xref: /openbmc/linux/drivers/dma-buf/dma-heap.c (revision 8365a898)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Framework for userspace DMA-BUF allocations
4  *
5  * Copyright (C) 2011 Google, Inc.
6  * Copyright (C) 2019 Linaro Ltd.
7  */
8 
9 #include <linux/cdev.h>
10 #include <linux/debugfs.h>
11 #include <linux/device.h>
12 #include <linux/dma-buf.h>
13 #include <linux/err.h>
14 #include <linux/xarray.h>
15 #include <linux/list.h>
16 #include <linux/slab.h>
17 #include <linux/uaccess.h>
18 #include <linux/syscalls.h>
19 #include <linux/dma-heap.h>
20 #include <uapi/linux/dma-heap.h>
21 
22 #define DEVNAME "dma_heap"
23 
24 #define NUM_HEAP_MINORS 128
25 
26 /**
27  * struct dma_heap - represents a dmabuf heap in the system
28  * @name:		used for debugging/device-node name
29  * @ops:		ops struct for this heap
30  * @heap_devt		heap device node
31  * @list		list head connecting to list of heaps
32  * @heap_cdev		heap char device
33  *
34  * Represents a heap of memory from which buffers can be made.
35  */
36 struct dma_heap {
37 	const char *name;
38 	const struct dma_heap_ops *ops;
39 	void *priv;
40 	dev_t heap_devt;
41 	struct list_head list;
42 	struct cdev heap_cdev;
43 };
44 
45 static LIST_HEAD(heap_list);
46 static DEFINE_MUTEX(heap_list_lock);
47 static dev_t dma_heap_devt;
48 static struct class *dma_heap_class;
49 static DEFINE_XARRAY_ALLOC(dma_heap_minors);
50 
51 static int dma_heap_buffer_alloc(struct dma_heap *heap, size_t len,
52 				 unsigned int fd_flags,
53 				 unsigned int heap_flags)
54 {
55 	/*
56 	 * Allocations from all heaps have to begin
57 	 * and end on page boundaries.
58 	 */
59 	len = PAGE_ALIGN(len);
60 	if (!len)
61 		return -EINVAL;
62 
63 	return heap->ops->allocate(heap, len, fd_flags, heap_flags);
64 }
65 
66 static int dma_heap_open(struct inode *inode, struct file *file)
67 {
68 	struct dma_heap *heap;
69 
70 	heap = xa_load(&dma_heap_minors, iminor(inode));
71 	if (!heap) {
72 		pr_err("dma_heap: minor %d unknown.\n", iminor(inode));
73 		return -ENODEV;
74 	}
75 
76 	/* instance data as context */
77 	file->private_data = heap;
78 	nonseekable_open(inode, file);
79 
80 	return 0;
81 }
82 
83 static long dma_heap_ioctl_allocate(struct file *file, void *data)
84 {
85 	struct dma_heap_allocation_data *heap_allocation = data;
86 	struct dma_heap *heap = file->private_data;
87 	int fd;
88 
89 	if (heap_allocation->fd)
90 		return -EINVAL;
91 
92 	if (heap_allocation->fd_flags & ~DMA_HEAP_VALID_FD_FLAGS)
93 		return -EINVAL;
94 
95 	if (heap_allocation->heap_flags & ~DMA_HEAP_VALID_HEAP_FLAGS)
96 		return -EINVAL;
97 
98 	fd = dma_heap_buffer_alloc(heap, heap_allocation->len,
99 				   heap_allocation->fd_flags,
100 				   heap_allocation->heap_flags);
101 	if (fd < 0)
102 		return fd;
103 
104 	heap_allocation->fd = fd;
105 
106 	return 0;
107 }
108 
109 static unsigned int dma_heap_ioctl_cmds[] = {
110 	DMA_HEAP_IOCTL_ALLOC,
111 };
112 
113 static long dma_heap_ioctl(struct file *file, unsigned int ucmd,
114 			   unsigned long arg)
115 {
116 	char stack_kdata[128];
117 	char *kdata = stack_kdata;
118 	unsigned int kcmd;
119 	unsigned int in_size, out_size, drv_size, ksize;
120 	int nr = _IOC_NR(ucmd);
121 	int ret = 0;
122 
123 	if (nr >= ARRAY_SIZE(dma_heap_ioctl_cmds))
124 		return -EINVAL;
125 
126 	/* Get the kernel ioctl cmd that matches */
127 	kcmd = dma_heap_ioctl_cmds[nr];
128 
129 	/* Figure out the delta between user cmd size and kernel cmd size */
130 	drv_size = _IOC_SIZE(kcmd);
131 	out_size = _IOC_SIZE(ucmd);
132 	in_size = out_size;
133 	if ((ucmd & kcmd & IOC_IN) == 0)
134 		in_size = 0;
135 	if ((ucmd & kcmd & IOC_OUT) == 0)
136 		out_size = 0;
137 	ksize = max(max(in_size, out_size), drv_size);
138 
139 	/* If necessary, allocate buffer for ioctl argument */
140 	if (ksize > sizeof(stack_kdata)) {
141 		kdata = kmalloc(ksize, GFP_KERNEL);
142 		if (!kdata)
143 			return -ENOMEM;
144 	}
145 
146 	if (copy_from_user(kdata, (void __user *)arg, in_size) != 0) {
147 		ret = -EFAULT;
148 		goto err;
149 	}
150 
151 	/* zero out any difference between the kernel/user structure size */
152 	if (ksize > in_size)
153 		memset(kdata + in_size, 0, ksize - in_size);
154 
155 	switch (kcmd) {
156 	case DMA_HEAP_IOCTL_ALLOC:
157 		ret = dma_heap_ioctl_allocate(file, kdata);
158 		break;
159 	default:
160 		ret = -ENOTTY;
161 		goto err;
162 	}
163 
164 	if (copy_to_user((void __user *)arg, kdata, out_size) != 0)
165 		ret = -EFAULT;
166 err:
167 	if (kdata != stack_kdata)
168 		kfree(kdata);
169 	return ret;
170 }
171 
172 static const struct file_operations dma_heap_fops = {
173 	.owner          = THIS_MODULE,
174 	.open		= dma_heap_open,
175 	.unlocked_ioctl = dma_heap_ioctl,
176 #ifdef CONFIG_COMPAT
177 	.compat_ioctl	= dma_heap_ioctl,
178 #endif
179 };
180 
181 /**
182  * dma_heap_get_drvdata() - get per-subdriver data for the heap
183  * @heap: DMA-Heap to retrieve private data for
184  *
185  * Returns:
186  * The per-subdriver data for the heap.
187  */
188 void *dma_heap_get_drvdata(struct dma_heap *heap)
189 {
190 	return heap->priv;
191 }
192 
193 struct dma_heap *dma_heap_add(const struct dma_heap_export_info *exp_info)
194 {
195 	struct dma_heap *heap, *h, *err_ret;
196 	struct device *dev_ret;
197 	unsigned int minor;
198 	int ret;
199 
200 	if (!exp_info->name || !strcmp(exp_info->name, "")) {
201 		pr_err("dma_heap: Cannot add heap without a name\n");
202 		return ERR_PTR(-EINVAL);
203 	}
204 
205 	if (!exp_info->ops || !exp_info->ops->allocate) {
206 		pr_err("dma_heap: Cannot add heap with invalid ops struct\n");
207 		return ERR_PTR(-EINVAL);
208 	}
209 
210 	/* check the name is unique */
211 	mutex_lock(&heap_list_lock);
212 	list_for_each_entry(h, &heap_list, list) {
213 		if (!strcmp(h->name, exp_info->name)) {
214 			mutex_unlock(&heap_list_lock);
215 			pr_err("dma_heap: Already registered heap named %s\n",
216 			       exp_info->name);
217 			return ERR_PTR(-EINVAL);
218 		}
219 	}
220 	mutex_unlock(&heap_list_lock);
221 
222 	heap = kzalloc(sizeof(*heap), GFP_KERNEL);
223 	if (!heap)
224 		return ERR_PTR(-ENOMEM);
225 
226 	heap->name = exp_info->name;
227 	heap->ops = exp_info->ops;
228 	heap->priv = exp_info->priv;
229 
230 	/* Find unused minor number */
231 	ret = xa_alloc(&dma_heap_minors, &minor, heap,
232 		       XA_LIMIT(0, NUM_HEAP_MINORS - 1), GFP_KERNEL);
233 	if (ret < 0) {
234 		pr_err("dma_heap: Unable to get minor number for heap\n");
235 		err_ret = ERR_PTR(ret);
236 		goto err0;
237 	}
238 
239 	/* Create device */
240 	heap->heap_devt = MKDEV(MAJOR(dma_heap_devt), minor);
241 
242 	cdev_init(&heap->heap_cdev, &dma_heap_fops);
243 	ret = cdev_add(&heap->heap_cdev, heap->heap_devt, 1);
244 	if (ret < 0) {
245 		pr_err("dma_heap: Unable to add char device\n");
246 		err_ret = ERR_PTR(ret);
247 		goto err1;
248 	}
249 
250 	dev_ret = device_create(dma_heap_class,
251 				NULL,
252 				heap->heap_devt,
253 				NULL,
254 				heap->name);
255 	if (IS_ERR(dev_ret)) {
256 		pr_err("dma_heap: Unable to create device\n");
257 		err_ret = ERR_CAST(dev_ret);
258 		goto err2;
259 	}
260 	/* Add heap to the list */
261 	mutex_lock(&heap_list_lock);
262 	list_add(&heap->list, &heap_list);
263 	mutex_unlock(&heap_list_lock);
264 
265 	return heap;
266 
267 err2:
268 	cdev_del(&heap->heap_cdev);
269 err1:
270 	xa_erase(&dma_heap_minors, minor);
271 err0:
272 	kfree(heap);
273 	return err_ret;
274 }
275 
276 static char *dma_heap_devnode(struct device *dev, umode_t *mode)
277 {
278 	return kasprintf(GFP_KERNEL, "dma_heap/%s", dev_name(dev));
279 }
280 
281 static int dma_heap_init(void)
282 {
283 	int ret;
284 
285 	ret = alloc_chrdev_region(&dma_heap_devt, 0, NUM_HEAP_MINORS, DEVNAME);
286 	if (ret)
287 		return ret;
288 
289 	dma_heap_class = class_create(THIS_MODULE, DEVNAME);
290 	if (IS_ERR(dma_heap_class)) {
291 		unregister_chrdev_region(dma_heap_devt, NUM_HEAP_MINORS);
292 		return PTR_ERR(dma_heap_class);
293 	}
294 	dma_heap_class->devnode = dma_heap_devnode;
295 
296 	return 0;
297 }
298 subsys_initcall(dma_heap_init);
299