xref: /openbmc/linux/drivers/dma-buf/dma-fence.c (revision 4eb5928d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Fence mechanism for dma-buf and to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/atomic.h>
16 #include <linux/dma-fence.h>
17 #include <linux/sched/signal.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/dma_fence.h>
21 
22 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
23 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
24 EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
25 
26 static DEFINE_SPINLOCK(dma_fence_stub_lock);
27 static struct dma_fence dma_fence_stub;
28 
29 /*
30  * fence context counter: each execution context should have its own
31  * fence context, this allows checking if fences belong to the same
32  * context or not. One device can have multiple separate contexts,
33  * and they're used if some engine can run independently of another.
34  */
35 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
36 
37 /**
38  * DOC: DMA fences overview
39  *
40  * DMA fences, represented by &struct dma_fence, are the kernel internal
41  * synchronization primitive for DMA operations like GPU rendering, video
42  * encoding/decoding, or displaying buffers on a screen.
43  *
44  * A fence is initialized using dma_fence_init() and completed using
45  * dma_fence_signal(). Fences are associated with a context, allocated through
46  * dma_fence_context_alloc(), and all fences on the same context are
47  * fully ordered.
48  *
49  * Since the purposes of fences is to facilitate cross-device and
50  * cross-application synchronization, there's multiple ways to use one:
51  *
52  * - Individual fences can be exposed as a &sync_file, accessed as a file
53  *   descriptor from userspace, created by calling sync_file_create(). This is
54  *   called explicit fencing, since userspace passes around explicit
55  *   synchronization points.
56  *
57  * - Some subsystems also have their own explicit fencing primitives, like
58  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
59  *   fence to be updated.
60  *
61  * - Then there's also implicit fencing, where the synchronization points are
62  *   implicitly passed around as part of shared &dma_buf instances. Such
63  *   implicit fences are stored in &struct dma_resv through the
64  *   &dma_buf.resv pointer.
65  */
66 
67 /**
68  * DOC: fence cross-driver contract
69  *
70  * Since &dma_fence provide a cross driver contract, all drivers must follow the
71  * same rules:
72  *
73  * * Fences must complete in a reasonable time. Fences which represent kernels
74  *   and shaders submitted by userspace, which could run forever, must be backed
75  *   up by timeout and gpu hang recovery code. Minimally that code must prevent
76  *   further command submission and force complete all in-flight fences, e.g.
77  *   when the driver or hardware do not support gpu reset, or if the gpu reset
78  *   failed for some reason. Ideally the driver supports gpu recovery which only
79  *   affects the offending userspace context, and no other userspace
80  *   submissions.
81  *
82  * * Drivers may have different ideas of what completion within a reasonable
83  *   time means. Some hang recovery code uses a fixed timeout, others a mix
84  *   between observing forward progress and increasingly strict timeouts.
85  *   Drivers should not try to second guess timeout handling of fences from
86  *   other drivers.
87  *
88  * * To ensure there's no deadlocks of dma_fence_wait() against other locks
89  *   drivers should annotate all code required to reach dma_fence_signal(),
90  *   which completes the fences, with dma_fence_begin_signalling() and
91  *   dma_fence_end_signalling().
92  *
93  * * Drivers are allowed to call dma_fence_wait() while holding dma_resv_lock().
94  *   This means any code required for fence completion cannot acquire a
95  *   &dma_resv lock. Note that this also pulls in the entire established
96  *   locking hierarchy around dma_resv_lock() and dma_resv_unlock().
97  *
98  * * Drivers are allowed to call dma_fence_wait() from their &shrinker
99  *   callbacks. This means any code required for fence completion cannot
100  *   allocate memory with GFP_KERNEL.
101  *
102  * * Drivers are allowed to call dma_fence_wait() from their &mmu_notifier
103  *   respectively &mmu_interval_notifier callbacks. This means any code required
104  *   for fence completeion cannot allocate memory with GFP_NOFS or GFP_NOIO.
105  *   Only GFP_ATOMIC is permissible, which might fail.
106  *
107  * Note that only GPU drivers have a reasonable excuse for both requiring
108  * &mmu_interval_notifier and &shrinker callbacks at the same time as having to
109  * track asynchronous compute work using &dma_fence. No driver outside of
110  * drivers/gpu should ever call dma_fence_wait() in such contexts.
111  */
112 
113 static const char *dma_fence_stub_get_name(struct dma_fence *fence)
114 {
115         return "stub";
116 }
117 
118 static const struct dma_fence_ops dma_fence_stub_ops = {
119 	.get_driver_name = dma_fence_stub_get_name,
120 	.get_timeline_name = dma_fence_stub_get_name,
121 };
122 
123 /**
124  * dma_fence_get_stub - return a signaled fence
125  *
126  * Return a stub fence which is already signaled.
127  */
128 struct dma_fence *dma_fence_get_stub(void)
129 {
130 	spin_lock(&dma_fence_stub_lock);
131 	if (!dma_fence_stub.ops) {
132 		dma_fence_init(&dma_fence_stub,
133 			       &dma_fence_stub_ops,
134 			       &dma_fence_stub_lock,
135 			       0, 0);
136 		dma_fence_signal_locked(&dma_fence_stub);
137 	}
138 	spin_unlock(&dma_fence_stub_lock);
139 
140 	return dma_fence_get(&dma_fence_stub);
141 }
142 EXPORT_SYMBOL(dma_fence_get_stub);
143 
144 /**
145  * dma_fence_context_alloc - allocate an array of fence contexts
146  * @num: amount of contexts to allocate
147  *
148  * This function will return the first index of the number of fence contexts
149  * allocated.  The fence context is used for setting &dma_fence.context to a
150  * unique number by passing the context to dma_fence_init().
151  */
152 u64 dma_fence_context_alloc(unsigned num)
153 {
154 	WARN_ON(!num);
155 	return atomic64_fetch_add(num, &dma_fence_context_counter);
156 }
157 EXPORT_SYMBOL(dma_fence_context_alloc);
158 
159 /**
160  * DOC: fence signalling annotation
161  *
162  * Proving correctness of all the kernel code around &dma_fence through code
163  * review and testing is tricky for a few reasons:
164  *
165  * * It is a cross-driver contract, and therefore all drivers must follow the
166  *   same rules for lock nesting order, calling contexts for various functions
167  *   and anything else significant for in-kernel interfaces. But it is also
168  *   impossible to test all drivers in a single machine, hence brute-force N vs.
169  *   N testing of all combinations is impossible. Even just limiting to the
170  *   possible combinations is infeasible.
171  *
172  * * There is an enormous amount of driver code involved. For render drivers
173  *   there's the tail of command submission, after fences are published,
174  *   scheduler code, interrupt and workers to process job completion,
175  *   and timeout, gpu reset and gpu hang recovery code. Plus for integration
176  *   with core mm with have &mmu_notifier, respectively &mmu_interval_notifier,
177  *   and &shrinker. For modesetting drivers there's the commit tail functions
178  *   between when fences for an atomic modeset are published, and when the
179  *   corresponding vblank completes, including any interrupt processing and
180  *   related workers. Auditing all that code, across all drivers, is not
181  *   feasible.
182  *
183  * * Due to how many other subsystems are involved and the locking hierarchies
184  *   this pulls in there is extremely thin wiggle-room for driver-specific
185  *   differences. &dma_fence interacts with almost all of the core memory
186  *   handling through page fault handlers via &dma_resv, dma_resv_lock() and
187  *   dma_resv_unlock(). On the other side it also interacts through all
188  *   allocation sites through &mmu_notifier and &shrinker.
189  *
190  * Furthermore lockdep does not handle cross-release dependencies, which means
191  * any deadlocks between dma_fence_wait() and dma_fence_signal() can't be caught
192  * at runtime with some quick testing. The simplest example is one thread
193  * waiting on a &dma_fence while holding a lock::
194  *
195  *     lock(A);
196  *     dma_fence_wait(B);
197  *     unlock(A);
198  *
199  * while the other thread is stuck trying to acquire the same lock, which
200  * prevents it from signalling the fence the previous thread is stuck waiting
201  * on::
202  *
203  *     lock(A);
204  *     unlock(A);
205  *     dma_fence_signal(B);
206  *
207  * By manually annotating all code relevant to signalling a &dma_fence we can
208  * teach lockdep about these dependencies, which also helps with the validation
209  * headache since now lockdep can check all the rules for us::
210  *
211  *    cookie = dma_fence_begin_signalling();
212  *    lock(A);
213  *    unlock(A);
214  *    dma_fence_signal(B);
215  *    dma_fence_end_signalling(cookie);
216  *
217  * For using dma_fence_begin_signalling() and dma_fence_end_signalling() to
218  * annotate critical sections the following rules need to be observed:
219  *
220  * * All code necessary to complete a &dma_fence must be annotated, from the
221  *   point where a fence is accessible to other threads, to the point where
222  *   dma_fence_signal() is called. Un-annotated code can contain deadlock issues,
223  *   and due to the very strict rules and many corner cases it is infeasible to
224  *   catch these just with review or normal stress testing.
225  *
226  * * &struct dma_resv deserves a special note, since the readers are only
227  *   protected by rcu. This means the signalling critical section starts as soon
228  *   as the new fences are installed, even before dma_resv_unlock() is called.
229  *
230  * * The only exception are fast paths and opportunistic signalling code, which
231  *   calls dma_fence_signal() purely as an optimization, but is not required to
232  *   guarantee completion of a &dma_fence. The usual example is a wait IOCTL
233  *   which calls dma_fence_signal(), while the mandatory completion path goes
234  *   through a hardware interrupt and possible job completion worker.
235  *
236  * * To aid composability of code, the annotations can be freely nested, as long
237  *   as the overall locking hierarchy is consistent. The annotations also work
238  *   both in interrupt and process context. Due to implementation details this
239  *   requires that callers pass an opaque cookie from
240  *   dma_fence_begin_signalling() to dma_fence_end_signalling().
241  *
242  * * Validation against the cross driver contract is implemented by priming
243  *   lockdep with the relevant hierarchy at boot-up. This means even just
244  *   testing with a single device is enough to validate a driver, at least as
245  *   far as deadlocks with dma_fence_wait() against dma_fence_signal() are
246  *   concerned.
247  */
248 #ifdef CONFIG_LOCKDEP
249 static struct lockdep_map dma_fence_lockdep_map = {
250 	.name = "dma_fence_map"
251 };
252 
253 /**
254  * dma_fence_begin_signalling - begin a critical DMA fence signalling section
255  *
256  * Drivers should use this to annotate the beginning of any code section
257  * required to eventually complete &dma_fence by calling dma_fence_signal().
258  *
259  * The end of these critical sections are annotated with
260  * dma_fence_end_signalling().
261  *
262  * Returns:
263  *
264  * Opaque cookie needed by the implementation, which needs to be passed to
265  * dma_fence_end_signalling().
266  */
267 bool dma_fence_begin_signalling(void)
268 {
269 	/* explicitly nesting ... */
270 	if (lock_is_held_type(&dma_fence_lockdep_map, 1))
271 		return true;
272 
273 	/* rely on might_sleep check for soft/hardirq locks */
274 	if (in_atomic())
275 		return true;
276 
277 	/* ... and non-recursive readlock */
278 	lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _RET_IP_);
279 
280 	return false;
281 }
282 EXPORT_SYMBOL(dma_fence_begin_signalling);
283 
284 /**
285  * dma_fence_end_signalling - end a critical DMA fence signalling section
286  *
287  * Closes a critical section annotation opened by dma_fence_begin_signalling().
288  */
289 void dma_fence_end_signalling(bool cookie)
290 {
291 	if (cookie)
292 		return;
293 
294 	lock_release(&dma_fence_lockdep_map, _RET_IP_);
295 }
296 EXPORT_SYMBOL(dma_fence_end_signalling);
297 
298 void __dma_fence_might_wait(void)
299 {
300 	bool tmp;
301 
302 	tmp = lock_is_held_type(&dma_fence_lockdep_map, 1);
303 	if (tmp)
304 		lock_release(&dma_fence_lockdep_map, _THIS_IP_);
305 	lock_map_acquire(&dma_fence_lockdep_map);
306 	lock_map_release(&dma_fence_lockdep_map);
307 	if (tmp)
308 		lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _THIS_IP_);
309 }
310 #endif
311 
312 
313 /**
314  * dma_fence_signal_locked - signal completion of a fence
315  * @fence: the fence to signal
316  *
317  * Signal completion for software callbacks on a fence, this will unblock
318  * dma_fence_wait() calls and run all the callbacks added with
319  * dma_fence_add_callback(). Can be called multiple times, but since a fence
320  * can only go from the unsignaled to the signaled state and not back, it will
321  * only be effective the first time.
322  *
323  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
324  * held.
325  *
326  * Returns 0 on success and a negative error value when @fence has been
327  * signalled already.
328  */
329 int dma_fence_signal_locked(struct dma_fence *fence)
330 {
331 	struct dma_fence_cb *cur, *tmp;
332 	struct list_head cb_list;
333 
334 	lockdep_assert_held(fence->lock);
335 
336 	if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
337 				      &fence->flags)))
338 		return -EINVAL;
339 
340 	/* Stash the cb_list before replacing it with the timestamp */
341 	list_replace(&fence->cb_list, &cb_list);
342 
343 	fence->timestamp = ktime_get();
344 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
345 	trace_dma_fence_signaled(fence);
346 
347 	list_for_each_entry_safe(cur, tmp, &cb_list, node) {
348 		INIT_LIST_HEAD(&cur->node);
349 		cur->func(fence, cur);
350 	}
351 
352 	return 0;
353 }
354 EXPORT_SYMBOL(dma_fence_signal_locked);
355 
356 /**
357  * dma_fence_signal - signal completion of a fence
358  * @fence: the fence to signal
359  *
360  * Signal completion for software callbacks on a fence, this will unblock
361  * dma_fence_wait() calls and run all the callbacks added with
362  * dma_fence_add_callback(). Can be called multiple times, but since a fence
363  * can only go from the unsignaled to the signaled state and not back, it will
364  * only be effective the first time.
365  *
366  * Returns 0 on success and a negative error value when @fence has been
367  * signalled already.
368  */
369 int dma_fence_signal(struct dma_fence *fence)
370 {
371 	unsigned long flags;
372 	int ret;
373 	bool tmp;
374 
375 	if (!fence)
376 		return -EINVAL;
377 
378 	tmp = dma_fence_begin_signalling();
379 
380 	spin_lock_irqsave(fence->lock, flags);
381 	ret = dma_fence_signal_locked(fence);
382 	spin_unlock_irqrestore(fence->lock, flags);
383 
384 	dma_fence_end_signalling(tmp);
385 
386 	return ret;
387 }
388 EXPORT_SYMBOL(dma_fence_signal);
389 
390 /**
391  * dma_fence_wait_timeout - sleep until the fence gets signaled
392  * or until timeout elapses
393  * @fence: the fence to wait on
394  * @intr: if true, do an interruptible wait
395  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
396  *
397  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
398  * remaining timeout in jiffies on success. Other error values may be
399  * returned on custom implementations.
400  *
401  * Performs a synchronous wait on this fence. It is assumed the caller
402  * directly or indirectly (buf-mgr between reservation and committing)
403  * holds a reference to the fence, otherwise the fence might be
404  * freed before return, resulting in undefined behavior.
405  *
406  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
407  */
408 signed long
409 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
410 {
411 	signed long ret;
412 
413 	if (WARN_ON(timeout < 0))
414 		return -EINVAL;
415 
416 	might_sleep();
417 
418 	__dma_fence_might_wait();
419 
420 	trace_dma_fence_wait_start(fence);
421 	if (fence->ops->wait)
422 		ret = fence->ops->wait(fence, intr, timeout);
423 	else
424 		ret = dma_fence_default_wait(fence, intr, timeout);
425 	trace_dma_fence_wait_end(fence);
426 	return ret;
427 }
428 EXPORT_SYMBOL(dma_fence_wait_timeout);
429 
430 /**
431  * dma_fence_release - default relese function for fences
432  * @kref: &dma_fence.recfount
433  *
434  * This is the default release functions for &dma_fence. Drivers shouldn't call
435  * this directly, but instead call dma_fence_put().
436  */
437 void dma_fence_release(struct kref *kref)
438 {
439 	struct dma_fence *fence =
440 		container_of(kref, struct dma_fence, refcount);
441 
442 	trace_dma_fence_destroy(fence);
443 
444 	if (WARN(!list_empty(&fence->cb_list) &&
445 		 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
446 		 "Fence %s:%s:%llx:%llx released with pending signals!\n",
447 		 fence->ops->get_driver_name(fence),
448 		 fence->ops->get_timeline_name(fence),
449 		 fence->context, fence->seqno)) {
450 		unsigned long flags;
451 
452 		/*
453 		 * Failed to signal before release, likely a refcounting issue.
454 		 *
455 		 * This should never happen, but if it does make sure that we
456 		 * don't leave chains dangling. We set the error flag first
457 		 * so that the callbacks know this signal is due to an error.
458 		 */
459 		spin_lock_irqsave(fence->lock, flags);
460 		fence->error = -EDEADLK;
461 		dma_fence_signal_locked(fence);
462 		spin_unlock_irqrestore(fence->lock, flags);
463 	}
464 
465 	if (fence->ops->release)
466 		fence->ops->release(fence);
467 	else
468 		dma_fence_free(fence);
469 }
470 EXPORT_SYMBOL(dma_fence_release);
471 
472 /**
473  * dma_fence_free - default release function for &dma_fence.
474  * @fence: fence to release
475  *
476  * This is the default implementation for &dma_fence_ops.release. It calls
477  * kfree_rcu() on @fence.
478  */
479 void dma_fence_free(struct dma_fence *fence)
480 {
481 	kfree_rcu(fence, rcu);
482 }
483 EXPORT_SYMBOL(dma_fence_free);
484 
485 static bool __dma_fence_enable_signaling(struct dma_fence *fence)
486 {
487 	bool was_set;
488 
489 	lockdep_assert_held(fence->lock);
490 
491 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
492 				   &fence->flags);
493 
494 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
495 		return false;
496 
497 	if (!was_set && fence->ops->enable_signaling) {
498 		trace_dma_fence_enable_signal(fence);
499 
500 		if (!fence->ops->enable_signaling(fence)) {
501 			dma_fence_signal_locked(fence);
502 			return false;
503 		}
504 	}
505 
506 	return true;
507 }
508 
509 /**
510  * dma_fence_enable_sw_signaling - enable signaling on fence
511  * @fence: the fence to enable
512  *
513  * This will request for sw signaling to be enabled, to make the fence
514  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
515  * internally.
516  */
517 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
518 {
519 	unsigned long flags;
520 
521 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
522 		return;
523 
524 	spin_lock_irqsave(fence->lock, flags);
525 	__dma_fence_enable_signaling(fence);
526 	spin_unlock_irqrestore(fence->lock, flags);
527 }
528 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
529 
530 /**
531  * dma_fence_add_callback - add a callback to be called when the fence
532  * is signaled
533  * @fence: the fence to wait on
534  * @cb: the callback to register
535  * @func: the function to call
536  *
537  * @cb will be initialized by dma_fence_add_callback(), no initialization
538  * by the caller is required. Any number of callbacks can be registered
539  * to a fence, but a callback can only be registered to one fence at a time.
540  *
541  * Note that the callback can be called from an atomic context.  If
542  * fence is already signaled, this function will return -ENOENT (and
543  * *not* call the callback).
544  *
545  * Add a software callback to the fence. Same restrictions apply to
546  * refcount as it does to dma_fence_wait(), however the caller doesn't need to
547  * keep a refcount to fence afterward dma_fence_add_callback() has returned:
548  * when software access is enabled, the creator of the fence is required to keep
549  * the fence alive until after it signals with dma_fence_signal(). The callback
550  * itself can be called from irq context.
551  *
552  * Returns 0 in case of success, -ENOENT if the fence is already signaled
553  * and -EINVAL in case of error.
554  */
555 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
556 			   dma_fence_func_t func)
557 {
558 	unsigned long flags;
559 	int ret = 0;
560 
561 	if (WARN_ON(!fence || !func))
562 		return -EINVAL;
563 
564 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
565 		INIT_LIST_HEAD(&cb->node);
566 		return -ENOENT;
567 	}
568 
569 	spin_lock_irqsave(fence->lock, flags);
570 
571 	if (__dma_fence_enable_signaling(fence)) {
572 		cb->func = func;
573 		list_add_tail(&cb->node, &fence->cb_list);
574 	} else {
575 		INIT_LIST_HEAD(&cb->node);
576 		ret = -ENOENT;
577 	}
578 
579 	spin_unlock_irqrestore(fence->lock, flags);
580 
581 	return ret;
582 }
583 EXPORT_SYMBOL(dma_fence_add_callback);
584 
585 /**
586  * dma_fence_get_status - returns the status upon completion
587  * @fence: the dma_fence to query
588  *
589  * This wraps dma_fence_get_status_locked() to return the error status
590  * condition on a signaled fence. See dma_fence_get_status_locked() for more
591  * details.
592  *
593  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
594  * been signaled without an error condition, or a negative error code
595  * if the fence has been completed in err.
596  */
597 int dma_fence_get_status(struct dma_fence *fence)
598 {
599 	unsigned long flags;
600 	int status;
601 
602 	spin_lock_irqsave(fence->lock, flags);
603 	status = dma_fence_get_status_locked(fence);
604 	spin_unlock_irqrestore(fence->lock, flags);
605 
606 	return status;
607 }
608 EXPORT_SYMBOL(dma_fence_get_status);
609 
610 /**
611  * dma_fence_remove_callback - remove a callback from the signaling list
612  * @fence: the fence to wait on
613  * @cb: the callback to remove
614  *
615  * Remove a previously queued callback from the fence. This function returns
616  * true if the callback is successfully removed, or false if the fence has
617  * already been signaled.
618  *
619  * *WARNING*:
620  * Cancelling a callback should only be done if you really know what you're
621  * doing, since deadlocks and race conditions could occur all too easily. For
622  * this reason, it should only ever be done on hardware lockup recovery,
623  * with a reference held to the fence.
624  *
625  * Behaviour is undefined if @cb has not been added to @fence using
626  * dma_fence_add_callback() beforehand.
627  */
628 bool
629 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
630 {
631 	unsigned long flags;
632 	bool ret;
633 
634 	spin_lock_irqsave(fence->lock, flags);
635 
636 	ret = !list_empty(&cb->node);
637 	if (ret)
638 		list_del_init(&cb->node);
639 
640 	spin_unlock_irqrestore(fence->lock, flags);
641 
642 	return ret;
643 }
644 EXPORT_SYMBOL(dma_fence_remove_callback);
645 
646 struct default_wait_cb {
647 	struct dma_fence_cb base;
648 	struct task_struct *task;
649 };
650 
651 static void
652 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
653 {
654 	struct default_wait_cb *wait =
655 		container_of(cb, struct default_wait_cb, base);
656 
657 	wake_up_state(wait->task, TASK_NORMAL);
658 }
659 
660 /**
661  * dma_fence_default_wait - default sleep until the fence gets signaled
662  * or until timeout elapses
663  * @fence: the fence to wait on
664  * @intr: if true, do an interruptible wait
665  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
666  *
667  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
668  * remaining timeout in jiffies on success. If timeout is zero the value one is
669  * returned if the fence is already signaled for consistency with other
670  * functions taking a jiffies timeout.
671  */
672 signed long
673 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
674 {
675 	struct default_wait_cb cb;
676 	unsigned long flags;
677 	signed long ret = timeout ? timeout : 1;
678 
679 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
680 		return ret;
681 
682 	spin_lock_irqsave(fence->lock, flags);
683 
684 	if (intr && signal_pending(current)) {
685 		ret = -ERESTARTSYS;
686 		goto out;
687 	}
688 
689 	if (!__dma_fence_enable_signaling(fence))
690 		goto out;
691 
692 	if (!timeout) {
693 		ret = 0;
694 		goto out;
695 	}
696 
697 	cb.base.func = dma_fence_default_wait_cb;
698 	cb.task = current;
699 	list_add(&cb.base.node, &fence->cb_list);
700 
701 	while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
702 		if (intr)
703 			__set_current_state(TASK_INTERRUPTIBLE);
704 		else
705 			__set_current_state(TASK_UNINTERRUPTIBLE);
706 		spin_unlock_irqrestore(fence->lock, flags);
707 
708 		ret = schedule_timeout(ret);
709 
710 		spin_lock_irqsave(fence->lock, flags);
711 		if (ret > 0 && intr && signal_pending(current))
712 			ret = -ERESTARTSYS;
713 	}
714 
715 	if (!list_empty(&cb.base.node))
716 		list_del(&cb.base.node);
717 	__set_current_state(TASK_RUNNING);
718 
719 out:
720 	spin_unlock_irqrestore(fence->lock, flags);
721 	return ret;
722 }
723 EXPORT_SYMBOL(dma_fence_default_wait);
724 
725 static bool
726 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
727 			    uint32_t *idx)
728 {
729 	int i;
730 
731 	for (i = 0; i < count; ++i) {
732 		struct dma_fence *fence = fences[i];
733 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
734 			if (idx)
735 				*idx = i;
736 			return true;
737 		}
738 	}
739 	return false;
740 }
741 
742 /**
743  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
744  * or until timeout elapses
745  * @fences: array of fences to wait on
746  * @count: number of fences to wait on
747  * @intr: if true, do an interruptible wait
748  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
749  * @idx: used to store the first signaled fence index, meaningful only on
750  *	positive return
751  *
752  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
753  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
754  * on success.
755  *
756  * Synchronous waits for the first fence in the array to be signaled. The
757  * caller needs to hold a reference to all fences in the array, otherwise a
758  * fence might be freed before return, resulting in undefined behavior.
759  *
760  * See also dma_fence_wait() and dma_fence_wait_timeout().
761  */
762 signed long
763 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
764 			   bool intr, signed long timeout, uint32_t *idx)
765 {
766 	struct default_wait_cb *cb;
767 	signed long ret = timeout;
768 	unsigned i;
769 
770 	if (WARN_ON(!fences || !count || timeout < 0))
771 		return -EINVAL;
772 
773 	if (timeout == 0) {
774 		for (i = 0; i < count; ++i)
775 			if (dma_fence_is_signaled(fences[i])) {
776 				if (idx)
777 					*idx = i;
778 				return 1;
779 			}
780 
781 		return 0;
782 	}
783 
784 	cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
785 	if (cb == NULL) {
786 		ret = -ENOMEM;
787 		goto err_free_cb;
788 	}
789 
790 	for (i = 0; i < count; ++i) {
791 		struct dma_fence *fence = fences[i];
792 
793 		cb[i].task = current;
794 		if (dma_fence_add_callback(fence, &cb[i].base,
795 					   dma_fence_default_wait_cb)) {
796 			/* This fence is already signaled */
797 			if (idx)
798 				*idx = i;
799 			goto fence_rm_cb;
800 		}
801 	}
802 
803 	while (ret > 0) {
804 		if (intr)
805 			set_current_state(TASK_INTERRUPTIBLE);
806 		else
807 			set_current_state(TASK_UNINTERRUPTIBLE);
808 
809 		if (dma_fence_test_signaled_any(fences, count, idx))
810 			break;
811 
812 		ret = schedule_timeout(ret);
813 
814 		if (ret > 0 && intr && signal_pending(current))
815 			ret = -ERESTARTSYS;
816 	}
817 
818 	__set_current_state(TASK_RUNNING);
819 
820 fence_rm_cb:
821 	while (i-- > 0)
822 		dma_fence_remove_callback(fences[i], &cb[i].base);
823 
824 err_free_cb:
825 	kfree(cb);
826 
827 	return ret;
828 }
829 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
830 
831 /**
832  * dma_fence_init - Initialize a custom fence.
833  * @fence: the fence to initialize
834  * @ops: the dma_fence_ops for operations on this fence
835  * @lock: the irqsafe spinlock to use for locking this fence
836  * @context: the execution context this fence is run on
837  * @seqno: a linear increasing sequence number for this context
838  *
839  * Initializes an allocated fence, the caller doesn't have to keep its
840  * refcount after committing with this fence, but it will need to hold a
841  * refcount again if &dma_fence_ops.enable_signaling gets called.
842  *
843  * context and seqno are used for easy comparison between fences, allowing
844  * to check which fence is later by simply using dma_fence_later().
845  */
846 void
847 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
848 	       spinlock_t *lock, u64 context, u64 seqno)
849 {
850 	BUG_ON(!lock);
851 	BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
852 
853 	kref_init(&fence->refcount);
854 	fence->ops = ops;
855 	INIT_LIST_HEAD(&fence->cb_list);
856 	fence->lock = lock;
857 	fence->context = context;
858 	fence->seqno = seqno;
859 	fence->flags = 0UL;
860 	fence->error = 0;
861 
862 	trace_dma_fence_init(fence);
863 }
864 EXPORT_SYMBOL(dma_fence_init);
865