xref: /openbmc/linux/drivers/dma-buf/dma-fence.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Fence mechanism for dma-buf and to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/atomic.h>
16 #include <linux/dma-fence.h>
17 #include <linux/sched/signal.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/dma_fence.h>
21 
22 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
23 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
24 EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
25 
26 static DEFINE_SPINLOCK(dma_fence_stub_lock);
27 static struct dma_fence dma_fence_stub;
28 
29 /*
30  * fence context counter: each execution context should have its own
31  * fence context, this allows checking if fences belong to the same
32  * context or not. One device can have multiple separate contexts,
33  * and they're used if some engine can run independently of another.
34  */
35 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
36 
37 /**
38  * DOC: DMA fences overview
39  *
40  * DMA fences, represented by &struct dma_fence, are the kernel internal
41  * synchronization primitive for DMA operations like GPU rendering, video
42  * encoding/decoding, or displaying buffers on a screen.
43  *
44  * A fence is initialized using dma_fence_init() and completed using
45  * dma_fence_signal(). Fences are associated with a context, allocated through
46  * dma_fence_context_alloc(), and all fences on the same context are
47  * fully ordered.
48  *
49  * Since the purposes of fences is to facilitate cross-device and
50  * cross-application synchronization, there's multiple ways to use one:
51  *
52  * - Individual fences can be exposed as a &sync_file, accessed as a file
53  *   descriptor from userspace, created by calling sync_file_create(). This is
54  *   called explicit fencing, since userspace passes around explicit
55  *   synchronization points.
56  *
57  * - Some subsystems also have their own explicit fencing primitives, like
58  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
59  *   fence to be updated.
60  *
61  * - Then there's also implicit fencing, where the synchronization points are
62  *   implicitly passed around as part of shared &dma_buf instances. Such
63  *   implicit fences are stored in &struct dma_resv through the
64  *   &dma_buf.resv pointer.
65  */
66 
67 /**
68  * DOC: fence cross-driver contract
69  *
70  * Since &dma_fence provide a cross driver contract, all drivers must follow the
71  * same rules:
72  *
73  * * Fences must complete in a reasonable time. Fences which represent kernels
74  *   and shaders submitted by userspace, which could run forever, must be backed
75  *   up by timeout and gpu hang recovery code. Minimally that code must prevent
76  *   further command submission and force complete all in-flight fences, e.g.
77  *   when the driver or hardware do not support gpu reset, or if the gpu reset
78  *   failed for some reason. Ideally the driver supports gpu recovery which only
79  *   affects the offending userspace context, and no other userspace
80  *   submissions.
81  *
82  * * Drivers may have different ideas of what completion within a reasonable
83  *   time means. Some hang recovery code uses a fixed timeout, others a mix
84  *   between observing forward progress and increasingly strict timeouts.
85  *   Drivers should not try to second guess timeout handling of fences from
86  *   other drivers.
87  *
88  * * To ensure there's no deadlocks of dma_fence_wait() against other locks
89  *   drivers should annotate all code required to reach dma_fence_signal(),
90  *   which completes the fences, with dma_fence_begin_signalling() and
91  *   dma_fence_end_signalling().
92  *
93  * * Drivers are allowed to call dma_fence_wait() while holding dma_resv_lock().
94  *   This means any code required for fence completion cannot acquire a
95  *   &dma_resv lock. Note that this also pulls in the entire established
96  *   locking hierarchy around dma_resv_lock() and dma_resv_unlock().
97  *
98  * * Drivers are allowed to call dma_fence_wait() from their &shrinker
99  *   callbacks. This means any code required for fence completion cannot
100  *   allocate memory with GFP_KERNEL.
101  *
102  * * Drivers are allowed to call dma_fence_wait() from their &mmu_notifier
103  *   respectively &mmu_interval_notifier callbacks. This means any code required
104  *   for fence completeion cannot allocate memory with GFP_NOFS or GFP_NOIO.
105  *   Only GFP_ATOMIC is permissible, which might fail.
106  *
107  * Note that only GPU drivers have a reasonable excuse for both requiring
108  * &mmu_interval_notifier and &shrinker callbacks at the same time as having to
109  * track asynchronous compute work using &dma_fence. No driver outside of
110  * drivers/gpu should ever call dma_fence_wait() in such contexts.
111  */
112 
113 static const char *dma_fence_stub_get_name(struct dma_fence *fence)
114 {
115         return "stub";
116 }
117 
118 static const struct dma_fence_ops dma_fence_stub_ops = {
119 	.get_driver_name = dma_fence_stub_get_name,
120 	.get_timeline_name = dma_fence_stub_get_name,
121 };
122 
123 /**
124  * dma_fence_get_stub - return a signaled fence
125  *
126  * Return a stub fence which is already signaled. The fence's
127  * timestamp corresponds to the first time after boot this
128  * function is called.
129  */
130 struct dma_fence *dma_fence_get_stub(void)
131 {
132 	spin_lock(&dma_fence_stub_lock);
133 	if (!dma_fence_stub.ops) {
134 		dma_fence_init(&dma_fence_stub,
135 			       &dma_fence_stub_ops,
136 			       &dma_fence_stub_lock,
137 			       0, 0);
138 		dma_fence_signal_locked(&dma_fence_stub);
139 	}
140 	spin_unlock(&dma_fence_stub_lock);
141 
142 	return dma_fence_get(&dma_fence_stub);
143 }
144 EXPORT_SYMBOL(dma_fence_get_stub);
145 
146 /**
147  * dma_fence_allocate_private_stub - return a private, signaled fence
148  *
149  * Return a newly allocated and signaled stub fence.
150  */
151 struct dma_fence *dma_fence_allocate_private_stub(void)
152 {
153 	struct dma_fence *fence;
154 
155 	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
156 	if (fence == NULL)
157 		return ERR_PTR(-ENOMEM);
158 
159 	dma_fence_init(fence,
160 		       &dma_fence_stub_ops,
161 		       &dma_fence_stub_lock,
162 		       0, 0);
163 	dma_fence_signal(fence);
164 
165 	return fence;
166 }
167 EXPORT_SYMBOL(dma_fence_allocate_private_stub);
168 
169 /**
170  * dma_fence_context_alloc - allocate an array of fence contexts
171  * @num: amount of contexts to allocate
172  *
173  * This function will return the first index of the number of fence contexts
174  * allocated.  The fence context is used for setting &dma_fence.context to a
175  * unique number by passing the context to dma_fence_init().
176  */
177 u64 dma_fence_context_alloc(unsigned num)
178 {
179 	WARN_ON(!num);
180 	return atomic64_fetch_add(num, &dma_fence_context_counter);
181 }
182 EXPORT_SYMBOL(dma_fence_context_alloc);
183 
184 /**
185  * DOC: fence signalling annotation
186  *
187  * Proving correctness of all the kernel code around &dma_fence through code
188  * review and testing is tricky for a few reasons:
189  *
190  * * It is a cross-driver contract, and therefore all drivers must follow the
191  *   same rules for lock nesting order, calling contexts for various functions
192  *   and anything else significant for in-kernel interfaces. But it is also
193  *   impossible to test all drivers in a single machine, hence brute-force N vs.
194  *   N testing of all combinations is impossible. Even just limiting to the
195  *   possible combinations is infeasible.
196  *
197  * * There is an enormous amount of driver code involved. For render drivers
198  *   there's the tail of command submission, after fences are published,
199  *   scheduler code, interrupt and workers to process job completion,
200  *   and timeout, gpu reset and gpu hang recovery code. Plus for integration
201  *   with core mm with have &mmu_notifier, respectively &mmu_interval_notifier,
202  *   and &shrinker. For modesetting drivers there's the commit tail functions
203  *   between when fences for an atomic modeset are published, and when the
204  *   corresponding vblank completes, including any interrupt processing and
205  *   related workers. Auditing all that code, across all drivers, is not
206  *   feasible.
207  *
208  * * Due to how many other subsystems are involved and the locking hierarchies
209  *   this pulls in there is extremely thin wiggle-room for driver-specific
210  *   differences. &dma_fence interacts with almost all of the core memory
211  *   handling through page fault handlers via &dma_resv, dma_resv_lock() and
212  *   dma_resv_unlock(). On the other side it also interacts through all
213  *   allocation sites through &mmu_notifier and &shrinker.
214  *
215  * Furthermore lockdep does not handle cross-release dependencies, which means
216  * any deadlocks between dma_fence_wait() and dma_fence_signal() can't be caught
217  * at runtime with some quick testing. The simplest example is one thread
218  * waiting on a &dma_fence while holding a lock::
219  *
220  *     lock(A);
221  *     dma_fence_wait(B);
222  *     unlock(A);
223  *
224  * while the other thread is stuck trying to acquire the same lock, which
225  * prevents it from signalling the fence the previous thread is stuck waiting
226  * on::
227  *
228  *     lock(A);
229  *     unlock(A);
230  *     dma_fence_signal(B);
231  *
232  * By manually annotating all code relevant to signalling a &dma_fence we can
233  * teach lockdep about these dependencies, which also helps with the validation
234  * headache since now lockdep can check all the rules for us::
235  *
236  *    cookie = dma_fence_begin_signalling();
237  *    lock(A);
238  *    unlock(A);
239  *    dma_fence_signal(B);
240  *    dma_fence_end_signalling(cookie);
241  *
242  * For using dma_fence_begin_signalling() and dma_fence_end_signalling() to
243  * annotate critical sections the following rules need to be observed:
244  *
245  * * All code necessary to complete a &dma_fence must be annotated, from the
246  *   point where a fence is accessible to other threads, to the point where
247  *   dma_fence_signal() is called. Un-annotated code can contain deadlock issues,
248  *   and due to the very strict rules and many corner cases it is infeasible to
249  *   catch these just with review or normal stress testing.
250  *
251  * * &struct dma_resv deserves a special note, since the readers are only
252  *   protected by rcu. This means the signalling critical section starts as soon
253  *   as the new fences are installed, even before dma_resv_unlock() is called.
254  *
255  * * The only exception are fast paths and opportunistic signalling code, which
256  *   calls dma_fence_signal() purely as an optimization, but is not required to
257  *   guarantee completion of a &dma_fence. The usual example is a wait IOCTL
258  *   which calls dma_fence_signal(), while the mandatory completion path goes
259  *   through a hardware interrupt and possible job completion worker.
260  *
261  * * To aid composability of code, the annotations can be freely nested, as long
262  *   as the overall locking hierarchy is consistent. The annotations also work
263  *   both in interrupt and process context. Due to implementation details this
264  *   requires that callers pass an opaque cookie from
265  *   dma_fence_begin_signalling() to dma_fence_end_signalling().
266  *
267  * * Validation against the cross driver contract is implemented by priming
268  *   lockdep with the relevant hierarchy at boot-up. This means even just
269  *   testing with a single device is enough to validate a driver, at least as
270  *   far as deadlocks with dma_fence_wait() against dma_fence_signal() are
271  *   concerned.
272  */
273 #ifdef CONFIG_LOCKDEP
274 static struct lockdep_map dma_fence_lockdep_map = {
275 	.name = "dma_fence_map"
276 };
277 
278 /**
279  * dma_fence_begin_signalling - begin a critical DMA fence signalling section
280  *
281  * Drivers should use this to annotate the beginning of any code section
282  * required to eventually complete &dma_fence by calling dma_fence_signal().
283  *
284  * The end of these critical sections are annotated with
285  * dma_fence_end_signalling().
286  *
287  * Returns:
288  *
289  * Opaque cookie needed by the implementation, which needs to be passed to
290  * dma_fence_end_signalling().
291  */
292 bool dma_fence_begin_signalling(void)
293 {
294 	/* explicitly nesting ... */
295 	if (lock_is_held_type(&dma_fence_lockdep_map, 1))
296 		return true;
297 
298 	/* rely on might_sleep check for soft/hardirq locks */
299 	if (in_atomic())
300 		return true;
301 
302 	/* ... and non-recursive readlock */
303 	lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _RET_IP_);
304 
305 	return false;
306 }
307 EXPORT_SYMBOL(dma_fence_begin_signalling);
308 
309 /**
310  * dma_fence_end_signalling - end a critical DMA fence signalling section
311  * @cookie: opaque cookie from dma_fence_begin_signalling()
312  *
313  * Closes a critical section annotation opened by dma_fence_begin_signalling().
314  */
315 void dma_fence_end_signalling(bool cookie)
316 {
317 	if (cookie)
318 		return;
319 
320 	lock_release(&dma_fence_lockdep_map, _RET_IP_);
321 }
322 EXPORT_SYMBOL(dma_fence_end_signalling);
323 
324 void __dma_fence_might_wait(void)
325 {
326 	bool tmp;
327 
328 	tmp = lock_is_held_type(&dma_fence_lockdep_map, 1);
329 	if (tmp)
330 		lock_release(&dma_fence_lockdep_map, _THIS_IP_);
331 	lock_map_acquire(&dma_fence_lockdep_map);
332 	lock_map_release(&dma_fence_lockdep_map);
333 	if (tmp)
334 		lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _THIS_IP_);
335 }
336 #endif
337 
338 
339 /**
340  * dma_fence_signal_timestamp_locked - signal completion of a fence
341  * @fence: the fence to signal
342  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
343  *
344  * Signal completion for software callbacks on a fence, this will unblock
345  * dma_fence_wait() calls and run all the callbacks added with
346  * dma_fence_add_callback(). Can be called multiple times, but since a fence
347  * can only go from the unsignaled to the signaled state and not back, it will
348  * only be effective the first time. Set the timestamp provided as the fence
349  * signal timestamp.
350  *
351  * Unlike dma_fence_signal_timestamp(), this function must be called with
352  * &dma_fence.lock held.
353  *
354  * Returns 0 on success and a negative error value when @fence has been
355  * signalled already.
356  */
357 int dma_fence_signal_timestamp_locked(struct dma_fence *fence,
358 				      ktime_t timestamp)
359 {
360 	struct dma_fence_cb *cur, *tmp;
361 	struct list_head cb_list;
362 
363 	lockdep_assert_held(fence->lock);
364 
365 	if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
366 				      &fence->flags)))
367 		return -EINVAL;
368 
369 	/* Stash the cb_list before replacing it with the timestamp */
370 	list_replace(&fence->cb_list, &cb_list);
371 
372 	fence->timestamp = timestamp;
373 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
374 	trace_dma_fence_signaled(fence);
375 
376 	list_for_each_entry_safe(cur, tmp, &cb_list, node) {
377 		INIT_LIST_HEAD(&cur->node);
378 		cur->func(fence, cur);
379 	}
380 
381 	return 0;
382 }
383 EXPORT_SYMBOL(dma_fence_signal_timestamp_locked);
384 
385 /**
386  * dma_fence_signal_timestamp - signal completion of a fence
387  * @fence: the fence to signal
388  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
389  *
390  * Signal completion for software callbacks on a fence, this will unblock
391  * dma_fence_wait() calls and run all the callbacks added with
392  * dma_fence_add_callback(). Can be called multiple times, but since a fence
393  * can only go from the unsignaled to the signaled state and not back, it will
394  * only be effective the first time. Set the timestamp provided as the fence
395  * signal timestamp.
396  *
397  * Returns 0 on success and a negative error value when @fence has been
398  * signalled already.
399  */
400 int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp)
401 {
402 	unsigned long flags;
403 	int ret;
404 
405 	if (!fence)
406 		return -EINVAL;
407 
408 	spin_lock_irqsave(fence->lock, flags);
409 	ret = dma_fence_signal_timestamp_locked(fence, timestamp);
410 	spin_unlock_irqrestore(fence->lock, flags);
411 
412 	return ret;
413 }
414 EXPORT_SYMBOL(dma_fence_signal_timestamp);
415 
416 /**
417  * dma_fence_signal_locked - signal completion of a fence
418  * @fence: the fence to signal
419  *
420  * Signal completion for software callbacks on a fence, this will unblock
421  * dma_fence_wait() calls and run all the callbacks added with
422  * dma_fence_add_callback(). Can be called multiple times, but since a fence
423  * can only go from the unsignaled to the signaled state and not back, it will
424  * only be effective the first time.
425  *
426  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
427  * held.
428  *
429  * Returns 0 on success and a negative error value when @fence has been
430  * signalled already.
431  */
432 int dma_fence_signal_locked(struct dma_fence *fence)
433 {
434 	return dma_fence_signal_timestamp_locked(fence, ktime_get());
435 }
436 EXPORT_SYMBOL(dma_fence_signal_locked);
437 
438 /**
439  * dma_fence_signal - signal completion of a fence
440  * @fence: the fence to signal
441  *
442  * Signal completion for software callbacks on a fence, this will unblock
443  * dma_fence_wait() calls and run all the callbacks added with
444  * dma_fence_add_callback(). Can be called multiple times, but since a fence
445  * can only go from the unsignaled to the signaled state and not back, it will
446  * only be effective the first time.
447  *
448  * Returns 0 on success and a negative error value when @fence has been
449  * signalled already.
450  */
451 int dma_fence_signal(struct dma_fence *fence)
452 {
453 	unsigned long flags;
454 	int ret;
455 	bool tmp;
456 
457 	if (!fence)
458 		return -EINVAL;
459 
460 	tmp = dma_fence_begin_signalling();
461 
462 	spin_lock_irqsave(fence->lock, flags);
463 	ret = dma_fence_signal_timestamp_locked(fence, ktime_get());
464 	spin_unlock_irqrestore(fence->lock, flags);
465 
466 	dma_fence_end_signalling(tmp);
467 
468 	return ret;
469 }
470 EXPORT_SYMBOL(dma_fence_signal);
471 
472 /**
473  * dma_fence_wait_timeout - sleep until the fence gets signaled
474  * or until timeout elapses
475  * @fence: the fence to wait on
476  * @intr: if true, do an interruptible wait
477  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
478  *
479  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
480  * remaining timeout in jiffies on success. Other error values may be
481  * returned on custom implementations.
482  *
483  * Performs a synchronous wait on this fence. It is assumed the caller
484  * directly or indirectly (buf-mgr between reservation and committing)
485  * holds a reference to the fence, otherwise the fence might be
486  * freed before return, resulting in undefined behavior.
487  *
488  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
489  */
490 signed long
491 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
492 {
493 	signed long ret;
494 
495 	if (WARN_ON(timeout < 0))
496 		return -EINVAL;
497 
498 	might_sleep();
499 
500 	__dma_fence_might_wait();
501 
502 	trace_dma_fence_wait_start(fence);
503 	if (fence->ops->wait)
504 		ret = fence->ops->wait(fence, intr, timeout);
505 	else
506 		ret = dma_fence_default_wait(fence, intr, timeout);
507 	trace_dma_fence_wait_end(fence);
508 	return ret;
509 }
510 EXPORT_SYMBOL(dma_fence_wait_timeout);
511 
512 /**
513  * dma_fence_release - default relese function for fences
514  * @kref: &dma_fence.recfount
515  *
516  * This is the default release functions for &dma_fence. Drivers shouldn't call
517  * this directly, but instead call dma_fence_put().
518  */
519 void dma_fence_release(struct kref *kref)
520 {
521 	struct dma_fence *fence =
522 		container_of(kref, struct dma_fence, refcount);
523 
524 	trace_dma_fence_destroy(fence);
525 
526 	if (WARN(!list_empty(&fence->cb_list) &&
527 		 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
528 		 "Fence %s:%s:%llx:%llx released with pending signals!\n",
529 		 fence->ops->get_driver_name(fence),
530 		 fence->ops->get_timeline_name(fence),
531 		 fence->context, fence->seqno)) {
532 		unsigned long flags;
533 
534 		/*
535 		 * Failed to signal before release, likely a refcounting issue.
536 		 *
537 		 * This should never happen, but if it does make sure that we
538 		 * don't leave chains dangling. We set the error flag first
539 		 * so that the callbacks know this signal is due to an error.
540 		 */
541 		spin_lock_irqsave(fence->lock, flags);
542 		fence->error = -EDEADLK;
543 		dma_fence_signal_locked(fence);
544 		spin_unlock_irqrestore(fence->lock, flags);
545 	}
546 
547 	if (fence->ops->release)
548 		fence->ops->release(fence);
549 	else
550 		dma_fence_free(fence);
551 }
552 EXPORT_SYMBOL(dma_fence_release);
553 
554 /**
555  * dma_fence_free - default release function for &dma_fence.
556  * @fence: fence to release
557  *
558  * This is the default implementation for &dma_fence_ops.release. It calls
559  * kfree_rcu() on @fence.
560  */
561 void dma_fence_free(struct dma_fence *fence)
562 {
563 	kfree_rcu(fence, rcu);
564 }
565 EXPORT_SYMBOL(dma_fence_free);
566 
567 static bool __dma_fence_enable_signaling(struct dma_fence *fence)
568 {
569 	bool was_set;
570 
571 	lockdep_assert_held(fence->lock);
572 
573 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
574 				   &fence->flags);
575 
576 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
577 		return false;
578 
579 	if (!was_set && fence->ops->enable_signaling) {
580 		trace_dma_fence_enable_signal(fence);
581 
582 		if (!fence->ops->enable_signaling(fence)) {
583 			dma_fence_signal_locked(fence);
584 			return false;
585 		}
586 	}
587 
588 	return true;
589 }
590 
591 /**
592  * dma_fence_enable_sw_signaling - enable signaling on fence
593  * @fence: the fence to enable
594  *
595  * This will request for sw signaling to be enabled, to make the fence
596  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
597  * internally.
598  */
599 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
600 {
601 	unsigned long flags;
602 
603 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
604 		return;
605 
606 	spin_lock_irqsave(fence->lock, flags);
607 	__dma_fence_enable_signaling(fence);
608 	spin_unlock_irqrestore(fence->lock, flags);
609 }
610 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
611 
612 /**
613  * dma_fence_add_callback - add a callback to be called when the fence
614  * is signaled
615  * @fence: the fence to wait on
616  * @cb: the callback to register
617  * @func: the function to call
618  *
619  * @cb will be initialized by dma_fence_add_callback(), no initialization
620  * by the caller is required. Any number of callbacks can be registered
621  * to a fence, but a callback can only be registered to one fence at a time.
622  *
623  * Note that the callback can be called from an atomic context.  If
624  * fence is already signaled, this function will return -ENOENT (and
625  * *not* call the callback).
626  *
627  * Add a software callback to the fence. Same restrictions apply to
628  * refcount as it does to dma_fence_wait(), however the caller doesn't need to
629  * keep a refcount to fence afterward dma_fence_add_callback() has returned:
630  * when software access is enabled, the creator of the fence is required to keep
631  * the fence alive until after it signals with dma_fence_signal(). The callback
632  * itself can be called from irq context.
633  *
634  * Returns 0 in case of success, -ENOENT if the fence is already signaled
635  * and -EINVAL in case of error.
636  */
637 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
638 			   dma_fence_func_t func)
639 {
640 	unsigned long flags;
641 	int ret = 0;
642 
643 	if (WARN_ON(!fence || !func))
644 		return -EINVAL;
645 
646 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
647 		INIT_LIST_HEAD(&cb->node);
648 		return -ENOENT;
649 	}
650 
651 	spin_lock_irqsave(fence->lock, flags);
652 
653 	if (__dma_fence_enable_signaling(fence)) {
654 		cb->func = func;
655 		list_add_tail(&cb->node, &fence->cb_list);
656 	} else {
657 		INIT_LIST_HEAD(&cb->node);
658 		ret = -ENOENT;
659 	}
660 
661 	spin_unlock_irqrestore(fence->lock, flags);
662 
663 	return ret;
664 }
665 EXPORT_SYMBOL(dma_fence_add_callback);
666 
667 /**
668  * dma_fence_get_status - returns the status upon completion
669  * @fence: the dma_fence to query
670  *
671  * This wraps dma_fence_get_status_locked() to return the error status
672  * condition on a signaled fence. See dma_fence_get_status_locked() for more
673  * details.
674  *
675  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
676  * been signaled without an error condition, or a negative error code
677  * if the fence has been completed in err.
678  */
679 int dma_fence_get_status(struct dma_fence *fence)
680 {
681 	unsigned long flags;
682 	int status;
683 
684 	spin_lock_irqsave(fence->lock, flags);
685 	status = dma_fence_get_status_locked(fence);
686 	spin_unlock_irqrestore(fence->lock, flags);
687 
688 	return status;
689 }
690 EXPORT_SYMBOL(dma_fence_get_status);
691 
692 /**
693  * dma_fence_remove_callback - remove a callback from the signaling list
694  * @fence: the fence to wait on
695  * @cb: the callback to remove
696  *
697  * Remove a previously queued callback from the fence. This function returns
698  * true if the callback is successfully removed, or false if the fence has
699  * already been signaled.
700  *
701  * *WARNING*:
702  * Cancelling a callback should only be done if you really know what you're
703  * doing, since deadlocks and race conditions could occur all too easily. For
704  * this reason, it should only ever be done on hardware lockup recovery,
705  * with a reference held to the fence.
706  *
707  * Behaviour is undefined if @cb has not been added to @fence using
708  * dma_fence_add_callback() beforehand.
709  */
710 bool
711 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
712 {
713 	unsigned long flags;
714 	bool ret;
715 
716 	spin_lock_irqsave(fence->lock, flags);
717 
718 	ret = !list_empty(&cb->node);
719 	if (ret)
720 		list_del_init(&cb->node);
721 
722 	spin_unlock_irqrestore(fence->lock, flags);
723 
724 	return ret;
725 }
726 EXPORT_SYMBOL(dma_fence_remove_callback);
727 
728 struct default_wait_cb {
729 	struct dma_fence_cb base;
730 	struct task_struct *task;
731 };
732 
733 static void
734 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
735 {
736 	struct default_wait_cb *wait =
737 		container_of(cb, struct default_wait_cb, base);
738 
739 	wake_up_state(wait->task, TASK_NORMAL);
740 }
741 
742 /**
743  * dma_fence_default_wait - default sleep until the fence gets signaled
744  * or until timeout elapses
745  * @fence: the fence to wait on
746  * @intr: if true, do an interruptible wait
747  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
748  *
749  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
750  * remaining timeout in jiffies on success. If timeout is zero the value one is
751  * returned if the fence is already signaled for consistency with other
752  * functions taking a jiffies timeout.
753  */
754 signed long
755 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
756 {
757 	struct default_wait_cb cb;
758 	unsigned long flags;
759 	signed long ret = timeout ? timeout : 1;
760 
761 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
762 		return ret;
763 
764 	spin_lock_irqsave(fence->lock, flags);
765 
766 	if (intr && signal_pending(current)) {
767 		ret = -ERESTARTSYS;
768 		goto out;
769 	}
770 
771 	if (!__dma_fence_enable_signaling(fence))
772 		goto out;
773 
774 	if (!timeout) {
775 		ret = 0;
776 		goto out;
777 	}
778 
779 	cb.base.func = dma_fence_default_wait_cb;
780 	cb.task = current;
781 	list_add(&cb.base.node, &fence->cb_list);
782 
783 	while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
784 		if (intr)
785 			__set_current_state(TASK_INTERRUPTIBLE);
786 		else
787 			__set_current_state(TASK_UNINTERRUPTIBLE);
788 		spin_unlock_irqrestore(fence->lock, flags);
789 
790 		ret = schedule_timeout(ret);
791 
792 		spin_lock_irqsave(fence->lock, flags);
793 		if (ret > 0 && intr && signal_pending(current))
794 			ret = -ERESTARTSYS;
795 	}
796 
797 	if (!list_empty(&cb.base.node))
798 		list_del(&cb.base.node);
799 	__set_current_state(TASK_RUNNING);
800 
801 out:
802 	spin_unlock_irqrestore(fence->lock, flags);
803 	return ret;
804 }
805 EXPORT_SYMBOL(dma_fence_default_wait);
806 
807 static bool
808 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
809 			    uint32_t *idx)
810 {
811 	int i;
812 
813 	for (i = 0; i < count; ++i) {
814 		struct dma_fence *fence = fences[i];
815 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
816 			if (idx)
817 				*idx = i;
818 			return true;
819 		}
820 	}
821 	return false;
822 }
823 
824 /**
825  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
826  * or until timeout elapses
827  * @fences: array of fences to wait on
828  * @count: number of fences to wait on
829  * @intr: if true, do an interruptible wait
830  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
831  * @idx: used to store the first signaled fence index, meaningful only on
832  *	positive return
833  *
834  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
835  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
836  * on success.
837  *
838  * Synchronous waits for the first fence in the array to be signaled. The
839  * caller needs to hold a reference to all fences in the array, otherwise a
840  * fence might be freed before return, resulting in undefined behavior.
841  *
842  * See also dma_fence_wait() and dma_fence_wait_timeout().
843  */
844 signed long
845 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
846 			   bool intr, signed long timeout, uint32_t *idx)
847 {
848 	struct default_wait_cb *cb;
849 	signed long ret = timeout;
850 	unsigned i;
851 
852 	if (WARN_ON(!fences || !count || timeout < 0))
853 		return -EINVAL;
854 
855 	if (timeout == 0) {
856 		for (i = 0; i < count; ++i)
857 			if (dma_fence_is_signaled(fences[i])) {
858 				if (idx)
859 					*idx = i;
860 				return 1;
861 			}
862 
863 		return 0;
864 	}
865 
866 	cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
867 	if (cb == NULL) {
868 		ret = -ENOMEM;
869 		goto err_free_cb;
870 	}
871 
872 	for (i = 0; i < count; ++i) {
873 		struct dma_fence *fence = fences[i];
874 
875 		cb[i].task = current;
876 		if (dma_fence_add_callback(fence, &cb[i].base,
877 					   dma_fence_default_wait_cb)) {
878 			/* This fence is already signaled */
879 			if (idx)
880 				*idx = i;
881 			goto fence_rm_cb;
882 		}
883 	}
884 
885 	while (ret > 0) {
886 		if (intr)
887 			set_current_state(TASK_INTERRUPTIBLE);
888 		else
889 			set_current_state(TASK_UNINTERRUPTIBLE);
890 
891 		if (dma_fence_test_signaled_any(fences, count, idx))
892 			break;
893 
894 		ret = schedule_timeout(ret);
895 
896 		if (ret > 0 && intr && signal_pending(current))
897 			ret = -ERESTARTSYS;
898 	}
899 
900 	__set_current_state(TASK_RUNNING);
901 
902 fence_rm_cb:
903 	while (i-- > 0)
904 		dma_fence_remove_callback(fences[i], &cb[i].base);
905 
906 err_free_cb:
907 	kfree(cb);
908 
909 	return ret;
910 }
911 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
912 
913 /**
914  * dma_fence_init - Initialize a custom fence.
915  * @fence: the fence to initialize
916  * @ops: the dma_fence_ops for operations on this fence
917  * @lock: the irqsafe spinlock to use for locking this fence
918  * @context: the execution context this fence is run on
919  * @seqno: a linear increasing sequence number for this context
920  *
921  * Initializes an allocated fence, the caller doesn't have to keep its
922  * refcount after committing with this fence, but it will need to hold a
923  * refcount again if &dma_fence_ops.enable_signaling gets called.
924  *
925  * context and seqno are used for easy comparison between fences, allowing
926  * to check which fence is later by simply using dma_fence_later().
927  */
928 void
929 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
930 	       spinlock_t *lock, u64 context, u64 seqno)
931 {
932 	BUG_ON(!lock);
933 	BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
934 
935 	kref_init(&fence->refcount);
936 	fence->ops = ops;
937 	INIT_LIST_HEAD(&fence->cb_list);
938 	fence->lock = lock;
939 	fence->context = context;
940 	fence->seqno = seqno;
941 	fence->flags = 0UL;
942 	fence->error = 0;
943 
944 	trace_dma_fence_init(fence);
945 }
946 EXPORT_SYMBOL(dma_fence_init);
947