xref: /openbmc/linux/drivers/dma-buf/dma-fence.c (revision ffcdf473)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Fence mechanism for dma-buf and to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/atomic.h>
16 #include <linux/dma-fence.h>
17 #include <linux/sched/signal.h>
18 #include <linux/seq_file.h>
19 
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/dma_fence.h>
22 
23 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
24 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
25 EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
26 
27 static DEFINE_SPINLOCK(dma_fence_stub_lock);
28 static struct dma_fence dma_fence_stub;
29 
30 /*
31  * fence context counter: each execution context should have its own
32  * fence context, this allows checking if fences belong to the same
33  * context or not. One device can have multiple separate contexts,
34  * and they're used if some engine can run independently of another.
35  */
36 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
37 
38 /**
39  * DOC: DMA fences overview
40  *
41  * DMA fences, represented by &struct dma_fence, are the kernel internal
42  * synchronization primitive for DMA operations like GPU rendering, video
43  * encoding/decoding, or displaying buffers on a screen.
44  *
45  * A fence is initialized using dma_fence_init() and completed using
46  * dma_fence_signal(). Fences are associated with a context, allocated through
47  * dma_fence_context_alloc(), and all fences on the same context are
48  * fully ordered.
49  *
50  * Since the purposes of fences is to facilitate cross-device and
51  * cross-application synchronization, there's multiple ways to use one:
52  *
53  * - Individual fences can be exposed as a &sync_file, accessed as a file
54  *   descriptor from userspace, created by calling sync_file_create(). This is
55  *   called explicit fencing, since userspace passes around explicit
56  *   synchronization points.
57  *
58  * - Some subsystems also have their own explicit fencing primitives, like
59  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
60  *   fence to be updated.
61  *
62  * - Then there's also implicit fencing, where the synchronization points are
63  *   implicitly passed around as part of shared &dma_buf instances. Such
64  *   implicit fences are stored in &struct dma_resv through the
65  *   &dma_buf.resv pointer.
66  */
67 
68 /**
69  * DOC: fence cross-driver contract
70  *
71  * Since &dma_fence provide a cross driver contract, all drivers must follow the
72  * same rules:
73  *
74  * * Fences must complete in a reasonable time. Fences which represent kernels
75  *   and shaders submitted by userspace, which could run forever, must be backed
76  *   up by timeout and gpu hang recovery code. Minimally that code must prevent
77  *   further command submission and force complete all in-flight fences, e.g.
78  *   when the driver or hardware do not support gpu reset, or if the gpu reset
79  *   failed for some reason. Ideally the driver supports gpu recovery which only
80  *   affects the offending userspace context, and no other userspace
81  *   submissions.
82  *
83  * * Drivers may have different ideas of what completion within a reasonable
84  *   time means. Some hang recovery code uses a fixed timeout, others a mix
85  *   between observing forward progress and increasingly strict timeouts.
86  *   Drivers should not try to second guess timeout handling of fences from
87  *   other drivers.
88  *
89  * * To ensure there's no deadlocks of dma_fence_wait() against other locks
90  *   drivers should annotate all code required to reach dma_fence_signal(),
91  *   which completes the fences, with dma_fence_begin_signalling() and
92  *   dma_fence_end_signalling().
93  *
94  * * Drivers are allowed to call dma_fence_wait() while holding dma_resv_lock().
95  *   This means any code required for fence completion cannot acquire a
96  *   &dma_resv lock. Note that this also pulls in the entire established
97  *   locking hierarchy around dma_resv_lock() and dma_resv_unlock().
98  *
99  * * Drivers are allowed to call dma_fence_wait() from their &shrinker
100  *   callbacks. This means any code required for fence completion cannot
101  *   allocate memory with GFP_KERNEL.
102  *
103  * * Drivers are allowed to call dma_fence_wait() from their &mmu_notifier
104  *   respectively &mmu_interval_notifier callbacks. This means any code required
105  *   for fence completeion cannot allocate memory with GFP_NOFS or GFP_NOIO.
106  *   Only GFP_ATOMIC is permissible, which might fail.
107  *
108  * Note that only GPU drivers have a reasonable excuse for both requiring
109  * &mmu_interval_notifier and &shrinker callbacks at the same time as having to
110  * track asynchronous compute work using &dma_fence. No driver outside of
111  * drivers/gpu should ever call dma_fence_wait() in such contexts.
112  */
113 
114 static const char *dma_fence_stub_get_name(struct dma_fence *fence)
115 {
116         return "stub";
117 }
118 
119 static const struct dma_fence_ops dma_fence_stub_ops = {
120 	.get_driver_name = dma_fence_stub_get_name,
121 	.get_timeline_name = dma_fence_stub_get_name,
122 };
123 
124 /**
125  * dma_fence_get_stub - return a signaled fence
126  *
127  * Return a stub fence which is already signaled. The fence's
128  * timestamp corresponds to the first time after boot this
129  * function is called.
130  */
131 struct dma_fence *dma_fence_get_stub(void)
132 {
133 	spin_lock(&dma_fence_stub_lock);
134 	if (!dma_fence_stub.ops) {
135 		dma_fence_init(&dma_fence_stub,
136 			       &dma_fence_stub_ops,
137 			       &dma_fence_stub_lock,
138 			       0, 0);
139 
140 		set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
141 			&dma_fence_stub.flags);
142 
143 		dma_fence_signal_locked(&dma_fence_stub);
144 	}
145 	spin_unlock(&dma_fence_stub_lock);
146 
147 	return dma_fence_get(&dma_fence_stub);
148 }
149 EXPORT_SYMBOL(dma_fence_get_stub);
150 
151 /**
152  * dma_fence_allocate_private_stub - return a private, signaled fence
153  *
154  * Return a newly allocated and signaled stub fence.
155  */
156 struct dma_fence *dma_fence_allocate_private_stub(void)
157 {
158 	struct dma_fence *fence;
159 
160 	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
161 	if (fence == NULL)
162 		return ERR_PTR(-ENOMEM);
163 
164 	dma_fence_init(fence,
165 		       &dma_fence_stub_ops,
166 		       &dma_fence_stub_lock,
167 		       0, 0);
168 
169 	set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
170 		&fence->flags);
171 
172 	dma_fence_signal(fence);
173 
174 	return fence;
175 }
176 EXPORT_SYMBOL(dma_fence_allocate_private_stub);
177 
178 /**
179  * dma_fence_context_alloc - allocate an array of fence contexts
180  * @num: amount of contexts to allocate
181  *
182  * This function will return the first index of the number of fence contexts
183  * allocated.  The fence context is used for setting &dma_fence.context to a
184  * unique number by passing the context to dma_fence_init().
185  */
186 u64 dma_fence_context_alloc(unsigned num)
187 {
188 	WARN_ON(!num);
189 	return atomic64_fetch_add(num, &dma_fence_context_counter);
190 }
191 EXPORT_SYMBOL(dma_fence_context_alloc);
192 
193 /**
194  * DOC: fence signalling annotation
195  *
196  * Proving correctness of all the kernel code around &dma_fence through code
197  * review and testing is tricky for a few reasons:
198  *
199  * * It is a cross-driver contract, and therefore all drivers must follow the
200  *   same rules for lock nesting order, calling contexts for various functions
201  *   and anything else significant for in-kernel interfaces. But it is also
202  *   impossible to test all drivers in a single machine, hence brute-force N vs.
203  *   N testing of all combinations is impossible. Even just limiting to the
204  *   possible combinations is infeasible.
205  *
206  * * There is an enormous amount of driver code involved. For render drivers
207  *   there's the tail of command submission, after fences are published,
208  *   scheduler code, interrupt and workers to process job completion,
209  *   and timeout, gpu reset and gpu hang recovery code. Plus for integration
210  *   with core mm with have &mmu_notifier, respectively &mmu_interval_notifier,
211  *   and &shrinker. For modesetting drivers there's the commit tail functions
212  *   between when fences for an atomic modeset are published, and when the
213  *   corresponding vblank completes, including any interrupt processing and
214  *   related workers. Auditing all that code, across all drivers, is not
215  *   feasible.
216  *
217  * * Due to how many other subsystems are involved and the locking hierarchies
218  *   this pulls in there is extremely thin wiggle-room for driver-specific
219  *   differences. &dma_fence interacts with almost all of the core memory
220  *   handling through page fault handlers via &dma_resv, dma_resv_lock() and
221  *   dma_resv_unlock(). On the other side it also interacts through all
222  *   allocation sites through &mmu_notifier and &shrinker.
223  *
224  * Furthermore lockdep does not handle cross-release dependencies, which means
225  * any deadlocks between dma_fence_wait() and dma_fence_signal() can't be caught
226  * at runtime with some quick testing. The simplest example is one thread
227  * waiting on a &dma_fence while holding a lock::
228  *
229  *     lock(A);
230  *     dma_fence_wait(B);
231  *     unlock(A);
232  *
233  * while the other thread is stuck trying to acquire the same lock, which
234  * prevents it from signalling the fence the previous thread is stuck waiting
235  * on::
236  *
237  *     lock(A);
238  *     unlock(A);
239  *     dma_fence_signal(B);
240  *
241  * By manually annotating all code relevant to signalling a &dma_fence we can
242  * teach lockdep about these dependencies, which also helps with the validation
243  * headache since now lockdep can check all the rules for us::
244  *
245  *    cookie = dma_fence_begin_signalling();
246  *    lock(A);
247  *    unlock(A);
248  *    dma_fence_signal(B);
249  *    dma_fence_end_signalling(cookie);
250  *
251  * For using dma_fence_begin_signalling() and dma_fence_end_signalling() to
252  * annotate critical sections the following rules need to be observed:
253  *
254  * * All code necessary to complete a &dma_fence must be annotated, from the
255  *   point where a fence is accessible to other threads, to the point where
256  *   dma_fence_signal() is called. Un-annotated code can contain deadlock issues,
257  *   and due to the very strict rules and many corner cases it is infeasible to
258  *   catch these just with review or normal stress testing.
259  *
260  * * &struct dma_resv deserves a special note, since the readers are only
261  *   protected by rcu. This means the signalling critical section starts as soon
262  *   as the new fences are installed, even before dma_resv_unlock() is called.
263  *
264  * * The only exception are fast paths and opportunistic signalling code, which
265  *   calls dma_fence_signal() purely as an optimization, but is not required to
266  *   guarantee completion of a &dma_fence. The usual example is a wait IOCTL
267  *   which calls dma_fence_signal(), while the mandatory completion path goes
268  *   through a hardware interrupt and possible job completion worker.
269  *
270  * * To aid composability of code, the annotations can be freely nested, as long
271  *   as the overall locking hierarchy is consistent. The annotations also work
272  *   both in interrupt and process context. Due to implementation details this
273  *   requires that callers pass an opaque cookie from
274  *   dma_fence_begin_signalling() to dma_fence_end_signalling().
275  *
276  * * Validation against the cross driver contract is implemented by priming
277  *   lockdep with the relevant hierarchy at boot-up. This means even just
278  *   testing with a single device is enough to validate a driver, at least as
279  *   far as deadlocks with dma_fence_wait() against dma_fence_signal() are
280  *   concerned.
281  */
282 #ifdef CONFIG_LOCKDEP
283 static struct lockdep_map dma_fence_lockdep_map = {
284 	.name = "dma_fence_map"
285 };
286 
287 /**
288  * dma_fence_begin_signalling - begin a critical DMA fence signalling section
289  *
290  * Drivers should use this to annotate the beginning of any code section
291  * required to eventually complete &dma_fence by calling dma_fence_signal().
292  *
293  * The end of these critical sections are annotated with
294  * dma_fence_end_signalling().
295  *
296  * Returns:
297  *
298  * Opaque cookie needed by the implementation, which needs to be passed to
299  * dma_fence_end_signalling().
300  */
301 bool dma_fence_begin_signalling(void)
302 {
303 	/* explicitly nesting ... */
304 	if (lock_is_held_type(&dma_fence_lockdep_map, 1))
305 		return true;
306 
307 	/* rely on might_sleep check for soft/hardirq locks */
308 	if (in_atomic())
309 		return true;
310 
311 	/* ... and non-recursive readlock */
312 	lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _RET_IP_);
313 
314 	return false;
315 }
316 EXPORT_SYMBOL(dma_fence_begin_signalling);
317 
318 /**
319  * dma_fence_end_signalling - end a critical DMA fence signalling section
320  * @cookie: opaque cookie from dma_fence_begin_signalling()
321  *
322  * Closes a critical section annotation opened by dma_fence_begin_signalling().
323  */
324 void dma_fence_end_signalling(bool cookie)
325 {
326 	if (cookie)
327 		return;
328 
329 	lock_release(&dma_fence_lockdep_map, _RET_IP_);
330 }
331 EXPORT_SYMBOL(dma_fence_end_signalling);
332 
333 void __dma_fence_might_wait(void)
334 {
335 	bool tmp;
336 
337 	tmp = lock_is_held_type(&dma_fence_lockdep_map, 1);
338 	if (tmp)
339 		lock_release(&dma_fence_lockdep_map, _THIS_IP_);
340 	lock_map_acquire(&dma_fence_lockdep_map);
341 	lock_map_release(&dma_fence_lockdep_map);
342 	if (tmp)
343 		lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _THIS_IP_);
344 }
345 #endif
346 
347 
348 /**
349  * dma_fence_signal_timestamp_locked - signal completion of a fence
350  * @fence: the fence to signal
351  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
352  *
353  * Signal completion for software callbacks on a fence, this will unblock
354  * dma_fence_wait() calls and run all the callbacks added with
355  * dma_fence_add_callback(). Can be called multiple times, but since a fence
356  * can only go from the unsignaled to the signaled state and not back, it will
357  * only be effective the first time. Set the timestamp provided as the fence
358  * signal timestamp.
359  *
360  * Unlike dma_fence_signal_timestamp(), this function must be called with
361  * &dma_fence.lock held.
362  *
363  * Returns 0 on success and a negative error value when @fence has been
364  * signalled already.
365  */
366 int dma_fence_signal_timestamp_locked(struct dma_fence *fence,
367 				      ktime_t timestamp)
368 {
369 	struct dma_fence_cb *cur, *tmp;
370 	struct list_head cb_list;
371 
372 	lockdep_assert_held(fence->lock);
373 
374 	if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
375 				      &fence->flags)))
376 		return -EINVAL;
377 
378 	/* Stash the cb_list before replacing it with the timestamp */
379 	list_replace(&fence->cb_list, &cb_list);
380 
381 	fence->timestamp = timestamp;
382 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
383 	trace_dma_fence_signaled(fence);
384 
385 	list_for_each_entry_safe(cur, tmp, &cb_list, node) {
386 		INIT_LIST_HEAD(&cur->node);
387 		cur->func(fence, cur);
388 	}
389 
390 	return 0;
391 }
392 EXPORT_SYMBOL(dma_fence_signal_timestamp_locked);
393 
394 /**
395  * dma_fence_signal_timestamp - signal completion of a fence
396  * @fence: the fence to signal
397  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
398  *
399  * Signal completion for software callbacks on a fence, this will unblock
400  * dma_fence_wait() calls and run all the callbacks added with
401  * dma_fence_add_callback(). Can be called multiple times, but since a fence
402  * can only go from the unsignaled to the signaled state and not back, it will
403  * only be effective the first time. Set the timestamp provided as the fence
404  * signal timestamp.
405  *
406  * Returns 0 on success and a negative error value when @fence has been
407  * signalled already.
408  */
409 int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp)
410 {
411 	unsigned long flags;
412 	int ret;
413 
414 	if (!fence)
415 		return -EINVAL;
416 
417 	spin_lock_irqsave(fence->lock, flags);
418 	ret = dma_fence_signal_timestamp_locked(fence, timestamp);
419 	spin_unlock_irqrestore(fence->lock, flags);
420 
421 	return ret;
422 }
423 EXPORT_SYMBOL(dma_fence_signal_timestamp);
424 
425 /**
426  * dma_fence_signal_locked - signal completion of a fence
427  * @fence: the fence to signal
428  *
429  * Signal completion for software callbacks on a fence, this will unblock
430  * dma_fence_wait() calls and run all the callbacks added with
431  * dma_fence_add_callback(). Can be called multiple times, but since a fence
432  * can only go from the unsignaled to the signaled state and not back, it will
433  * only be effective the first time.
434  *
435  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
436  * held.
437  *
438  * Returns 0 on success and a negative error value when @fence has been
439  * signalled already.
440  */
441 int dma_fence_signal_locked(struct dma_fence *fence)
442 {
443 	return dma_fence_signal_timestamp_locked(fence, ktime_get());
444 }
445 EXPORT_SYMBOL(dma_fence_signal_locked);
446 
447 /**
448  * dma_fence_signal - signal completion of a fence
449  * @fence: the fence to signal
450  *
451  * Signal completion for software callbacks on a fence, this will unblock
452  * dma_fence_wait() calls and run all the callbacks added with
453  * dma_fence_add_callback(). Can be called multiple times, but since a fence
454  * can only go from the unsignaled to the signaled state and not back, it will
455  * only be effective the first time.
456  *
457  * Returns 0 on success and a negative error value when @fence has been
458  * signalled already.
459  */
460 int dma_fence_signal(struct dma_fence *fence)
461 {
462 	unsigned long flags;
463 	int ret;
464 	bool tmp;
465 
466 	if (!fence)
467 		return -EINVAL;
468 
469 	tmp = dma_fence_begin_signalling();
470 
471 	spin_lock_irqsave(fence->lock, flags);
472 	ret = dma_fence_signal_timestamp_locked(fence, ktime_get());
473 	spin_unlock_irqrestore(fence->lock, flags);
474 
475 	dma_fence_end_signalling(tmp);
476 
477 	return ret;
478 }
479 EXPORT_SYMBOL(dma_fence_signal);
480 
481 /**
482  * dma_fence_wait_timeout - sleep until the fence gets signaled
483  * or until timeout elapses
484  * @fence: the fence to wait on
485  * @intr: if true, do an interruptible wait
486  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
487  *
488  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
489  * remaining timeout in jiffies on success. Other error values may be
490  * returned on custom implementations.
491  *
492  * Performs a synchronous wait on this fence. It is assumed the caller
493  * directly or indirectly (buf-mgr between reservation and committing)
494  * holds a reference to the fence, otherwise the fence might be
495  * freed before return, resulting in undefined behavior.
496  *
497  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
498  */
499 signed long
500 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
501 {
502 	signed long ret;
503 
504 	if (WARN_ON(timeout < 0))
505 		return -EINVAL;
506 
507 	might_sleep();
508 
509 	__dma_fence_might_wait();
510 
511 	dma_fence_enable_sw_signaling(fence);
512 
513 	trace_dma_fence_wait_start(fence);
514 	if (fence->ops->wait)
515 		ret = fence->ops->wait(fence, intr, timeout);
516 	else
517 		ret = dma_fence_default_wait(fence, intr, timeout);
518 	trace_dma_fence_wait_end(fence);
519 	return ret;
520 }
521 EXPORT_SYMBOL(dma_fence_wait_timeout);
522 
523 /**
524  * dma_fence_release - default relese function for fences
525  * @kref: &dma_fence.recfount
526  *
527  * This is the default release functions for &dma_fence. Drivers shouldn't call
528  * this directly, but instead call dma_fence_put().
529  */
530 void dma_fence_release(struct kref *kref)
531 {
532 	struct dma_fence *fence =
533 		container_of(kref, struct dma_fence, refcount);
534 
535 	trace_dma_fence_destroy(fence);
536 
537 	if (WARN(!list_empty(&fence->cb_list) &&
538 		 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
539 		 "Fence %s:%s:%llx:%llx released with pending signals!\n",
540 		 fence->ops->get_driver_name(fence),
541 		 fence->ops->get_timeline_name(fence),
542 		 fence->context, fence->seqno)) {
543 		unsigned long flags;
544 
545 		/*
546 		 * Failed to signal before release, likely a refcounting issue.
547 		 *
548 		 * This should never happen, but if it does make sure that we
549 		 * don't leave chains dangling. We set the error flag first
550 		 * so that the callbacks know this signal is due to an error.
551 		 */
552 		spin_lock_irqsave(fence->lock, flags);
553 		fence->error = -EDEADLK;
554 		dma_fence_signal_locked(fence);
555 		spin_unlock_irqrestore(fence->lock, flags);
556 	}
557 
558 	if (fence->ops->release)
559 		fence->ops->release(fence);
560 	else
561 		dma_fence_free(fence);
562 }
563 EXPORT_SYMBOL(dma_fence_release);
564 
565 /**
566  * dma_fence_free - default release function for &dma_fence.
567  * @fence: fence to release
568  *
569  * This is the default implementation for &dma_fence_ops.release. It calls
570  * kfree_rcu() on @fence.
571  */
572 void dma_fence_free(struct dma_fence *fence)
573 {
574 	kfree_rcu(fence, rcu);
575 }
576 EXPORT_SYMBOL(dma_fence_free);
577 
578 static bool __dma_fence_enable_signaling(struct dma_fence *fence)
579 {
580 	bool was_set;
581 
582 	lockdep_assert_held(fence->lock);
583 
584 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
585 				   &fence->flags);
586 
587 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
588 		return false;
589 
590 	if (!was_set && fence->ops->enable_signaling) {
591 		trace_dma_fence_enable_signal(fence);
592 
593 		if (!fence->ops->enable_signaling(fence)) {
594 			dma_fence_signal_locked(fence);
595 			return false;
596 		}
597 	}
598 
599 	return true;
600 }
601 
602 /**
603  * dma_fence_enable_sw_signaling - enable signaling on fence
604  * @fence: the fence to enable
605  *
606  * This will request for sw signaling to be enabled, to make the fence
607  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
608  * internally.
609  */
610 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
611 {
612 	unsigned long flags;
613 
614 	spin_lock_irqsave(fence->lock, flags);
615 	__dma_fence_enable_signaling(fence);
616 	spin_unlock_irqrestore(fence->lock, flags);
617 }
618 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
619 
620 /**
621  * dma_fence_add_callback - add a callback to be called when the fence
622  * is signaled
623  * @fence: the fence to wait on
624  * @cb: the callback to register
625  * @func: the function to call
626  *
627  * Add a software callback to the fence. The caller should keep a reference to
628  * the fence.
629  *
630  * @cb will be initialized by dma_fence_add_callback(), no initialization
631  * by the caller is required. Any number of callbacks can be registered
632  * to a fence, but a callback can only be registered to one fence at a time.
633  *
634  * If fence is already signaled, this function will return -ENOENT (and
635  * *not* call the callback).
636  *
637  * Note that the callback can be called from an atomic context or irq context.
638  *
639  * Returns 0 in case of success, -ENOENT if the fence is already signaled
640  * and -EINVAL in case of error.
641  */
642 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
643 			   dma_fence_func_t func)
644 {
645 	unsigned long flags;
646 	int ret = 0;
647 
648 	if (WARN_ON(!fence || !func))
649 		return -EINVAL;
650 
651 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
652 		INIT_LIST_HEAD(&cb->node);
653 		return -ENOENT;
654 	}
655 
656 	spin_lock_irqsave(fence->lock, flags);
657 
658 	if (__dma_fence_enable_signaling(fence)) {
659 		cb->func = func;
660 		list_add_tail(&cb->node, &fence->cb_list);
661 	} else {
662 		INIT_LIST_HEAD(&cb->node);
663 		ret = -ENOENT;
664 	}
665 
666 	spin_unlock_irqrestore(fence->lock, flags);
667 
668 	return ret;
669 }
670 EXPORT_SYMBOL(dma_fence_add_callback);
671 
672 /**
673  * dma_fence_get_status - returns the status upon completion
674  * @fence: the dma_fence to query
675  *
676  * This wraps dma_fence_get_status_locked() to return the error status
677  * condition on a signaled fence. See dma_fence_get_status_locked() for more
678  * details.
679  *
680  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
681  * been signaled without an error condition, or a negative error code
682  * if the fence has been completed in err.
683  */
684 int dma_fence_get_status(struct dma_fence *fence)
685 {
686 	unsigned long flags;
687 	int status;
688 
689 	spin_lock_irqsave(fence->lock, flags);
690 	status = dma_fence_get_status_locked(fence);
691 	spin_unlock_irqrestore(fence->lock, flags);
692 
693 	return status;
694 }
695 EXPORT_SYMBOL(dma_fence_get_status);
696 
697 /**
698  * dma_fence_remove_callback - remove a callback from the signaling list
699  * @fence: the fence to wait on
700  * @cb: the callback to remove
701  *
702  * Remove a previously queued callback from the fence. This function returns
703  * true if the callback is successfully removed, or false if the fence has
704  * already been signaled.
705  *
706  * *WARNING*:
707  * Cancelling a callback should only be done if you really know what you're
708  * doing, since deadlocks and race conditions could occur all too easily. For
709  * this reason, it should only ever be done on hardware lockup recovery,
710  * with a reference held to the fence.
711  *
712  * Behaviour is undefined if @cb has not been added to @fence using
713  * dma_fence_add_callback() beforehand.
714  */
715 bool
716 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
717 {
718 	unsigned long flags;
719 	bool ret;
720 
721 	spin_lock_irqsave(fence->lock, flags);
722 
723 	ret = !list_empty(&cb->node);
724 	if (ret)
725 		list_del_init(&cb->node);
726 
727 	spin_unlock_irqrestore(fence->lock, flags);
728 
729 	return ret;
730 }
731 EXPORT_SYMBOL(dma_fence_remove_callback);
732 
733 struct default_wait_cb {
734 	struct dma_fence_cb base;
735 	struct task_struct *task;
736 };
737 
738 static void
739 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
740 {
741 	struct default_wait_cb *wait =
742 		container_of(cb, struct default_wait_cb, base);
743 
744 	wake_up_state(wait->task, TASK_NORMAL);
745 }
746 
747 /**
748  * dma_fence_default_wait - default sleep until the fence gets signaled
749  * or until timeout elapses
750  * @fence: the fence to wait on
751  * @intr: if true, do an interruptible wait
752  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
753  *
754  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
755  * remaining timeout in jiffies on success. If timeout is zero the value one is
756  * returned if the fence is already signaled for consistency with other
757  * functions taking a jiffies timeout.
758  */
759 signed long
760 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
761 {
762 	struct default_wait_cb cb;
763 	unsigned long flags;
764 	signed long ret = timeout ? timeout : 1;
765 
766 	spin_lock_irqsave(fence->lock, flags);
767 
768 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
769 		goto out;
770 
771 	if (intr && signal_pending(current)) {
772 		ret = -ERESTARTSYS;
773 		goto out;
774 	}
775 
776 	if (!timeout) {
777 		ret = 0;
778 		goto out;
779 	}
780 
781 	cb.base.func = dma_fence_default_wait_cb;
782 	cb.task = current;
783 	list_add(&cb.base.node, &fence->cb_list);
784 
785 	while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
786 		if (intr)
787 			__set_current_state(TASK_INTERRUPTIBLE);
788 		else
789 			__set_current_state(TASK_UNINTERRUPTIBLE);
790 		spin_unlock_irqrestore(fence->lock, flags);
791 
792 		ret = schedule_timeout(ret);
793 
794 		spin_lock_irqsave(fence->lock, flags);
795 		if (ret > 0 && intr && signal_pending(current))
796 			ret = -ERESTARTSYS;
797 	}
798 
799 	if (!list_empty(&cb.base.node))
800 		list_del(&cb.base.node);
801 	__set_current_state(TASK_RUNNING);
802 
803 out:
804 	spin_unlock_irqrestore(fence->lock, flags);
805 	return ret;
806 }
807 EXPORT_SYMBOL(dma_fence_default_wait);
808 
809 static bool
810 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
811 			    uint32_t *idx)
812 {
813 	int i;
814 
815 	for (i = 0; i < count; ++i) {
816 		struct dma_fence *fence = fences[i];
817 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
818 			if (idx)
819 				*idx = i;
820 			return true;
821 		}
822 	}
823 	return false;
824 }
825 
826 /**
827  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
828  * or until timeout elapses
829  * @fences: array of fences to wait on
830  * @count: number of fences to wait on
831  * @intr: if true, do an interruptible wait
832  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
833  * @idx: used to store the first signaled fence index, meaningful only on
834  *	positive return
835  *
836  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
837  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
838  * on success.
839  *
840  * Synchronous waits for the first fence in the array to be signaled. The
841  * caller needs to hold a reference to all fences in the array, otherwise a
842  * fence might be freed before return, resulting in undefined behavior.
843  *
844  * See also dma_fence_wait() and dma_fence_wait_timeout().
845  */
846 signed long
847 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
848 			   bool intr, signed long timeout, uint32_t *idx)
849 {
850 	struct default_wait_cb *cb;
851 	signed long ret = timeout;
852 	unsigned i;
853 
854 	if (WARN_ON(!fences || !count || timeout < 0))
855 		return -EINVAL;
856 
857 	if (timeout == 0) {
858 		for (i = 0; i < count; ++i)
859 			if (dma_fence_is_signaled(fences[i])) {
860 				if (idx)
861 					*idx = i;
862 				return 1;
863 			}
864 
865 		return 0;
866 	}
867 
868 	cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
869 	if (cb == NULL) {
870 		ret = -ENOMEM;
871 		goto err_free_cb;
872 	}
873 
874 	for (i = 0; i < count; ++i) {
875 		struct dma_fence *fence = fences[i];
876 
877 		cb[i].task = current;
878 		if (dma_fence_add_callback(fence, &cb[i].base,
879 					   dma_fence_default_wait_cb)) {
880 			/* This fence is already signaled */
881 			if (idx)
882 				*idx = i;
883 			goto fence_rm_cb;
884 		}
885 	}
886 
887 	while (ret > 0) {
888 		if (intr)
889 			set_current_state(TASK_INTERRUPTIBLE);
890 		else
891 			set_current_state(TASK_UNINTERRUPTIBLE);
892 
893 		if (dma_fence_test_signaled_any(fences, count, idx))
894 			break;
895 
896 		ret = schedule_timeout(ret);
897 
898 		if (ret > 0 && intr && signal_pending(current))
899 			ret = -ERESTARTSYS;
900 	}
901 
902 	__set_current_state(TASK_RUNNING);
903 
904 fence_rm_cb:
905 	while (i-- > 0)
906 		dma_fence_remove_callback(fences[i], &cb[i].base);
907 
908 err_free_cb:
909 	kfree(cb);
910 
911 	return ret;
912 }
913 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
914 
915 /**
916  * DOC: deadline hints
917  *
918  * In an ideal world, it would be possible to pipeline a workload sufficiently
919  * that a utilization based device frequency governor could arrive at a minimum
920  * frequency that meets the requirements of the use-case, in order to minimize
921  * power consumption.  But in the real world there are many workloads which
922  * defy this ideal.  For example, but not limited to:
923  *
924  * * Workloads that ping-pong between device and CPU, with alternating periods
925  *   of CPU waiting for device, and device waiting on CPU.  This can result in
926  *   devfreq and cpufreq seeing idle time in their respective domains and in
927  *   result reduce frequency.
928  *
929  * * Workloads that interact with a periodic time based deadline, such as double
930  *   buffered GPU rendering vs vblank sync'd page flipping.  In this scenario,
931  *   missing a vblank deadline results in an *increase* in idle time on the GPU
932  *   (since it has to wait an additional vblank period), sending a signal to
933  *   the GPU's devfreq to reduce frequency, when in fact the opposite is what is
934  *   needed.
935  *
936  * To this end, deadline hint(s) can be set on a &dma_fence via &dma_fence_set_deadline.
937  * The deadline hint provides a way for the waiting driver, or userspace, to
938  * convey an appropriate sense of urgency to the signaling driver.
939  *
940  * A deadline hint is given in absolute ktime (CLOCK_MONOTONIC for userspace
941  * facing APIs).  The time could either be some point in the future (such as
942  * the vblank based deadline for page-flipping, or the start of a compositor's
943  * composition cycle), or the current time to indicate an immediate deadline
944  * hint (Ie. forward progress cannot be made until this fence is signaled).
945  *
946  * Multiple deadlines may be set on a given fence, even in parallel.  See the
947  * documentation for &dma_fence_ops.set_deadline.
948  *
949  * The deadline hint is just that, a hint.  The driver that created the fence
950  * may react by increasing frequency, making different scheduling choices, etc.
951  * Or doing nothing at all.
952  */
953 
954 /**
955  * dma_fence_set_deadline - set desired fence-wait deadline hint
956  * @fence:    the fence that is to be waited on
957  * @deadline: the time by which the waiter hopes for the fence to be
958  *            signaled
959  *
960  * Give the fence signaler a hint about an upcoming deadline, such as
961  * vblank, by which point the waiter would prefer the fence to be
962  * signaled by.  This is intended to give feedback to the fence signaler
963  * to aid in power management decisions, such as boosting GPU frequency
964  * if a periodic vblank deadline is approaching but the fence is not
965  * yet signaled..
966  */
967 void dma_fence_set_deadline(struct dma_fence *fence, ktime_t deadline)
968 {
969 	if (fence->ops->set_deadline && !dma_fence_is_signaled(fence))
970 		fence->ops->set_deadline(fence, deadline);
971 }
972 EXPORT_SYMBOL(dma_fence_set_deadline);
973 
974 /**
975  * dma_fence_describe - Dump fence describtion into seq_file
976  * @fence: the 6fence to describe
977  * @seq: the seq_file to put the textual description into
978  *
979  * Dump a textual description of the fence and it's state into the seq_file.
980  */
981 void dma_fence_describe(struct dma_fence *fence, struct seq_file *seq)
982 {
983 	seq_printf(seq, "%s %s seq %llu %ssignalled\n",
984 		   fence->ops->get_driver_name(fence),
985 		   fence->ops->get_timeline_name(fence), fence->seqno,
986 		   dma_fence_is_signaled(fence) ? "" : "un");
987 }
988 EXPORT_SYMBOL(dma_fence_describe);
989 
990 /**
991  * dma_fence_init - Initialize a custom fence.
992  * @fence: the fence to initialize
993  * @ops: the dma_fence_ops for operations on this fence
994  * @lock: the irqsafe spinlock to use for locking this fence
995  * @context: the execution context this fence is run on
996  * @seqno: a linear increasing sequence number for this context
997  *
998  * Initializes an allocated fence, the caller doesn't have to keep its
999  * refcount after committing with this fence, but it will need to hold a
1000  * refcount again if &dma_fence_ops.enable_signaling gets called.
1001  *
1002  * context and seqno are used for easy comparison between fences, allowing
1003  * to check which fence is later by simply using dma_fence_later().
1004  */
1005 void
1006 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
1007 	       spinlock_t *lock, u64 context, u64 seqno)
1008 {
1009 	BUG_ON(!lock);
1010 	BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
1011 
1012 	kref_init(&fence->refcount);
1013 	fence->ops = ops;
1014 	INIT_LIST_HEAD(&fence->cb_list);
1015 	fence->lock = lock;
1016 	fence->context = context;
1017 	fence->seqno = seqno;
1018 	fence->flags = 0UL;
1019 	fence->error = 0;
1020 
1021 	trace_dma_fence_init(fence);
1022 }
1023 EXPORT_SYMBOL(dma_fence_init);
1024