xref: /openbmc/linux/drivers/dma-buf/dma-fence.c (revision 680ef72a)
1 /*
2  * Fence mechanism for dma-buf and to allow for asynchronous dma access
3  *
4  * Copyright (C) 2012 Canonical Ltd
5  * Copyright (C) 2012 Texas Instruments
6  *
7  * Authors:
8  * Rob Clark <robdclark@gmail.com>
9  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License version 2 as published by
13  * the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/export.h>
23 #include <linux/atomic.h>
24 #include <linux/dma-fence.h>
25 #include <linux/sched/signal.h>
26 
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/dma_fence.h>
29 
30 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
31 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
32 
33 /*
34  * fence context counter: each execution context should have its own
35  * fence context, this allows checking if fences belong to the same
36  * context or not. One device can have multiple separate contexts,
37  * and they're used if some engine can run independently of another.
38  */
39 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(0);
40 
41 /**
42  * dma_fence_context_alloc - allocate an array of fence contexts
43  * @num:	[in]	amount of contexts to allocate
44  *
45  * This function will return the first index of the number of fences allocated.
46  * The fence context is used for setting fence->context to a unique number.
47  */
48 u64 dma_fence_context_alloc(unsigned num)
49 {
50 	WARN_ON(!num);
51 	return atomic64_add_return(num, &dma_fence_context_counter) - num;
52 }
53 EXPORT_SYMBOL(dma_fence_context_alloc);
54 
55 /**
56  * dma_fence_signal_locked - signal completion of a fence
57  * @fence: the fence to signal
58  *
59  * Signal completion for software callbacks on a fence, this will unblock
60  * dma_fence_wait() calls and run all the callbacks added with
61  * dma_fence_add_callback(). Can be called multiple times, but since a fence
62  * can only go from unsignaled to signaled state, it will only be effective
63  * the first time.
64  *
65  * Unlike dma_fence_signal, this function must be called with fence->lock held.
66  */
67 int dma_fence_signal_locked(struct dma_fence *fence)
68 {
69 	struct dma_fence_cb *cur, *tmp;
70 	int ret = 0;
71 
72 	lockdep_assert_held(fence->lock);
73 
74 	if (WARN_ON(!fence))
75 		return -EINVAL;
76 
77 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
78 		ret = -EINVAL;
79 
80 		/*
81 		 * we might have raced with the unlocked dma_fence_signal,
82 		 * still run through all callbacks
83 		 */
84 	} else {
85 		fence->timestamp = ktime_get();
86 		set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
87 		trace_dma_fence_signaled(fence);
88 	}
89 
90 	list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
91 		list_del_init(&cur->node);
92 		cur->func(fence, cur);
93 	}
94 	return ret;
95 }
96 EXPORT_SYMBOL(dma_fence_signal_locked);
97 
98 /**
99  * dma_fence_signal - signal completion of a fence
100  * @fence: the fence to signal
101  *
102  * Signal completion for software callbacks on a fence, this will unblock
103  * dma_fence_wait() calls and run all the callbacks added with
104  * dma_fence_add_callback(). Can be called multiple times, but since a fence
105  * can only go from unsignaled to signaled state, it will only be effective
106  * the first time.
107  */
108 int dma_fence_signal(struct dma_fence *fence)
109 {
110 	unsigned long flags;
111 
112 	if (!fence)
113 		return -EINVAL;
114 
115 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
116 		return -EINVAL;
117 
118 	fence->timestamp = ktime_get();
119 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
120 	trace_dma_fence_signaled(fence);
121 
122 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
123 		struct dma_fence_cb *cur, *tmp;
124 
125 		spin_lock_irqsave(fence->lock, flags);
126 		list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
127 			list_del_init(&cur->node);
128 			cur->func(fence, cur);
129 		}
130 		spin_unlock_irqrestore(fence->lock, flags);
131 	}
132 	return 0;
133 }
134 EXPORT_SYMBOL(dma_fence_signal);
135 
136 /**
137  * dma_fence_wait_timeout - sleep until the fence gets signaled
138  * or until timeout elapses
139  * @fence:	[in]	the fence to wait on
140  * @intr:	[in]	if true, do an interruptible wait
141  * @timeout:	[in]	timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
142  *
143  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
144  * remaining timeout in jiffies on success. Other error values may be
145  * returned on custom implementations.
146  *
147  * Performs a synchronous wait on this fence. It is assumed the caller
148  * directly or indirectly (buf-mgr between reservation and committing)
149  * holds a reference to the fence, otherwise the fence might be
150  * freed before return, resulting in undefined behavior.
151  */
152 signed long
153 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
154 {
155 	signed long ret;
156 
157 	if (WARN_ON(timeout < 0))
158 		return -EINVAL;
159 
160 	trace_dma_fence_wait_start(fence);
161 	ret = fence->ops->wait(fence, intr, timeout);
162 	trace_dma_fence_wait_end(fence);
163 	return ret;
164 }
165 EXPORT_SYMBOL(dma_fence_wait_timeout);
166 
167 void dma_fence_release(struct kref *kref)
168 {
169 	struct dma_fence *fence =
170 		container_of(kref, struct dma_fence, refcount);
171 
172 	trace_dma_fence_destroy(fence);
173 
174 	WARN_ON(!list_empty(&fence->cb_list));
175 
176 	if (fence->ops->release)
177 		fence->ops->release(fence);
178 	else
179 		dma_fence_free(fence);
180 }
181 EXPORT_SYMBOL(dma_fence_release);
182 
183 void dma_fence_free(struct dma_fence *fence)
184 {
185 	kfree_rcu(fence, rcu);
186 }
187 EXPORT_SYMBOL(dma_fence_free);
188 
189 /**
190  * dma_fence_enable_sw_signaling - enable signaling on fence
191  * @fence:	[in]	the fence to enable
192  *
193  * this will request for sw signaling to be enabled, to make the fence
194  * complete as soon as possible
195  */
196 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
197 {
198 	unsigned long flags;
199 
200 	if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
201 			      &fence->flags) &&
202 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
203 		trace_dma_fence_enable_signal(fence);
204 
205 		spin_lock_irqsave(fence->lock, flags);
206 
207 		if (!fence->ops->enable_signaling(fence))
208 			dma_fence_signal_locked(fence);
209 
210 		spin_unlock_irqrestore(fence->lock, flags);
211 	}
212 }
213 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
214 
215 /**
216  * dma_fence_add_callback - add a callback to be called when the fence
217  * is signaled
218  * @fence:	[in]	the fence to wait on
219  * @cb:		[in]	the callback to register
220  * @func:	[in]	the function to call
221  *
222  * cb will be initialized by dma_fence_add_callback, no initialization
223  * by the caller is required. Any number of callbacks can be registered
224  * to a fence, but a callback can only be registered to one fence at a time.
225  *
226  * Note that the callback can be called from an atomic context.  If
227  * fence is already signaled, this function will return -ENOENT (and
228  * *not* call the callback)
229  *
230  * Add a software callback to the fence. Same restrictions apply to
231  * refcount as it does to dma_fence_wait, however the caller doesn't need to
232  * keep a refcount to fence afterwards: when software access is enabled,
233  * the creator of the fence is required to keep the fence alive until
234  * after it signals with dma_fence_signal. The callback itself can be called
235  * from irq context.
236  *
237  * Returns 0 in case of success, -ENOENT if the fence is already signaled
238  * and -EINVAL in case of error.
239  */
240 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
241 			   dma_fence_func_t func)
242 {
243 	unsigned long flags;
244 	int ret = 0;
245 	bool was_set;
246 
247 	if (WARN_ON(!fence || !func))
248 		return -EINVAL;
249 
250 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
251 		INIT_LIST_HEAD(&cb->node);
252 		return -ENOENT;
253 	}
254 
255 	spin_lock_irqsave(fence->lock, flags);
256 
257 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
258 				   &fence->flags);
259 
260 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
261 		ret = -ENOENT;
262 	else if (!was_set) {
263 		trace_dma_fence_enable_signal(fence);
264 
265 		if (!fence->ops->enable_signaling(fence)) {
266 			dma_fence_signal_locked(fence);
267 			ret = -ENOENT;
268 		}
269 	}
270 
271 	if (!ret) {
272 		cb->func = func;
273 		list_add_tail(&cb->node, &fence->cb_list);
274 	} else
275 		INIT_LIST_HEAD(&cb->node);
276 	spin_unlock_irqrestore(fence->lock, flags);
277 
278 	return ret;
279 }
280 EXPORT_SYMBOL(dma_fence_add_callback);
281 
282 /**
283  * dma_fence_get_status - returns the status upon completion
284  * @fence: [in]	the dma_fence to query
285  *
286  * This wraps dma_fence_get_status_locked() to return the error status
287  * condition on a signaled fence. See dma_fence_get_status_locked() for more
288  * details.
289  *
290  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
291  * been signaled without an error condition, or a negative error code
292  * if the fence has been completed in err.
293  */
294 int dma_fence_get_status(struct dma_fence *fence)
295 {
296 	unsigned long flags;
297 	int status;
298 
299 	spin_lock_irqsave(fence->lock, flags);
300 	status = dma_fence_get_status_locked(fence);
301 	spin_unlock_irqrestore(fence->lock, flags);
302 
303 	return status;
304 }
305 EXPORT_SYMBOL(dma_fence_get_status);
306 
307 /**
308  * dma_fence_remove_callback - remove a callback from the signaling list
309  * @fence:	[in]	the fence to wait on
310  * @cb:		[in]	the callback to remove
311  *
312  * Remove a previously queued callback from the fence. This function returns
313  * true if the callback is successfully removed, or false if the fence has
314  * already been signaled.
315  *
316  * *WARNING*:
317  * Cancelling a callback should only be done if you really know what you're
318  * doing, since deadlocks and race conditions could occur all too easily. For
319  * this reason, it should only ever be done on hardware lockup recovery,
320  * with a reference held to the fence.
321  */
322 bool
323 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
324 {
325 	unsigned long flags;
326 	bool ret;
327 
328 	spin_lock_irqsave(fence->lock, flags);
329 
330 	ret = !list_empty(&cb->node);
331 	if (ret)
332 		list_del_init(&cb->node);
333 
334 	spin_unlock_irqrestore(fence->lock, flags);
335 
336 	return ret;
337 }
338 EXPORT_SYMBOL(dma_fence_remove_callback);
339 
340 struct default_wait_cb {
341 	struct dma_fence_cb base;
342 	struct task_struct *task;
343 };
344 
345 static void
346 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
347 {
348 	struct default_wait_cb *wait =
349 		container_of(cb, struct default_wait_cb, base);
350 
351 	wake_up_state(wait->task, TASK_NORMAL);
352 }
353 
354 /**
355  * dma_fence_default_wait - default sleep until the fence gets signaled
356  * or until timeout elapses
357  * @fence:	[in]	the fence to wait on
358  * @intr:	[in]	if true, do an interruptible wait
359  * @timeout:	[in]	timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
360  *
361  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
362  * remaining timeout in jiffies on success. If timeout is zero the value one is
363  * returned if the fence is already signaled for consistency with other
364  * functions taking a jiffies timeout.
365  */
366 signed long
367 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
368 {
369 	struct default_wait_cb cb;
370 	unsigned long flags;
371 	signed long ret = timeout ? timeout : 1;
372 	bool was_set;
373 
374 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
375 		return ret;
376 
377 	spin_lock_irqsave(fence->lock, flags);
378 
379 	if (intr && signal_pending(current)) {
380 		ret = -ERESTARTSYS;
381 		goto out;
382 	}
383 
384 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
385 				   &fence->flags);
386 
387 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
388 		goto out;
389 
390 	if (!was_set) {
391 		trace_dma_fence_enable_signal(fence);
392 
393 		if (!fence->ops->enable_signaling(fence)) {
394 			dma_fence_signal_locked(fence);
395 			goto out;
396 		}
397 	}
398 
399 	if (!timeout) {
400 		ret = 0;
401 		goto out;
402 	}
403 
404 	cb.base.func = dma_fence_default_wait_cb;
405 	cb.task = current;
406 	list_add(&cb.base.node, &fence->cb_list);
407 
408 	while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
409 		if (intr)
410 			__set_current_state(TASK_INTERRUPTIBLE);
411 		else
412 			__set_current_state(TASK_UNINTERRUPTIBLE);
413 		spin_unlock_irqrestore(fence->lock, flags);
414 
415 		ret = schedule_timeout(ret);
416 
417 		spin_lock_irqsave(fence->lock, flags);
418 		if (ret > 0 && intr && signal_pending(current))
419 			ret = -ERESTARTSYS;
420 	}
421 
422 	if (!list_empty(&cb.base.node))
423 		list_del(&cb.base.node);
424 	__set_current_state(TASK_RUNNING);
425 
426 out:
427 	spin_unlock_irqrestore(fence->lock, flags);
428 	return ret;
429 }
430 EXPORT_SYMBOL(dma_fence_default_wait);
431 
432 static bool
433 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
434 			    uint32_t *idx)
435 {
436 	int i;
437 
438 	for (i = 0; i < count; ++i) {
439 		struct dma_fence *fence = fences[i];
440 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
441 			if (idx)
442 				*idx = i;
443 			return true;
444 		}
445 	}
446 	return false;
447 }
448 
449 /**
450  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
451  * or until timeout elapses
452  * @fences:	[in]	array of fences to wait on
453  * @count:	[in]	number of fences to wait on
454  * @intr:	[in]	if true, do an interruptible wait
455  * @timeout:	[in]	timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
456  * @idx:       [out]	the first signaled fence index, meaningful only on
457  *			positive return
458  *
459  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
460  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
461  * on success.
462  *
463  * Synchronous waits for the first fence in the array to be signaled. The
464  * caller needs to hold a reference to all fences in the array, otherwise a
465  * fence might be freed before return, resulting in undefined behavior.
466  */
467 signed long
468 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
469 			   bool intr, signed long timeout, uint32_t *idx)
470 {
471 	struct default_wait_cb *cb;
472 	signed long ret = timeout;
473 	unsigned i;
474 
475 	if (WARN_ON(!fences || !count || timeout < 0))
476 		return -EINVAL;
477 
478 	if (timeout == 0) {
479 		for (i = 0; i < count; ++i)
480 			if (dma_fence_is_signaled(fences[i])) {
481 				if (idx)
482 					*idx = i;
483 				return 1;
484 			}
485 
486 		return 0;
487 	}
488 
489 	cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
490 	if (cb == NULL) {
491 		ret = -ENOMEM;
492 		goto err_free_cb;
493 	}
494 
495 	for (i = 0; i < count; ++i) {
496 		struct dma_fence *fence = fences[i];
497 
498 		if (fence->ops->wait != dma_fence_default_wait) {
499 			ret = -EINVAL;
500 			goto fence_rm_cb;
501 		}
502 
503 		cb[i].task = current;
504 		if (dma_fence_add_callback(fence, &cb[i].base,
505 					   dma_fence_default_wait_cb)) {
506 			/* This fence is already signaled */
507 			if (idx)
508 				*idx = i;
509 			goto fence_rm_cb;
510 		}
511 	}
512 
513 	while (ret > 0) {
514 		if (intr)
515 			set_current_state(TASK_INTERRUPTIBLE);
516 		else
517 			set_current_state(TASK_UNINTERRUPTIBLE);
518 
519 		if (dma_fence_test_signaled_any(fences, count, idx))
520 			break;
521 
522 		ret = schedule_timeout(ret);
523 
524 		if (ret > 0 && intr && signal_pending(current))
525 			ret = -ERESTARTSYS;
526 	}
527 
528 	__set_current_state(TASK_RUNNING);
529 
530 fence_rm_cb:
531 	while (i-- > 0)
532 		dma_fence_remove_callback(fences[i], &cb[i].base);
533 
534 err_free_cb:
535 	kfree(cb);
536 
537 	return ret;
538 }
539 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
540 
541 /**
542  * dma_fence_init - Initialize a custom fence.
543  * @fence:	[in]	the fence to initialize
544  * @ops:	[in]	the dma_fence_ops for operations on this fence
545  * @lock:	[in]	the irqsafe spinlock to use for locking this fence
546  * @context:	[in]	the execution context this fence is run on
547  * @seqno:	[in]	a linear increasing sequence number for this context
548  *
549  * Initializes an allocated fence, the caller doesn't have to keep its
550  * refcount after committing with this fence, but it will need to hold a
551  * refcount again if dma_fence_ops.enable_signaling gets called. This can
552  * be used for other implementing other types of fence.
553  *
554  * context and seqno are used for easy comparison between fences, allowing
555  * to check which fence is later by simply using dma_fence_later.
556  */
557 void
558 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
559 	       spinlock_t *lock, u64 context, unsigned seqno)
560 {
561 	BUG_ON(!lock);
562 	BUG_ON(!ops || !ops->wait || !ops->enable_signaling ||
563 	       !ops->get_driver_name || !ops->get_timeline_name);
564 
565 	kref_init(&fence->refcount);
566 	fence->ops = ops;
567 	INIT_LIST_HEAD(&fence->cb_list);
568 	fence->lock = lock;
569 	fence->context = context;
570 	fence->seqno = seqno;
571 	fence->flags = 0UL;
572 	fence->error = 0;
573 
574 	trace_dma_fence_init(fence);
575 }
576 EXPORT_SYMBOL(dma_fence_init);
577