xref: /openbmc/linux/drivers/dma-buf/dma-fence.c (revision 9726bfcd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Fence mechanism for dma-buf and to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/atomic.h>
16 #include <linux/dma-fence.h>
17 #include <linux/sched/signal.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/dma_fence.h>
21 
22 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
23 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
24 EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
25 
26 static DEFINE_SPINLOCK(dma_fence_stub_lock);
27 static struct dma_fence dma_fence_stub;
28 
29 /*
30  * fence context counter: each execution context should have its own
31  * fence context, this allows checking if fences belong to the same
32  * context or not. One device can have multiple separate contexts,
33  * and they're used if some engine can run independently of another.
34  */
35 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
36 
37 /**
38  * DOC: DMA fences overview
39  *
40  * DMA fences, represented by &struct dma_fence, are the kernel internal
41  * synchronization primitive for DMA operations like GPU rendering, video
42  * encoding/decoding, or displaying buffers on a screen.
43  *
44  * A fence is initialized using dma_fence_init() and completed using
45  * dma_fence_signal(). Fences are associated with a context, allocated through
46  * dma_fence_context_alloc(), and all fences on the same context are
47  * fully ordered.
48  *
49  * Since the purposes of fences is to facilitate cross-device and
50  * cross-application synchronization, there's multiple ways to use one:
51  *
52  * - Individual fences can be exposed as a &sync_file, accessed as a file
53  *   descriptor from userspace, created by calling sync_file_create(). This is
54  *   called explicit fencing, since userspace passes around explicit
55  *   synchronization points.
56  *
57  * - Some subsystems also have their own explicit fencing primitives, like
58  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
59  *   fence to be updated.
60  *
61  * - Then there's also implicit fencing, where the synchronization points are
62  *   implicitly passed around as part of shared &dma_buf instances. Such
63  *   implicit fences are stored in &struct reservation_object through the
64  *   &dma_buf.resv pointer.
65  */
66 
67 static const char *dma_fence_stub_get_name(struct dma_fence *fence)
68 {
69         return "stub";
70 }
71 
72 static const struct dma_fence_ops dma_fence_stub_ops = {
73 	.get_driver_name = dma_fence_stub_get_name,
74 	.get_timeline_name = dma_fence_stub_get_name,
75 };
76 
77 /**
78  * dma_fence_get_stub - return a signaled fence
79  *
80  * Return a stub fence which is already signaled.
81  */
82 struct dma_fence *dma_fence_get_stub(void)
83 {
84 	spin_lock(&dma_fence_stub_lock);
85 	if (!dma_fence_stub.ops) {
86 		dma_fence_init(&dma_fence_stub,
87 			       &dma_fence_stub_ops,
88 			       &dma_fence_stub_lock,
89 			       0, 0);
90 		dma_fence_signal_locked(&dma_fence_stub);
91 	}
92 	spin_unlock(&dma_fence_stub_lock);
93 
94 	return dma_fence_get(&dma_fence_stub);
95 }
96 EXPORT_SYMBOL(dma_fence_get_stub);
97 
98 /**
99  * dma_fence_context_alloc - allocate an array of fence contexts
100  * @num: amount of contexts to allocate
101  *
102  * This function will return the first index of the number of fence contexts
103  * allocated.  The fence context is used for setting &dma_fence.context to a
104  * unique number by passing the context to dma_fence_init().
105  */
106 u64 dma_fence_context_alloc(unsigned num)
107 {
108 	WARN_ON(!num);
109 	return atomic64_add_return(num, &dma_fence_context_counter) - num;
110 }
111 EXPORT_SYMBOL(dma_fence_context_alloc);
112 
113 /**
114  * dma_fence_signal_locked - signal completion of a fence
115  * @fence: the fence to signal
116  *
117  * Signal completion for software callbacks on a fence, this will unblock
118  * dma_fence_wait() calls and run all the callbacks added with
119  * dma_fence_add_callback(). Can be called multiple times, but since a fence
120  * can only go from the unsignaled to the signaled state and not back, it will
121  * only be effective the first time.
122  *
123  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
124  * held.
125  *
126  * Returns 0 on success and a negative error value when @fence has been
127  * signalled already.
128  */
129 int dma_fence_signal_locked(struct dma_fence *fence)
130 {
131 	struct dma_fence_cb *cur, *tmp;
132 	int ret = 0;
133 
134 	lockdep_assert_held(fence->lock);
135 
136 	if (WARN_ON(!fence))
137 		return -EINVAL;
138 
139 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
140 		ret = -EINVAL;
141 
142 		/*
143 		 * we might have raced with the unlocked dma_fence_signal,
144 		 * still run through all callbacks
145 		 */
146 	} else {
147 		fence->timestamp = ktime_get();
148 		set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
149 		trace_dma_fence_signaled(fence);
150 	}
151 
152 	list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
153 		list_del_init(&cur->node);
154 		cur->func(fence, cur);
155 	}
156 	return ret;
157 }
158 EXPORT_SYMBOL(dma_fence_signal_locked);
159 
160 /**
161  * dma_fence_signal - signal completion of a fence
162  * @fence: the fence to signal
163  *
164  * Signal completion for software callbacks on a fence, this will unblock
165  * dma_fence_wait() calls and run all the callbacks added with
166  * dma_fence_add_callback(). Can be called multiple times, but since a fence
167  * can only go from the unsignaled to the signaled state and not back, it will
168  * only be effective the first time.
169  *
170  * Returns 0 on success and a negative error value when @fence has been
171  * signalled already.
172  */
173 int dma_fence_signal(struct dma_fence *fence)
174 {
175 	unsigned long flags;
176 
177 	if (!fence)
178 		return -EINVAL;
179 
180 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
181 		return -EINVAL;
182 
183 	fence->timestamp = ktime_get();
184 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
185 	trace_dma_fence_signaled(fence);
186 
187 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
188 		struct dma_fence_cb *cur, *tmp;
189 
190 		spin_lock_irqsave(fence->lock, flags);
191 		list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
192 			list_del_init(&cur->node);
193 			cur->func(fence, cur);
194 		}
195 		spin_unlock_irqrestore(fence->lock, flags);
196 	}
197 	return 0;
198 }
199 EXPORT_SYMBOL(dma_fence_signal);
200 
201 /**
202  * dma_fence_wait_timeout - sleep until the fence gets signaled
203  * or until timeout elapses
204  * @fence: the fence to wait on
205  * @intr: if true, do an interruptible wait
206  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
207  *
208  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
209  * remaining timeout in jiffies on success. Other error values may be
210  * returned on custom implementations.
211  *
212  * Performs a synchronous wait on this fence. It is assumed the caller
213  * directly or indirectly (buf-mgr between reservation and committing)
214  * holds a reference to the fence, otherwise the fence might be
215  * freed before return, resulting in undefined behavior.
216  *
217  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
218  */
219 signed long
220 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
221 {
222 	signed long ret;
223 
224 	if (WARN_ON(timeout < 0))
225 		return -EINVAL;
226 
227 	trace_dma_fence_wait_start(fence);
228 	if (fence->ops->wait)
229 		ret = fence->ops->wait(fence, intr, timeout);
230 	else
231 		ret = dma_fence_default_wait(fence, intr, timeout);
232 	trace_dma_fence_wait_end(fence);
233 	return ret;
234 }
235 EXPORT_SYMBOL(dma_fence_wait_timeout);
236 
237 /**
238  * dma_fence_release - default relese function for fences
239  * @kref: &dma_fence.recfount
240  *
241  * This is the default release functions for &dma_fence. Drivers shouldn't call
242  * this directly, but instead call dma_fence_put().
243  */
244 void dma_fence_release(struct kref *kref)
245 {
246 	struct dma_fence *fence =
247 		container_of(kref, struct dma_fence, refcount);
248 
249 	trace_dma_fence_destroy(fence);
250 
251 	if (WARN(!list_empty(&fence->cb_list),
252 		 "Fence %s:%s:%llx:%llx released with pending signals!\n",
253 		 fence->ops->get_driver_name(fence),
254 		 fence->ops->get_timeline_name(fence),
255 		 fence->context, fence->seqno)) {
256 		unsigned long flags;
257 
258 		/*
259 		 * Failed to signal before release, likely a refcounting issue.
260 		 *
261 		 * This should never happen, but if it does make sure that we
262 		 * don't leave chains dangling. We set the error flag first
263 		 * so that the callbacks know this signal is due to an error.
264 		 */
265 		spin_lock_irqsave(fence->lock, flags);
266 		fence->error = -EDEADLK;
267 		dma_fence_signal_locked(fence);
268 		spin_unlock_irqrestore(fence->lock, flags);
269 	}
270 
271 	if (fence->ops->release)
272 		fence->ops->release(fence);
273 	else
274 		dma_fence_free(fence);
275 }
276 EXPORT_SYMBOL(dma_fence_release);
277 
278 /**
279  * dma_fence_free - default release function for &dma_fence.
280  * @fence: fence to release
281  *
282  * This is the default implementation for &dma_fence_ops.release. It calls
283  * kfree_rcu() on @fence.
284  */
285 void dma_fence_free(struct dma_fence *fence)
286 {
287 	kfree_rcu(fence, rcu);
288 }
289 EXPORT_SYMBOL(dma_fence_free);
290 
291 /**
292  * dma_fence_enable_sw_signaling - enable signaling on fence
293  * @fence: the fence to enable
294  *
295  * This will request for sw signaling to be enabled, to make the fence
296  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
297  * internally.
298  */
299 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
300 {
301 	unsigned long flags;
302 
303 	if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
304 			      &fence->flags) &&
305 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) &&
306 	    fence->ops->enable_signaling) {
307 		trace_dma_fence_enable_signal(fence);
308 
309 		spin_lock_irqsave(fence->lock, flags);
310 
311 		if (!fence->ops->enable_signaling(fence))
312 			dma_fence_signal_locked(fence);
313 
314 		spin_unlock_irqrestore(fence->lock, flags);
315 	}
316 }
317 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
318 
319 /**
320  * dma_fence_add_callback - add a callback to be called when the fence
321  * is signaled
322  * @fence: the fence to wait on
323  * @cb: the callback to register
324  * @func: the function to call
325  *
326  * @cb will be initialized by dma_fence_add_callback(), no initialization
327  * by the caller is required. Any number of callbacks can be registered
328  * to a fence, but a callback can only be registered to one fence at a time.
329  *
330  * Note that the callback can be called from an atomic context.  If
331  * fence is already signaled, this function will return -ENOENT (and
332  * *not* call the callback).
333  *
334  * Add a software callback to the fence. Same restrictions apply to
335  * refcount as it does to dma_fence_wait(), however the caller doesn't need to
336  * keep a refcount to fence afterward dma_fence_add_callback() has returned:
337  * when software access is enabled, the creator of the fence is required to keep
338  * the fence alive until after it signals with dma_fence_signal(). The callback
339  * itself can be called from irq context.
340  *
341  * Returns 0 in case of success, -ENOENT if the fence is already signaled
342  * and -EINVAL in case of error.
343  */
344 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
345 			   dma_fence_func_t func)
346 {
347 	unsigned long flags;
348 	int ret = 0;
349 	bool was_set;
350 
351 	if (WARN_ON(!fence || !func))
352 		return -EINVAL;
353 
354 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
355 		INIT_LIST_HEAD(&cb->node);
356 		return -ENOENT;
357 	}
358 
359 	spin_lock_irqsave(fence->lock, flags);
360 
361 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
362 				   &fence->flags);
363 
364 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
365 		ret = -ENOENT;
366 	else if (!was_set && fence->ops->enable_signaling) {
367 		trace_dma_fence_enable_signal(fence);
368 
369 		if (!fence->ops->enable_signaling(fence)) {
370 			dma_fence_signal_locked(fence);
371 			ret = -ENOENT;
372 		}
373 	}
374 
375 	if (!ret) {
376 		cb->func = func;
377 		list_add_tail(&cb->node, &fence->cb_list);
378 	} else
379 		INIT_LIST_HEAD(&cb->node);
380 	spin_unlock_irqrestore(fence->lock, flags);
381 
382 	return ret;
383 }
384 EXPORT_SYMBOL(dma_fence_add_callback);
385 
386 /**
387  * dma_fence_get_status - returns the status upon completion
388  * @fence: the dma_fence to query
389  *
390  * This wraps dma_fence_get_status_locked() to return the error status
391  * condition on a signaled fence. See dma_fence_get_status_locked() for more
392  * details.
393  *
394  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
395  * been signaled without an error condition, or a negative error code
396  * if the fence has been completed in err.
397  */
398 int dma_fence_get_status(struct dma_fence *fence)
399 {
400 	unsigned long flags;
401 	int status;
402 
403 	spin_lock_irqsave(fence->lock, flags);
404 	status = dma_fence_get_status_locked(fence);
405 	spin_unlock_irqrestore(fence->lock, flags);
406 
407 	return status;
408 }
409 EXPORT_SYMBOL(dma_fence_get_status);
410 
411 /**
412  * dma_fence_remove_callback - remove a callback from the signaling list
413  * @fence: the fence to wait on
414  * @cb: the callback to remove
415  *
416  * Remove a previously queued callback from the fence. This function returns
417  * true if the callback is successfully removed, or false if the fence has
418  * already been signaled.
419  *
420  * *WARNING*:
421  * Cancelling a callback should only be done if you really know what you're
422  * doing, since deadlocks and race conditions could occur all too easily. For
423  * this reason, it should only ever be done on hardware lockup recovery,
424  * with a reference held to the fence.
425  *
426  * Behaviour is undefined if @cb has not been added to @fence using
427  * dma_fence_add_callback() beforehand.
428  */
429 bool
430 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
431 {
432 	unsigned long flags;
433 	bool ret;
434 
435 	spin_lock_irqsave(fence->lock, flags);
436 
437 	ret = !list_empty(&cb->node);
438 	if (ret)
439 		list_del_init(&cb->node);
440 
441 	spin_unlock_irqrestore(fence->lock, flags);
442 
443 	return ret;
444 }
445 EXPORT_SYMBOL(dma_fence_remove_callback);
446 
447 struct default_wait_cb {
448 	struct dma_fence_cb base;
449 	struct task_struct *task;
450 };
451 
452 static void
453 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
454 {
455 	struct default_wait_cb *wait =
456 		container_of(cb, struct default_wait_cb, base);
457 
458 	wake_up_state(wait->task, TASK_NORMAL);
459 }
460 
461 /**
462  * dma_fence_default_wait - default sleep until the fence gets signaled
463  * or until timeout elapses
464  * @fence: the fence to wait on
465  * @intr: if true, do an interruptible wait
466  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
467  *
468  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
469  * remaining timeout in jiffies on success. If timeout is zero the value one is
470  * returned if the fence is already signaled for consistency with other
471  * functions taking a jiffies timeout.
472  */
473 signed long
474 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
475 {
476 	struct default_wait_cb cb;
477 	unsigned long flags;
478 	signed long ret = timeout ? timeout : 1;
479 	bool was_set;
480 
481 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
482 		return ret;
483 
484 	spin_lock_irqsave(fence->lock, flags);
485 
486 	if (intr && signal_pending(current)) {
487 		ret = -ERESTARTSYS;
488 		goto out;
489 	}
490 
491 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
492 				   &fence->flags);
493 
494 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
495 		goto out;
496 
497 	if (!was_set && fence->ops->enable_signaling) {
498 		trace_dma_fence_enable_signal(fence);
499 
500 		if (!fence->ops->enable_signaling(fence)) {
501 			dma_fence_signal_locked(fence);
502 			goto out;
503 		}
504 	}
505 
506 	if (!timeout) {
507 		ret = 0;
508 		goto out;
509 	}
510 
511 	cb.base.func = dma_fence_default_wait_cb;
512 	cb.task = current;
513 	list_add(&cb.base.node, &fence->cb_list);
514 
515 	while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
516 		if (intr)
517 			__set_current_state(TASK_INTERRUPTIBLE);
518 		else
519 			__set_current_state(TASK_UNINTERRUPTIBLE);
520 		spin_unlock_irqrestore(fence->lock, flags);
521 
522 		ret = schedule_timeout(ret);
523 
524 		spin_lock_irqsave(fence->lock, flags);
525 		if (ret > 0 && intr && signal_pending(current))
526 			ret = -ERESTARTSYS;
527 	}
528 
529 	if (!list_empty(&cb.base.node))
530 		list_del(&cb.base.node);
531 	__set_current_state(TASK_RUNNING);
532 
533 out:
534 	spin_unlock_irqrestore(fence->lock, flags);
535 	return ret;
536 }
537 EXPORT_SYMBOL(dma_fence_default_wait);
538 
539 static bool
540 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
541 			    uint32_t *idx)
542 {
543 	int i;
544 
545 	for (i = 0; i < count; ++i) {
546 		struct dma_fence *fence = fences[i];
547 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
548 			if (idx)
549 				*idx = i;
550 			return true;
551 		}
552 	}
553 	return false;
554 }
555 
556 /**
557  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
558  * or until timeout elapses
559  * @fences: array of fences to wait on
560  * @count: number of fences to wait on
561  * @intr: if true, do an interruptible wait
562  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
563  * @idx: used to store the first signaled fence index, meaningful only on
564  *	positive return
565  *
566  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
567  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
568  * on success.
569  *
570  * Synchronous waits for the first fence in the array to be signaled. The
571  * caller needs to hold a reference to all fences in the array, otherwise a
572  * fence might be freed before return, resulting in undefined behavior.
573  *
574  * See also dma_fence_wait() and dma_fence_wait_timeout().
575  */
576 signed long
577 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
578 			   bool intr, signed long timeout, uint32_t *idx)
579 {
580 	struct default_wait_cb *cb;
581 	signed long ret = timeout;
582 	unsigned i;
583 
584 	if (WARN_ON(!fences || !count || timeout < 0))
585 		return -EINVAL;
586 
587 	if (timeout == 0) {
588 		for (i = 0; i < count; ++i)
589 			if (dma_fence_is_signaled(fences[i])) {
590 				if (idx)
591 					*idx = i;
592 				return 1;
593 			}
594 
595 		return 0;
596 	}
597 
598 	cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
599 	if (cb == NULL) {
600 		ret = -ENOMEM;
601 		goto err_free_cb;
602 	}
603 
604 	for (i = 0; i < count; ++i) {
605 		struct dma_fence *fence = fences[i];
606 
607 		cb[i].task = current;
608 		if (dma_fence_add_callback(fence, &cb[i].base,
609 					   dma_fence_default_wait_cb)) {
610 			/* This fence is already signaled */
611 			if (idx)
612 				*idx = i;
613 			goto fence_rm_cb;
614 		}
615 	}
616 
617 	while (ret > 0) {
618 		if (intr)
619 			set_current_state(TASK_INTERRUPTIBLE);
620 		else
621 			set_current_state(TASK_UNINTERRUPTIBLE);
622 
623 		if (dma_fence_test_signaled_any(fences, count, idx))
624 			break;
625 
626 		ret = schedule_timeout(ret);
627 
628 		if (ret > 0 && intr && signal_pending(current))
629 			ret = -ERESTARTSYS;
630 	}
631 
632 	__set_current_state(TASK_RUNNING);
633 
634 fence_rm_cb:
635 	while (i-- > 0)
636 		dma_fence_remove_callback(fences[i], &cb[i].base);
637 
638 err_free_cb:
639 	kfree(cb);
640 
641 	return ret;
642 }
643 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
644 
645 /**
646  * dma_fence_init - Initialize a custom fence.
647  * @fence: the fence to initialize
648  * @ops: the dma_fence_ops for operations on this fence
649  * @lock: the irqsafe spinlock to use for locking this fence
650  * @context: the execution context this fence is run on
651  * @seqno: a linear increasing sequence number for this context
652  *
653  * Initializes an allocated fence, the caller doesn't have to keep its
654  * refcount after committing with this fence, but it will need to hold a
655  * refcount again if &dma_fence_ops.enable_signaling gets called.
656  *
657  * context and seqno are used for easy comparison between fences, allowing
658  * to check which fence is later by simply using dma_fence_later().
659  */
660 void
661 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
662 	       spinlock_t *lock, u64 context, u64 seqno)
663 {
664 	BUG_ON(!lock);
665 	BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
666 
667 	kref_init(&fence->refcount);
668 	fence->ops = ops;
669 	INIT_LIST_HEAD(&fence->cb_list);
670 	fence->lock = lock;
671 	fence->context = context;
672 	fence->seqno = seqno;
673 	fence->flags = 0UL;
674 	fence->error = 0;
675 
676 	trace_dma_fence_init(fence);
677 }
678 EXPORT_SYMBOL(dma_fence_init);
679