1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * DMABUF System heap exporter 4 * 5 * Copyright (C) 2011 Google, Inc. 6 * Copyright (C) 2019, 2020 Linaro Ltd. 7 * 8 * Portions based off of Andrew Davis' SRAM heap: 9 * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/ 10 * Andrew F. Davis <afd@ti.com> 11 */ 12 13 #include <linux/dma-buf.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/dma-heap.h> 16 #include <linux/dma-resv.h> 17 #include <linux/err.h> 18 #include <linux/highmem.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/scatterlist.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 25 static struct dma_heap *sys_heap; 26 27 struct system_heap_buffer { 28 struct dma_heap *heap; 29 struct list_head attachments; 30 struct mutex lock; 31 unsigned long len; 32 struct sg_table sg_table; 33 int vmap_cnt; 34 void *vaddr; 35 }; 36 37 struct dma_heap_attachment { 38 struct device *dev; 39 struct sg_table *table; 40 struct list_head list; 41 bool mapped; 42 }; 43 44 #define LOW_ORDER_GFP (GFP_HIGHUSER | __GFP_ZERO | __GFP_COMP) 45 #define MID_ORDER_GFP (LOW_ORDER_GFP | __GFP_NOWARN) 46 #define HIGH_ORDER_GFP (((GFP_HIGHUSER | __GFP_ZERO | __GFP_NOWARN \ 47 | __GFP_NORETRY) & ~__GFP_RECLAIM) \ 48 | __GFP_COMP) 49 static gfp_t order_flags[] = {HIGH_ORDER_GFP, MID_ORDER_GFP, LOW_ORDER_GFP}; 50 /* 51 * The selection of the orders used for allocation (1MB, 64K, 4K) is designed 52 * to match with the sizes often found in IOMMUs. Using order 4 pages instead 53 * of order 0 pages can significantly improve the performance of many IOMMUs 54 * by reducing TLB pressure and time spent updating page tables. 55 */ 56 static const unsigned int orders[] = {8, 4, 0}; 57 #define NUM_ORDERS ARRAY_SIZE(orders) 58 59 static struct sg_table *dup_sg_table(struct sg_table *table) 60 { 61 struct sg_table *new_table; 62 int ret, i; 63 struct scatterlist *sg, *new_sg; 64 65 new_table = kzalloc(sizeof(*new_table), GFP_KERNEL); 66 if (!new_table) 67 return ERR_PTR(-ENOMEM); 68 69 ret = sg_alloc_table(new_table, table->orig_nents, GFP_KERNEL); 70 if (ret) { 71 kfree(new_table); 72 return ERR_PTR(-ENOMEM); 73 } 74 75 new_sg = new_table->sgl; 76 for_each_sgtable_sg(table, sg, i) { 77 sg_set_page(new_sg, sg_page(sg), sg->length, sg->offset); 78 new_sg = sg_next(new_sg); 79 } 80 81 return new_table; 82 } 83 84 static int system_heap_attach(struct dma_buf *dmabuf, 85 struct dma_buf_attachment *attachment) 86 { 87 struct system_heap_buffer *buffer = dmabuf->priv; 88 struct dma_heap_attachment *a; 89 struct sg_table *table; 90 91 a = kzalloc(sizeof(*a), GFP_KERNEL); 92 if (!a) 93 return -ENOMEM; 94 95 table = dup_sg_table(&buffer->sg_table); 96 if (IS_ERR(table)) { 97 kfree(a); 98 return -ENOMEM; 99 } 100 101 a->table = table; 102 a->dev = attachment->dev; 103 INIT_LIST_HEAD(&a->list); 104 a->mapped = false; 105 106 attachment->priv = a; 107 108 mutex_lock(&buffer->lock); 109 list_add(&a->list, &buffer->attachments); 110 mutex_unlock(&buffer->lock); 111 112 return 0; 113 } 114 115 static void system_heap_detach(struct dma_buf *dmabuf, 116 struct dma_buf_attachment *attachment) 117 { 118 struct system_heap_buffer *buffer = dmabuf->priv; 119 struct dma_heap_attachment *a = attachment->priv; 120 121 mutex_lock(&buffer->lock); 122 list_del(&a->list); 123 mutex_unlock(&buffer->lock); 124 125 sg_free_table(a->table); 126 kfree(a->table); 127 kfree(a); 128 } 129 130 static struct sg_table *system_heap_map_dma_buf(struct dma_buf_attachment *attachment, 131 enum dma_data_direction direction) 132 { 133 struct dma_heap_attachment *a = attachment->priv; 134 struct sg_table *table = a->table; 135 int ret; 136 137 ret = dma_map_sgtable(attachment->dev, table, direction, 0); 138 if (ret) 139 return ERR_PTR(ret); 140 141 a->mapped = true; 142 return table; 143 } 144 145 static void system_heap_unmap_dma_buf(struct dma_buf_attachment *attachment, 146 struct sg_table *table, 147 enum dma_data_direction direction) 148 { 149 struct dma_heap_attachment *a = attachment->priv; 150 151 a->mapped = false; 152 dma_unmap_sgtable(attachment->dev, table, direction, 0); 153 } 154 155 static int system_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 156 enum dma_data_direction direction) 157 { 158 struct system_heap_buffer *buffer = dmabuf->priv; 159 struct dma_heap_attachment *a; 160 161 mutex_lock(&buffer->lock); 162 163 if (buffer->vmap_cnt) 164 invalidate_kernel_vmap_range(buffer->vaddr, buffer->len); 165 166 list_for_each_entry(a, &buffer->attachments, list) { 167 if (!a->mapped) 168 continue; 169 dma_sync_sgtable_for_cpu(a->dev, a->table, direction); 170 } 171 mutex_unlock(&buffer->lock); 172 173 return 0; 174 } 175 176 static int system_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf, 177 enum dma_data_direction direction) 178 { 179 struct system_heap_buffer *buffer = dmabuf->priv; 180 struct dma_heap_attachment *a; 181 182 mutex_lock(&buffer->lock); 183 184 if (buffer->vmap_cnt) 185 flush_kernel_vmap_range(buffer->vaddr, buffer->len); 186 187 list_for_each_entry(a, &buffer->attachments, list) { 188 if (!a->mapped) 189 continue; 190 dma_sync_sgtable_for_device(a->dev, a->table, direction); 191 } 192 mutex_unlock(&buffer->lock); 193 194 return 0; 195 } 196 197 static int system_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma) 198 { 199 struct system_heap_buffer *buffer = dmabuf->priv; 200 struct sg_table *table = &buffer->sg_table; 201 unsigned long addr = vma->vm_start; 202 struct sg_page_iter piter; 203 int ret; 204 205 dma_resv_assert_held(dmabuf->resv); 206 207 for_each_sgtable_page(table, &piter, vma->vm_pgoff) { 208 struct page *page = sg_page_iter_page(&piter); 209 210 ret = remap_pfn_range(vma, addr, page_to_pfn(page), PAGE_SIZE, 211 vma->vm_page_prot); 212 if (ret) 213 return ret; 214 addr += PAGE_SIZE; 215 if (addr >= vma->vm_end) 216 return 0; 217 } 218 return 0; 219 } 220 221 static void *system_heap_do_vmap(struct system_heap_buffer *buffer) 222 { 223 struct sg_table *table = &buffer->sg_table; 224 int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE; 225 struct page **pages = vmalloc(sizeof(struct page *) * npages); 226 struct page **tmp = pages; 227 struct sg_page_iter piter; 228 void *vaddr; 229 230 if (!pages) 231 return ERR_PTR(-ENOMEM); 232 233 for_each_sgtable_page(table, &piter, 0) { 234 WARN_ON(tmp - pages >= npages); 235 *tmp++ = sg_page_iter_page(&piter); 236 } 237 238 vaddr = vmap(pages, npages, VM_MAP, PAGE_KERNEL); 239 vfree(pages); 240 241 if (!vaddr) 242 return ERR_PTR(-ENOMEM); 243 244 return vaddr; 245 } 246 247 static int system_heap_vmap(struct dma_buf *dmabuf, struct iosys_map *map) 248 { 249 struct system_heap_buffer *buffer = dmabuf->priv; 250 void *vaddr; 251 int ret = 0; 252 253 mutex_lock(&buffer->lock); 254 if (buffer->vmap_cnt) { 255 buffer->vmap_cnt++; 256 iosys_map_set_vaddr(map, buffer->vaddr); 257 goto out; 258 } 259 260 vaddr = system_heap_do_vmap(buffer); 261 if (IS_ERR(vaddr)) { 262 ret = PTR_ERR(vaddr); 263 goto out; 264 } 265 266 buffer->vaddr = vaddr; 267 buffer->vmap_cnt++; 268 iosys_map_set_vaddr(map, buffer->vaddr); 269 out: 270 mutex_unlock(&buffer->lock); 271 272 return ret; 273 } 274 275 static void system_heap_vunmap(struct dma_buf *dmabuf, struct iosys_map *map) 276 { 277 struct system_heap_buffer *buffer = dmabuf->priv; 278 279 mutex_lock(&buffer->lock); 280 if (!--buffer->vmap_cnt) { 281 vunmap(buffer->vaddr); 282 buffer->vaddr = NULL; 283 } 284 mutex_unlock(&buffer->lock); 285 iosys_map_clear(map); 286 } 287 288 static void system_heap_dma_buf_release(struct dma_buf *dmabuf) 289 { 290 struct system_heap_buffer *buffer = dmabuf->priv; 291 struct sg_table *table; 292 struct scatterlist *sg; 293 int i; 294 295 table = &buffer->sg_table; 296 for_each_sgtable_sg(table, sg, i) { 297 struct page *page = sg_page(sg); 298 299 __free_pages(page, compound_order(page)); 300 } 301 sg_free_table(table); 302 kfree(buffer); 303 } 304 305 static const struct dma_buf_ops system_heap_buf_ops = { 306 .attach = system_heap_attach, 307 .detach = system_heap_detach, 308 .map_dma_buf = system_heap_map_dma_buf, 309 .unmap_dma_buf = system_heap_unmap_dma_buf, 310 .begin_cpu_access = system_heap_dma_buf_begin_cpu_access, 311 .end_cpu_access = system_heap_dma_buf_end_cpu_access, 312 .mmap = system_heap_mmap, 313 .vmap = system_heap_vmap, 314 .vunmap = system_heap_vunmap, 315 .release = system_heap_dma_buf_release, 316 }; 317 318 static struct page *alloc_largest_available(unsigned long size, 319 unsigned int max_order) 320 { 321 struct page *page; 322 int i; 323 324 for (i = 0; i < NUM_ORDERS; i++) { 325 if (size < (PAGE_SIZE << orders[i])) 326 continue; 327 if (max_order < orders[i]) 328 continue; 329 330 page = alloc_pages(order_flags[i], orders[i]); 331 if (!page) 332 continue; 333 return page; 334 } 335 return NULL; 336 } 337 338 static struct dma_buf *system_heap_allocate(struct dma_heap *heap, 339 unsigned long len, 340 unsigned long fd_flags, 341 unsigned long heap_flags) 342 { 343 struct system_heap_buffer *buffer; 344 DEFINE_DMA_BUF_EXPORT_INFO(exp_info); 345 unsigned long size_remaining = len; 346 unsigned int max_order = orders[0]; 347 struct dma_buf *dmabuf; 348 struct sg_table *table; 349 struct scatterlist *sg; 350 struct list_head pages; 351 struct page *page, *tmp_page; 352 int i, ret = -ENOMEM; 353 354 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 355 if (!buffer) 356 return ERR_PTR(-ENOMEM); 357 358 INIT_LIST_HEAD(&buffer->attachments); 359 mutex_init(&buffer->lock); 360 buffer->heap = heap; 361 buffer->len = len; 362 363 INIT_LIST_HEAD(&pages); 364 i = 0; 365 while (size_remaining > 0) { 366 /* 367 * Avoid trying to allocate memory if the process 368 * has been killed by SIGKILL 369 */ 370 if (fatal_signal_pending(current)) { 371 ret = -EINTR; 372 goto free_buffer; 373 } 374 375 page = alloc_largest_available(size_remaining, max_order); 376 if (!page) 377 goto free_buffer; 378 379 list_add_tail(&page->lru, &pages); 380 size_remaining -= page_size(page); 381 max_order = compound_order(page); 382 i++; 383 } 384 385 table = &buffer->sg_table; 386 if (sg_alloc_table(table, i, GFP_KERNEL)) 387 goto free_buffer; 388 389 sg = table->sgl; 390 list_for_each_entry_safe(page, tmp_page, &pages, lru) { 391 sg_set_page(sg, page, page_size(page), 0); 392 sg = sg_next(sg); 393 list_del(&page->lru); 394 } 395 396 /* create the dmabuf */ 397 exp_info.exp_name = dma_heap_get_name(heap); 398 exp_info.ops = &system_heap_buf_ops; 399 exp_info.size = buffer->len; 400 exp_info.flags = fd_flags; 401 exp_info.priv = buffer; 402 dmabuf = dma_buf_export(&exp_info); 403 if (IS_ERR(dmabuf)) { 404 ret = PTR_ERR(dmabuf); 405 goto free_pages; 406 } 407 return dmabuf; 408 409 free_pages: 410 for_each_sgtable_sg(table, sg, i) { 411 struct page *p = sg_page(sg); 412 413 __free_pages(p, compound_order(p)); 414 } 415 sg_free_table(table); 416 free_buffer: 417 list_for_each_entry_safe(page, tmp_page, &pages, lru) 418 __free_pages(page, compound_order(page)); 419 kfree(buffer); 420 421 return ERR_PTR(ret); 422 } 423 424 static const struct dma_heap_ops system_heap_ops = { 425 .allocate = system_heap_allocate, 426 }; 427 428 static int system_heap_create(void) 429 { 430 struct dma_heap_export_info exp_info; 431 432 exp_info.name = "system"; 433 exp_info.ops = &system_heap_ops; 434 exp_info.priv = NULL; 435 436 sys_heap = dma_heap_add(&exp_info); 437 if (IS_ERR(sys_heap)) 438 return PTR_ERR(sys_heap); 439 440 return 0; 441 } 442 module_init(system_heap_create); 443