1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright (C) 2012-2014 Canonical Ltd (Maarten Lankhorst) 4 * 5 * Based on bo.c which bears the following copyright notice, 6 * but is dual licensed: 7 * 8 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 9 * All Rights Reserved. 10 * 11 * Permission is hereby granted, free of charge, to any person obtaining a 12 * copy of this software and associated documentation files (the 13 * "Software"), to deal in the Software without restriction, including 14 * without limitation the rights to use, copy, modify, merge, publish, 15 * distribute, sub license, and/or sell copies of the Software, and to 16 * permit persons to whom the Software is furnished to do so, subject to 17 * the following conditions: 18 * 19 * The above copyright notice and this permission notice (including the 20 * next paragraph) shall be included in all copies or substantial portions 21 * of the Software. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 24 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 25 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 26 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 27 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 28 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 29 * USE OR OTHER DEALINGS IN THE SOFTWARE. 30 * 31 **************************************************************************/ 32 /* 33 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 34 */ 35 36 #include <linux/dma-resv.h> 37 #include <linux/export.h> 38 #include <linux/mm.h> 39 #include <linux/sched/mm.h> 40 #include <linux/mmu_notifier.h> 41 #include <linux/seq_file.h> 42 43 /** 44 * DOC: Reservation Object Overview 45 * 46 * The reservation object provides a mechanism to manage shared and 47 * exclusive fences associated with a buffer. A reservation object 48 * can have attached one exclusive fence (normally associated with 49 * write operations) or N shared fences (read operations). The RCU 50 * mechanism is used to protect read access to fences from locked 51 * write-side updates. 52 * 53 * See struct dma_resv for more details. 54 */ 55 56 DEFINE_WD_CLASS(reservation_ww_class); 57 EXPORT_SYMBOL(reservation_ww_class); 58 59 /** 60 * dma_resv_list_alloc - allocate fence list 61 * @shared_max: number of fences we need space for 62 * 63 * Allocate a new dma_resv_list and make sure to correctly initialize 64 * shared_max. 65 */ 66 static struct dma_resv_list *dma_resv_list_alloc(unsigned int shared_max) 67 { 68 struct dma_resv_list *list; 69 70 list = kmalloc(struct_size(list, shared, shared_max), GFP_KERNEL); 71 if (!list) 72 return NULL; 73 74 list->shared_max = (ksize(list) - offsetof(typeof(*list), shared)) / 75 sizeof(*list->shared); 76 77 return list; 78 } 79 80 /** 81 * dma_resv_list_free - free fence list 82 * @list: list to free 83 * 84 * Free a dma_resv_list and make sure to drop all references. 85 */ 86 static void dma_resv_list_free(struct dma_resv_list *list) 87 { 88 unsigned int i; 89 90 if (!list) 91 return; 92 93 for (i = 0; i < list->shared_count; ++i) 94 dma_fence_put(rcu_dereference_protected(list->shared[i], true)); 95 96 kfree_rcu(list, rcu); 97 } 98 99 /** 100 * dma_resv_init - initialize a reservation object 101 * @obj: the reservation object 102 */ 103 void dma_resv_init(struct dma_resv *obj) 104 { 105 ww_mutex_init(&obj->lock, &reservation_ww_class); 106 seqcount_ww_mutex_init(&obj->seq, &obj->lock); 107 108 RCU_INIT_POINTER(obj->fence, NULL); 109 RCU_INIT_POINTER(obj->fence_excl, NULL); 110 } 111 EXPORT_SYMBOL(dma_resv_init); 112 113 /** 114 * dma_resv_fini - destroys a reservation object 115 * @obj: the reservation object 116 */ 117 void dma_resv_fini(struct dma_resv *obj) 118 { 119 struct dma_resv_list *fobj; 120 struct dma_fence *excl; 121 122 /* 123 * This object should be dead and all references must have 124 * been released to it, so no need to be protected with rcu. 125 */ 126 excl = rcu_dereference_protected(obj->fence_excl, 1); 127 if (excl) 128 dma_fence_put(excl); 129 130 fobj = rcu_dereference_protected(obj->fence, 1); 131 dma_resv_list_free(fobj); 132 ww_mutex_destroy(&obj->lock); 133 } 134 EXPORT_SYMBOL(dma_resv_fini); 135 136 /** 137 * dma_resv_reserve_shared - Reserve space to add shared fences to 138 * a dma_resv. 139 * @obj: reservation object 140 * @num_fences: number of fences we want to add 141 * 142 * Should be called before dma_resv_add_shared_fence(). Must 143 * be called with @obj locked through dma_resv_lock(). 144 * 145 * Note that the preallocated slots need to be re-reserved if @obj is unlocked 146 * at any time before calling dma_resv_add_shared_fence(). This is validated 147 * when CONFIG_DEBUG_MUTEXES is enabled. 148 * 149 * RETURNS 150 * Zero for success, or -errno 151 */ 152 int dma_resv_reserve_shared(struct dma_resv *obj, unsigned int num_fences) 153 { 154 struct dma_resv_list *old, *new; 155 unsigned int i, j, k, max; 156 157 dma_resv_assert_held(obj); 158 159 old = dma_resv_shared_list(obj); 160 if (old && old->shared_max) { 161 if ((old->shared_count + num_fences) <= old->shared_max) 162 return 0; 163 max = max(old->shared_count + num_fences, old->shared_max * 2); 164 } else { 165 max = max(4ul, roundup_pow_of_two(num_fences)); 166 } 167 168 new = dma_resv_list_alloc(max); 169 if (!new) 170 return -ENOMEM; 171 172 /* 173 * no need to bump fence refcounts, rcu_read access 174 * requires the use of kref_get_unless_zero, and the 175 * references from the old struct are carried over to 176 * the new. 177 */ 178 for (i = 0, j = 0, k = max; i < (old ? old->shared_count : 0); ++i) { 179 struct dma_fence *fence; 180 181 fence = rcu_dereference_protected(old->shared[i], 182 dma_resv_held(obj)); 183 if (dma_fence_is_signaled(fence)) 184 RCU_INIT_POINTER(new->shared[--k], fence); 185 else 186 RCU_INIT_POINTER(new->shared[j++], fence); 187 } 188 new->shared_count = j; 189 190 /* 191 * We are not changing the effective set of fences here so can 192 * merely update the pointer to the new array; both existing 193 * readers and new readers will see exactly the same set of 194 * active (unsignaled) shared fences. Individual fences and the 195 * old array are protected by RCU and so will not vanish under 196 * the gaze of the rcu_read_lock() readers. 197 */ 198 rcu_assign_pointer(obj->fence, new); 199 200 if (!old) 201 return 0; 202 203 /* Drop the references to the signaled fences */ 204 for (i = k; i < max; ++i) { 205 struct dma_fence *fence; 206 207 fence = rcu_dereference_protected(new->shared[i], 208 dma_resv_held(obj)); 209 dma_fence_put(fence); 210 } 211 kfree_rcu(old, rcu); 212 213 return 0; 214 } 215 EXPORT_SYMBOL(dma_resv_reserve_shared); 216 217 #ifdef CONFIG_DEBUG_MUTEXES 218 /** 219 * dma_resv_reset_shared_max - reset shared fences for debugging 220 * @obj: the dma_resv object to reset 221 * 222 * Reset the number of pre-reserved shared slots to test that drivers do 223 * correct slot allocation using dma_resv_reserve_shared(). See also 224 * &dma_resv_list.shared_max. 225 */ 226 void dma_resv_reset_shared_max(struct dma_resv *obj) 227 { 228 struct dma_resv_list *fences = dma_resv_shared_list(obj); 229 230 dma_resv_assert_held(obj); 231 232 /* Test shared fence slot reservation */ 233 if (fences) 234 fences->shared_max = fences->shared_count; 235 } 236 EXPORT_SYMBOL(dma_resv_reset_shared_max); 237 #endif 238 239 /** 240 * dma_resv_add_shared_fence - Add a fence to a shared slot 241 * @obj: the reservation object 242 * @fence: the shared fence to add 243 * 244 * Add a fence to a shared slot, @obj must be locked with dma_resv_lock(), and 245 * dma_resv_reserve_shared() has been called. 246 * 247 * See also &dma_resv.fence for a discussion of the semantics. 248 */ 249 void dma_resv_add_shared_fence(struct dma_resv *obj, struct dma_fence *fence) 250 { 251 struct dma_resv_list *fobj; 252 struct dma_fence *old; 253 unsigned int i, count; 254 255 dma_fence_get(fence); 256 257 dma_resv_assert_held(obj); 258 259 fobj = dma_resv_shared_list(obj); 260 count = fobj->shared_count; 261 262 write_seqcount_begin(&obj->seq); 263 264 for (i = 0; i < count; ++i) { 265 266 old = rcu_dereference_protected(fobj->shared[i], 267 dma_resv_held(obj)); 268 if (old->context == fence->context || 269 dma_fence_is_signaled(old)) 270 goto replace; 271 } 272 273 BUG_ON(fobj->shared_count >= fobj->shared_max); 274 old = NULL; 275 count++; 276 277 replace: 278 RCU_INIT_POINTER(fobj->shared[i], fence); 279 /* pointer update must be visible before we extend the shared_count */ 280 smp_store_mb(fobj->shared_count, count); 281 282 write_seqcount_end(&obj->seq); 283 dma_fence_put(old); 284 } 285 EXPORT_SYMBOL(dma_resv_add_shared_fence); 286 287 /** 288 * dma_resv_add_excl_fence - Add an exclusive fence. 289 * @obj: the reservation object 290 * @fence: the exclusive fence to add 291 * 292 * Add a fence to the exclusive slot. @obj must be locked with dma_resv_lock(). 293 * Note that this function replaces all fences attached to @obj, see also 294 * &dma_resv.fence_excl for a discussion of the semantics. 295 */ 296 void dma_resv_add_excl_fence(struct dma_resv *obj, struct dma_fence *fence) 297 { 298 struct dma_fence *old_fence = dma_resv_excl_fence(obj); 299 struct dma_resv_list *old; 300 u32 i = 0; 301 302 dma_resv_assert_held(obj); 303 304 old = dma_resv_shared_list(obj); 305 if (old) 306 i = old->shared_count; 307 308 dma_fence_get(fence); 309 310 write_seqcount_begin(&obj->seq); 311 /* write_seqcount_begin provides the necessary memory barrier */ 312 RCU_INIT_POINTER(obj->fence_excl, fence); 313 if (old) 314 old->shared_count = 0; 315 write_seqcount_end(&obj->seq); 316 317 /* inplace update, no shared fences */ 318 while (i--) 319 dma_fence_put(rcu_dereference_protected(old->shared[i], 320 dma_resv_held(obj))); 321 322 dma_fence_put(old_fence); 323 } 324 EXPORT_SYMBOL(dma_resv_add_excl_fence); 325 326 /* Restart the iterator by initializing all the necessary fields, but not the 327 * relation to the dma_resv object. */ 328 static void dma_resv_iter_restart_unlocked(struct dma_resv_iter *cursor) 329 { 330 cursor->seq = read_seqcount_begin(&cursor->obj->seq); 331 cursor->index = -1; 332 cursor->shared_count = 0; 333 if (cursor->all_fences) { 334 cursor->fences = dma_resv_shared_list(cursor->obj); 335 if (cursor->fences) 336 cursor->shared_count = cursor->fences->shared_count; 337 } else { 338 cursor->fences = NULL; 339 } 340 cursor->is_restarted = true; 341 } 342 343 /* Walk to the next not signaled fence and grab a reference to it */ 344 static void dma_resv_iter_walk_unlocked(struct dma_resv_iter *cursor) 345 { 346 struct dma_resv *obj = cursor->obj; 347 348 do { 349 /* Drop the reference from the previous round */ 350 dma_fence_put(cursor->fence); 351 352 if (cursor->index == -1) { 353 cursor->fence = dma_resv_excl_fence(obj); 354 cursor->index++; 355 if (!cursor->fence) 356 continue; 357 358 } else if (!cursor->fences || 359 cursor->index >= cursor->shared_count) { 360 cursor->fence = NULL; 361 break; 362 363 } else { 364 struct dma_resv_list *fences = cursor->fences; 365 unsigned int idx = cursor->index++; 366 367 cursor->fence = rcu_dereference(fences->shared[idx]); 368 } 369 cursor->fence = dma_fence_get_rcu(cursor->fence); 370 if (!cursor->fence || !dma_fence_is_signaled(cursor->fence)) 371 break; 372 } while (true); 373 } 374 375 /** 376 * dma_resv_iter_first_unlocked - first fence in an unlocked dma_resv obj. 377 * @cursor: the cursor with the current position 378 * 379 * Subsequent fences are iterated with dma_resv_iter_next_unlocked(). 380 * 381 * Beware that the iterator can be restarted. Code which accumulates statistics 382 * or similar needs to check for this with dma_resv_iter_is_restarted(). For 383 * this reason prefer the locked dma_resv_iter_first() whenver possible. 384 * 385 * Returns the first fence from an unlocked dma_resv obj. 386 */ 387 struct dma_fence *dma_resv_iter_first_unlocked(struct dma_resv_iter *cursor) 388 { 389 rcu_read_lock(); 390 do { 391 dma_resv_iter_restart_unlocked(cursor); 392 dma_resv_iter_walk_unlocked(cursor); 393 } while (read_seqcount_retry(&cursor->obj->seq, cursor->seq)); 394 rcu_read_unlock(); 395 396 return cursor->fence; 397 } 398 EXPORT_SYMBOL(dma_resv_iter_first_unlocked); 399 400 /** 401 * dma_resv_iter_next_unlocked - next fence in an unlocked dma_resv obj. 402 * @cursor: the cursor with the current position 403 * 404 * Beware that the iterator can be restarted. Code which accumulates statistics 405 * or similar needs to check for this with dma_resv_iter_is_restarted(). For 406 * this reason prefer the locked dma_resv_iter_next() whenver possible. 407 * 408 * Returns the next fence from an unlocked dma_resv obj. 409 */ 410 struct dma_fence *dma_resv_iter_next_unlocked(struct dma_resv_iter *cursor) 411 { 412 bool restart; 413 414 rcu_read_lock(); 415 cursor->is_restarted = false; 416 restart = read_seqcount_retry(&cursor->obj->seq, cursor->seq); 417 do { 418 if (restart) 419 dma_resv_iter_restart_unlocked(cursor); 420 dma_resv_iter_walk_unlocked(cursor); 421 restart = true; 422 } while (read_seqcount_retry(&cursor->obj->seq, cursor->seq)); 423 rcu_read_unlock(); 424 425 return cursor->fence; 426 } 427 EXPORT_SYMBOL(dma_resv_iter_next_unlocked); 428 429 /** 430 * dma_resv_iter_first - first fence from a locked dma_resv object 431 * @cursor: cursor to record the current position 432 * 433 * Subsequent fences are iterated with dma_resv_iter_next_unlocked(). 434 * 435 * Return the first fence in the dma_resv object while holding the 436 * &dma_resv.lock. 437 */ 438 struct dma_fence *dma_resv_iter_first(struct dma_resv_iter *cursor) 439 { 440 struct dma_fence *fence; 441 442 dma_resv_assert_held(cursor->obj); 443 444 cursor->index = 0; 445 if (cursor->all_fences) 446 cursor->fences = dma_resv_shared_list(cursor->obj); 447 else 448 cursor->fences = NULL; 449 450 fence = dma_resv_excl_fence(cursor->obj); 451 if (!fence) 452 fence = dma_resv_iter_next(cursor); 453 454 cursor->is_restarted = true; 455 return fence; 456 } 457 EXPORT_SYMBOL_GPL(dma_resv_iter_first); 458 459 /** 460 * dma_resv_iter_next - next fence from a locked dma_resv object 461 * @cursor: cursor to record the current position 462 * 463 * Return the next fences from the dma_resv object while holding the 464 * &dma_resv.lock. 465 */ 466 struct dma_fence *dma_resv_iter_next(struct dma_resv_iter *cursor) 467 { 468 unsigned int idx; 469 470 dma_resv_assert_held(cursor->obj); 471 472 cursor->is_restarted = false; 473 if (!cursor->fences || cursor->index >= cursor->fences->shared_count) 474 return NULL; 475 476 idx = cursor->index++; 477 return rcu_dereference_protected(cursor->fences->shared[idx], 478 dma_resv_held(cursor->obj)); 479 } 480 EXPORT_SYMBOL_GPL(dma_resv_iter_next); 481 482 /** 483 * dma_resv_copy_fences - Copy all fences from src to dst. 484 * @dst: the destination reservation object 485 * @src: the source reservation object 486 * 487 * Copy all fences from src to dst. dst-lock must be held. 488 */ 489 int dma_resv_copy_fences(struct dma_resv *dst, struct dma_resv *src) 490 { 491 struct dma_resv_iter cursor; 492 struct dma_resv_list *list; 493 struct dma_fence *f, *excl; 494 495 dma_resv_assert_held(dst); 496 497 list = NULL; 498 excl = NULL; 499 500 dma_resv_iter_begin(&cursor, src, true); 501 dma_resv_for_each_fence_unlocked(&cursor, f) { 502 503 if (dma_resv_iter_is_restarted(&cursor)) { 504 dma_resv_list_free(list); 505 dma_fence_put(excl); 506 507 if (cursor.shared_count) { 508 list = dma_resv_list_alloc(cursor.shared_count); 509 if (!list) { 510 dma_resv_iter_end(&cursor); 511 return -ENOMEM; 512 } 513 514 list->shared_count = 0; 515 516 } else { 517 list = NULL; 518 } 519 excl = NULL; 520 } 521 522 dma_fence_get(f); 523 if (dma_resv_iter_is_exclusive(&cursor)) 524 excl = f; 525 else 526 RCU_INIT_POINTER(list->shared[list->shared_count++], f); 527 } 528 dma_resv_iter_end(&cursor); 529 530 write_seqcount_begin(&dst->seq); 531 excl = rcu_replace_pointer(dst->fence_excl, excl, dma_resv_held(dst)); 532 list = rcu_replace_pointer(dst->fence, list, dma_resv_held(dst)); 533 write_seqcount_end(&dst->seq); 534 535 dma_resv_list_free(list); 536 dma_fence_put(excl); 537 538 return 0; 539 } 540 EXPORT_SYMBOL(dma_resv_copy_fences); 541 542 /** 543 * dma_resv_get_fences - Get an object's shared and exclusive 544 * fences without update side lock held 545 * @obj: the reservation object 546 * @write: true if we should return all fences 547 * @num_fences: the number of fences returned 548 * @fences: the array of fence ptrs returned (array is krealloc'd to the 549 * required size, and must be freed by caller) 550 * 551 * Retrieve all fences from the reservation object. 552 * Returns either zero or -ENOMEM. 553 */ 554 int dma_resv_get_fences(struct dma_resv *obj, bool write, 555 unsigned int *num_fences, struct dma_fence ***fences) 556 { 557 struct dma_resv_iter cursor; 558 struct dma_fence *fence; 559 560 *num_fences = 0; 561 *fences = NULL; 562 563 dma_resv_iter_begin(&cursor, obj, write); 564 dma_resv_for_each_fence_unlocked(&cursor, fence) { 565 566 if (dma_resv_iter_is_restarted(&cursor)) { 567 unsigned int count; 568 569 while (*num_fences) 570 dma_fence_put((*fences)[--(*num_fences)]); 571 572 count = cursor.shared_count + 1; 573 574 /* Eventually re-allocate the array */ 575 *fences = krealloc_array(*fences, count, 576 sizeof(void *), 577 GFP_KERNEL); 578 if (count && !*fences) { 579 dma_resv_iter_end(&cursor); 580 return -ENOMEM; 581 } 582 } 583 584 (*fences)[(*num_fences)++] = dma_fence_get(fence); 585 } 586 dma_resv_iter_end(&cursor); 587 588 return 0; 589 } 590 EXPORT_SYMBOL_GPL(dma_resv_get_fences); 591 592 /** 593 * dma_resv_wait_timeout - Wait on reservation's objects 594 * shared and/or exclusive fences. 595 * @obj: the reservation object 596 * @wait_all: if true, wait on all fences, else wait on just exclusive fence 597 * @intr: if true, do interruptible wait 598 * @timeout: timeout value in jiffies or zero to return immediately 599 * 600 * Callers are not required to hold specific locks, but maybe hold 601 * dma_resv_lock() already 602 * RETURNS 603 * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or 604 * greater than zer on success. 605 */ 606 long dma_resv_wait_timeout(struct dma_resv *obj, bool wait_all, bool intr, 607 unsigned long timeout) 608 { 609 long ret = timeout ? timeout : 1; 610 struct dma_resv_iter cursor; 611 struct dma_fence *fence; 612 613 dma_resv_iter_begin(&cursor, obj, wait_all); 614 dma_resv_for_each_fence_unlocked(&cursor, fence) { 615 616 ret = dma_fence_wait_timeout(fence, intr, ret); 617 if (ret <= 0) { 618 dma_resv_iter_end(&cursor); 619 return ret; 620 } 621 } 622 dma_resv_iter_end(&cursor); 623 624 return ret; 625 } 626 EXPORT_SYMBOL_GPL(dma_resv_wait_timeout); 627 628 629 /** 630 * dma_resv_test_signaled - Test if a reservation object's fences have been 631 * signaled. 632 * @obj: the reservation object 633 * @test_all: if true, test all fences, otherwise only test the exclusive 634 * fence 635 * 636 * Callers are not required to hold specific locks, but maybe hold 637 * dma_resv_lock() already. 638 * 639 * RETURNS 640 * 641 * True if all fences signaled, else false. 642 */ 643 bool dma_resv_test_signaled(struct dma_resv *obj, bool test_all) 644 { 645 struct dma_resv_iter cursor; 646 struct dma_fence *fence; 647 648 dma_resv_iter_begin(&cursor, obj, test_all); 649 dma_resv_for_each_fence_unlocked(&cursor, fence) { 650 dma_resv_iter_end(&cursor); 651 return false; 652 } 653 dma_resv_iter_end(&cursor); 654 return true; 655 } 656 EXPORT_SYMBOL_GPL(dma_resv_test_signaled); 657 658 /** 659 * dma_resv_describe - Dump description of the resv object into seq_file 660 * @obj: the reservation object 661 * @seq: the seq_file to dump the description into 662 * 663 * Dump a textual description of the fences inside an dma_resv object into the 664 * seq_file. 665 */ 666 void dma_resv_describe(struct dma_resv *obj, struct seq_file *seq) 667 { 668 struct dma_resv_iter cursor; 669 struct dma_fence *fence; 670 671 dma_resv_for_each_fence(&cursor, obj, true, fence) { 672 seq_printf(seq, "\t%s fence:", 673 dma_resv_iter_is_exclusive(&cursor) ? 674 "Exclusive" : "Shared"); 675 dma_fence_describe(fence, seq); 676 } 677 } 678 EXPORT_SYMBOL_GPL(dma_resv_describe); 679 680 #if IS_ENABLED(CONFIG_LOCKDEP) 681 static int __init dma_resv_lockdep(void) 682 { 683 struct mm_struct *mm = mm_alloc(); 684 struct ww_acquire_ctx ctx; 685 struct dma_resv obj; 686 struct address_space mapping; 687 int ret; 688 689 if (!mm) 690 return -ENOMEM; 691 692 dma_resv_init(&obj); 693 address_space_init_once(&mapping); 694 695 mmap_read_lock(mm); 696 ww_acquire_init(&ctx, &reservation_ww_class); 697 ret = dma_resv_lock(&obj, &ctx); 698 if (ret == -EDEADLK) 699 dma_resv_lock_slow(&obj, &ctx); 700 fs_reclaim_acquire(GFP_KERNEL); 701 /* for unmap_mapping_range on trylocked buffer objects in shrinkers */ 702 i_mmap_lock_write(&mapping); 703 i_mmap_unlock_write(&mapping); 704 #ifdef CONFIG_MMU_NOTIFIER 705 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 706 __dma_fence_might_wait(); 707 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 708 #else 709 __dma_fence_might_wait(); 710 #endif 711 fs_reclaim_release(GFP_KERNEL); 712 ww_mutex_unlock(&obj.lock); 713 ww_acquire_fini(&ctx); 714 mmap_read_unlock(mm); 715 716 mmput(mm); 717 718 return 0; 719 } 720 subsys_initcall(dma_resv_lockdep); 721 #endif 722