1 /* 2 * Fence mechanism for dma-buf and to allow for asynchronous dma access 3 * 4 * Copyright (C) 2012 Canonical Ltd 5 * Copyright (C) 2012 Texas Instruments 6 * 7 * Authors: 8 * Rob Clark <robdclark@gmail.com> 9 * Maarten Lankhorst <maarten.lankhorst@canonical.com> 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License version 2 as published by 13 * the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 18 * more details. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/export.h> 23 #include <linux/atomic.h> 24 #include <linux/dma-fence.h> 25 #include <linux/sched/signal.h> 26 27 #define CREATE_TRACE_POINTS 28 #include <trace/events/dma_fence.h> 29 30 EXPORT_TRACEPOINT_SYMBOL(dma_fence_annotate_wait_on); 31 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit); 32 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal); 33 34 /* 35 * fence context counter: each execution context should have its own 36 * fence context, this allows checking if fences belong to the same 37 * context or not. One device can have multiple separate contexts, 38 * and they're used if some engine can run independently of another. 39 */ 40 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(0); 41 42 /** 43 * dma_fence_context_alloc - allocate an array of fence contexts 44 * @num: [in] amount of contexts to allocate 45 * 46 * This function will return the first index of the number of fences allocated. 47 * The fence context is used for setting fence->context to a unique number. 48 */ 49 u64 dma_fence_context_alloc(unsigned num) 50 { 51 BUG_ON(!num); 52 return atomic64_add_return(num, &dma_fence_context_counter) - num; 53 } 54 EXPORT_SYMBOL(dma_fence_context_alloc); 55 56 /** 57 * dma_fence_signal_locked - signal completion of a fence 58 * @fence: the fence to signal 59 * 60 * Signal completion for software callbacks on a fence, this will unblock 61 * dma_fence_wait() calls and run all the callbacks added with 62 * dma_fence_add_callback(). Can be called multiple times, but since a fence 63 * can only go from unsignaled to signaled state, it will only be effective 64 * the first time. 65 * 66 * Unlike dma_fence_signal, this function must be called with fence->lock held. 67 */ 68 int dma_fence_signal_locked(struct dma_fence *fence) 69 { 70 struct dma_fence_cb *cur, *tmp; 71 int ret = 0; 72 73 lockdep_assert_held(fence->lock); 74 75 if (WARN_ON(!fence)) 76 return -EINVAL; 77 78 if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 79 ret = -EINVAL; 80 81 /* 82 * we might have raced with the unlocked dma_fence_signal, 83 * still run through all callbacks 84 */ 85 } else { 86 fence->timestamp = ktime_get(); 87 set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags); 88 trace_dma_fence_signaled(fence); 89 } 90 91 list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) { 92 list_del_init(&cur->node); 93 cur->func(fence, cur); 94 } 95 return ret; 96 } 97 EXPORT_SYMBOL(dma_fence_signal_locked); 98 99 /** 100 * dma_fence_signal - signal completion of a fence 101 * @fence: the fence to signal 102 * 103 * Signal completion for software callbacks on a fence, this will unblock 104 * dma_fence_wait() calls and run all the callbacks added with 105 * dma_fence_add_callback(). Can be called multiple times, but since a fence 106 * can only go from unsignaled to signaled state, it will only be effective 107 * the first time. 108 */ 109 int dma_fence_signal(struct dma_fence *fence) 110 { 111 unsigned long flags; 112 113 if (!fence) 114 return -EINVAL; 115 116 if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 117 return -EINVAL; 118 119 fence->timestamp = ktime_get(); 120 set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags); 121 trace_dma_fence_signaled(fence); 122 123 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) { 124 struct dma_fence_cb *cur, *tmp; 125 126 spin_lock_irqsave(fence->lock, flags); 127 list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) { 128 list_del_init(&cur->node); 129 cur->func(fence, cur); 130 } 131 spin_unlock_irqrestore(fence->lock, flags); 132 } 133 return 0; 134 } 135 EXPORT_SYMBOL(dma_fence_signal); 136 137 /** 138 * dma_fence_wait_timeout - sleep until the fence gets signaled 139 * or until timeout elapses 140 * @fence: [in] the fence to wait on 141 * @intr: [in] if true, do an interruptible wait 142 * @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 143 * 144 * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the 145 * remaining timeout in jiffies on success. Other error values may be 146 * returned on custom implementations. 147 * 148 * Performs a synchronous wait on this fence. It is assumed the caller 149 * directly or indirectly (buf-mgr between reservation and committing) 150 * holds a reference to the fence, otherwise the fence might be 151 * freed before return, resulting in undefined behavior. 152 */ 153 signed long 154 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout) 155 { 156 signed long ret; 157 158 if (WARN_ON(timeout < 0)) 159 return -EINVAL; 160 161 trace_dma_fence_wait_start(fence); 162 ret = fence->ops->wait(fence, intr, timeout); 163 trace_dma_fence_wait_end(fence); 164 return ret; 165 } 166 EXPORT_SYMBOL(dma_fence_wait_timeout); 167 168 void dma_fence_release(struct kref *kref) 169 { 170 struct dma_fence *fence = 171 container_of(kref, struct dma_fence, refcount); 172 173 trace_dma_fence_destroy(fence); 174 175 BUG_ON(!list_empty(&fence->cb_list)); 176 177 if (fence->ops->release) 178 fence->ops->release(fence); 179 else 180 dma_fence_free(fence); 181 } 182 EXPORT_SYMBOL(dma_fence_release); 183 184 void dma_fence_free(struct dma_fence *fence) 185 { 186 kfree_rcu(fence, rcu); 187 } 188 EXPORT_SYMBOL(dma_fence_free); 189 190 /** 191 * dma_fence_enable_sw_signaling - enable signaling on fence 192 * @fence: [in] the fence to enable 193 * 194 * this will request for sw signaling to be enabled, to make the fence 195 * complete as soon as possible 196 */ 197 void dma_fence_enable_sw_signaling(struct dma_fence *fence) 198 { 199 unsigned long flags; 200 201 if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 202 &fence->flags) && 203 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 204 trace_dma_fence_enable_signal(fence); 205 206 spin_lock_irqsave(fence->lock, flags); 207 208 if (!fence->ops->enable_signaling(fence)) 209 dma_fence_signal_locked(fence); 210 211 spin_unlock_irqrestore(fence->lock, flags); 212 } 213 } 214 EXPORT_SYMBOL(dma_fence_enable_sw_signaling); 215 216 /** 217 * dma_fence_add_callback - add a callback to be called when the fence 218 * is signaled 219 * @fence: [in] the fence to wait on 220 * @cb: [in] the callback to register 221 * @func: [in] the function to call 222 * 223 * cb will be initialized by dma_fence_add_callback, no initialization 224 * by the caller is required. Any number of callbacks can be registered 225 * to a fence, but a callback can only be registered to one fence at a time. 226 * 227 * Note that the callback can be called from an atomic context. If 228 * fence is already signaled, this function will return -ENOENT (and 229 * *not* call the callback) 230 * 231 * Add a software callback to the fence. Same restrictions apply to 232 * refcount as it does to dma_fence_wait, however the caller doesn't need to 233 * keep a refcount to fence afterwards: when software access is enabled, 234 * the creator of the fence is required to keep the fence alive until 235 * after it signals with dma_fence_signal. The callback itself can be called 236 * from irq context. 237 * 238 * Returns 0 in case of success, -ENOENT if the fence is already signaled 239 * and -EINVAL in case of error. 240 */ 241 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb, 242 dma_fence_func_t func) 243 { 244 unsigned long flags; 245 int ret = 0; 246 bool was_set; 247 248 if (WARN_ON(!fence || !func)) 249 return -EINVAL; 250 251 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 252 INIT_LIST_HEAD(&cb->node); 253 return -ENOENT; 254 } 255 256 spin_lock_irqsave(fence->lock, flags); 257 258 was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 259 &fence->flags); 260 261 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 262 ret = -ENOENT; 263 else if (!was_set) { 264 trace_dma_fence_enable_signal(fence); 265 266 if (!fence->ops->enable_signaling(fence)) { 267 dma_fence_signal_locked(fence); 268 ret = -ENOENT; 269 } 270 } 271 272 if (!ret) { 273 cb->func = func; 274 list_add_tail(&cb->node, &fence->cb_list); 275 } else 276 INIT_LIST_HEAD(&cb->node); 277 spin_unlock_irqrestore(fence->lock, flags); 278 279 return ret; 280 } 281 EXPORT_SYMBOL(dma_fence_add_callback); 282 283 /** 284 * dma_fence_get_status - returns the status upon completion 285 * @fence: [in] the dma_fence to query 286 * 287 * This wraps dma_fence_get_status_locked() to return the error status 288 * condition on a signaled fence. See dma_fence_get_status_locked() for more 289 * details. 290 * 291 * Returns 0 if the fence has not yet been signaled, 1 if the fence has 292 * been signaled without an error condition, or a negative error code 293 * if the fence has been completed in err. 294 */ 295 int dma_fence_get_status(struct dma_fence *fence) 296 { 297 unsigned long flags; 298 int status; 299 300 spin_lock_irqsave(fence->lock, flags); 301 status = dma_fence_get_status_locked(fence); 302 spin_unlock_irqrestore(fence->lock, flags); 303 304 return status; 305 } 306 EXPORT_SYMBOL(dma_fence_get_status); 307 308 /** 309 * dma_fence_remove_callback - remove a callback from the signaling list 310 * @fence: [in] the fence to wait on 311 * @cb: [in] the callback to remove 312 * 313 * Remove a previously queued callback from the fence. This function returns 314 * true if the callback is successfully removed, or false if the fence has 315 * already been signaled. 316 * 317 * *WARNING*: 318 * Cancelling a callback should only be done if you really know what you're 319 * doing, since deadlocks and race conditions could occur all too easily. For 320 * this reason, it should only ever be done on hardware lockup recovery, 321 * with a reference held to the fence. 322 */ 323 bool 324 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb) 325 { 326 unsigned long flags; 327 bool ret; 328 329 spin_lock_irqsave(fence->lock, flags); 330 331 ret = !list_empty(&cb->node); 332 if (ret) 333 list_del_init(&cb->node); 334 335 spin_unlock_irqrestore(fence->lock, flags); 336 337 return ret; 338 } 339 EXPORT_SYMBOL(dma_fence_remove_callback); 340 341 struct default_wait_cb { 342 struct dma_fence_cb base; 343 struct task_struct *task; 344 }; 345 346 static void 347 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 348 { 349 struct default_wait_cb *wait = 350 container_of(cb, struct default_wait_cb, base); 351 352 wake_up_state(wait->task, TASK_NORMAL); 353 } 354 355 /** 356 * dma_fence_default_wait - default sleep until the fence gets signaled 357 * or until timeout elapses 358 * @fence: [in] the fence to wait on 359 * @intr: [in] if true, do an interruptible wait 360 * @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 361 * 362 * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the 363 * remaining timeout in jiffies on success. If timeout is zero the value one is 364 * returned if the fence is already signaled for consistency with other 365 * functions taking a jiffies timeout. 366 */ 367 signed long 368 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout) 369 { 370 struct default_wait_cb cb; 371 unsigned long flags; 372 signed long ret = timeout ? timeout : 1; 373 bool was_set; 374 375 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 376 return ret; 377 378 spin_lock_irqsave(fence->lock, flags); 379 380 if (intr && signal_pending(current)) { 381 ret = -ERESTARTSYS; 382 goto out; 383 } 384 385 was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 386 &fence->flags); 387 388 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 389 goto out; 390 391 if (!was_set) { 392 trace_dma_fence_enable_signal(fence); 393 394 if (!fence->ops->enable_signaling(fence)) { 395 dma_fence_signal_locked(fence); 396 goto out; 397 } 398 } 399 400 if (!timeout) { 401 ret = 0; 402 goto out; 403 } 404 405 cb.base.func = dma_fence_default_wait_cb; 406 cb.task = current; 407 list_add(&cb.base.node, &fence->cb_list); 408 409 while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) { 410 if (intr) 411 __set_current_state(TASK_INTERRUPTIBLE); 412 else 413 __set_current_state(TASK_UNINTERRUPTIBLE); 414 spin_unlock_irqrestore(fence->lock, flags); 415 416 ret = schedule_timeout(ret); 417 418 spin_lock_irqsave(fence->lock, flags); 419 if (ret > 0 && intr && signal_pending(current)) 420 ret = -ERESTARTSYS; 421 } 422 423 if (!list_empty(&cb.base.node)) 424 list_del(&cb.base.node); 425 __set_current_state(TASK_RUNNING); 426 427 out: 428 spin_unlock_irqrestore(fence->lock, flags); 429 return ret; 430 } 431 EXPORT_SYMBOL(dma_fence_default_wait); 432 433 static bool 434 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count, 435 uint32_t *idx) 436 { 437 int i; 438 439 for (i = 0; i < count; ++i) { 440 struct dma_fence *fence = fences[i]; 441 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 442 if (idx) 443 *idx = i; 444 return true; 445 } 446 } 447 return false; 448 } 449 450 /** 451 * dma_fence_wait_any_timeout - sleep until any fence gets signaled 452 * or until timeout elapses 453 * @fences: [in] array of fences to wait on 454 * @count: [in] number of fences to wait on 455 * @intr: [in] if true, do an interruptible wait 456 * @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 457 * @idx: [out] the first signaled fence index, meaningful only on 458 * positive return 459 * 460 * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if 461 * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies 462 * on success. 463 * 464 * Synchronous waits for the first fence in the array to be signaled. The 465 * caller needs to hold a reference to all fences in the array, otherwise a 466 * fence might be freed before return, resulting in undefined behavior. 467 */ 468 signed long 469 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count, 470 bool intr, signed long timeout, uint32_t *idx) 471 { 472 struct default_wait_cb *cb; 473 signed long ret = timeout; 474 unsigned i; 475 476 if (WARN_ON(!fences || !count || timeout < 0)) 477 return -EINVAL; 478 479 if (timeout == 0) { 480 for (i = 0; i < count; ++i) 481 if (dma_fence_is_signaled(fences[i])) { 482 if (idx) 483 *idx = i; 484 return 1; 485 } 486 487 return 0; 488 } 489 490 cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL); 491 if (cb == NULL) { 492 ret = -ENOMEM; 493 goto err_free_cb; 494 } 495 496 for (i = 0; i < count; ++i) { 497 struct dma_fence *fence = fences[i]; 498 499 if (fence->ops->wait != dma_fence_default_wait) { 500 ret = -EINVAL; 501 goto fence_rm_cb; 502 } 503 504 cb[i].task = current; 505 if (dma_fence_add_callback(fence, &cb[i].base, 506 dma_fence_default_wait_cb)) { 507 /* This fence is already signaled */ 508 if (idx) 509 *idx = i; 510 goto fence_rm_cb; 511 } 512 } 513 514 while (ret > 0) { 515 if (intr) 516 set_current_state(TASK_INTERRUPTIBLE); 517 else 518 set_current_state(TASK_UNINTERRUPTIBLE); 519 520 if (dma_fence_test_signaled_any(fences, count, idx)) 521 break; 522 523 ret = schedule_timeout(ret); 524 525 if (ret > 0 && intr && signal_pending(current)) 526 ret = -ERESTARTSYS; 527 } 528 529 __set_current_state(TASK_RUNNING); 530 531 fence_rm_cb: 532 while (i-- > 0) 533 dma_fence_remove_callback(fences[i], &cb[i].base); 534 535 err_free_cb: 536 kfree(cb); 537 538 return ret; 539 } 540 EXPORT_SYMBOL(dma_fence_wait_any_timeout); 541 542 /** 543 * dma_fence_init - Initialize a custom fence. 544 * @fence: [in] the fence to initialize 545 * @ops: [in] the dma_fence_ops for operations on this fence 546 * @lock: [in] the irqsafe spinlock to use for locking this fence 547 * @context: [in] the execution context this fence is run on 548 * @seqno: [in] a linear increasing sequence number for this context 549 * 550 * Initializes an allocated fence, the caller doesn't have to keep its 551 * refcount after committing with this fence, but it will need to hold a 552 * refcount again if dma_fence_ops.enable_signaling gets called. This can 553 * be used for other implementing other types of fence. 554 * 555 * context and seqno are used for easy comparison between fences, allowing 556 * to check which fence is later by simply using dma_fence_later. 557 */ 558 void 559 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops, 560 spinlock_t *lock, u64 context, unsigned seqno) 561 { 562 BUG_ON(!lock); 563 BUG_ON(!ops || !ops->wait || !ops->enable_signaling || 564 !ops->get_driver_name || !ops->get_timeline_name); 565 566 kref_init(&fence->refcount); 567 fence->ops = ops; 568 INIT_LIST_HEAD(&fence->cb_list); 569 fence->lock = lock; 570 fence->context = context; 571 fence->seqno = seqno; 572 fence->flags = 0UL; 573 fence->error = 0; 574 575 trace_dma_fence_init(fence); 576 } 577 EXPORT_SYMBOL(dma_fence_init); 578