xref: /openbmc/linux/drivers/dma-buf/dma-fence.c (revision 5d7800d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Fence mechanism for dma-buf and to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/atomic.h>
16 #include <linux/dma-fence.h>
17 #include <linux/sched/signal.h>
18 #include <linux/seq_file.h>
19 
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/dma_fence.h>
22 
23 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
24 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
25 EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
26 
27 static DEFINE_SPINLOCK(dma_fence_stub_lock);
28 static struct dma_fence dma_fence_stub;
29 
30 /*
31  * fence context counter: each execution context should have its own
32  * fence context, this allows checking if fences belong to the same
33  * context or not. One device can have multiple separate contexts,
34  * and they're used if some engine can run independently of another.
35  */
36 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
37 
38 /**
39  * DOC: DMA fences overview
40  *
41  * DMA fences, represented by &struct dma_fence, are the kernel internal
42  * synchronization primitive for DMA operations like GPU rendering, video
43  * encoding/decoding, or displaying buffers on a screen.
44  *
45  * A fence is initialized using dma_fence_init() and completed using
46  * dma_fence_signal(). Fences are associated with a context, allocated through
47  * dma_fence_context_alloc(), and all fences on the same context are
48  * fully ordered.
49  *
50  * Since the purposes of fences is to facilitate cross-device and
51  * cross-application synchronization, there's multiple ways to use one:
52  *
53  * - Individual fences can be exposed as a &sync_file, accessed as a file
54  *   descriptor from userspace, created by calling sync_file_create(). This is
55  *   called explicit fencing, since userspace passes around explicit
56  *   synchronization points.
57  *
58  * - Some subsystems also have their own explicit fencing primitives, like
59  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
60  *   fence to be updated.
61  *
62  * - Then there's also implicit fencing, where the synchronization points are
63  *   implicitly passed around as part of shared &dma_buf instances. Such
64  *   implicit fences are stored in &struct dma_resv through the
65  *   &dma_buf.resv pointer.
66  */
67 
68 /**
69  * DOC: fence cross-driver contract
70  *
71  * Since &dma_fence provide a cross driver contract, all drivers must follow the
72  * same rules:
73  *
74  * * Fences must complete in a reasonable time. Fences which represent kernels
75  *   and shaders submitted by userspace, which could run forever, must be backed
76  *   up by timeout and gpu hang recovery code. Minimally that code must prevent
77  *   further command submission and force complete all in-flight fences, e.g.
78  *   when the driver or hardware do not support gpu reset, or if the gpu reset
79  *   failed for some reason. Ideally the driver supports gpu recovery which only
80  *   affects the offending userspace context, and no other userspace
81  *   submissions.
82  *
83  * * Drivers may have different ideas of what completion within a reasonable
84  *   time means. Some hang recovery code uses a fixed timeout, others a mix
85  *   between observing forward progress and increasingly strict timeouts.
86  *   Drivers should not try to second guess timeout handling of fences from
87  *   other drivers.
88  *
89  * * To ensure there's no deadlocks of dma_fence_wait() against other locks
90  *   drivers should annotate all code required to reach dma_fence_signal(),
91  *   which completes the fences, with dma_fence_begin_signalling() and
92  *   dma_fence_end_signalling().
93  *
94  * * Drivers are allowed to call dma_fence_wait() while holding dma_resv_lock().
95  *   This means any code required for fence completion cannot acquire a
96  *   &dma_resv lock. Note that this also pulls in the entire established
97  *   locking hierarchy around dma_resv_lock() and dma_resv_unlock().
98  *
99  * * Drivers are allowed to call dma_fence_wait() from their &shrinker
100  *   callbacks. This means any code required for fence completion cannot
101  *   allocate memory with GFP_KERNEL.
102  *
103  * * Drivers are allowed to call dma_fence_wait() from their &mmu_notifier
104  *   respectively &mmu_interval_notifier callbacks. This means any code required
105  *   for fence completeion cannot allocate memory with GFP_NOFS or GFP_NOIO.
106  *   Only GFP_ATOMIC is permissible, which might fail.
107  *
108  * Note that only GPU drivers have a reasonable excuse for both requiring
109  * &mmu_interval_notifier and &shrinker callbacks at the same time as having to
110  * track asynchronous compute work using &dma_fence. No driver outside of
111  * drivers/gpu should ever call dma_fence_wait() in such contexts.
112  */
113 
114 static const char *dma_fence_stub_get_name(struct dma_fence *fence)
115 {
116         return "stub";
117 }
118 
119 static const struct dma_fence_ops dma_fence_stub_ops = {
120 	.get_driver_name = dma_fence_stub_get_name,
121 	.get_timeline_name = dma_fence_stub_get_name,
122 };
123 
124 /**
125  * dma_fence_get_stub - return a signaled fence
126  *
127  * Return a stub fence which is already signaled. The fence's
128  * timestamp corresponds to the first time after boot this
129  * function is called.
130  */
131 struct dma_fence *dma_fence_get_stub(void)
132 {
133 	spin_lock(&dma_fence_stub_lock);
134 	if (!dma_fence_stub.ops) {
135 		dma_fence_init(&dma_fence_stub,
136 			       &dma_fence_stub_ops,
137 			       &dma_fence_stub_lock,
138 			       0, 0);
139 
140 		set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
141 			&dma_fence_stub.flags);
142 
143 		dma_fence_signal_locked(&dma_fence_stub);
144 	}
145 	spin_unlock(&dma_fence_stub_lock);
146 
147 	return dma_fence_get(&dma_fence_stub);
148 }
149 EXPORT_SYMBOL(dma_fence_get_stub);
150 
151 /**
152  * dma_fence_allocate_private_stub - return a private, signaled fence
153  * @timestamp: timestamp when the fence was signaled
154  *
155  * Return a newly allocated and signaled stub fence.
156  */
157 struct dma_fence *dma_fence_allocate_private_stub(ktime_t timestamp)
158 {
159 	struct dma_fence *fence;
160 
161 	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
162 	if (fence == NULL)
163 		return NULL;
164 
165 	dma_fence_init(fence,
166 		       &dma_fence_stub_ops,
167 		       &dma_fence_stub_lock,
168 		       0, 0);
169 
170 	set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
171 		&fence->flags);
172 
173 	dma_fence_signal_timestamp(fence, timestamp);
174 
175 	return fence;
176 }
177 EXPORT_SYMBOL(dma_fence_allocate_private_stub);
178 
179 /**
180  * dma_fence_context_alloc - allocate an array of fence contexts
181  * @num: amount of contexts to allocate
182  *
183  * This function will return the first index of the number of fence contexts
184  * allocated.  The fence context is used for setting &dma_fence.context to a
185  * unique number by passing the context to dma_fence_init().
186  */
187 u64 dma_fence_context_alloc(unsigned num)
188 {
189 	WARN_ON(!num);
190 	return atomic64_fetch_add(num, &dma_fence_context_counter);
191 }
192 EXPORT_SYMBOL(dma_fence_context_alloc);
193 
194 /**
195  * DOC: fence signalling annotation
196  *
197  * Proving correctness of all the kernel code around &dma_fence through code
198  * review and testing is tricky for a few reasons:
199  *
200  * * It is a cross-driver contract, and therefore all drivers must follow the
201  *   same rules for lock nesting order, calling contexts for various functions
202  *   and anything else significant for in-kernel interfaces. But it is also
203  *   impossible to test all drivers in a single machine, hence brute-force N vs.
204  *   N testing of all combinations is impossible. Even just limiting to the
205  *   possible combinations is infeasible.
206  *
207  * * There is an enormous amount of driver code involved. For render drivers
208  *   there's the tail of command submission, after fences are published,
209  *   scheduler code, interrupt and workers to process job completion,
210  *   and timeout, gpu reset and gpu hang recovery code. Plus for integration
211  *   with core mm with have &mmu_notifier, respectively &mmu_interval_notifier,
212  *   and &shrinker. For modesetting drivers there's the commit tail functions
213  *   between when fences for an atomic modeset are published, and when the
214  *   corresponding vblank completes, including any interrupt processing and
215  *   related workers. Auditing all that code, across all drivers, is not
216  *   feasible.
217  *
218  * * Due to how many other subsystems are involved and the locking hierarchies
219  *   this pulls in there is extremely thin wiggle-room for driver-specific
220  *   differences. &dma_fence interacts with almost all of the core memory
221  *   handling through page fault handlers via &dma_resv, dma_resv_lock() and
222  *   dma_resv_unlock(). On the other side it also interacts through all
223  *   allocation sites through &mmu_notifier and &shrinker.
224  *
225  * Furthermore lockdep does not handle cross-release dependencies, which means
226  * any deadlocks between dma_fence_wait() and dma_fence_signal() can't be caught
227  * at runtime with some quick testing. The simplest example is one thread
228  * waiting on a &dma_fence while holding a lock::
229  *
230  *     lock(A);
231  *     dma_fence_wait(B);
232  *     unlock(A);
233  *
234  * while the other thread is stuck trying to acquire the same lock, which
235  * prevents it from signalling the fence the previous thread is stuck waiting
236  * on::
237  *
238  *     lock(A);
239  *     unlock(A);
240  *     dma_fence_signal(B);
241  *
242  * By manually annotating all code relevant to signalling a &dma_fence we can
243  * teach lockdep about these dependencies, which also helps with the validation
244  * headache since now lockdep can check all the rules for us::
245  *
246  *    cookie = dma_fence_begin_signalling();
247  *    lock(A);
248  *    unlock(A);
249  *    dma_fence_signal(B);
250  *    dma_fence_end_signalling(cookie);
251  *
252  * For using dma_fence_begin_signalling() and dma_fence_end_signalling() to
253  * annotate critical sections the following rules need to be observed:
254  *
255  * * All code necessary to complete a &dma_fence must be annotated, from the
256  *   point where a fence is accessible to other threads, to the point where
257  *   dma_fence_signal() is called. Un-annotated code can contain deadlock issues,
258  *   and due to the very strict rules and many corner cases it is infeasible to
259  *   catch these just with review or normal stress testing.
260  *
261  * * &struct dma_resv deserves a special note, since the readers are only
262  *   protected by rcu. This means the signalling critical section starts as soon
263  *   as the new fences are installed, even before dma_resv_unlock() is called.
264  *
265  * * The only exception are fast paths and opportunistic signalling code, which
266  *   calls dma_fence_signal() purely as an optimization, but is not required to
267  *   guarantee completion of a &dma_fence. The usual example is a wait IOCTL
268  *   which calls dma_fence_signal(), while the mandatory completion path goes
269  *   through a hardware interrupt and possible job completion worker.
270  *
271  * * To aid composability of code, the annotations can be freely nested, as long
272  *   as the overall locking hierarchy is consistent. The annotations also work
273  *   both in interrupt and process context. Due to implementation details this
274  *   requires that callers pass an opaque cookie from
275  *   dma_fence_begin_signalling() to dma_fence_end_signalling().
276  *
277  * * Validation against the cross driver contract is implemented by priming
278  *   lockdep with the relevant hierarchy at boot-up. This means even just
279  *   testing with a single device is enough to validate a driver, at least as
280  *   far as deadlocks with dma_fence_wait() against dma_fence_signal() are
281  *   concerned.
282  */
283 #ifdef CONFIG_LOCKDEP
284 static struct lockdep_map dma_fence_lockdep_map = {
285 	.name = "dma_fence_map"
286 };
287 
288 /**
289  * dma_fence_begin_signalling - begin a critical DMA fence signalling section
290  *
291  * Drivers should use this to annotate the beginning of any code section
292  * required to eventually complete &dma_fence by calling dma_fence_signal().
293  *
294  * The end of these critical sections are annotated with
295  * dma_fence_end_signalling().
296  *
297  * Returns:
298  *
299  * Opaque cookie needed by the implementation, which needs to be passed to
300  * dma_fence_end_signalling().
301  */
302 bool dma_fence_begin_signalling(void)
303 {
304 	/* explicitly nesting ... */
305 	if (lock_is_held_type(&dma_fence_lockdep_map, 1))
306 		return true;
307 
308 	/* rely on might_sleep check for soft/hardirq locks */
309 	if (in_atomic())
310 		return true;
311 
312 	/* ... and non-recursive readlock */
313 	lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _RET_IP_);
314 
315 	return false;
316 }
317 EXPORT_SYMBOL(dma_fence_begin_signalling);
318 
319 /**
320  * dma_fence_end_signalling - end a critical DMA fence signalling section
321  * @cookie: opaque cookie from dma_fence_begin_signalling()
322  *
323  * Closes a critical section annotation opened by dma_fence_begin_signalling().
324  */
325 void dma_fence_end_signalling(bool cookie)
326 {
327 	if (cookie)
328 		return;
329 
330 	lock_release(&dma_fence_lockdep_map, _RET_IP_);
331 }
332 EXPORT_SYMBOL(dma_fence_end_signalling);
333 
334 void __dma_fence_might_wait(void)
335 {
336 	bool tmp;
337 
338 	tmp = lock_is_held_type(&dma_fence_lockdep_map, 1);
339 	if (tmp)
340 		lock_release(&dma_fence_lockdep_map, _THIS_IP_);
341 	lock_map_acquire(&dma_fence_lockdep_map);
342 	lock_map_release(&dma_fence_lockdep_map);
343 	if (tmp)
344 		lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _THIS_IP_);
345 }
346 #endif
347 
348 
349 /**
350  * dma_fence_signal_timestamp_locked - signal completion of a fence
351  * @fence: the fence to signal
352  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
353  *
354  * Signal completion for software callbacks on a fence, this will unblock
355  * dma_fence_wait() calls and run all the callbacks added with
356  * dma_fence_add_callback(). Can be called multiple times, but since a fence
357  * can only go from the unsignaled to the signaled state and not back, it will
358  * only be effective the first time. Set the timestamp provided as the fence
359  * signal timestamp.
360  *
361  * Unlike dma_fence_signal_timestamp(), this function must be called with
362  * &dma_fence.lock held.
363  *
364  * Returns 0 on success and a negative error value when @fence has been
365  * signalled already.
366  */
367 int dma_fence_signal_timestamp_locked(struct dma_fence *fence,
368 				      ktime_t timestamp)
369 {
370 	struct dma_fence_cb *cur, *tmp;
371 	struct list_head cb_list;
372 
373 	lockdep_assert_held(fence->lock);
374 
375 	if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
376 				      &fence->flags)))
377 		return -EINVAL;
378 
379 	/* Stash the cb_list before replacing it with the timestamp */
380 	list_replace(&fence->cb_list, &cb_list);
381 
382 	fence->timestamp = timestamp;
383 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
384 	trace_dma_fence_signaled(fence);
385 
386 	list_for_each_entry_safe(cur, tmp, &cb_list, node) {
387 		INIT_LIST_HEAD(&cur->node);
388 		cur->func(fence, cur);
389 	}
390 
391 	return 0;
392 }
393 EXPORT_SYMBOL(dma_fence_signal_timestamp_locked);
394 
395 /**
396  * dma_fence_signal_timestamp - signal completion of a fence
397  * @fence: the fence to signal
398  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
399  *
400  * Signal completion for software callbacks on a fence, this will unblock
401  * dma_fence_wait() calls and run all the callbacks added with
402  * dma_fence_add_callback(). Can be called multiple times, but since a fence
403  * can only go from the unsignaled to the signaled state and not back, it will
404  * only be effective the first time. Set the timestamp provided as the fence
405  * signal timestamp.
406  *
407  * Returns 0 on success and a negative error value when @fence has been
408  * signalled already.
409  */
410 int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp)
411 {
412 	unsigned long flags;
413 	int ret;
414 
415 	if (!fence)
416 		return -EINVAL;
417 
418 	spin_lock_irqsave(fence->lock, flags);
419 	ret = dma_fence_signal_timestamp_locked(fence, timestamp);
420 	spin_unlock_irqrestore(fence->lock, flags);
421 
422 	return ret;
423 }
424 EXPORT_SYMBOL(dma_fence_signal_timestamp);
425 
426 /**
427  * dma_fence_signal_locked - signal completion of a fence
428  * @fence: the fence to signal
429  *
430  * Signal completion for software callbacks on a fence, this will unblock
431  * dma_fence_wait() calls and run all the callbacks added with
432  * dma_fence_add_callback(). Can be called multiple times, but since a fence
433  * can only go from the unsignaled to the signaled state and not back, it will
434  * only be effective the first time.
435  *
436  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
437  * held.
438  *
439  * Returns 0 on success and a negative error value when @fence has been
440  * signalled already.
441  */
442 int dma_fence_signal_locked(struct dma_fence *fence)
443 {
444 	return dma_fence_signal_timestamp_locked(fence, ktime_get());
445 }
446 EXPORT_SYMBOL(dma_fence_signal_locked);
447 
448 /**
449  * dma_fence_signal - signal completion of a fence
450  * @fence: the fence to signal
451  *
452  * Signal completion for software callbacks on a fence, this will unblock
453  * dma_fence_wait() calls and run all the callbacks added with
454  * dma_fence_add_callback(). Can be called multiple times, but since a fence
455  * can only go from the unsignaled to the signaled state and not back, it will
456  * only be effective the first time.
457  *
458  * Returns 0 on success and a negative error value when @fence has been
459  * signalled already.
460  */
461 int dma_fence_signal(struct dma_fence *fence)
462 {
463 	unsigned long flags;
464 	int ret;
465 	bool tmp;
466 
467 	if (!fence)
468 		return -EINVAL;
469 
470 	tmp = dma_fence_begin_signalling();
471 
472 	spin_lock_irqsave(fence->lock, flags);
473 	ret = dma_fence_signal_timestamp_locked(fence, ktime_get());
474 	spin_unlock_irqrestore(fence->lock, flags);
475 
476 	dma_fence_end_signalling(tmp);
477 
478 	return ret;
479 }
480 EXPORT_SYMBOL(dma_fence_signal);
481 
482 /**
483  * dma_fence_wait_timeout - sleep until the fence gets signaled
484  * or until timeout elapses
485  * @fence: the fence to wait on
486  * @intr: if true, do an interruptible wait
487  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
488  *
489  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
490  * remaining timeout in jiffies on success. Other error values may be
491  * returned on custom implementations.
492  *
493  * Performs a synchronous wait on this fence. It is assumed the caller
494  * directly or indirectly (buf-mgr between reservation and committing)
495  * holds a reference to the fence, otherwise the fence might be
496  * freed before return, resulting in undefined behavior.
497  *
498  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
499  */
500 signed long
501 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
502 {
503 	signed long ret;
504 
505 	if (WARN_ON(timeout < 0))
506 		return -EINVAL;
507 
508 	might_sleep();
509 
510 	__dma_fence_might_wait();
511 
512 	dma_fence_enable_sw_signaling(fence);
513 
514 	trace_dma_fence_wait_start(fence);
515 	if (fence->ops->wait)
516 		ret = fence->ops->wait(fence, intr, timeout);
517 	else
518 		ret = dma_fence_default_wait(fence, intr, timeout);
519 	trace_dma_fence_wait_end(fence);
520 	return ret;
521 }
522 EXPORT_SYMBOL(dma_fence_wait_timeout);
523 
524 /**
525  * dma_fence_release - default relese function for fences
526  * @kref: &dma_fence.recfount
527  *
528  * This is the default release functions for &dma_fence. Drivers shouldn't call
529  * this directly, but instead call dma_fence_put().
530  */
531 void dma_fence_release(struct kref *kref)
532 {
533 	struct dma_fence *fence =
534 		container_of(kref, struct dma_fence, refcount);
535 
536 	trace_dma_fence_destroy(fence);
537 
538 	if (WARN(!list_empty(&fence->cb_list) &&
539 		 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
540 		 "Fence %s:%s:%llx:%llx released with pending signals!\n",
541 		 fence->ops->get_driver_name(fence),
542 		 fence->ops->get_timeline_name(fence),
543 		 fence->context, fence->seqno)) {
544 		unsigned long flags;
545 
546 		/*
547 		 * Failed to signal before release, likely a refcounting issue.
548 		 *
549 		 * This should never happen, but if it does make sure that we
550 		 * don't leave chains dangling. We set the error flag first
551 		 * so that the callbacks know this signal is due to an error.
552 		 */
553 		spin_lock_irqsave(fence->lock, flags);
554 		fence->error = -EDEADLK;
555 		dma_fence_signal_locked(fence);
556 		spin_unlock_irqrestore(fence->lock, flags);
557 	}
558 
559 	if (fence->ops->release)
560 		fence->ops->release(fence);
561 	else
562 		dma_fence_free(fence);
563 }
564 EXPORT_SYMBOL(dma_fence_release);
565 
566 /**
567  * dma_fence_free - default release function for &dma_fence.
568  * @fence: fence to release
569  *
570  * This is the default implementation for &dma_fence_ops.release. It calls
571  * kfree_rcu() on @fence.
572  */
573 void dma_fence_free(struct dma_fence *fence)
574 {
575 	kfree_rcu(fence, rcu);
576 }
577 EXPORT_SYMBOL(dma_fence_free);
578 
579 static bool __dma_fence_enable_signaling(struct dma_fence *fence)
580 {
581 	bool was_set;
582 
583 	lockdep_assert_held(fence->lock);
584 
585 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
586 				   &fence->flags);
587 
588 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
589 		return false;
590 
591 	if (!was_set && fence->ops->enable_signaling) {
592 		trace_dma_fence_enable_signal(fence);
593 
594 		if (!fence->ops->enable_signaling(fence)) {
595 			dma_fence_signal_locked(fence);
596 			return false;
597 		}
598 	}
599 
600 	return true;
601 }
602 
603 /**
604  * dma_fence_enable_sw_signaling - enable signaling on fence
605  * @fence: the fence to enable
606  *
607  * This will request for sw signaling to be enabled, to make the fence
608  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
609  * internally.
610  */
611 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
612 {
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(fence->lock, flags);
616 	__dma_fence_enable_signaling(fence);
617 	spin_unlock_irqrestore(fence->lock, flags);
618 }
619 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
620 
621 /**
622  * dma_fence_add_callback - add a callback to be called when the fence
623  * is signaled
624  * @fence: the fence to wait on
625  * @cb: the callback to register
626  * @func: the function to call
627  *
628  * Add a software callback to the fence. The caller should keep a reference to
629  * the fence.
630  *
631  * @cb will be initialized by dma_fence_add_callback(), no initialization
632  * by the caller is required. Any number of callbacks can be registered
633  * to a fence, but a callback can only be registered to one fence at a time.
634  *
635  * If fence is already signaled, this function will return -ENOENT (and
636  * *not* call the callback).
637  *
638  * Note that the callback can be called from an atomic context or irq context.
639  *
640  * Returns 0 in case of success, -ENOENT if the fence is already signaled
641  * and -EINVAL in case of error.
642  */
643 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
644 			   dma_fence_func_t func)
645 {
646 	unsigned long flags;
647 	int ret = 0;
648 
649 	if (WARN_ON(!fence || !func))
650 		return -EINVAL;
651 
652 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
653 		INIT_LIST_HEAD(&cb->node);
654 		return -ENOENT;
655 	}
656 
657 	spin_lock_irqsave(fence->lock, flags);
658 
659 	if (__dma_fence_enable_signaling(fence)) {
660 		cb->func = func;
661 		list_add_tail(&cb->node, &fence->cb_list);
662 	} else {
663 		INIT_LIST_HEAD(&cb->node);
664 		ret = -ENOENT;
665 	}
666 
667 	spin_unlock_irqrestore(fence->lock, flags);
668 
669 	return ret;
670 }
671 EXPORT_SYMBOL(dma_fence_add_callback);
672 
673 /**
674  * dma_fence_get_status - returns the status upon completion
675  * @fence: the dma_fence to query
676  *
677  * This wraps dma_fence_get_status_locked() to return the error status
678  * condition on a signaled fence. See dma_fence_get_status_locked() for more
679  * details.
680  *
681  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
682  * been signaled without an error condition, or a negative error code
683  * if the fence has been completed in err.
684  */
685 int dma_fence_get_status(struct dma_fence *fence)
686 {
687 	unsigned long flags;
688 	int status;
689 
690 	spin_lock_irqsave(fence->lock, flags);
691 	status = dma_fence_get_status_locked(fence);
692 	spin_unlock_irqrestore(fence->lock, flags);
693 
694 	return status;
695 }
696 EXPORT_SYMBOL(dma_fence_get_status);
697 
698 /**
699  * dma_fence_remove_callback - remove a callback from the signaling list
700  * @fence: the fence to wait on
701  * @cb: the callback to remove
702  *
703  * Remove a previously queued callback from the fence. This function returns
704  * true if the callback is successfully removed, or false if the fence has
705  * already been signaled.
706  *
707  * *WARNING*:
708  * Cancelling a callback should only be done if you really know what you're
709  * doing, since deadlocks and race conditions could occur all too easily. For
710  * this reason, it should only ever be done on hardware lockup recovery,
711  * with a reference held to the fence.
712  *
713  * Behaviour is undefined if @cb has not been added to @fence using
714  * dma_fence_add_callback() beforehand.
715  */
716 bool
717 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
718 {
719 	unsigned long flags;
720 	bool ret;
721 
722 	spin_lock_irqsave(fence->lock, flags);
723 
724 	ret = !list_empty(&cb->node);
725 	if (ret)
726 		list_del_init(&cb->node);
727 
728 	spin_unlock_irqrestore(fence->lock, flags);
729 
730 	return ret;
731 }
732 EXPORT_SYMBOL(dma_fence_remove_callback);
733 
734 struct default_wait_cb {
735 	struct dma_fence_cb base;
736 	struct task_struct *task;
737 };
738 
739 static void
740 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
741 {
742 	struct default_wait_cb *wait =
743 		container_of(cb, struct default_wait_cb, base);
744 
745 	wake_up_state(wait->task, TASK_NORMAL);
746 }
747 
748 /**
749  * dma_fence_default_wait - default sleep until the fence gets signaled
750  * or until timeout elapses
751  * @fence: the fence to wait on
752  * @intr: if true, do an interruptible wait
753  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
754  *
755  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
756  * remaining timeout in jiffies on success. If timeout is zero the value one is
757  * returned if the fence is already signaled for consistency with other
758  * functions taking a jiffies timeout.
759  */
760 signed long
761 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
762 {
763 	struct default_wait_cb cb;
764 	unsigned long flags;
765 	signed long ret = timeout ? timeout : 1;
766 
767 	spin_lock_irqsave(fence->lock, flags);
768 
769 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
770 		goto out;
771 
772 	if (intr && signal_pending(current)) {
773 		ret = -ERESTARTSYS;
774 		goto out;
775 	}
776 
777 	if (!timeout) {
778 		ret = 0;
779 		goto out;
780 	}
781 
782 	cb.base.func = dma_fence_default_wait_cb;
783 	cb.task = current;
784 	list_add(&cb.base.node, &fence->cb_list);
785 
786 	while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
787 		if (intr)
788 			__set_current_state(TASK_INTERRUPTIBLE);
789 		else
790 			__set_current_state(TASK_UNINTERRUPTIBLE);
791 		spin_unlock_irqrestore(fence->lock, flags);
792 
793 		ret = schedule_timeout(ret);
794 
795 		spin_lock_irqsave(fence->lock, flags);
796 		if (ret > 0 && intr && signal_pending(current))
797 			ret = -ERESTARTSYS;
798 	}
799 
800 	if (!list_empty(&cb.base.node))
801 		list_del(&cb.base.node);
802 	__set_current_state(TASK_RUNNING);
803 
804 out:
805 	spin_unlock_irqrestore(fence->lock, flags);
806 	return ret;
807 }
808 EXPORT_SYMBOL(dma_fence_default_wait);
809 
810 static bool
811 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
812 			    uint32_t *idx)
813 {
814 	int i;
815 
816 	for (i = 0; i < count; ++i) {
817 		struct dma_fence *fence = fences[i];
818 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
819 			if (idx)
820 				*idx = i;
821 			return true;
822 		}
823 	}
824 	return false;
825 }
826 
827 /**
828  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
829  * or until timeout elapses
830  * @fences: array of fences to wait on
831  * @count: number of fences to wait on
832  * @intr: if true, do an interruptible wait
833  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
834  * @idx: used to store the first signaled fence index, meaningful only on
835  *	positive return
836  *
837  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
838  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
839  * on success.
840  *
841  * Synchronous waits for the first fence in the array to be signaled. The
842  * caller needs to hold a reference to all fences in the array, otherwise a
843  * fence might be freed before return, resulting in undefined behavior.
844  *
845  * See also dma_fence_wait() and dma_fence_wait_timeout().
846  */
847 signed long
848 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
849 			   bool intr, signed long timeout, uint32_t *idx)
850 {
851 	struct default_wait_cb *cb;
852 	signed long ret = timeout;
853 	unsigned i;
854 
855 	if (WARN_ON(!fences || !count || timeout < 0))
856 		return -EINVAL;
857 
858 	if (timeout == 0) {
859 		for (i = 0; i < count; ++i)
860 			if (dma_fence_is_signaled(fences[i])) {
861 				if (idx)
862 					*idx = i;
863 				return 1;
864 			}
865 
866 		return 0;
867 	}
868 
869 	cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
870 	if (cb == NULL) {
871 		ret = -ENOMEM;
872 		goto err_free_cb;
873 	}
874 
875 	for (i = 0; i < count; ++i) {
876 		struct dma_fence *fence = fences[i];
877 
878 		cb[i].task = current;
879 		if (dma_fence_add_callback(fence, &cb[i].base,
880 					   dma_fence_default_wait_cb)) {
881 			/* This fence is already signaled */
882 			if (idx)
883 				*idx = i;
884 			goto fence_rm_cb;
885 		}
886 	}
887 
888 	while (ret > 0) {
889 		if (intr)
890 			set_current_state(TASK_INTERRUPTIBLE);
891 		else
892 			set_current_state(TASK_UNINTERRUPTIBLE);
893 
894 		if (dma_fence_test_signaled_any(fences, count, idx))
895 			break;
896 
897 		ret = schedule_timeout(ret);
898 
899 		if (ret > 0 && intr && signal_pending(current))
900 			ret = -ERESTARTSYS;
901 	}
902 
903 	__set_current_state(TASK_RUNNING);
904 
905 fence_rm_cb:
906 	while (i-- > 0)
907 		dma_fence_remove_callback(fences[i], &cb[i].base);
908 
909 err_free_cb:
910 	kfree(cb);
911 
912 	return ret;
913 }
914 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
915 
916 /**
917  * DOC: deadline hints
918  *
919  * In an ideal world, it would be possible to pipeline a workload sufficiently
920  * that a utilization based device frequency governor could arrive at a minimum
921  * frequency that meets the requirements of the use-case, in order to minimize
922  * power consumption.  But in the real world there are many workloads which
923  * defy this ideal.  For example, but not limited to:
924  *
925  * * Workloads that ping-pong between device and CPU, with alternating periods
926  *   of CPU waiting for device, and device waiting on CPU.  This can result in
927  *   devfreq and cpufreq seeing idle time in their respective domains and in
928  *   result reduce frequency.
929  *
930  * * Workloads that interact with a periodic time based deadline, such as double
931  *   buffered GPU rendering vs vblank sync'd page flipping.  In this scenario,
932  *   missing a vblank deadline results in an *increase* in idle time on the GPU
933  *   (since it has to wait an additional vblank period), sending a signal to
934  *   the GPU's devfreq to reduce frequency, when in fact the opposite is what is
935  *   needed.
936  *
937  * To this end, deadline hint(s) can be set on a &dma_fence via &dma_fence_set_deadline.
938  * The deadline hint provides a way for the waiting driver, or userspace, to
939  * convey an appropriate sense of urgency to the signaling driver.
940  *
941  * A deadline hint is given in absolute ktime (CLOCK_MONOTONIC for userspace
942  * facing APIs).  The time could either be some point in the future (such as
943  * the vblank based deadline for page-flipping, or the start of a compositor's
944  * composition cycle), or the current time to indicate an immediate deadline
945  * hint (Ie. forward progress cannot be made until this fence is signaled).
946  *
947  * Multiple deadlines may be set on a given fence, even in parallel.  See the
948  * documentation for &dma_fence_ops.set_deadline.
949  *
950  * The deadline hint is just that, a hint.  The driver that created the fence
951  * may react by increasing frequency, making different scheduling choices, etc.
952  * Or doing nothing at all.
953  */
954 
955 /**
956  * dma_fence_set_deadline - set desired fence-wait deadline hint
957  * @fence:    the fence that is to be waited on
958  * @deadline: the time by which the waiter hopes for the fence to be
959  *            signaled
960  *
961  * Give the fence signaler a hint about an upcoming deadline, such as
962  * vblank, by which point the waiter would prefer the fence to be
963  * signaled by.  This is intended to give feedback to the fence signaler
964  * to aid in power management decisions, such as boosting GPU frequency
965  * if a periodic vblank deadline is approaching but the fence is not
966  * yet signaled..
967  */
968 void dma_fence_set_deadline(struct dma_fence *fence, ktime_t deadline)
969 {
970 	if (fence->ops->set_deadline && !dma_fence_is_signaled(fence))
971 		fence->ops->set_deadline(fence, deadline);
972 }
973 EXPORT_SYMBOL(dma_fence_set_deadline);
974 
975 /**
976  * dma_fence_describe - Dump fence describtion into seq_file
977  * @fence: the 6fence to describe
978  * @seq: the seq_file to put the textual description into
979  *
980  * Dump a textual description of the fence and it's state into the seq_file.
981  */
982 void dma_fence_describe(struct dma_fence *fence, struct seq_file *seq)
983 {
984 	seq_printf(seq, "%s %s seq %llu %ssignalled\n",
985 		   fence->ops->get_driver_name(fence),
986 		   fence->ops->get_timeline_name(fence), fence->seqno,
987 		   dma_fence_is_signaled(fence) ? "" : "un");
988 }
989 EXPORT_SYMBOL(dma_fence_describe);
990 
991 /**
992  * dma_fence_init - Initialize a custom fence.
993  * @fence: the fence to initialize
994  * @ops: the dma_fence_ops for operations on this fence
995  * @lock: the irqsafe spinlock to use for locking this fence
996  * @context: the execution context this fence is run on
997  * @seqno: a linear increasing sequence number for this context
998  *
999  * Initializes an allocated fence, the caller doesn't have to keep its
1000  * refcount after committing with this fence, but it will need to hold a
1001  * refcount again if &dma_fence_ops.enable_signaling gets called.
1002  *
1003  * context and seqno are used for easy comparison between fences, allowing
1004  * to check which fence is later by simply using dma_fence_later().
1005  */
1006 void
1007 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
1008 	       spinlock_t *lock, u64 context, u64 seqno)
1009 {
1010 	BUG_ON(!lock);
1011 	BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
1012 
1013 	kref_init(&fence->refcount);
1014 	fence->ops = ops;
1015 	INIT_LIST_HEAD(&fence->cb_list);
1016 	fence->lock = lock;
1017 	fence->context = context;
1018 	fence->seqno = seqno;
1019 	fence->flags = 0UL;
1020 	fence->error = 0;
1021 
1022 	trace_dma_fence_init(fence);
1023 }
1024 EXPORT_SYMBOL(dma_fence_init);
1025