xref: /openbmc/linux/drivers/dma-buf/dma-fence.c (revision 74a22e8f)
1 /*
2  * Fence mechanism for dma-buf and to allow for asynchronous dma access
3  *
4  * Copyright (C) 2012 Canonical Ltd
5  * Copyright (C) 2012 Texas Instruments
6  *
7  * Authors:
8  * Rob Clark <robdclark@gmail.com>
9  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License version 2 as published by
13  * the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/export.h>
23 #include <linux/atomic.h>
24 #include <linux/dma-fence.h>
25 #include <linux/sched/signal.h>
26 
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/dma_fence.h>
29 
30 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
31 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
32 EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
33 
34 static DEFINE_SPINLOCK(dma_fence_stub_lock);
35 static struct dma_fence dma_fence_stub;
36 
37 /*
38  * fence context counter: each execution context should have its own
39  * fence context, this allows checking if fences belong to the same
40  * context or not. One device can have multiple separate contexts,
41  * and they're used if some engine can run independently of another.
42  */
43 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
44 
45 /**
46  * DOC: DMA fences overview
47  *
48  * DMA fences, represented by &struct dma_fence, are the kernel internal
49  * synchronization primitive for DMA operations like GPU rendering, video
50  * encoding/decoding, or displaying buffers on a screen.
51  *
52  * A fence is initialized using dma_fence_init() and completed using
53  * dma_fence_signal(). Fences are associated with a context, allocated through
54  * dma_fence_context_alloc(), and all fences on the same context are
55  * fully ordered.
56  *
57  * Since the purposes of fences is to facilitate cross-device and
58  * cross-application synchronization, there's multiple ways to use one:
59  *
60  * - Individual fences can be exposed as a &sync_file, accessed as a file
61  *   descriptor from userspace, created by calling sync_file_create(). This is
62  *   called explicit fencing, since userspace passes around explicit
63  *   synchronization points.
64  *
65  * - Some subsystems also have their own explicit fencing primitives, like
66  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
67  *   fence to be updated.
68  *
69  * - Then there's also implicit fencing, where the synchronization points are
70  *   implicitly passed around as part of shared &dma_buf instances. Such
71  *   implicit fences are stored in &struct reservation_object through the
72  *   &dma_buf.resv pointer.
73  */
74 
75 static const char *dma_fence_stub_get_name(struct dma_fence *fence)
76 {
77         return "stub";
78 }
79 
80 static const struct dma_fence_ops dma_fence_stub_ops = {
81 	.get_driver_name = dma_fence_stub_get_name,
82 	.get_timeline_name = dma_fence_stub_get_name,
83 };
84 
85 /**
86  * dma_fence_get_stub - return a signaled fence
87  *
88  * Return a stub fence which is already signaled.
89  */
90 struct dma_fence *dma_fence_get_stub(void)
91 {
92 	spin_lock(&dma_fence_stub_lock);
93 	if (!dma_fence_stub.ops) {
94 		dma_fence_init(&dma_fence_stub,
95 			       &dma_fence_stub_ops,
96 			       &dma_fence_stub_lock,
97 			       0, 0);
98 		dma_fence_signal_locked(&dma_fence_stub);
99 	}
100 	spin_unlock(&dma_fence_stub_lock);
101 
102 	return dma_fence_get(&dma_fence_stub);
103 }
104 EXPORT_SYMBOL(dma_fence_get_stub);
105 
106 /**
107  * dma_fence_context_alloc - allocate an array of fence contexts
108  * @num: amount of contexts to allocate
109  *
110  * This function will return the first index of the number of fence contexts
111  * allocated.  The fence context is used for setting &dma_fence.context to a
112  * unique number by passing the context to dma_fence_init().
113  */
114 u64 dma_fence_context_alloc(unsigned num)
115 {
116 	WARN_ON(!num);
117 	return atomic64_add_return(num, &dma_fence_context_counter) - num;
118 }
119 EXPORT_SYMBOL(dma_fence_context_alloc);
120 
121 /**
122  * dma_fence_signal_locked - signal completion of a fence
123  * @fence: the fence to signal
124  *
125  * Signal completion for software callbacks on a fence, this will unblock
126  * dma_fence_wait() calls and run all the callbacks added with
127  * dma_fence_add_callback(). Can be called multiple times, but since a fence
128  * can only go from the unsignaled to the signaled state and not back, it will
129  * only be effective the first time.
130  *
131  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
132  * held.
133  *
134  * Returns 0 on success and a negative error value when @fence has been
135  * signalled already.
136  */
137 int dma_fence_signal_locked(struct dma_fence *fence)
138 {
139 	struct dma_fence_cb *cur, *tmp;
140 	int ret = 0;
141 
142 	lockdep_assert_held(fence->lock);
143 
144 	if (WARN_ON(!fence))
145 		return -EINVAL;
146 
147 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
148 		ret = -EINVAL;
149 
150 		/*
151 		 * we might have raced with the unlocked dma_fence_signal,
152 		 * still run through all callbacks
153 		 */
154 	} else {
155 		fence->timestamp = ktime_get();
156 		set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
157 		trace_dma_fence_signaled(fence);
158 	}
159 
160 	list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
161 		list_del_init(&cur->node);
162 		cur->func(fence, cur);
163 	}
164 	return ret;
165 }
166 EXPORT_SYMBOL(dma_fence_signal_locked);
167 
168 /**
169  * dma_fence_signal - signal completion of a fence
170  * @fence: the fence to signal
171  *
172  * Signal completion for software callbacks on a fence, this will unblock
173  * dma_fence_wait() calls and run all the callbacks added with
174  * dma_fence_add_callback(). Can be called multiple times, but since a fence
175  * can only go from the unsignaled to the signaled state and not back, it will
176  * only be effective the first time.
177  *
178  * Returns 0 on success and a negative error value when @fence has been
179  * signalled already.
180  */
181 int dma_fence_signal(struct dma_fence *fence)
182 {
183 	unsigned long flags;
184 
185 	if (!fence)
186 		return -EINVAL;
187 
188 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
189 		return -EINVAL;
190 
191 	fence->timestamp = ktime_get();
192 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
193 	trace_dma_fence_signaled(fence);
194 
195 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
196 		struct dma_fence_cb *cur, *tmp;
197 
198 		spin_lock_irqsave(fence->lock, flags);
199 		list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
200 			list_del_init(&cur->node);
201 			cur->func(fence, cur);
202 		}
203 		spin_unlock_irqrestore(fence->lock, flags);
204 	}
205 	return 0;
206 }
207 EXPORT_SYMBOL(dma_fence_signal);
208 
209 /**
210  * dma_fence_wait_timeout - sleep until the fence gets signaled
211  * or until timeout elapses
212  * @fence: the fence to wait on
213  * @intr: if true, do an interruptible wait
214  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
215  *
216  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
217  * remaining timeout in jiffies on success. Other error values may be
218  * returned on custom implementations.
219  *
220  * Performs a synchronous wait on this fence. It is assumed the caller
221  * directly or indirectly (buf-mgr between reservation and committing)
222  * holds a reference to the fence, otherwise the fence might be
223  * freed before return, resulting in undefined behavior.
224  *
225  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
226  */
227 signed long
228 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
229 {
230 	signed long ret;
231 
232 	if (WARN_ON(timeout < 0))
233 		return -EINVAL;
234 
235 	trace_dma_fence_wait_start(fence);
236 	if (fence->ops->wait)
237 		ret = fence->ops->wait(fence, intr, timeout);
238 	else
239 		ret = dma_fence_default_wait(fence, intr, timeout);
240 	trace_dma_fence_wait_end(fence);
241 	return ret;
242 }
243 EXPORT_SYMBOL(dma_fence_wait_timeout);
244 
245 /**
246  * dma_fence_release - default relese function for fences
247  * @kref: &dma_fence.recfount
248  *
249  * This is the default release functions for &dma_fence. Drivers shouldn't call
250  * this directly, but instead call dma_fence_put().
251  */
252 void dma_fence_release(struct kref *kref)
253 {
254 	struct dma_fence *fence =
255 		container_of(kref, struct dma_fence, refcount);
256 
257 	trace_dma_fence_destroy(fence);
258 
259 	/* Failed to signal before release, could be a refcounting issue */
260 	WARN_ON(!list_empty(&fence->cb_list));
261 
262 	if (fence->ops->release)
263 		fence->ops->release(fence);
264 	else
265 		dma_fence_free(fence);
266 }
267 EXPORT_SYMBOL(dma_fence_release);
268 
269 /**
270  * dma_fence_free - default release function for &dma_fence.
271  * @fence: fence to release
272  *
273  * This is the default implementation for &dma_fence_ops.release. It calls
274  * kfree_rcu() on @fence.
275  */
276 void dma_fence_free(struct dma_fence *fence)
277 {
278 	kfree_rcu(fence, rcu);
279 }
280 EXPORT_SYMBOL(dma_fence_free);
281 
282 /**
283  * dma_fence_enable_sw_signaling - enable signaling on fence
284  * @fence: the fence to enable
285  *
286  * This will request for sw signaling to be enabled, to make the fence
287  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
288  * internally.
289  */
290 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
291 {
292 	unsigned long flags;
293 
294 	if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
295 			      &fence->flags) &&
296 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) &&
297 	    fence->ops->enable_signaling) {
298 		trace_dma_fence_enable_signal(fence);
299 
300 		spin_lock_irqsave(fence->lock, flags);
301 
302 		if (!fence->ops->enable_signaling(fence))
303 			dma_fence_signal_locked(fence);
304 
305 		spin_unlock_irqrestore(fence->lock, flags);
306 	}
307 }
308 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
309 
310 /**
311  * dma_fence_add_callback - add a callback to be called when the fence
312  * is signaled
313  * @fence: the fence to wait on
314  * @cb: the callback to register
315  * @func: the function to call
316  *
317  * @cb will be initialized by dma_fence_add_callback(), no initialization
318  * by the caller is required. Any number of callbacks can be registered
319  * to a fence, but a callback can only be registered to one fence at a time.
320  *
321  * Note that the callback can be called from an atomic context.  If
322  * fence is already signaled, this function will return -ENOENT (and
323  * *not* call the callback).
324  *
325  * Add a software callback to the fence. Same restrictions apply to
326  * refcount as it does to dma_fence_wait(), however the caller doesn't need to
327  * keep a refcount to fence afterward dma_fence_add_callback() has returned:
328  * when software access is enabled, the creator of the fence is required to keep
329  * the fence alive until after it signals with dma_fence_signal(). The callback
330  * itself can be called from irq context.
331  *
332  * Returns 0 in case of success, -ENOENT if the fence is already signaled
333  * and -EINVAL in case of error.
334  */
335 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
336 			   dma_fence_func_t func)
337 {
338 	unsigned long flags;
339 	int ret = 0;
340 	bool was_set;
341 
342 	if (WARN_ON(!fence || !func))
343 		return -EINVAL;
344 
345 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
346 		INIT_LIST_HEAD(&cb->node);
347 		return -ENOENT;
348 	}
349 
350 	spin_lock_irqsave(fence->lock, flags);
351 
352 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
353 				   &fence->flags);
354 
355 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
356 		ret = -ENOENT;
357 	else if (!was_set && fence->ops->enable_signaling) {
358 		trace_dma_fence_enable_signal(fence);
359 
360 		if (!fence->ops->enable_signaling(fence)) {
361 			dma_fence_signal_locked(fence);
362 			ret = -ENOENT;
363 		}
364 	}
365 
366 	if (!ret) {
367 		cb->func = func;
368 		list_add_tail(&cb->node, &fence->cb_list);
369 	} else
370 		INIT_LIST_HEAD(&cb->node);
371 	spin_unlock_irqrestore(fence->lock, flags);
372 
373 	return ret;
374 }
375 EXPORT_SYMBOL(dma_fence_add_callback);
376 
377 /**
378  * dma_fence_get_status - returns the status upon completion
379  * @fence: the dma_fence to query
380  *
381  * This wraps dma_fence_get_status_locked() to return the error status
382  * condition on a signaled fence. See dma_fence_get_status_locked() for more
383  * details.
384  *
385  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
386  * been signaled without an error condition, or a negative error code
387  * if the fence has been completed in err.
388  */
389 int dma_fence_get_status(struct dma_fence *fence)
390 {
391 	unsigned long flags;
392 	int status;
393 
394 	spin_lock_irqsave(fence->lock, flags);
395 	status = dma_fence_get_status_locked(fence);
396 	spin_unlock_irqrestore(fence->lock, flags);
397 
398 	return status;
399 }
400 EXPORT_SYMBOL(dma_fence_get_status);
401 
402 /**
403  * dma_fence_remove_callback - remove a callback from the signaling list
404  * @fence: the fence to wait on
405  * @cb: the callback to remove
406  *
407  * Remove a previously queued callback from the fence. This function returns
408  * true if the callback is successfully removed, or false if the fence has
409  * already been signaled.
410  *
411  * *WARNING*:
412  * Cancelling a callback should only be done if you really know what you're
413  * doing, since deadlocks and race conditions could occur all too easily. For
414  * this reason, it should only ever be done on hardware lockup recovery,
415  * with a reference held to the fence.
416  *
417  * Behaviour is undefined if @cb has not been added to @fence using
418  * dma_fence_add_callback() beforehand.
419  */
420 bool
421 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
422 {
423 	unsigned long flags;
424 	bool ret;
425 
426 	spin_lock_irqsave(fence->lock, flags);
427 
428 	ret = !list_empty(&cb->node);
429 	if (ret)
430 		list_del_init(&cb->node);
431 
432 	spin_unlock_irqrestore(fence->lock, flags);
433 
434 	return ret;
435 }
436 EXPORT_SYMBOL(dma_fence_remove_callback);
437 
438 struct default_wait_cb {
439 	struct dma_fence_cb base;
440 	struct task_struct *task;
441 };
442 
443 static void
444 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
445 {
446 	struct default_wait_cb *wait =
447 		container_of(cb, struct default_wait_cb, base);
448 
449 	wake_up_state(wait->task, TASK_NORMAL);
450 }
451 
452 /**
453  * dma_fence_default_wait - default sleep until the fence gets signaled
454  * or until timeout elapses
455  * @fence: the fence to wait on
456  * @intr: if true, do an interruptible wait
457  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
458  *
459  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
460  * remaining timeout in jiffies on success. If timeout is zero the value one is
461  * returned if the fence is already signaled for consistency with other
462  * functions taking a jiffies timeout.
463  */
464 signed long
465 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
466 {
467 	struct default_wait_cb cb;
468 	unsigned long flags;
469 	signed long ret = timeout ? timeout : 1;
470 	bool was_set;
471 
472 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
473 		return ret;
474 
475 	spin_lock_irqsave(fence->lock, flags);
476 
477 	if (intr && signal_pending(current)) {
478 		ret = -ERESTARTSYS;
479 		goto out;
480 	}
481 
482 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
483 				   &fence->flags);
484 
485 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
486 		goto out;
487 
488 	if (!was_set && fence->ops->enable_signaling) {
489 		trace_dma_fence_enable_signal(fence);
490 
491 		if (!fence->ops->enable_signaling(fence)) {
492 			dma_fence_signal_locked(fence);
493 			goto out;
494 		}
495 	}
496 
497 	if (!timeout) {
498 		ret = 0;
499 		goto out;
500 	}
501 
502 	cb.base.func = dma_fence_default_wait_cb;
503 	cb.task = current;
504 	list_add(&cb.base.node, &fence->cb_list);
505 
506 	while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
507 		if (intr)
508 			__set_current_state(TASK_INTERRUPTIBLE);
509 		else
510 			__set_current_state(TASK_UNINTERRUPTIBLE);
511 		spin_unlock_irqrestore(fence->lock, flags);
512 
513 		ret = schedule_timeout(ret);
514 
515 		spin_lock_irqsave(fence->lock, flags);
516 		if (ret > 0 && intr && signal_pending(current))
517 			ret = -ERESTARTSYS;
518 	}
519 
520 	if (!list_empty(&cb.base.node))
521 		list_del(&cb.base.node);
522 	__set_current_state(TASK_RUNNING);
523 
524 out:
525 	spin_unlock_irqrestore(fence->lock, flags);
526 	return ret;
527 }
528 EXPORT_SYMBOL(dma_fence_default_wait);
529 
530 static bool
531 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
532 			    uint32_t *idx)
533 {
534 	int i;
535 
536 	for (i = 0; i < count; ++i) {
537 		struct dma_fence *fence = fences[i];
538 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
539 			if (idx)
540 				*idx = i;
541 			return true;
542 		}
543 	}
544 	return false;
545 }
546 
547 /**
548  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
549  * or until timeout elapses
550  * @fences: array of fences to wait on
551  * @count: number of fences to wait on
552  * @intr: if true, do an interruptible wait
553  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
554  * @idx: used to store the first signaled fence index, meaningful only on
555  *	positive return
556  *
557  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
558  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
559  * on success.
560  *
561  * Synchronous waits for the first fence in the array to be signaled. The
562  * caller needs to hold a reference to all fences in the array, otherwise a
563  * fence might be freed before return, resulting in undefined behavior.
564  *
565  * See also dma_fence_wait() and dma_fence_wait_timeout().
566  */
567 signed long
568 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
569 			   bool intr, signed long timeout, uint32_t *idx)
570 {
571 	struct default_wait_cb *cb;
572 	signed long ret = timeout;
573 	unsigned i;
574 
575 	if (WARN_ON(!fences || !count || timeout < 0))
576 		return -EINVAL;
577 
578 	if (timeout == 0) {
579 		for (i = 0; i < count; ++i)
580 			if (dma_fence_is_signaled(fences[i])) {
581 				if (idx)
582 					*idx = i;
583 				return 1;
584 			}
585 
586 		return 0;
587 	}
588 
589 	cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
590 	if (cb == NULL) {
591 		ret = -ENOMEM;
592 		goto err_free_cb;
593 	}
594 
595 	for (i = 0; i < count; ++i) {
596 		struct dma_fence *fence = fences[i];
597 
598 		cb[i].task = current;
599 		if (dma_fence_add_callback(fence, &cb[i].base,
600 					   dma_fence_default_wait_cb)) {
601 			/* This fence is already signaled */
602 			if (idx)
603 				*idx = i;
604 			goto fence_rm_cb;
605 		}
606 	}
607 
608 	while (ret > 0) {
609 		if (intr)
610 			set_current_state(TASK_INTERRUPTIBLE);
611 		else
612 			set_current_state(TASK_UNINTERRUPTIBLE);
613 
614 		if (dma_fence_test_signaled_any(fences, count, idx))
615 			break;
616 
617 		ret = schedule_timeout(ret);
618 
619 		if (ret > 0 && intr && signal_pending(current))
620 			ret = -ERESTARTSYS;
621 	}
622 
623 	__set_current_state(TASK_RUNNING);
624 
625 fence_rm_cb:
626 	while (i-- > 0)
627 		dma_fence_remove_callback(fences[i], &cb[i].base);
628 
629 err_free_cb:
630 	kfree(cb);
631 
632 	return ret;
633 }
634 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
635 
636 /**
637  * dma_fence_init - Initialize a custom fence.
638  * @fence: the fence to initialize
639  * @ops: the dma_fence_ops for operations on this fence
640  * @lock: the irqsafe spinlock to use for locking this fence
641  * @context: the execution context this fence is run on
642  * @seqno: a linear increasing sequence number for this context
643  *
644  * Initializes an allocated fence, the caller doesn't have to keep its
645  * refcount after committing with this fence, but it will need to hold a
646  * refcount again if &dma_fence_ops.enable_signaling gets called.
647  *
648  * context and seqno are used for easy comparison between fences, allowing
649  * to check which fence is later by simply using dma_fence_later().
650  */
651 void
652 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
653 	       spinlock_t *lock, u64 context, u64 seqno)
654 {
655 	BUG_ON(!lock);
656 	BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
657 
658 	kref_init(&fence->refcount);
659 	fence->ops = ops;
660 	INIT_LIST_HEAD(&fence->cb_list);
661 	fence->lock = lock;
662 	fence->context = context;
663 	fence->seqno = seqno;
664 	fence->flags = 0UL;
665 	fence->error = 0;
666 
667 	trace_dma_fence_init(fence);
668 }
669 EXPORT_SYMBOL(dma_fence_init);
670