALT;
625 	writel(val, ch->reg_config);
626 }
627 
628 /*
629  * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
630  * clears any pending interrupt status.  This should not be used for
631  * an on-going transfer, but as a method of shutting down a channel
632  * (eg, when it's no longer used) or terminating a transfer.
633  */
634 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
635 	struct pl08x_phy_chan *ch)
636 {
637 	u32 val;
638 
639 	/* The layout for the FTDMAC020 is different */
640 	if (ch->ftdmac020) {
641 		/* Disable all interrupts */
642 		val = readl(ch->reg_config);
643 		val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
644 			FTDMAC020_CH_CFG_INT_ERR_MASK |
645 			FTDMAC020_CH_CFG_INT_TC_MASK);
646 		writel(val, ch->reg_config);
647 
648 		/* Abort and disable channel */
649 		val = readl(ch->reg_control);
650 		val &= ~FTDMAC020_CH_CSR_EN;
651 		val |= FTDMAC020_CH_CSR_ABT;
652 		writel(val, ch->reg_control);
653 
654 		/* Clear ABT and ERR interrupt flags */
655 		writel(BIT(ch->id) | BIT(ch->id + 16),
656 		       pl08x->base + PL080_ERR_CLEAR);
657 		writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
658 
659 		return;
660 	}
661 
662 	val = readl(ch->reg_config);
663 	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
664 		 PL080_CONFIG_TC_IRQ_MASK);
665 	writel(val, ch->reg_config);
666 
667 	writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
668 	writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
669 }
670 
671 static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
672 {
673 	u32 val;
674 	u32 bytes;
675 
676 	if (ch->ftdmac020) {
677 		bytes = readl(ch->base + FTDMAC020_CH_SIZE);
678 
679 		val = readl(ch->reg_control);
680 		val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
681 		val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
682 	} else if (ch->pl080s) {
683 		val = readl(ch->base + PL080S_CH_CONTROL2);
684 		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
685 
686 		val = readl(ch->reg_control);
687 		val &= PL080_CONTROL_SWIDTH_MASK;
688 		val >>= PL080_CONTROL_SWIDTH_SHIFT;
689 	} else {
690 		/* Plain PL08x */
691 		val = readl(ch->reg_control);
692 		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
693 
694 		val &= PL080_CONTROL_SWIDTH_MASK;
695 		val >>= PL080_CONTROL_SWIDTH_SHIFT;
696 	}
697 
698 	switch (val) {
699 	case PL080_WIDTH_8BIT:
700 		break;
701 	case PL080_WIDTH_16BIT:
702 		bytes *= 2;
703 		break;
704 	case PL080_WIDTH_32BIT:
705 		bytes *= 4;
706 		break;
707 	}
708 	return bytes;
709 }
710 
711 static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
712 {
713 	u32 val;
714 	u32 bytes;
715 
716 	if (ch->ftdmac020) {
717 		val = llis_va[PL080_LLI_CCTL];
718 		bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
719 
720 		val = llis_va[PL080_LLI_CCTL];
721 		val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
722 		val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
723 	} else if (ch->pl080s) {
724 		val = llis_va[PL080S_LLI_CCTL2];
725 		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
726 
727 		val = llis_va[PL080_LLI_CCTL];
728 		val &= PL080_CONTROL_SWIDTH_MASK;
729 		val >>= PL080_CONTROL_SWIDTH_SHIFT;
730 	} else {
731 		/* Plain PL08x */
732 		val = llis_va[PL080_LLI_CCTL];
733 		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
734 
735 		val &= PL080_CONTROL_SWIDTH_MASK;
736 		val >>= PL080_CONTROL_SWIDTH_SHIFT;
737 	}
738 
739 	switch (val) {
740 	case PL080_WIDTH_8BIT:
741 		break;
742 	case PL080_WIDTH_16BIT:
743 		bytes *= 2;
744 		break;
745 	case PL080_WIDTH_32BIT:
746 		bytes *= 4;
747 		break;
748 	}
749 	return bytes;
750 }
751 
752 /* The channel should be paused when calling this */
753 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
754 {
755 	struct pl08x_driver_data *pl08x = plchan->host;
756 	const u32 *llis_va, *llis_va_limit;
757 	struct pl08x_phy_chan *ch;
758 	dma_addr_t llis_bus;
759 	struct pl08x_txd *txd;
760 	u32 llis_max_words;
761 	size_t bytes;
762 	u32 clli;
763 
764 	ch = plchan->phychan;
765 	txd = plchan->at;
766 
767 	if (!ch || !txd)
768 		return 0;
769 
770 	/*
771 	 * Follow the LLIs to get the number of remaining
772 	 * bytes in the currently active transaction.
773 	 */
774 	clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
775 
776 	/* First get the remaining bytes in the active transfer */
777 	bytes = get_bytes_in_phy_channel(ch);
778 
779 	if (!clli)
780 		return bytes;
781 
782 	llis_va = txd->llis_va;
783 	llis_bus = txd->llis_bus;
784 
785 	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
786 	BUG_ON(clli < llis_bus || clli >= llis_bus +
787 						sizeof(u32) * llis_max_words);
788 
789 	/*
790 	 * Locate the next LLI - as this is an array,
791 	 * it's simple maths to find.
792 	 */
793 	llis_va += (clli - llis_bus) / sizeof(u32);
794 
795 	llis_va_limit = llis_va + llis_max_words;
796 
797 	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
798 		bytes += get_bytes_in_lli(ch, llis_va);
799 
800 		/*
801 		 * A LLI pointer going backward terminates the LLI list
802 		 */
803 		if (llis_va[PL080_LLI_LLI] <= clli)
804 			break;
805 	}
806 
807 	return bytes;
808 }
809 
810 /*
811  * Allocate a physical channel for a virtual channel
812  *
813  * Try to locate a physical channel to be used for this transfer. If all
814  * are taken return NULL and the requester will have to cope by using
815  * some fallback PIO mode or retrying later.
816  */
817 static struct pl08x_phy_chan *
818 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
819 		      struct pl08x_dma_chan *virt_chan)
820 {
821 	struct pl08x_phy_chan *ch = NULL;
822 	unsigned long flags;
823 	int i;
824 
825 	for (i = 0; i < pl08x->vd->channels; i++) {
826 		ch = &pl08x->phy_chans[i];
827 
828 		spin_lock_irqsave(&ch->lock, flags);
829 
830 		if (!ch->locked && !ch->serving) {
831 			ch->serving = virt_chan;
832 			spin_unlock_irqrestore(&ch->lock, flags);
833 			break;
834 		}
835 
836 		spin_unlock_irqrestore(&ch->lock, flags);
837 	}
838 
839 	if (i == pl08x->vd->channels) {
840 		/* No physical channel available, cope with it */
841 		return NULL;
842 	}
843 
844 	return ch;
845 }
846 
847 /* Mark the physical channel as free.  Note, this write is atomic. */
848 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
849 					 struct pl08x_phy_chan *ch)
850 {
851 	ch->serving = NULL;
852 }
853 
854 /*
855  * Try to allocate a physical channel.  When successful, assign it to
856  * this virtual channel, and initiate the next descriptor.  The
857  * virtual channel lock must be held at this point.
858  */
859 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
860 {
861 	struct pl08x_driver_data *pl08x = plchan->host;
862 	struct pl08x_phy_chan *ch;
863 
864 	ch = pl08x_get_phy_channel(pl08x, plchan);
865 	if (!ch) {
866 		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
867 		plchan->state = PL08X_CHAN_WAITING;
868 		plchan->waiting_at = jiffies;
869 		return;
870 	}
871 
872 	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
873 		ch->id, plchan->name);
874 
875 	plchan->phychan = ch;
876 	plchan->state = PL08X_CHAN_RUNNING;
877 	pl08x_start_next_txd(plchan);
878 }
879 
880 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
881 	struct pl08x_dma_chan *plchan)
882 {
883 	struct pl08x_driver_data *pl08x = plchan->host;
884 
885 	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
886 		ch->id, plchan->name);
887 
888 	/*
889 	 * We do this without taking the lock; we're really only concerned
890 	 * about whether this pointer is NULL or not, and we're guaranteed
891 	 * that this will only be called when it _already_ is non-NULL.
892 	 */
893 	ch->serving = plchan;
894 	plchan->phychan = ch;
895 	plchan->state = PL08X_CHAN_RUNNING;
896 	pl08x_start_next_txd(plchan);
897 }
898 
899 /*
900  * Free a physical DMA channel, potentially reallocating it to another
901  * virtual channel if we have any pending.
902  */
903 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
904 {
905 	struct pl08x_driver_data *pl08x = plchan->host;
906 	struct pl08x_dma_chan *p, *next;
907 	unsigned long waiting_at;
908  retry:
909 	next = NULL;
910 	waiting_at = jiffies;
911 
912 	/*
913 	 * Find a waiting virtual channel for the next transfer.
914 	 * To be fair, time when each channel reached waiting state is compared
915 	 * to select channel that is waiting for the longest time.
916 	 */
917 	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
918 		if (p->state == PL08X_CHAN_WAITING &&
919 		    p->waiting_at <= waiting_at) {
920 			next = p;
921 			waiting_at = p->waiting_at;
922 		}
923 
924 	if (!next && pl08x->has_slave) {
925 		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
926 			if (p->state == PL08X_CHAN_WAITING &&
927 			    p->waiting_at <= waiting_at) {
928 				next = p;
929 				waiting_at = p->waiting_at;
930 			}
931 	}
932 
933 	/* Ensure that the physical channel is stopped */
934 	pl08x_terminate_phy_chan(pl08x, plchan->phychan);
935 
936 	if (next) {
937 		bool success;
938 
939 		/*
940 		 * Eww.  We know this isn't going to deadlock
941 		 * but lockdep probably doesn't.
942 		 */
943 		spin_lock(&next->vc.lock);
944 		/* Re-check the state now that we have the lock */
945 		success = next->state == PL08X_CHAN_WAITING;
946 		if (success)
947 			pl08x_phy_reassign_start(plchan->phychan, next);
948 		spin_unlock(&next->vc.lock);
949 
950 		/* If the state changed, try to find another channel */
951 		if (!success)
952 			goto retry;
953 	} else {
954 		/* No more jobs, so free up the physical channel */
955 		pl08x_put_phy_channel(pl08x, plchan->phychan);
956 	}
957 
958 	plchan->phychan = NULL;
959 	plchan->state = PL08X_CHAN_IDLE;
960 }
961 
962 /*
963  * LLI handling
964  */
965 
966 static inline unsigned int
967 pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
968 			u32 cctl,
969 			bool source)
970 {
971 	u32 val;
972 
973 	if (pl08x->vd->ftdmac020) {
974 		if (source)
975 			val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
976 				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
977 		else
978 			val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
979 				FTDMAC020_LLI_DST_WIDTH_SHIFT;
980 	} else {
981 		if (source)
982 			val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
983 				PL080_CONTROL_SWIDTH_SHIFT;
984 		else
985 			val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
986 				PL080_CONTROL_DWIDTH_SHIFT;
987 	}
988 
989 	switch (val) {
990 	case PL080_WIDTH_8BIT:
991 		return 1;
992 	case PL080_WIDTH_16BIT:
993 		return 2;
994 	case PL080_WIDTH_32BIT:
995 		return 4;
996 	default:
997 		break;
998 	}
999 	BUG();
1000 	return 0;
1001 }
1002 
1003 static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
1004 					 u32 cctl,
1005 					 u8 srcwidth, u8 dstwidth,
1006 					 size_t tsize)
1007 {
1008 	u32 retbits = cctl;
1009 
1010 	/*
1011 	 * Remove all src, dst and transfer size bits, then set the
1012 	 * width and size according to the parameters. The bit offsets
1013 	 * are different in the FTDMAC020 so we need to accound for this.
1014 	 */
1015 	if (pl08x->vd->ftdmac020) {
1016 		retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
1017 		retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
1018 		retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1019 
1020 		switch (srcwidth) {
1021 		case 1:
1022 			retbits |= PL080_WIDTH_8BIT <<
1023 				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1024 			break;
1025 		case 2:
1026 			retbits |= PL080_WIDTH_16BIT <<
1027 				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1028 			break;
1029 		case 4:
1030 			retbits |= PL080_WIDTH_32BIT <<
1031 				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1032 			break;
1033 		default:
1034 			BUG();
1035 			break;
1036 		}
1037 
1038 		switch (dstwidth) {
1039 		case 1:
1040 			retbits |= PL080_WIDTH_8BIT <<
1041 				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1042 			break;
1043 		case 2:
1044 			retbits |= PL080_WIDTH_16BIT <<
1045 				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1046 			break;
1047 		case 4:
1048 			retbits |= PL080_WIDTH_32BIT <<
1049 				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1050 			break;
1051 		default:
1052 			BUG();
1053 			break;
1054 		}
1055 
1056 		tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1057 		retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
1058 	} else {
1059 		retbits &= ~PL080_CONTROL_DWIDTH_MASK;
1060 		retbits &= ~PL080_CONTROL_SWIDTH_MASK;
1061 		retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
1062 
1063 		switch (srcwidth) {
1064 		case 1:
1065 			retbits |= PL080_WIDTH_8BIT <<
1066 				PL080_CONTROL_SWIDTH_SHIFT;
1067 			break;
1068 		case 2:
1069 			retbits |= PL080_WIDTH_16BIT <<
1070 				PL080_CONTROL_SWIDTH_SHIFT;
1071 			break;
1072 		case 4:
1073 			retbits |= PL080_WIDTH_32BIT <<
1074 				PL080_CONTROL_SWIDTH_SHIFT;
1075 			break;
1076 		default:
1077 			BUG();
1078 			break;
1079 		}
1080 
1081 		switch (dstwidth) {
1082 		case 1:
1083 			retbits |= PL080_WIDTH_8BIT <<
1084 				PL080_CONTROL_DWIDTH_SHIFT;
1085 			break;
1086 		case 2:
1087 			retbits |= PL080_WIDTH_16BIT <<
1088 				PL080_CONTROL_DWIDTH_SHIFT;
1089 			break;
1090 		case 4:
1091 			retbits |= PL080_WIDTH_32BIT <<
1092 				PL080_CONTROL_DWIDTH_SHIFT;
1093 			break;
1094 		default:
1095 			BUG();
1096 			break;
1097 		}
1098 
1099 		tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
1100 		retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
1101 	}
1102 
1103 	return retbits;
1104 }
1105 
1106 struct pl08x_lli_build_data {
1107 	struct pl08x_txd *txd;
1108 	struct pl08x_bus_data srcbus;
1109 	struct pl08x_bus_data dstbus;
1110 	size_t remainder;
1111 	u32 lli_bus;
1112 };
1113 
1114 /*
1115  * Autoselect a master bus to use for the transfer. Slave will be the chosen as
1116  * victim in case src & dest are not similarly aligned. i.e. If after aligning
1117  * masters address with width requirements of transfer (by sending few byte by
1118  * byte data), slave is still not aligned, then its width will be reduced to
1119  * BYTE.
1120  * - prefers the destination bus if both available
1121  * - prefers bus with fixed address (i.e. peripheral)
1122  */
1123 static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
1124 				    struct pl08x_lli_build_data *bd,
1125 				    struct pl08x_bus_data **mbus,
1126 				    struct pl08x_bus_data **sbus,
1127 				    u32 cctl)
1128 {
1129 	bool dst_incr;
1130 	bool src_incr;
1131 
1132 	/*
1133 	 * The FTDMAC020 only supports memory-to-memory transfer, so
1134 	 * source and destination always increase.
1135 	 */
1136 	if (pl08x->vd->ftdmac020) {
1137 		dst_incr = true;
1138 		src_incr = true;
1139 	} else {
1140 		dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
1141 		src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
1142 	}
1143 
1144 	/*
1145 	 * If either bus is not advancing, i.e. it is a peripheral, that
1146 	 * one becomes master
1147 	 */
1148 	if (!dst_incr) {
1149 		*mbus = &bd->dstbus;
1150 		*sbus = &bd->srcbus;
1151 	} else if (!src_incr) {
1152 		*mbus = &bd->srcbus;
1153 		*sbus = &bd->dstbus;
1154 	} else {
1155 		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
1156 			*mbus = &bd->dstbus;
1157 			*sbus = &bd->srcbus;
1158 		} else {
1159 			*mbus = &bd->srcbus;
1160 			*sbus = &bd->dstbus;
1161 		}
1162 	}
1163 }
1164 
1165 /*
1166  * Fills in one LLI for a certain transfer descriptor and advance the counter
1167  */
1168 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
1169 				    struct pl08x_lli_build_data *bd,
1170 				    int num_llis, int len, u32 cctl, u32 cctl2)
1171 {
1172 	u32 offset = num_llis * pl08x->lli_words;
1173 	u32 *llis_va = bd->txd->llis_va + offset;
1174 	dma_addr_t llis_bus = bd->txd->llis_bus;
1175 
1176 	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
1177 
1178 	/* Advance the offset to next LLI. */
1179 	offset += pl08x->lli_words;
1180 
1181 	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
1182 	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
1183 	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
1184 	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
1185 	llis_va[PL080_LLI_CCTL] = cctl;
1186 	if (pl08x->vd->pl080s)
1187 		llis_va[PL080S_LLI_CCTL2] = cctl2;
1188 
1189 	if (pl08x->vd->ftdmac020) {
1190 		/* FIXME: only memcpy so far so both increase */
1191 		bd->srcbus.addr += len;
1192 		bd->dstbus.addr += len;
1193 	} else {
1194 		if (cctl & PL080_CONTROL_SRC_INCR)
1195 			bd->srcbus.addr += len;
1196 		if (cctl & PL080_CONTROL_DST_INCR)
1197 			bd->dstbus.addr += len;
1198 	}
1199 
1200 	BUG_ON(bd->remainder < len);
1201 
1202 	bd->remainder -= len;
1203 }
1204 
1205 static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
1206 			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
1207 			int num_llis, size_t *total_bytes)
1208 {
1209 	*cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
1210 	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
1211 	(*total_bytes) += len;
1212 }
1213 
1214 #if 1
1215 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1216 			   const u32 *llis_va, int num_llis)
1217 {
1218 	int i;
1219 
1220 	if (pl08x->vd->pl080s) {
1221 		dev_vdbg(&pl08x->adev->dev,
1222 			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
1223 			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1224 		for (i = 0; i < num_llis; i++) {
1225 			dev_vdbg(&pl08x->adev->dev,
1226 				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1227 				i, llis_va, llis_va[PL080_LLI_SRC],
1228 				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1229 				llis_va[PL080_LLI_CCTL],
1230 				llis_va[PL080S_LLI_CCTL2]);
1231 			llis_va += pl08x->lli_words;
1232 		}
1233 	} else {
1234 		dev_vdbg(&pl08x->adev->dev,
1235 			"%-3s %-9s  %-10s %-10s %-10s %s\n",
1236 			"lli", "", "csrc", "cdst", "clli", "cctl");
1237 		for (i = 0; i < num_llis; i++) {
1238 			dev_vdbg(&pl08x->adev->dev,
1239 				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1240 				i, llis_va, llis_va[PL080_LLI_SRC],
1241 				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1242 				llis_va[PL080_LLI_CCTL]);
1243 			llis_va += pl08x->lli_words;
1244 		}
1245 	}
1246 }
1247 #else
1248 static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1249 				  const u32 *llis_va, int num_llis) {}
1250 #endif
1251 
1252 /*
1253  * This fills in the table of LLIs for the transfer descriptor
1254  * Note that we assume we never have to change the burst sizes
1255  * Return 0 for error
1256  */
1257 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
1258 			      struct pl08x_txd *txd)
1259 {
1260 	struct pl08x_bus_data *mbus, *sbus;
1261 	struct pl08x_lli_build_data bd;
1262 	int num_llis = 0;
1263 	u32 cctl, early_bytes = 0;
1264 	size_t max_bytes_per_lli, total_bytes;
1265 	u32 *llis_va, *last_lli;
1266 	struct pl08x_sg *dsg;
1267 
1268 	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
1269 	if (!txd->llis_va) {
1270 		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
1271 		return 0;
1272 	}
1273 
1274 	bd.txd = txd;
1275 	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
1276 	cctl = txd->cctl;
1277 
1278 	/* Find maximum width of the source bus */
1279 	bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
1280 
1281 	/* Find maximum width of the destination bus */
1282 	bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
1283 
1284 	list_for_each_entry(dsg, &txd->dsg_list, node) {
1285 		total_bytes = 0;
1286 		cctl = txd->cctl;
1287 
1288 		bd.srcbus.addr = dsg->src_addr;
1289 		bd.dstbus.addr = dsg->dst_addr;
1290 		bd.remainder = dsg->len;
1291 		bd.srcbus.buswidth = bd.srcbus.maxwidth;
1292 		bd.dstbus.buswidth = bd.dstbus.maxwidth;
1293 
1294 		pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
1295 
1296 		dev_vdbg(&pl08x->adev->dev,
1297 			"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1298 			(u64)bd.srcbus.addr,
1299 			cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
1300 			bd.srcbus.buswidth,
1301 			(u64)bd.dstbus.addr,
1302 			cctl & PL080_CONTROL_DST_INCR ? "+" : "",
1303 			bd.dstbus.buswidth,
1304 			bd.remainder);
1305 		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
1306 			mbus == &bd.srcbus ? "src" : "dst",
1307 			sbus == &bd.srcbus ? "src" : "dst");
1308 
1309 		/*
1310 		 * Zero length is only allowed if all these requirements are
1311 		 * met:
1312 		 * - flow controller is peripheral.
1313 		 * - src.addr is aligned to src.width
1314 		 * - dst.addr is aligned to dst.width
1315 		 *
1316 		 * sg_len == 1 should be true, as there can be two cases here:
1317 		 *
1318 		 * - Memory addresses are contiguous and are not scattered.
1319 		 *   Here, Only one sg will be passed by user driver, with
1320 		 *   memory address and zero length. We pass this to controller
1321 		 *   and after the transfer it will receive the last burst
1322 		 *   request from peripheral and so transfer finishes.
1323 		 *
1324 		 * - Memory addresses are scattered and are not contiguous.
1325 		 *   Here, Obviously as DMA controller doesn't know when a lli's
1326 		 *   transfer gets over, it can't load next lli. So in this
1327 		 *   case, there has to be an assumption that only one lli is
1328 		 *   supported. Thus, we can't have scattered addresses.
1329 		 */
1330 		if (!bd.remainder) {
1331 			u32 fc;
1332 
1333 			/* FTDMAC020 only does memory-to-memory */
1334 			if (pl08x->vd->ftdmac020)
1335 				fc = PL080_FLOW_MEM2MEM;
1336 			else
1337 				fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1338 					PL080_CONFIG_FLOW_CONTROL_SHIFT;
1339 			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1340 					(fc <= PL080_FLOW_SRC2DST_SRC))) {
1341 				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1342 					__func__);
1343 				return 0;
1344 			}
1345 
1346 			if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1347 				!IS_BUS_ALIGNED(&bd.dstbus)) {
1348 				dev_err(&pl08x->adev->dev,
1349 					"%s src & dst address must be aligned to src"
1350 					" & dst width if peripheral is flow controller",
1351 					__func__);
1352 				return 0;
1353 			}
1354 
1355 			cctl = pl08x_lli_control_bits(pl08x, cctl,
1356 					bd.srcbus.buswidth, bd.dstbus.buswidth,
1357 					0);
1358 			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1359 					0, cctl, 0);
1360 			break;
1361 		}
1362 
1363 		/*
1364 		 * Send byte by byte for following cases
1365 		 * - Less than a bus width available
1366 		 * - until master bus is aligned
1367 		 */
1368 		if (bd.remainder < mbus->buswidth)
1369 			early_bytes = bd.remainder;
1370 		else if (!IS_BUS_ALIGNED(mbus)) {
1371 			early_bytes = mbus->buswidth -
1372 				(mbus->addr & (mbus->buswidth - 1));
1373 			if ((bd.remainder - early_bytes) < mbus->buswidth)
1374 				early_bytes = bd.remainder;
1375 		}
1376 
1377 		if (early_bytes) {
1378 			dev_vdbg(&pl08x->adev->dev,
1379 				"%s byte width LLIs (remain 0x%08zx)\n",
1380 				__func__, bd.remainder);
1381 			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1382 				num_llis++, &total_bytes);
1383 		}
1384 
1385 		if (bd.remainder) {
1386 			/*
1387 			 * Master now aligned
1388 			 * - if slave is not then we must set its width down
1389 			 */
1390 			if (!IS_BUS_ALIGNED(sbus)) {
1391 				dev_dbg(&pl08x->adev->dev,
1392 					"%s set down bus width to one byte\n",
1393 					__func__);
1394 
1395 				sbus->buswidth = 1;
1396 			}
1397 
1398 			/*
1399 			 * Bytes transferred = tsize * src width, not
1400 			 * MIN(buswidths)
1401 			 */
1402 			max_bytes_per_lli = bd.srcbus.buswidth *
1403 						pl08x->vd->max_transfer_size;
1404 			dev_vdbg(&pl08x->adev->dev,
1405 				"%s max bytes per lli = %zu\n",
1406 				__func__, max_bytes_per_lli);
1407 
1408 			/*
1409 			 * Make largest possible LLIs until less than one bus
1410 			 * width left
1411 			 */
1412 			while (bd.remainder > (mbus->buswidth - 1)) {
1413 				size_t lli_len, tsize, width;
1414 
1415 				/*
1416 				 * If enough left try to send max possible,
1417 				 * otherwise try to send the remainder
1418 				 */
1419 				lli_len = min(bd.remainder, max_bytes_per_lli);
1420 
1421 				/*
1422 				 * Check against maximum bus alignment:
1423 				 * Calculate actual transfer size in relation to
1424 				 * bus width an get a maximum remainder of the
1425 				 * highest bus width - 1
1426 				 */
1427 				width = max(mbus->buswidth, sbus->buswidth);
1428 				lli_len = (lli_len / width) * width;
1429 				tsize = lli_len / bd.srcbus.buswidth;
1430 
1431 				dev_vdbg(&pl08x->adev->dev,
1432 					"%s fill lli with single lli chunk of "
1433 					"size 0x%08zx (remainder 0x%08zx)\n",
1434 					__func__, lli_len, bd.remainder);
1435 
1436 				cctl = pl08x_lli_control_bits(pl08x, cctl,
1437 					bd.srcbus.buswidth, bd.dstbus.buswidth,
1438 					tsize);
1439 				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1440 						lli_len, cctl, tsize);
1441 				total_bytes += lli_len;
1442 			}
1443 
1444 			/*
1445 			 * Send any odd bytes
1446 			 */
1447 			if (bd.remainder) {
1448 				dev_vdbg(&pl08x->adev->dev,
1449 					"%s align with boundary, send odd bytes (remain %zu)\n",
1450 					__func__, bd.remainder);
1451 				prep_byte_width_lli(pl08x, &bd, &cctl,
1452 					bd.remainder, num_llis++, &total_bytes);
1453 			}
1454 		}
1455 
1456 		if (total_bytes != dsg->len) {
1457 			dev_err(&pl08x->adev->dev,
1458 				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1459 				__func__, total_bytes, dsg->len);
1460 			return 0;
1461 		}
1462 
1463 		if (num_llis >= MAX_NUM_TSFR_LLIS) {
1464 			dev_err(&pl08x->adev->dev,
1465 				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1466 				__func__, MAX_NUM_TSFR_LLIS);
1467 			return 0;
1468 		}
1469 	}
1470 
1471 	llis_va = txd->llis_va;
1472 	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1473 
1474 	if (txd->cyclic) {
1475 		/* Link back to the first LLI. */
1476 		last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1477 	} else {
1478 		/* The final LLI terminates the LLI. */
1479 		last_lli[PL080_LLI_LLI] = 0;
1480 		/* The final LLI element shall also fire an interrupt. */
1481 		if (pl08x->vd->ftdmac020)
1482 			last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
1483 		else
1484 			last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1485 	}
1486 
1487 	pl08x_dump_lli(pl08x, llis_va, num_llis);
1488 
1489 	return num_llis;
1490 }
1491 
1492 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1493 			   struct pl08x_txd *txd)
1494 {
1495 	struct pl08x_sg *dsg, *_dsg;
1496 
1497 	if (txd->llis_va)
1498 		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1499 
1500 	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1501 		list_del(&dsg->node);
1502 		kfree(dsg);
1503 	}
1504 
1505 	kfree(txd);
1506 }
1507 
1508 static void pl08x_desc_free(struct virt_dma_desc *vd)
1509 {
1510 	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1511 	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1512 
1513 	dma_descriptor_unmap(&vd->tx);
1514 	if (!txd->done)
1515 		pl08x_release_mux(plchan);
1516 
1517 	pl08x_free_txd(plchan->host, txd);
1518 }
1519 
1520 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1521 				struct pl08x_dma_chan *plchan)
1522 {
1523 	LIST_HEAD(head);
1524 
1525 	vchan_get_all_descriptors(&plchan->vc, &head);
1526 	vchan_dma_desc_free_list(&plchan->vc, &head);
1527 }
1528 
1529 /*
1530  * The DMA ENGINE API
1531  */
1532 static void pl08x_free_chan_resources(struct dma_chan *chan)
1533 {
1534 	/* Ensure all queued descriptors are freed */
1535 	vchan_free_chan_resources(to_virt_chan(chan));
1536 }
1537 
1538 /*
1539  * Code accessing dma_async_is_complete() in a tight loop may give problems.
1540  * If slaves are relying on interrupts to signal completion this function
1541  * must not be called with interrupts disabled.
1542  */
1543 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1544 		dma_cookie_t cookie, struct dma_tx_state *txstate)
1545 {
1546 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1547 	struct virt_dma_desc *vd;
1548 	unsigned long flags;
1549 	enum dma_status ret;
1550 	size_t bytes = 0;
1551 
1552 	ret = dma_cookie_status(chan, cookie, txstate);
1553 	if (ret == DMA_COMPLETE)
1554 		return ret;
1555 
1556 	/*
1557 	 * There's no point calculating the residue if there's
1558 	 * no txstate to store the value.
1559 	 */
1560 	if (!txstate) {
1561 		if (plchan->state == PL08X_CHAN_PAUSED)
1562 			ret = DMA_PAUSED;
1563 		return ret;
1564 	}
1565 
1566 	spin_lock_irqsave(&plchan->vc.lock, flags);
1567 	ret = dma_cookie_status(chan, cookie, txstate);
1568 	if (ret != DMA_COMPLETE) {
1569 		vd = vchan_find_desc(&plchan->vc, cookie);
1570 		if (vd) {
1571 			/* On the issued list, so hasn't been processed yet */
1572 			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1573 			struct pl08x_sg *dsg;
1574 
1575 			list_for_each_entry(dsg, &txd->dsg_list, node)
1576 				bytes += dsg->len;
1577 		} else {
1578 			bytes = pl08x_getbytes_chan(plchan);
1579 		}
1580 	}
1581 	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1582 
1583 	/*
1584 	 * This cookie not complete yet
1585 	 * Get number of bytes left in the active transactions and queue
1586 	 */
1587 	dma_set_residue(txstate, bytes);
1588 
1589 	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1590 		ret = DMA_PAUSED;
1591 
1592 	/* Whether waiting or running, we're in progress */
1593 	return ret;
1594 }
1595 
1596 /* PrimeCell DMA extension */
1597 struct burst_table {
1598 	u32 burstwords;
1599 	u32 reg;
1600 };
1601 
1602 static const struct burst_table burst_sizes[] = {
1603 	{
1604 		.burstwords = 256,
1605 		.reg = PL080_BSIZE_256,
1606 	},
1607 	{
1608 		.burstwords = 128,
1609 		.reg = PL080_BSIZE_128,
1610 	},
1611 	{
1612 		.burstwords = 64,
1613 		.reg = PL080_BSIZE_64,
1614 	},
1615 	{
1616 		.burstwords = 32,
1617 		.reg = PL080_BSIZE_32,
1618 	},
1619 	{
1620 		.burstwords = 16,
1621 		.reg = PL080_BSIZE_16,
1622 	},
1623 	{
1624 		.burstwords = 8,
1625 		.reg = PL080_BSIZE_8,
1626 	},
1627 	{
1628 		.burstwords = 4,
1629 		.reg = PL080_BSIZE_4,
1630 	},
1631 	{
1632 		.burstwords = 0,
1633 		.reg = PL080_BSIZE_1,
1634 	},
1635 };
1636 
1637 /*
1638  * Given the source and destination available bus masks, select which
1639  * will be routed to each port.  We try to have source and destination
1640  * on separate ports, but always respect the allowable settings.
1641  */
1642 static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
1643 {
1644 	u32 cctl = 0;
1645 	u32 dst_ahb2;
1646 	u32 src_ahb2;
1647 
1648 	/* The FTDMAC020 use different bits to indicate src/dst bus */
1649 	if (ftdmac020) {
1650 		dst_ahb2 = FTDMAC020_LLI_DST_SEL;
1651 		src_ahb2 = FTDMAC020_LLI_SRC_SEL;
1652 	} else {
1653 		dst_ahb2 = PL080_CONTROL_DST_AHB2;
1654 		src_ahb2 = PL080_CONTROL_SRC_AHB2;
1655 	}
1656 
1657 	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1658 		cctl |= dst_ahb2;
1659 	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1660 		cctl |= src_ahb2;
1661 
1662 	return cctl;
1663 }
1664 
1665 static u32 pl08x_cctl(u32 cctl)
1666 {
1667 	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1668 		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1669 		  PL080_CONTROL_PROT_MASK);
1670 
1671 	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1672 	return cctl | PL080_CONTROL_PROT_SYS;
1673 }
1674 
1675 static u32 pl08x_width(enum dma_slave_buswidth width)
1676 {
1677 	switch (width) {
1678 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1679 		return PL080_WIDTH_8BIT;
1680 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1681 		return PL080_WIDTH_16BIT;
1682 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1683 		return PL080_WIDTH_32BIT;
1684 	default:
1685 		return ~0;
1686 	}
1687 }
1688 
1689 static u32 pl08x_burst(u32 maxburst)
1690 {
1691 	int i;
1692 
1693 	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1694 		if (burst_sizes[i].burstwords <= maxburst)
1695 			break;
1696 
1697 	return burst_sizes[i].reg;
1698 }
1699 
1700 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1701 	enum dma_slave_buswidth addr_width, u32 maxburst)
1702 {
1703 	u32 width, burst, cctl = 0;
1704 
1705 	width = pl08x_width(addr_width);
1706 	if (width == ~0)
1707 		return ~0;
1708 
1709 	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1710 	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1711 
1712 	/*
1713 	 * If this channel will only request single transfers, set this
1714 	 * down to ONE element.  Also select one element if no maxburst
1715 	 * is specified.
1716 	 */
1717 	if (plchan->cd->single)
1718 		maxburst = 1;
1719 
1720 	burst = pl08x_burst(maxburst);
1721 	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1722 	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1723 
1724 	return pl08x_cctl(cctl);
1725 }
1726 
1727 /*
1728  * Slave transactions callback to the slave device to allow
1729  * synchronization of slave DMA signals with the DMAC enable
1730  */
1731 static void pl08x_issue_pending(struct dma_chan *chan)
1732 {
1733 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1734 	unsigned long flags;
1735 
1736 	spin_lock_irqsave(&plchan->vc.lock, flags);
1737 	if (vchan_issue_pending(&plchan->vc)) {
1738 		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1739 			pl08x_phy_alloc_and_start(plchan);
1740 	}
1741 	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1742 }
1743 
1744 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1745 {
1746 	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1747 
1748 	if (txd)
1749 		INIT_LIST_HEAD(&txd->dsg_list);
1750 	return txd;
1751 }
1752 
1753 static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
1754 {
1755 	u32 cctl = 0;
1756 
1757 	/* Conjure cctl */
1758 	switch (pl08x->pd->memcpy_burst_size) {
1759 	default:
1760 		dev_err(&pl08x->adev->dev,
1761 			"illegal burst size for memcpy, set to 1\n");
1762 		fallthrough;
1763 	case PL08X_BURST_SZ_1:
1764 		cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
1765 			PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
1766 		break;
1767 	case PL08X_BURST_SZ_4:
1768 		cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
1769 			PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
1770 		break;
1771 	case PL08X_BURST_SZ_8:
1772 		cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
1773 			PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
1774 		break;
1775 	case PL08X_BURST_SZ_16:
1776 		cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
1777 			PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
1778 		break;
1779 	case PL08X_BURST_SZ_32:
1780 		cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
1781 			PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
1782 		break;
1783 	case PL08X_BURST_SZ_64:
1784 		cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
1785 			PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
1786 		break;
1787 	case PL08X_BURST_SZ_128:
1788 		cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
1789 			PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
1790 		break;
1791 	case PL08X_BURST_SZ_256:
1792 		cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
1793 			PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
1794 		break;
1795 	}
1796 
1797 	switch (pl08x->pd->memcpy_bus_width) {
1798 	default:
1799 		dev_err(&pl08x->adev->dev,
1800 			"illegal bus width for memcpy, set to 8 bits\n");
1801 		fallthrough;
1802 	case PL08X_BUS_WIDTH_8_BITS:
1803 		cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
1804 			PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
1805 		break;
1806 	case PL08X_BUS_WIDTH_16_BITS:
1807 		cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
1808 			PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
1809 		break;
1810 	case PL08X_BUS_WIDTH_32_BITS:
1811 		cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
1812 			PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
1813 		break;
1814 	}
1815 
1816 	/* Protection flags */
1817 	if (pl08x->pd->memcpy_prot_buff)
1818 		cctl |= PL080_CONTROL_PROT_BUFF;
1819 	if (pl08x->pd->memcpy_prot_cache)
1820 		cctl |= PL080_CONTROL_PROT_CACHE;
1821 
1822 	/* We are the kernel, so we are in privileged mode */
1823 	cctl |= PL080_CONTROL_PROT_SYS;
1824 
1825 	/* Both to be incremented or the code will break */
1826 	cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1827 
1828 	if (pl08x->vd->dualmaster)
1829 		cctl |= pl08x_select_bus(false,
1830 					 pl08x->mem_buses,
1831 					 pl08x->mem_buses);
1832 
1833 	return cctl;
1834 }
1835 
1836 static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
1837 {
1838 	u32 cctl = 0;
1839 
1840 	/* Conjure cctl */
1841 	switch (pl08x->pd->memcpy_bus_width) {
1842 	default:
1843 		dev_err(&pl08x->adev->dev,
1844 			"illegal bus width for memcpy, set to 8 bits\n");
1845 		fallthrough;
1846 	case PL08X_BUS_WIDTH_8_BITS:
1847 		cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1848 			PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1849 		break;
1850 	case PL08X_BUS_WIDTH_16_BITS:
1851 		cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1852 			PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1853 		break;
1854 	case PL08X_BUS_WIDTH_32_BITS:
1855 		cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1856 			PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1857 		break;
1858 	}
1859 
1860 	/*
1861 	 * By default mask the TC IRQ on all LLIs, it will be unmasked on
1862 	 * the last LLI item by other code.
1863 	 */
1864 	cctl |= FTDMAC020_LLI_TC_MSK;
1865 
1866 	/*
1867 	 * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1868 	 * and FTDMAC020_LLI_DSTAD_CTL as zero
1869 	 */
1870 	if (pl08x->vd->dualmaster)
1871 		cctl |= pl08x_select_bus(true,
1872 					 pl08x->mem_buses,
1873 					 pl08x->mem_buses);
1874 
1875 	return cctl;
1876 }
1877 
1878 /*
1879  * Initialize a descriptor to be used by memcpy submit
1880  */
1881 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1882 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1883 		size_t len, unsigned long flags)
1884 {
1885 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1886 	struct pl08x_driver_data *pl08x = plchan->host;
1887 	struct pl08x_txd *txd;
1888 	struct pl08x_sg *dsg;
1889 	int ret;
1890 
1891 	txd = pl08x_get_txd(plchan);
1892 	if (!txd) {
1893 		dev_err(&pl08x->adev->dev,
1894 			"%s no memory for descriptor\n", __func__);
1895 		return NULL;
1896 	}
1897 
1898 	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1899 	if (!dsg) {
1900 		pl08x_free_txd(pl08x, txd);
1901 		return NULL;
1902 	}
1903 	list_add_tail(&dsg->node, &txd->dsg_list);
1904 
1905 	dsg->src_addr = src;
1906 	dsg->dst_addr = dest;
1907 	dsg->len = len;
1908 	if (pl08x->vd->ftdmac020) {
1909 		/* Writing CCFG zero ENABLES all interrupts */
1910 		txd->ccfg = 0;
1911 		txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
1912 	} else {
1913 		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1914 			PL080_CONFIG_TC_IRQ_MASK |
1915 			PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1916 		txd->cctl = pl08x_memcpy_cctl(pl08x);
1917 	}
1918 
1919 	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1920 	if (!ret) {
1921 		pl08x_free_txd(pl08x, txd);
1922 		return NULL;
1923 	}
1924 
1925 	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1926 }
1927 
1928 static struct pl08x_txd *pl08x_init_txd(
1929 		struct dma_chan *chan,
1930 		enum dma_transfer_direction direction,
1931 		dma_addr_t *slave_addr)
1932 {
1933 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1934 	struct pl08x_driver_data *pl08x = plchan->host;
1935 	struct pl08x_txd *txd;
1936 	enum dma_slave_buswidth addr_width;
1937 	int ret, tmp;
1938 	u8 src_buses, dst_buses;
1939 	u32 maxburst, cctl;
1940 
1941 	txd = pl08x_get_txd(plchan);
1942 	if (!txd) {
1943 		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1944 		return NULL;
1945 	}
1946 
1947 	/*
1948 	 * Set up addresses, the PrimeCell configured address
1949 	 * will take precedence since this may configure the
1950 	 * channel target address dynamically at runtime.
1951 	 */
1952 	if (direction == DMA_MEM_TO_DEV) {
1953 		cctl = PL080_CONTROL_SRC_INCR;
1954 		*slave_addr = plchan->cfg.dst_addr;
1955 		addr_width = plchan->cfg.dst_addr_width;
1956 		maxburst = plchan->cfg.dst_maxburst;
1957 		src_buses = pl08x->mem_buses;
1958 		dst_buses = plchan->cd->periph_buses;
1959 	} else if (direction == DMA_DEV_TO_MEM) {
1960 		cctl = PL080_CONTROL_DST_INCR;
1961 		*slave_addr = plchan->cfg.src_addr;
1962 		addr_width = plchan->cfg.src_addr_width;
1963 		maxburst = plchan->cfg.src_maxburst;
1964 		src_buses = plchan->cd->periph_buses;
1965 		dst_buses = pl08x->mem_buses;
1966 	} else {
1967 		pl08x_free_txd(pl08x, txd);
1968 		dev_err(&pl08x->adev->dev,
1969 			"%s direction unsupported\n", __func__);
1970 		return NULL;
1971 	}
1972 
1973 	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1974 	if (cctl == ~0) {
1975 		pl08x_free_txd(pl08x, txd);
1976 		dev_err(&pl08x->adev->dev,
1977 			"DMA slave configuration botched?\n");
1978 		return NULL;
1979 	}
1980 
1981 	txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
1982 
1983 	if (plchan->cfg.device_fc)
1984 		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1985 			PL080_FLOW_PER2MEM_PER;
1986 	else
1987 		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1988 			PL080_FLOW_PER2MEM;
1989 
1990 	txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1991 		PL080_CONFIG_TC_IRQ_MASK |
1992 		tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1993 
1994 	ret = pl08x_request_mux(plchan);
1995 	if (ret < 0) {
1996 		pl08x_free_txd(pl08x, txd);
1997 		dev_dbg(&pl08x->adev->dev,
1998 			"unable to mux for transfer on %s due to platform restrictions\n",
1999 			plchan->name);
2000 		return NULL;
2001 	}
2002 
2003 	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
2004 		 plchan->signal, plchan->name);
2005 
2006 	/* Assign the flow control signal to this channel */
2007 	if (direction == DMA_MEM_TO_DEV)
2008 		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
2009 	else
2010 		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
2011 
2012 	return txd;
2013 }
2014 
2015 static int pl08x_tx_add_sg(struct pl08x_txd *txd,
2016 			   enum dma_transfer_direction direction,
2017 			   dma_addr_t slave_addr,
2018 			   dma_addr_t buf_addr,
2019 			   unsigned int len)
2020 {
2021 	struct pl08x_sg *dsg;
2022 
2023 	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
2024 	if (!dsg)
2025 		return -ENOMEM;
2026 
2027 	list_add_tail(&dsg->node, &txd->dsg_list);
2028 
2029 	dsg->len = len;
2030 	if (direction == DMA_MEM_TO_DEV) {
2031 		dsg->src_addr = buf_addr;
2032 		dsg->dst_addr = slave_addr;
2033 	} else {
2034 		dsg->src_addr = slave_addr;
2035 		dsg->dst_addr = buf_addr;
2036 	}
2037 
2038 	return 0;
2039 }
2040 
2041 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
2042 		struct dma_chan *chan, struct scatterlist *sgl,
2043 		unsigned int sg_len, enum dma_transfer_direction direction,
2044 		unsigned long flags, void *context)
2045 {
2046 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2047 	struct pl08x_driver_data *pl08x = plchan->host;
2048 	struct pl08x_txd *txd;
2049 	struct scatterlist *sg;
2050 	int ret, tmp;
2051 	dma_addr_t slave_addr;
2052 
2053 	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
2054 			__func__, sg_dma_len(sgl), plchan->name);
2055 
2056 	txd = pl08x_init_txd(chan, direction, &slave_addr);
2057 	if (!txd)
2058 		return NULL;
2059 
2060 	for_each_sg(sgl, sg, sg_len, tmp) {
2061 		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2062 				      sg_dma_address(sg),
2063 				      sg_dma_len(sg));
2064 		if (ret) {
2065 			pl08x_release_mux(plchan);
2066 			pl08x_free_txd(pl08x, txd);
2067 			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
2068 					__func__);
2069 			return NULL;
2070 		}
2071 	}
2072 
2073 	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2074 	if (!ret) {
2075 		pl08x_release_mux(plchan);
2076 		pl08x_free_txd(pl08x, txd);
2077 		return NULL;
2078 	}
2079 
2080 	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2081 }
2082 
2083 static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
2084 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2085 		size_t period_len, enum dma_transfer_direction direction,
2086 		unsigned long flags)
2087 {
2088 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2089 	struct pl08x_driver_data *pl08x = plchan->host;
2090 	struct pl08x_txd *txd;
2091 	int ret, tmp;
2092 	dma_addr_t slave_addr;
2093 
2094 	dev_dbg(&pl08x->adev->dev,
2095 		"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2096 		__func__, period_len, buf_len,
2097 		direction == DMA_MEM_TO_DEV ? "to" : "from",
2098 		plchan->name);
2099 
2100 	txd = pl08x_init_txd(chan, direction, &slave_addr);
2101 	if (!txd)
2102 		return NULL;
2103 
2104 	txd->cyclic = true;
2105 	txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
2106 	for (tmp = 0; tmp < buf_len; tmp += period_len) {
2107 		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2108 				      buf_addr + tmp, period_len);
2109 		if (ret) {
2110 			pl08x_release_mux(plchan);
2111 			pl08x_free_txd(pl08x, txd);
2112 			return NULL;
2113 		}
2114 	}
2115 
2116 	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2117 	if (!ret) {
2118 		pl08x_release_mux(plchan);
2119 		pl08x_free_txd(pl08x, txd);
2120 		return NULL;
2121 	}
2122 
2123 	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2124 }
2125 
2126 static int pl08x_config(struct dma_chan *chan,
2127 			struct dma_slave_config *config)
2128 {
2129 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2130 	struct pl08x_driver_data *pl08x = plchan->host;
2131 
2132 	if (!plchan->slave)
2133 		return -EINVAL;
2134 
2135 	/* Reject definitely invalid configurations */
2136 	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
2137 	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
2138 		return -EINVAL;
2139 
2140 	if (config->device_fc && pl08x->vd->pl080s) {
2141 		dev_err(&pl08x->adev->dev,
2142 			"%s: PL080S does not support peripheral flow control\n",
2143 			__func__);
2144 		return -EINVAL;
2145 	}
2146 
2147 	plchan->cfg = *config;
2148 
2149 	return 0;
2150 }
2151 
2152 static int pl08x_terminate_all(struct dma_chan *chan)
2153 {
2154 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2155 	struct pl08x_driver_data *pl08x = plchan->host;
2156 	unsigned long flags;
2157 
2158 	spin_lock_irqsave(&plchan->vc.lock, flags);
2159 	if (!plchan->phychan && !plchan->at) {
2160 		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2161 		return 0;
2162 	}
2163 
2164 	plchan->state = PL08X_CHAN_IDLE;
2165 
2166 	if (plchan->phychan) {
2167 		/*
2168 		 * Mark physical channel as free and free any slave
2169 		 * signal
2170 		 */
2171 		pl08x_phy_free(plchan);
2172 	}
2173 	/* Dequeue jobs and free LLIs */
2174 	if (plchan->at) {
2175 		vchan_terminate_vdesc(&plchan->at->vd);
2176 		plchan->at = NULL;
2177 	}
2178 	/* Dequeue jobs not yet fired as well */
2179 	pl08x_free_txd_list(pl08x, plchan);
2180 
2181 	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2182 
2183 	return 0;
2184 }
2185 
2186 static void pl08x_synchronize(struct dma_chan *chan)
2187 {
2188 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2189 
2190 	vchan_synchronize(&plchan->vc);
2191 }
2192 
2193 static int pl08x_pause(struct dma_chan *chan)
2194 {
2195 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2196 	unsigned long flags;
2197 
2198 	/*
2199 	 * Anything succeeds on channels with no physical allocation and
2200 	 * no queued transfers.
2201 	 */
2202 	spin_lock_irqsave(&plchan->vc.lock, flags);
2203 	if (!plchan->phychan && !plchan->at) {
2204 		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2205 		return 0;
2206 	}
2207 
2208 	pl08x_pause_phy_chan(plchan->phychan);
2209 	plchan->state = PL08X_CHAN_PAUSED;
2210 
2211 	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2212 
2213 	return 0;
2214 }
2215 
2216 static int pl08x_resume(struct dma_chan *chan)
2217 {
2218 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2219 	unsigned long flags;
2220 
2221 	/*
2222 	 * Anything succeeds on channels with no physical allocation and
2223 	 * no queued transfers.
2224 	 */
2225 	spin_lock_irqsave(&plchan->vc.lock, flags);
2226 	if (!plchan->phychan && !plchan->at) {
2227 		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2228 		return 0;
2229 	}
2230 
2231 	pl08x_resume_phy_chan(plchan->phychan);
2232 	plchan->state = PL08X_CHAN_RUNNING;
2233 
2234 	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2235 
2236 	return 0;
2237 }
2238 
2239 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
2240 {
2241 	struct pl08x_dma_chan *plchan;
2242 	char *name = chan_id;
2243 
2244 	/* Reject channels for devices not bound to this driver */
2245 	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
2246 		return false;
2247 
2248 	plchan = to_pl08x_chan(chan);
2249 
2250 	/* Check that the channel is not taken! */
2251 	if (!strcmp(plchan->name, name))
2252 		return true;
2253 
2254 	return false;
2255 }
2256 EXPORT_SYMBOL_GPL(pl08x_filter_id);
2257 
2258 static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
2259 {
2260 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2261 
2262 	return plchan->cd == chan_id;
2263 }
2264 
2265 /*
2266  * Just check that the device is there and active
2267  * TODO: turn this bit on/off depending on the number of physical channels
2268  * actually used, if it is zero... well shut it off. That will save some
2269  * power. Cut the clock at the same time.
2270  */
2271 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
2272 {
2273 	/* The Nomadik variant does not have the config register */
2274 	if (pl08x->vd->nomadik)
2275 		return;
2276 	/* The FTDMAC020 variant does this in another register */
2277 	if (pl08x->vd->ftdmac020) {
2278 		writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
2279 		return;
2280 	}
2281 	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
2282 }
2283 
2284 static irqreturn_t pl08x_irq(int irq, void *dev)
2285 {
2286 	struct pl08x_driver_data *pl08x = dev;
2287 	u32 mask = 0, err, tc, i;
2288 
2289 	/* check & clear - ERR & TC interrupts */
2290 	err = readl(pl08x->base + PL080_ERR_STATUS);
2291 	if (err) {
2292 		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
2293 			__func__, err);
2294 		writel(err, pl08x->base + PL080_ERR_CLEAR);
2295 	}
2296 	tc = readl(pl08x->base + PL080_TC_STATUS);
2297 	if (tc)
2298 		writel(tc, pl08x->base + PL080_TC_CLEAR);
2299 
2300 	if (!err && !tc)
2301 		return IRQ_NONE;
2302 
2303 	for (i = 0; i < pl08x->vd->channels; i++) {
2304 		if ((BIT(i) & err) || (BIT(i) & tc)) {
2305 			/* Locate physical channel */
2306 			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
2307 			struct pl08x_dma_chan *plchan = phychan->serving;
2308 			struct pl08x_txd *tx;
2309 
2310 			if (!plchan) {
2311 				dev_err(&pl08x->adev->dev,
2312 					"%s Error TC interrupt on unused channel: 0x%08x\n",
2313 					__func__, i);
2314 				continue;
2315 			}
2316 
2317 			spin_lock(&plchan->vc.lock);
2318 			tx = plchan->at;
2319 			if (tx && tx->cyclic) {
2320 				vchan_cyclic_callback(&tx->vd);
2321 			} else if (tx) {
2322 				plchan->at = NULL;
2323 				/*
2324 				 * This descriptor is done, release its mux
2325 				 * reservation.
2326 				 */
2327 				pl08x_release_mux(plchan);
2328 				tx->done = true;
2329 				vchan_cookie_complete(&tx->vd);
2330 
2331 				/*
2332 				 * And start the next descriptor (if any),
2333 				 * otherwise free this channel.
2334 				 */
2335 				if (vchan_next_desc(&plchan->vc))
2336 					pl08x_start_next_txd(plchan);
2337 				else
2338 					pl08x_phy_free(plchan);
2339 			}
2340 			spin_unlock(&plchan->vc.lock);
2341 
2342 			mask |= BIT(i);
2343 		}
2344 	}
2345 
2346 	return mask ? IRQ_HANDLED : IRQ_NONE;
2347 }
2348 
2349 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
2350 {
2351 	chan->slave = true;
2352 	chan->name = chan->cd->bus_id;
2353 	chan->cfg.src_addr = chan->cd->addr;
2354 	chan->cfg.dst_addr = chan->cd->addr;
2355 }
2356 
2357 /*
2358  * Initialise the DMAC memcpy/slave channels.
2359  * Make a local wrapper to hold required data
2360  */
2361 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
2362 		struct dma_device *dmadev, unsigned int channels, bool slave)
2363 {
2364 	struct pl08x_dma_chan *chan;
2365 	int i;
2366 
2367 	INIT_LIST_HEAD(&dmadev->channels);
2368 
2369 	/*
2370 	 * Register as many many memcpy as we have physical channels,
2371 	 * we won't always be able to use all but the code will have
2372 	 * to cope with that situation.
2373 	 */
2374 	for (i = 0; i < channels; i++) {
2375 		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2376 		if (!chan)
2377 			return -ENOMEM;
2378 
2379 		chan->host = pl08x;
2380 		chan->state = PL08X_CHAN_IDLE;
2381 		chan->signal = -1;
2382 
2383 		if (slave) {
2384 			chan->cd = &pl08x->pd->slave_channels[i];
2385 			/*
2386 			 * Some implementations have muxed signals, whereas some
2387 			 * use a mux in front of the signals and need dynamic
2388 			 * assignment of signals.
2389 			 */
2390 			chan->signal = i;
2391 			pl08x_dma_slave_init(chan);
2392 		} else {
2393 			chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
2394 			if (!chan->cd) {
2395 				kfree(chan);
2396 				return -ENOMEM;
2397 			}
2398 			chan->cd->bus_id = "memcpy";
2399 			chan->cd->periph_buses = pl08x->pd->mem_buses;
2400 			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
2401 			if (!chan->name) {
2402 				kfree(chan->cd);
2403 				kfree(chan);
2404 				return -ENOMEM;
2405 			}
2406 		}
2407 		dev_dbg(&pl08x->adev->dev,
2408 			 "initialize virtual channel \"%s\"\n",
2409 			 chan->name);
2410 
2411 		chan->vc.desc_free = pl08x_desc_free;
2412 		vchan_init(&chan->vc, dmadev);
2413 	}
2414 	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
2415 		 i, slave ? "slave" : "memcpy");
2416 	return i;
2417 }
2418 
2419 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
2420 {
2421 	struct pl08x_dma_chan *chan = NULL;
2422 	struct pl08x_dma_chan *next;
2423 
2424 	list_for_each_entry_safe(chan,
2425 				 next, &dmadev->channels, vc.chan.device_node) {
2426 		list_del(&chan->vc.chan.device_node);
2427 		kfree(chan);
2428 	}
2429 }
2430 
2431 #ifdef CONFIG_DEBUG_FS
2432 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
2433 {
2434 	switch (state) {
2435 	case PL08X_CHAN_IDLE:
2436 		return "idle";
2437 	case PL08X_CHAN_RUNNING:
2438 		return "running";
2439 	case PL08X_CHAN_PAUSED:
2440 		return "paused";
2441 	case PL08X_CHAN_WAITING:
2442 		return "waiting";
2443 	default:
2444 		break;
2445 	}
2446 	return "UNKNOWN STATE";
2447 }
2448 
2449 static int pl08x_debugfs_show(struct seq_file *s, void *data)
2450 {
2451 	struct pl08x_driver_data *pl08x = s->private;
2452 	struct pl08x_dma_chan *chan;
2453 	struct pl08x_phy_chan *ch;
2454 	unsigned long flags;
2455 	int i;
2456 
2457 	seq_printf(s, "PL08x physical channels:\n");
2458 	seq_printf(s, "CHANNEL:\tUSER:\n");
2459 	seq_printf(s, "--------\t-----\n");
2460 	for (i = 0; i < pl08x->vd->channels; i++) {
2461 		struct pl08x_dma_chan *virt_chan;
2462 
2463 		ch = &pl08x->phy_chans[i];
2464 
2465 		spin_lock_irqsave(&ch->lock, flags);
2466 		virt_chan = ch->serving;
2467 
2468 		seq_printf(s, "%d\t\t%s%s\n",
2469 			   ch->id,
2470 			   virt_chan ? virt_chan->name : "(none)",
2471 			   ch->locked ? " LOCKED" : "");
2472 
2473 		spin_unlock_irqrestore(&ch->lock, flags);
2474 	}
2475 
2476 	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2477 	seq_printf(s, "CHANNEL:\tSTATE:\n");
2478 	seq_printf(s, "--------\t------\n");
2479 	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2480 		seq_printf(s, "%s\t\t%s\n", chan->name,
2481 			   pl08x_state_str(chan->state));
2482 	}
2483 
2484 	if (pl08x->has_slave) {
2485 		seq_printf(s, "\nPL08x virtual slave channels:\n");
2486 		seq_printf(s, "CHANNEL:\tSTATE:\n");
2487 		seq_printf(s, "--------\t------\n");
2488 		list_for_each_entry(chan, &pl08x->slave.channels,
2489 				    vc.chan.device_node) {
2490 			seq_printf(s, "%s\t\t%s\n", chan->name,
2491 				   pl08x_state_str(chan->state));
2492 		}
2493 	}
2494 
2495 	return 0;
2496 }
2497 
2498 DEFINE_SHOW_ATTRIBUTE(pl08x_debugfs);
2499 
2500 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2501 {
2502 	/* Expose a simple debugfs interface to view all clocks */
2503 	debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
2504 			    NULL, pl08x, &pl08x_debugfs_fops);
2505 }
2506 
2507 #else
2508 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2509 {
2510 }
2511 #endif
2512 
2513 #ifdef CONFIG_OF
2514 static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2515 					 u32 id)
2516 {
2517 	struct pl08x_dma_chan *chan;
2518 
2519 	/* Trying to get a slave channel from something with no slave support */
2520 	if (!pl08x->has_slave)
2521 		return NULL;
2522 
2523 	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2524 		if (chan->signal == id)
2525 			return &chan->vc.chan;
2526 	}
2527 
2528 	return NULL;
2529 }
2530 
2531 static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2532 				       struct of_dma *ofdma)
2533 {
2534 	struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2535 	struct dma_chan *dma_chan;
2536 	struct pl08x_dma_chan *plchan;
2537 
2538 	if (!pl08x)
2539 		return NULL;
2540 
2541 	if (dma_spec->args_count != 2) {
2542 		dev_err(&pl08x->adev->dev,
2543 			"DMA channel translation requires two cells\n");
2544 		return NULL;
2545 	}
2546 
2547 	dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2548 	if (!dma_chan) {
2549 		dev_err(&pl08x->adev->dev,
2550 			"DMA slave channel not found\n");
2551 		return NULL;
2552 	}
2553 
2554 	plchan = to_pl08x_chan(dma_chan);
2555 	dev_dbg(&pl08x->adev->dev,
2556 		"translated channel for signal %d\n",
2557 		dma_spec->args[0]);
2558 
2559 	/* Augment channel data for applicable AHB buses */
2560 	plchan->cd->periph_buses = dma_spec->args[1];
2561 	return dma_get_slave_channel(dma_chan);
2562 }
2563 
2564 static int pl08x_of_probe(struct amba_device *adev,
2565 			  struct pl08x_driver_data *pl08x,
2566 			  struct device_node *np)
2567 {
2568 	struct pl08x_platform_data *pd;
2569 	struct pl08x_channel_data *chanp = NULL;
2570 	u32 val;
2571 	int ret;
2572 	int i;
2573 
2574 	pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2575 	if (!pd)
2576 		return -ENOMEM;
2577 
2578 	/* Eligible bus masters for fetching LLIs */
2579 	if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2580 		pd->lli_buses |= PL08X_AHB1;
2581 	if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2582 		pd->lli_buses |= PL08X_AHB2;
2583 	if (!pd->lli_buses) {
2584 		dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2585 		pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2586 	}
2587 
2588 	/* Eligible bus masters for memory access */
2589 	if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2590 		pd->mem_buses |= PL08X_AHB1;
2591 	if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2592 		pd->mem_buses |= PL08X_AHB2;
2593 	if (!pd->mem_buses) {
2594 		dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2595 		pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2596 	}
2597 
2598 	/* Parse the memcpy channel properties */
2599 	ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2600 	if (ret) {
2601 		dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2602 		val = 1;
2603 	}
2604 	switch (val) {
2605 	default:
2606 		dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2607 		fallthrough;
2608 	case 1:
2609 		pd->memcpy_burst_size = PL08X_BURST_SZ_1;
2610 		break;
2611 	case 4:
2612 		pd->memcpy_burst_size = PL08X_BURST_SZ_4;
2613 		break;
2614 	case 8:
2615 		pd->memcpy_burst_size = PL08X_BURST_SZ_8;
2616 		break;
2617 	case 16:
2618 		pd->memcpy_burst_size = PL08X_BURST_SZ_16;
2619 		break;
2620 	case 32:
2621 		pd->memcpy_burst_size = PL08X_BURST_SZ_32;
2622 		break;
2623 	case 64:
2624 		pd->memcpy_burst_size = PL08X_BURST_SZ_64;
2625 		break;
2626 	case 128:
2627 		pd->memcpy_burst_size = PL08X_BURST_SZ_128;
2628 		break;
2629 	case 256:
2630 		pd->memcpy_burst_size = PL08X_BURST_SZ_256;
2631 		break;
2632 	}
2633 
2634 	ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2635 	if (ret) {
2636 		dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2637 		val = 8;
2638 	}
2639 	switch (val) {
2640 	default:
2641 		dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2642 		fallthrough;
2643 	case 8:
2644 		pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
2645 		break;
2646 	case 16:
2647 		pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
2648 		break;
2649 	case 32:
2650 		pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
2651 		break;
2652 	}
2653 
2654 	/*
2655 	 * Allocate channel data for all possible slave channels (one
2656 	 * for each possible signal), channels will then be allocated
2657 	 * for a device and have it's AHB interfaces set up at
2658 	 * translation time.
2659 	 */
2660 	if (pl08x->vd->signals) {
2661 		chanp = devm_kcalloc(&adev->dev,
2662 				     pl08x->vd->signals,
2663 				     sizeof(struct pl08x_channel_data),
2664 				     GFP_KERNEL);
2665 		if (!chanp)
2666 			return -ENOMEM;
2667 
2668 		pd->slave_channels = chanp;
2669 		for (i = 0; i < pl08x->vd->signals; i++) {
2670 			/*
2671 			 * chanp->periph_buses will be assigned at translation
2672 			 */
2673 			chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2674 			chanp++;
2675 		}
2676 		pd->num_slave_channels = pl08x->vd->signals;
2677 	}
2678 
2679 	pl08x->pd = pd;
2680 
2681 	return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2682 					  pl08x);
2683 }
2684 #else
2685 static inline int pl08x_of_probe(struct amba_device *adev,
2686 				 struct pl08x_driver_data *pl08x,
2687 				 struct device_node *np)
2688 {
2689 	return -EINVAL;
2690 }
2691 #endif
2692 
2693 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2694 {
2695 	struct pl08x_driver_data *pl08x;
2696 	struct vendor_data *vd = id->data;
2697 	struct device_node *np = adev->dev.of_node;
2698 	u32 tsfr_size;
2699 	int ret = 0;
2700 	int i;
2701 
2702 	ret = amba_request_regions(adev, NULL);
2703 	if (ret)
2704 		return ret;
2705 
2706 	/* Ensure that we can do DMA */
2707 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2708 	if (ret)
2709 		goto out_no_pl08x;
2710 
2711 	/* Create the driver state holder */
2712 	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2713 	if (!pl08x) {
2714 		ret = -ENOMEM;
2715 		goto out_no_pl08x;
2716 	}
2717 
2718 	/* Assign useful pointers to the driver state */
2719 	pl08x->adev = adev;
2720 	pl08x->vd = vd;
2721 
2722 	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2723 	if (!pl08x->base) {
2724 		ret = -ENOMEM;
2725 		goto out_no_ioremap;
2726 	}
2727 
2728 	if (vd->ftdmac020) {
2729 		u32 val;
2730 
2731 		val = readl(pl08x->base + FTDMAC020_REVISION);
2732 		dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
2733 			 (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
2734 		val = readl(pl08x->base + FTDMAC020_FEATURE);
2735 		dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
2736 			 "%s built-in bridge, %s, %s linked lists\n",
2737 			 (val >> 12) & 0x0f,
2738 			 (val & BIT(10)) ? "no" : "has",
2739 			 (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2740 			 (val & BIT(8)) ? "supports" : "does not support");
2741 
2742 		/* Vendor data from feature register */
2743 		if (!(val & BIT(8)))
2744 			dev_warn(&pl08x->adev->dev,
2745 				 "linked lists not supported, required\n");
2746 		vd->channels = (val >> 12) & 0x0f;
2747 		vd->dualmaster = !!(val & BIT(9));
2748 	}
2749 
2750 	/* Initialize memcpy engine */
2751 	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2752 	pl08x->memcpy.dev = &adev->dev;
2753 	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2754 	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2755 	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2756 	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2757 	pl08x->memcpy.device_config = pl08x_config;
2758 	pl08x->memcpy.device_pause = pl08x_pause;
2759 	pl08x->memcpy.device_resume = pl08x_resume;
2760 	pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2761 	pl08x->memcpy.device_synchronize = pl08x_synchronize;
2762 	pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2763 	pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2764 	pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2765 	pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2766 	if (vd->ftdmac020)
2767 		pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
2768 
2769 
2770 	/*
2771 	 * Initialize slave engine, if the block has no signals, that means
2772 	 * we have no slave support.
2773 	 */
2774 	if (vd->signals) {
2775 		pl08x->has_slave = true;
2776 		dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2777 		dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2778 		pl08x->slave.dev = &adev->dev;
2779 		pl08x->slave.device_free_chan_resources =
2780 			pl08x_free_chan_resources;
2781 		pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2782 		pl08x->slave.device_issue_pending = pl08x_issue_pending;
2783 		pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2784 		pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2785 		pl08x->slave.device_config = pl08x_config;
2786 		pl08x->slave.device_pause = pl08x_pause;
2787 		pl08x->slave.device_resume = pl08x_resume;
2788 		pl08x->slave.device_terminate_all = pl08x_terminate_all;
2789 		pl08x->slave.device_synchronize = pl08x_synchronize;
2790 		pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2791 		pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2792 		pl08x->slave.directions =
2793 			BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2794 		pl08x->slave.residue_granularity =
2795 			DMA_RESIDUE_GRANULARITY_SEGMENT;
2796 	}
2797 
2798 	/* Get the platform data */
2799 	pl08x->pd = dev_get_platdata(&adev->dev);
2800 	if (!pl08x->pd) {
2801 		if (np) {
2802 			ret = pl08x_of_probe(adev, pl08x, np);
2803 			if (ret)
2804 				goto out_no_platdata;
2805 		} else {
2806 			dev_err(&adev->dev, "no platform data supplied\n");
2807 			ret = -EINVAL;
2808 			goto out_no_platdata;
2809 		}
2810 	} else {
2811 		pl08x->slave.filter.map = pl08x->pd->slave_map;
2812 		pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2813 		pl08x->slave.filter.fn = pl08x_filter_fn;
2814 	}
2815 
2816 	/* By default, AHB1 only.  If dualmaster, from platform */
2817 	pl08x->lli_buses = PL08X_AHB1;
2818 	pl08x->mem_buses = PL08X_AHB1;
2819 	if (pl08x->vd->dualmaster) {
2820 		pl08x->lli_buses = pl08x->pd->lli_buses;
2821 		pl08x->mem_buses = pl08x->pd->mem_buses;
2822 	}
2823 
2824 	if (vd->pl080s)
2825 		pl08x->lli_words = PL080S_LLI_WORDS;
2826 	else
2827 		pl08x->lli_words = PL080_LLI_WORDS;
2828 	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2829 
2830 	/* A DMA memory pool for LLIs, align on 1-byte boundary */
2831 	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2832 						tsfr_size, PL08X_ALIGN, 0);
2833 	if (!pl08x->pool) {
2834 		ret = -ENOMEM;
2835 		goto out_no_lli_pool;
2836 	}
2837 
2838 	/* Turn on the PL08x */
2839 	pl08x_ensure_on(pl08x);
2840 
2841 	/* Clear any pending interrupts */
2842 	if (vd->ftdmac020)
2843 		/* This variant has error IRQs in bits 16-19 */
2844 		writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
2845 	else
2846 		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2847 	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2848 
2849 	/* Attach the interrupt handler */
2850 	ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2851 	if (ret) {
2852 		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2853 			__func__, adev->irq[0]);
2854 		goto out_no_irq;
2855 	}
2856 
2857 	/* Initialize physical channels */
2858 	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2859 			GFP_KERNEL);
2860 	if (!pl08x->phy_chans) {
2861 		ret = -ENOMEM;
2862 		goto out_no_phychans;
2863 	}
2864 
2865 	for (i = 0; i < vd->channels; i++) {
2866 		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2867 
2868 		ch->id = i;
2869 		ch->base = pl08x->base + PL080_Cx_BASE(i);
2870 		if (vd->ftdmac020) {
2871 			/* FTDMA020 has a special channel busy register */
2872 			ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
2873 			ch->reg_config = ch->base + FTDMAC020_CH_CFG;
2874 			ch->reg_control = ch->base + FTDMAC020_CH_CSR;
2875 			ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
2876 			ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
2877 			ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
2878 			ch->ftdmac020 = true;
2879 		} else {
2880 			ch->reg_config = ch->base + vd->config_offset;
2881 			ch->reg_control = ch->base + PL080_CH_CONTROL;
2882 			ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
2883 			ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
2884 			ch->reg_lli = ch->base + PL080_CH_LLI;
2885 		}
2886 		if (vd->pl080s)
2887 			ch->pl080s = true;
2888 
2889 		spin_lock_init(&ch->lock);
2890 
2891 		/*
2892 		 * Nomadik variants can have channels that are locked
2893 		 * down for the secure world only. Lock up these channels
2894 		 * by perpetually serving a dummy virtual channel.
2895 		 */
2896 		if (vd->nomadik) {
2897 			u32 val;
2898 
2899 			val = readl(ch->reg_config);
2900 			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2901 				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2902 				ch->locked = true;
2903 			}
2904 		}
2905 
2906 		dev_dbg(&adev->dev, "physical channel %d is %s\n",
2907 			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2908 	}
2909 
2910 	/* Register as many memcpy channels as there are physical channels */
2911 	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2912 					      pl08x->vd->channels, false);
2913 	if (ret <= 0) {
2914 		dev_warn(&pl08x->adev->dev,
2915 			 "%s failed to enumerate memcpy channels - %d\n",
2916 			 __func__, ret);
2917 		goto out_no_memcpy;
2918 	}
2919 
2920 	/* Register slave channels */
2921 	if (pl08x->has_slave) {
2922 		ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2923 					pl08x->pd->num_slave_channels, true);
2924 		if (ret < 0) {
2925 			dev_warn(&pl08x->adev->dev,
2926 				 "%s failed to enumerate slave channels - %d\n",
2927 				 __func__, ret);
2928 			goto out_no_slave;
2929 		}
2930 	}
2931 
2932 	ret = dma_async_device_register(&pl08x->memcpy);
2933 	if (ret) {
2934 		dev_warn(&pl08x->adev->dev,
2935 			"%s failed to register memcpy as an async device - %d\n",
2936 			__func__, ret);
2937 		goto out_no_memcpy_reg;
2938 	}
2939 
2940 	if (pl08x->has_slave) {
2941 		ret = dma_async_device_register(&pl08x->slave);
2942 		if (ret) {
2943 			dev_warn(&pl08x->adev->dev,
2944 			"%s failed to register slave as an async device - %d\n",
2945 			__func__, ret);
2946 			goto out_no_slave_reg;
2947 		}
2948 	}
2949 
2950 	amba_set_drvdata(adev, pl08x);
2951 	init_pl08x_debugfs(pl08x);
2952 	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2953 		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2954 		 (unsigned long long)adev->res.start, adev->irq[0]);
2955 
2956 	return 0;
2957 
2958 out_no_slave_reg:
2959 	dma_async_device_unregister(&pl08x->memcpy);
2960 out_no_memcpy_reg:
2961 	if (pl08x->has_slave)
2962 		pl08x_free_virtual_channels(&pl08x->slave);
2963 out_no_slave:
2964 	pl08x_free_virtual_channels(&pl08x->memcpy);
2965 out_no_memcpy:
2966 	kfree(pl08x->phy_chans);
2967 out_no_phychans:
2968 	free_irq(adev->irq[0], pl08x);
2969 out_no_irq:
2970 	dma_pool_destroy(pl08x->pool);
2971 out_no_lli_pool:
2972 out_no_platdata:
2973 	iounmap(pl08x->base);
2974 out_no_ioremap:
2975 	kfree(pl08x);
2976 out_no_pl08x:
2977 	amba_release_regions(adev);
2978 	return ret;
2979 }
2980 
2981 /* PL080 has 8 channels and the PL080 have just 2 */
2982 static struct vendor_data vendor_pl080 = {
2983 	.config_offset = PL080_CH_CONFIG,
2984 	.channels = 8,
2985 	.signals = 16,
2986 	.dualmaster = true,
2987 	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2988 };
2989 
2990 static struct vendor_data vendor_nomadik = {
2991 	.config_offset = PL080_CH_CONFIG,
2992 	.channels = 8,
2993 	.signals = 32,
2994 	.dualmaster = true,
2995 	.nomadik = true,
2996 	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2997 };
2998 
2999 static struct vendor_data vendor_pl080s = {
3000 	.config_offset = PL080S_CH_CONFIG,
3001 	.channels = 8,
3002 	.signals = 32,
3003 	.pl080s = true,
3004 	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
3005 };
3006 
3007 static struct vendor_data vendor_pl081 = {
3008 	.config_offset = PL080_CH_CONFIG,
3009 	.channels = 2,
3010 	.signals = 16,
3011 	.dualmaster = false,
3012 	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3013 };
3014 
3015 static struct vendor_data vendor_ftdmac020 = {
3016 	.config_offset = PL080_CH_CONFIG,
3017 	.ftdmac020 = true,
3018 	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3019 };
3020 
3021 static const struct amba_id pl08x_ids[] = {
3022 	/* Samsung PL080S variant */
3023 	{
3024 		.id	= 0x0a141080,
3025 		.mask	= 0xffffffff,
3026 		.data	= &vendor_pl080s,
3027 	},
3028 	/* PL080 */
3029 	{
3030 		.id	= 0x00041080,
3031 		.mask	= 0x000fffff,
3032 		.data	= &vendor_pl080,
3033 	},
3034 	/* PL081 */
3035 	{
3036 		.id	= 0x00041081,
3037 		.mask	= 0x000fffff,
3038 		.data	= &vendor_pl081,
3039 	},
3040 	/* Nomadik 8815 PL080 variant */
3041 	{
3042 		.id	= 0x00280080,
3043 		.mask	= 0x00ffffff,
3044 		.data	= &vendor_nomadik,
3045 	},
3046 	/* Faraday Technology FTDMAC020 */
3047 	{
3048 		.id	= 0x0003b080,
3049 		.mask	= 0x000fffff,
3050 		.data	= &vendor_ftdmac020,
3051 	},
3052 	{ 0, 0 },
3053 };
3054 
3055 MODULE_DEVICE_TABLE(amba, pl08x_ids);
3056 
3057 static struct amba_driver pl08x_amba_driver = {
3058 	.drv.name	= DRIVER_NAME,
3059 	.id_table	= pl08x_ids,
3060 	.probe		= pl08x_probe,
3061 };
3062 
3063 static int __init pl08x_init(void)
3064 {
3065 	int retval;
3066 	retval = amba_driver_register(&pl08x_amba_driver);
3067 	if (retval)
3068 		printk(KERN_WARNING DRIVER_NAME
3069 		       "failed to register as an AMBA device (%d)\n",
3070 		       retval);
3071 	return retval;
3072 }
3073 subsys_initcall(pl08x_init);
3074