xref: /openbmc/linux/drivers/dma-buf/dma-buf.c (revision fbb6b31a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 #include "dma-buf-sysfs-stats.h"
33 
34 static inline int is_dma_buf_file(struct file *);
35 
36 struct dma_buf_list {
37 	struct list_head head;
38 	struct mutex lock;
39 };
40 
41 static struct dma_buf_list db_list;
42 
43 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
44 {
45 	struct dma_buf *dmabuf;
46 	char name[DMA_BUF_NAME_LEN];
47 	size_t ret = 0;
48 
49 	dmabuf = dentry->d_fsdata;
50 	spin_lock(&dmabuf->name_lock);
51 	if (dmabuf->name)
52 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
53 	spin_unlock(&dmabuf->name_lock);
54 
55 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
56 			     dentry->d_name.name, ret > 0 ? name : "");
57 }
58 
59 static void dma_buf_release(struct dentry *dentry)
60 {
61 	struct dma_buf *dmabuf;
62 
63 	dmabuf = dentry->d_fsdata;
64 	if (unlikely(!dmabuf))
65 		return;
66 
67 	BUG_ON(dmabuf->vmapping_counter);
68 
69 	/*
70 	 * If you hit this BUG() it could mean:
71 	 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
72 	 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
73 	 */
74 	BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
75 
76 	dma_buf_stats_teardown(dmabuf);
77 	dmabuf->ops->release(dmabuf);
78 
79 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
80 		dma_resv_fini(dmabuf->resv);
81 
82 	WARN_ON(!list_empty(&dmabuf->attachments));
83 	module_put(dmabuf->owner);
84 	kfree(dmabuf->name);
85 	kfree(dmabuf);
86 }
87 
88 static int dma_buf_file_release(struct inode *inode, struct file *file)
89 {
90 	struct dma_buf *dmabuf;
91 
92 	if (!is_dma_buf_file(file))
93 		return -EINVAL;
94 
95 	dmabuf = file->private_data;
96 
97 	mutex_lock(&db_list.lock);
98 	list_del(&dmabuf->list_node);
99 	mutex_unlock(&db_list.lock);
100 
101 	return 0;
102 }
103 
104 static const struct dentry_operations dma_buf_dentry_ops = {
105 	.d_dname = dmabuffs_dname,
106 	.d_release = dma_buf_release,
107 };
108 
109 static struct vfsmount *dma_buf_mnt;
110 
111 static int dma_buf_fs_init_context(struct fs_context *fc)
112 {
113 	struct pseudo_fs_context *ctx;
114 
115 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
116 	if (!ctx)
117 		return -ENOMEM;
118 	ctx->dops = &dma_buf_dentry_ops;
119 	return 0;
120 }
121 
122 static struct file_system_type dma_buf_fs_type = {
123 	.name = "dmabuf",
124 	.init_fs_context = dma_buf_fs_init_context,
125 	.kill_sb = kill_anon_super,
126 };
127 
128 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
129 {
130 	struct dma_buf *dmabuf;
131 
132 	if (!is_dma_buf_file(file))
133 		return -EINVAL;
134 
135 	dmabuf = file->private_data;
136 
137 	/* check if buffer supports mmap */
138 	if (!dmabuf->ops->mmap)
139 		return -EINVAL;
140 
141 	/* check for overflowing the buffer's size */
142 	if (vma->vm_pgoff + vma_pages(vma) >
143 	    dmabuf->size >> PAGE_SHIFT)
144 		return -EINVAL;
145 
146 	return dmabuf->ops->mmap(dmabuf, vma);
147 }
148 
149 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
150 {
151 	struct dma_buf *dmabuf;
152 	loff_t base;
153 
154 	if (!is_dma_buf_file(file))
155 		return -EBADF;
156 
157 	dmabuf = file->private_data;
158 
159 	/* only support discovering the end of the buffer,
160 	   but also allow SEEK_SET to maintain the idiomatic
161 	   SEEK_END(0), SEEK_CUR(0) pattern */
162 	if (whence == SEEK_END)
163 		base = dmabuf->size;
164 	else if (whence == SEEK_SET)
165 		base = 0;
166 	else
167 		return -EINVAL;
168 
169 	if (offset != 0)
170 		return -EINVAL;
171 
172 	return base + offset;
173 }
174 
175 /**
176  * DOC: implicit fence polling
177  *
178  * To support cross-device and cross-driver synchronization of buffer access
179  * implicit fences (represented internally in the kernel with &struct dma_fence)
180  * can be attached to a &dma_buf. The glue for that and a few related things are
181  * provided in the &dma_resv structure.
182  *
183  * Userspace can query the state of these implicitly tracked fences using poll()
184  * and related system calls:
185  *
186  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
187  *   most recent write or exclusive fence.
188  *
189  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
190  *   all attached fences, shared and exclusive ones.
191  *
192  * Note that this only signals the completion of the respective fences, i.e. the
193  * DMA transfers are complete. Cache flushing and any other necessary
194  * preparations before CPU access can begin still need to happen.
195  */
196 
197 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
198 {
199 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
200 	struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
201 	unsigned long flags;
202 
203 	spin_lock_irqsave(&dcb->poll->lock, flags);
204 	wake_up_locked_poll(dcb->poll, dcb->active);
205 	dcb->active = 0;
206 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
207 	dma_fence_put(fence);
208 	/* Paired with get_file in dma_buf_poll */
209 	fput(dmabuf->file);
210 }
211 
212 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
213 				struct dma_buf_poll_cb_t *dcb)
214 {
215 	struct dma_resv_iter cursor;
216 	struct dma_fence *fence;
217 	int r;
218 
219 	dma_resv_for_each_fence(&cursor, resv, write, fence) {
220 		dma_fence_get(fence);
221 		r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
222 		if (!r)
223 			return true;
224 		dma_fence_put(fence);
225 	}
226 
227 	return false;
228 }
229 
230 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
231 {
232 	struct dma_buf *dmabuf;
233 	struct dma_resv *resv;
234 	__poll_t events;
235 
236 	dmabuf = file->private_data;
237 	if (!dmabuf || !dmabuf->resv)
238 		return EPOLLERR;
239 
240 	resv = dmabuf->resv;
241 
242 	poll_wait(file, &dmabuf->poll, poll);
243 
244 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
245 	if (!events)
246 		return 0;
247 
248 	dma_resv_lock(resv, NULL);
249 
250 	if (events & EPOLLOUT) {
251 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
252 
253 		/* Check that callback isn't busy */
254 		spin_lock_irq(&dmabuf->poll.lock);
255 		if (dcb->active)
256 			events &= ~EPOLLOUT;
257 		else
258 			dcb->active = EPOLLOUT;
259 		spin_unlock_irq(&dmabuf->poll.lock);
260 
261 		if (events & EPOLLOUT) {
262 			/* Paired with fput in dma_buf_poll_cb */
263 			get_file(dmabuf->file);
264 
265 			if (!dma_buf_poll_add_cb(resv, true, dcb))
266 				/* No callback queued, wake up any other waiters */
267 				dma_buf_poll_cb(NULL, &dcb->cb);
268 			else
269 				events &= ~EPOLLOUT;
270 		}
271 	}
272 
273 	if (events & EPOLLIN) {
274 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
275 
276 		/* Check that callback isn't busy */
277 		spin_lock_irq(&dmabuf->poll.lock);
278 		if (dcb->active)
279 			events &= ~EPOLLIN;
280 		else
281 			dcb->active = EPOLLIN;
282 		spin_unlock_irq(&dmabuf->poll.lock);
283 
284 		if (events & EPOLLIN) {
285 			/* Paired with fput in dma_buf_poll_cb */
286 			get_file(dmabuf->file);
287 
288 			if (!dma_buf_poll_add_cb(resv, false, dcb))
289 				/* No callback queued, wake up any other waiters */
290 				dma_buf_poll_cb(NULL, &dcb->cb);
291 			else
292 				events &= ~EPOLLIN;
293 		}
294 	}
295 
296 	dma_resv_unlock(resv);
297 	return events;
298 }
299 
300 /**
301  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
302  * It could support changing the name of the dma-buf if the same
303  * piece of memory is used for multiple purpose between different devices.
304  *
305  * @dmabuf: [in]     dmabuf buffer that will be renamed.
306  * @buf:    [in]     A piece of userspace memory that contains the name of
307  *                   the dma-buf.
308  *
309  * Returns 0 on success. If the dma-buf buffer is already attached to
310  * devices, return -EBUSY.
311  *
312  */
313 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
314 {
315 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
316 
317 	if (IS_ERR(name))
318 		return PTR_ERR(name);
319 
320 	spin_lock(&dmabuf->name_lock);
321 	kfree(dmabuf->name);
322 	dmabuf->name = name;
323 	spin_unlock(&dmabuf->name_lock);
324 
325 	return 0;
326 }
327 
328 static long dma_buf_ioctl(struct file *file,
329 			  unsigned int cmd, unsigned long arg)
330 {
331 	struct dma_buf *dmabuf;
332 	struct dma_buf_sync sync;
333 	enum dma_data_direction direction;
334 	int ret;
335 
336 	dmabuf = file->private_data;
337 
338 	switch (cmd) {
339 	case DMA_BUF_IOCTL_SYNC:
340 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
341 			return -EFAULT;
342 
343 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
344 			return -EINVAL;
345 
346 		switch (sync.flags & DMA_BUF_SYNC_RW) {
347 		case DMA_BUF_SYNC_READ:
348 			direction = DMA_FROM_DEVICE;
349 			break;
350 		case DMA_BUF_SYNC_WRITE:
351 			direction = DMA_TO_DEVICE;
352 			break;
353 		case DMA_BUF_SYNC_RW:
354 			direction = DMA_BIDIRECTIONAL;
355 			break;
356 		default:
357 			return -EINVAL;
358 		}
359 
360 		if (sync.flags & DMA_BUF_SYNC_END)
361 			ret = dma_buf_end_cpu_access(dmabuf, direction);
362 		else
363 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
364 
365 		return ret;
366 
367 	case DMA_BUF_SET_NAME_A:
368 	case DMA_BUF_SET_NAME_B:
369 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
370 
371 	default:
372 		return -ENOTTY;
373 	}
374 }
375 
376 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
377 {
378 	struct dma_buf *dmabuf = file->private_data;
379 
380 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
381 	/* Don't count the temporary reference taken inside procfs seq_show */
382 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
383 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
384 	spin_lock(&dmabuf->name_lock);
385 	if (dmabuf->name)
386 		seq_printf(m, "name:\t%s\n", dmabuf->name);
387 	spin_unlock(&dmabuf->name_lock);
388 }
389 
390 static const struct file_operations dma_buf_fops = {
391 	.release	= dma_buf_file_release,
392 	.mmap		= dma_buf_mmap_internal,
393 	.llseek		= dma_buf_llseek,
394 	.poll		= dma_buf_poll,
395 	.unlocked_ioctl	= dma_buf_ioctl,
396 	.compat_ioctl	= compat_ptr_ioctl,
397 	.show_fdinfo	= dma_buf_show_fdinfo,
398 };
399 
400 /*
401  * is_dma_buf_file - Check if struct file* is associated with dma_buf
402  */
403 static inline int is_dma_buf_file(struct file *file)
404 {
405 	return file->f_op == &dma_buf_fops;
406 }
407 
408 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
409 {
410 	static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
411 	struct file *file;
412 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
413 
414 	if (IS_ERR(inode))
415 		return ERR_CAST(inode);
416 
417 	inode->i_size = dmabuf->size;
418 	inode_set_bytes(inode, dmabuf->size);
419 
420 	/*
421 	 * The ->i_ino acquired from get_next_ino() is not unique thus
422 	 * not suitable for using it as dentry name by dmabuf stats.
423 	 * Override ->i_ino with the unique and dmabuffs specific
424 	 * value.
425 	 */
426 	inode->i_ino = atomic64_add_return(1, &dmabuf_inode);
427 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
428 				 flags, &dma_buf_fops);
429 	if (IS_ERR(file))
430 		goto err_alloc_file;
431 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
432 	file->private_data = dmabuf;
433 	file->f_path.dentry->d_fsdata = dmabuf;
434 
435 	return file;
436 
437 err_alloc_file:
438 	iput(inode);
439 	return file;
440 }
441 
442 /**
443  * DOC: dma buf device access
444  *
445  * For device DMA access to a shared DMA buffer the usual sequence of operations
446  * is fairly simple:
447  *
448  * 1. The exporter defines his exporter instance using
449  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
450  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
451  *    as a file descriptor by calling dma_buf_fd().
452  *
453  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
454  *    to share with: First the filedescriptor is converted to a &dma_buf using
455  *    dma_buf_get(). Then the buffer is attached to the device using
456  *    dma_buf_attach().
457  *
458  *    Up to this stage the exporter is still free to migrate or reallocate the
459  *    backing storage.
460  *
461  * 3. Once the buffer is attached to all devices userspace can initiate DMA
462  *    access to the shared buffer. In the kernel this is done by calling
463  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
464  *
465  * 4. Once a driver is done with a shared buffer it needs to call
466  *    dma_buf_detach() (after cleaning up any mappings) and then release the
467  *    reference acquired with dma_buf_get() by calling dma_buf_put().
468  *
469  * For the detailed semantics exporters are expected to implement see
470  * &dma_buf_ops.
471  */
472 
473 /**
474  * dma_buf_export - Creates a new dma_buf, and associates an anon file
475  * with this buffer, so it can be exported.
476  * Also connect the allocator specific data and ops to the buffer.
477  * Additionally, provide a name string for exporter; useful in debugging.
478  *
479  * @exp_info:	[in]	holds all the export related information provided
480  *			by the exporter. see &struct dma_buf_export_info
481  *			for further details.
482  *
483  * Returns, on success, a newly created struct dma_buf object, which wraps the
484  * supplied private data and operations for struct dma_buf_ops. On either
485  * missing ops, or error in allocating struct dma_buf, will return negative
486  * error.
487  *
488  * For most cases the easiest way to create @exp_info is through the
489  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
490  */
491 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
492 {
493 	struct dma_buf *dmabuf;
494 	struct dma_resv *resv = exp_info->resv;
495 	struct file *file;
496 	size_t alloc_size = sizeof(struct dma_buf);
497 	int ret;
498 
499 	if (!exp_info->resv)
500 		alloc_size += sizeof(struct dma_resv);
501 	else
502 		/* prevent &dma_buf[1] == dma_buf->resv */
503 		alloc_size += 1;
504 
505 	if (WARN_ON(!exp_info->priv
506 			  || !exp_info->ops
507 			  || !exp_info->ops->map_dma_buf
508 			  || !exp_info->ops->unmap_dma_buf
509 			  || !exp_info->ops->release)) {
510 		return ERR_PTR(-EINVAL);
511 	}
512 
513 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
514 		    (exp_info->ops->pin || exp_info->ops->unpin)))
515 		return ERR_PTR(-EINVAL);
516 
517 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
518 		return ERR_PTR(-EINVAL);
519 
520 	if (!try_module_get(exp_info->owner))
521 		return ERR_PTR(-ENOENT);
522 
523 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
524 	if (!dmabuf) {
525 		ret = -ENOMEM;
526 		goto err_module;
527 	}
528 
529 	dmabuf->priv = exp_info->priv;
530 	dmabuf->ops = exp_info->ops;
531 	dmabuf->size = exp_info->size;
532 	dmabuf->exp_name = exp_info->exp_name;
533 	dmabuf->owner = exp_info->owner;
534 	spin_lock_init(&dmabuf->name_lock);
535 	init_waitqueue_head(&dmabuf->poll);
536 	dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
537 	dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
538 
539 	if (!resv) {
540 		resv = (struct dma_resv *)&dmabuf[1];
541 		dma_resv_init(resv);
542 	}
543 	dmabuf->resv = resv;
544 
545 	file = dma_buf_getfile(dmabuf, exp_info->flags);
546 	if (IS_ERR(file)) {
547 		ret = PTR_ERR(file);
548 		goto err_dmabuf;
549 	}
550 
551 	file->f_mode |= FMODE_LSEEK;
552 	dmabuf->file = file;
553 
554 	mutex_init(&dmabuf->lock);
555 	INIT_LIST_HEAD(&dmabuf->attachments);
556 
557 	mutex_lock(&db_list.lock);
558 	list_add(&dmabuf->list_node, &db_list.head);
559 	mutex_unlock(&db_list.lock);
560 
561 	ret = dma_buf_stats_setup(dmabuf);
562 	if (ret)
563 		goto err_sysfs;
564 
565 	return dmabuf;
566 
567 err_sysfs:
568 	/*
569 	 * Set file->f_path.dentry->d_fsdata to NULL so that when
570 	 * dma_buf_release() gets invoked by dentry_ops, it exits
571 	 * early before calling the release() dma_buf op.
572 	 */
573 	file->f_path.dentry->d_fsdata = NULL;
574 	fput(file);
575 err_dmabuf:
576 	kfree(dmabuf);
577 err_module:
578 	module_put(exp_info->owner);
579 	return ERR_PTR(ret);
580 }
581 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
582 
583 /**
584  * dma_buf_fd - returns a file descriptor for the given struct dma_buf
585  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
586  * @flags:      [in]    flags to give to fd
587  *
588  * On success, returns an associated 'fd'. Else, returns error.
589  */
590 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
591 {
592 	int fd;
593 
594 	if (!dmabuf || !dmabuf->file)
595 		return -EINVAL;
596 
597 	fd = get_unused_fd_flags(flags);
598 	if (fd < 0)
599 		return fd;
600 
601 	fd_install(fd, dmabuf->file);
602 
603 	return fd;
604 }
605 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
606 
607 /**
608  * dma_buf_get - returns the struct dma_buf related to an fd
609  * @fd:	[in]	fd associated with the struct dma_buf to be returned
610  *
611  * On success, returns the struct dma_buf associated with an fd; uses
612  * file's refcounting done by fget to increase refcount. returns ERR_PTR
613  * otherwise.
614  */
615 struct dma_buf *dma_buf_get(int fd)
616 {
617 	struct file *file;
618 
619 	file = fget(fd);
620 
621 	if (!file)
622 		return ERR_PTR(-EBADF);
623 
624 	if (!is_dma_buf_file(file)) {
625 		fput(file);
626 		return ERR_PTR(-EINVAL);
627 	}
628 
629 	return file->private_data;
630 }
631 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
632 
633 /**
634  * dma_buf_put - decreases refcount of the buffer
635  * @dmabuf:	[in]	buffer to reduce refcount of
636  *
637  * Uses file's refcounting done implicitly by fput().
638  *
639  * If, as a result of this call, the refcount becomes 0, the 'release' file
640  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
641  * in turn, and frees the memory allocated for dmabuf when exported.
642  */
643 void dma_buf_put(struct dma_buf *dmabuf)
644 {
645 	if (WARN_ON(!dmabuf || !dmabuf->file))
646 		return;
647 
648 	fput(dmabuf->file);
649 }
650 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
651 
652 static void mangle_sg_table(struct sg_table *sg_table)
653 {
654 #ifdef CONFIG_DMABUF_DEBUG
655 	int i;
656 	struct scatterlist *sg;
657 
658 	/* To catch abuse of the underlying struct page by importers mix
659 	 * up the bits, but take care to preserve the low SG_ bits to
660 	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
661 	 * before passing the sgt back to the exporter. */
662 	for_each_sgtable_sg(sg_table, sg, i)
663 		sg->page_link ^= ~0xffUL;
664 #endif
665 
666 }
667 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
668 				       enum dma_data_direction direction)
669 {
670 	struct sg_table *sg_table;
671 
672 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
673 
674 	if (!IS_ERR_OR_NULL(sg_table))
675 		mangle_sg_table(sg_table);
676 
677 	return sg_table;
678 }
679 
680 /**
681  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
682  * @dmabuf:		[in]	buffer to attach device to.
683  * @dev:		[in]	device to be attached.
684  * @importer_ops:	[in]	importer operations for the attachment
685  * @importer_priv:	[in]	importer private pointer for the attachment
686  *
687  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
688  * must be cleaned up by calling dma_buf_detach().
689  *
690  * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
691  * functionality.
692  *
693  * Returns:
694  *
695  * A pointer to newly created &dma_buf_attachment on success, or a negative
696  * error code wrapped into a pointer on failure.
697  *
698  * Note that this can fail if the backing storage of @dmabuf is in a place not
699  * accessible to @dev, and cannot be moved to a more suitable place. This is
700  * indicated with the error code -EBUSY.
701  */
702 struct dma_buf_attachment *
703 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
704 		       const struct dma_buf_attach_ops *importer_ops,
705 		       void *importer_priv)
706 {
707 	struct dma_buf_attachment *attach;
708 	int ret;
709 
710 	if (WARN_ON(!dmabuf || !dev))
711 		return ERR_PTR(-EINVAL);
712 
713 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
714 		return ERR_PTR(-EINVAL);
715 
716 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
717 	if (!attach)
718 		return ERR_PTR(-ENOMEM);
719 
720 	attach->dev = dev;
721 	attach->dmabuf = dmabuf;
722 	if (importer_ops)
723 		attach->peer2peer = importer_ops->allow_peer2peer;
724 	attach->importer_ops = importer_ops;
725 	attach->importer_priv = importer_priv;
726 
727 	if (dmabuf->ops->attach) {
728 		ret = dmabuf->ops->attach(dmabuf, attach);
729 		if (ret)
730 			goto err_attach;
731 	}
732 	dma_resv_lock(dmabuf->resv, NULL);
733 	list_add(&attach->node, &dmabuf->attachments);
734 	dma_resv_unlock(dmabuf->resv);
735 
736 	/* When either the importer or the exporter can't handle dynamic
737 	 * mappings we cache the mapping here to avoid issues with the
738 	 * reservation object lock.
739 	 */
740 	if (dma_buf_attachment_is_dynamic(attach) !=
741 	    dma_buf_is_dynamic(dmabuf)) {
742 		struct sg_table *sgt;
743 
744 		if (dma_buf_is_dynamic(attach->dmabuf)) {
745 			dma_resv_lock(attach->dmabuf->resv, NULL);
746 			ret = dmabuf->ops->pin(attach);
747 			if (ret)
748 				goto err_unlock;
749 		}
750 
751 		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
752 		if (!sgt)
753 			sgt = ERR_PTR(-ENOMEM);
754 		if (IS_ERR(sgt)) {
755 			ret = PTR_ERR(sgt);
756 			goto err_unpin;
757 		}
758 		if (dma_buf_is_dynamic(attach->dmabuf))
759 			dma_resv_unlock(attach->dmabuf->resv);
760 		attach->sgt = sgt;
761 		attach->dir = DMA_BIDIRECTIONAL;
762 	}
763 
764 	return attach;
765 
766 err_attach:
767 	kfree(attach);
768 	return ERR_PTR(ret);
769 
770 err_unpin:
771 	if (dma_buf_is_dynamic(attach->dmabuf))
772 		dmabuf->ops->unpin(attach);
773 
774 err_unlock:
775 	if (dma_buf_is_dynamic(attach->dmabuf))
776 		dma_resv_unlock(attach->dmabuf->resv);
777 
778 	dma_buf_detach(dmabuf, attach);
779 	return ERR_PTR(ret);
780 }
781 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
782 
783 /**
784  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
785  * @dmabuf:	[in]	buffer to attach device to.
786  * @dev:	[in]	device to be attached.
787  *
788  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
789  * mapping.
790  */
791 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
792 					  struct device *dev)
793 {
794 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
795 }
796 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
797 
798 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
799 			    struct sg_table *sg_table,
800 			    enum dma_data_direction direction)
801 {
802 	/* uses XOR, hence this unmangles */
803 	mangle_sg_table(sg_table);
804 
805 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
806 }
807 
808 /**
809  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
810  * @dmabuf:	[in]	buffer to detach from.
811  * @attach:	[in]	attachment to be detached; is free'd after this call.
812  *
813  * Clean up a device attachment obtained by calling dma_buf_attach().
814  *
815  * Optionally this calls &dma_buf_ops.detach for device-specific detach.
816  */
817 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
818 {
819 	if (WARN_ON(!dmabuf || !attach))
820 		return;
821 
822 	if (attach->sgt) {
823 		if (dma_buf_is_dynamic(attach->dmabuf))
824 			dma_resv_lock(attach->dmabuf->resv, NULL);
825 
826 		__unmap_dma_buf(attach, attach->sgt, attach->dir);
827 
828 		if (dma_buf_is_dynamic(attach->dmabuf)) {
829 			dmabuf->ops->unpin(attach);
830 			dma_resv_unlock(attach->dmabuf->resv);
831 		}
832 	}
833 
834 	dma_resv_lock(dmabuf->resv, NULL);
835 	list_del(&attach->node);
836 	dma_resv_unlock(dmabuf->resv);
837 	if (dmabuf->ops->detach)
838 		dmabuf->ops->detach(dmabuf, attach);
839 
840 	kfree(attach);
841 }
842 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
843 
844 /**
845  * dma_buf_pin - Lock down the DMA-buf
846  * @attach:	[in]	attachment which should be pinned
847  *
848  * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
849  * call this, and only for limited use cases like scanout and not for temporary
850  * pin operations. It is not permitted to allow userspace to pin arbitrary
851  * amounts of buffers through this interface.
852  *
853  * Buffers must be unpinned by calling dma_buf_unpin().
854  *
855  * Returns:
856  * 0 on success, negative error code on failure.
857  */
858 int dma_buf_pin(struct dma_buf_attachment *attach)
859 {
860 	struct dma_buf *dmabuf = attach->dmabuf;
861 	int ret = 0;
862 
863 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
864 
865 	dma_resv_assert_held(dmabuf->resv);
866 
867 	if (dmabuf->ops->pin)
868 		ret = dmabuf->ops->pin(attach);
869 
870 	return ret;
871 }
872 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
873 
874 /**
875  * dma_buf_unpin - Unpin a DMA-buf
876  * @attach:	[in]	attachment which should be unpinned
877  *
878  * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
879  * any mapping of @attach again and inform the importer through
880  * &dma_buf_attach_ops.move_notify.
881  */
882 void dma_buf_unpin(struct dma_buf_attachment *attach)
883 {
884 	struct dma_buf *dmabuf = attach->dmabuf;
885 
886 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
887 
888 	dma_resv_assert_held(dmabuf->resv);
889 
890 	if (dmabuf->ops->unpin)
891 		dmabuf->ops->unpin(attach);
892 }
893 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
894 
895 /**
896  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
897  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
898  * dma_buf_ops.
899  * @attach:	[in]	attachment whose scatterlist is to be returned
900  * @direction:	[in]	direction of DMA transfer
901  *
902  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
903  * on error. May return -EINTR if it is interrupted by a signal.
904  *
905  * On success, the DMA addresses and lengths in the returned scatterlist are
906  * PAGE_SIZE aligned.
907  *
908  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
909  * the underlying backing storage is pinned for as long as a mapping exists,
910  * therefore users/importers should not hold onto a mapping for undue amounts of
911  * time.
912  *
913  * Important: Dynamic importers must wait for the exclusive fence of the struct
914  * dma_resv attached to the DMA-BUF first.
915  */
916 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
917 					enum dma_data_direction direction)
918 {
919 	struct sg_table *sg_table;
920 	int r;
921 
922 	might_sleep();
923 
924 	if (WARN_ON(!attach || !attach->dmabuf))
925 		return ERR_PTR(-EINVAL);
926 
927 	if (dma_buf_attachment_is_dynamic(attach))
928 		dma_resv_assert_held(attach->dmabuf->resv);
929 
930 	if (attach->sgt) {
931 		/*
932 		 * Two mappings with different directions for the same
933 		 * attachment are not allowed.
934 		 */
935 		if (attach->dir != direction &&
936 		    attach->dir != DMA_BIDIRECTIONAL)
937 			return ERR_PTR(-EBUSY);
938 
939 		return attach->sgt;
940 	}
941 
942 	if (dma_buf_is_dynamic(attach->dmabuf)) {
943 		dma_resv_assert_held(attach->dmabuf->resv);
944 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
945 			r = attach->dmabuf->ops->pin(attach);
946 			if (r)
947 				return ERR_PTR(r);
948 		}
949 	}
950 
951 	sg_table = __map_dma_buf(attach, direction);
952 	if (!sg_table)
953 		sg_table = ERR_PTR(-ENOMEM);
954 
955 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
956 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
957 		attach->dmabuf->ops->unpin(attach);
958 
959 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
960 		attach->sgt = sg_table;
961 		attach->dir = direction;
962 	}
963 
964 #ifdef CONFIG_DMA_API_DEBUG
965 	if (!IS_ERR(sg_table)) {
966 		struct scatterlist *sg;
967 		u64 addr;
968 		int len;
969 		int i;
970 
971 		for_each_sgtable_dma_sg(sg_table, sg, i) {
972 			addr = sg_dma_address(sg);
973 			len = sg_dma_len(sg);
974 			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
975 				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
976 					 __func__, addr, len);
977 			}
978 		}
979 	}
980 #endif /* CONFIG_DMA_API_DEBUG */
981 	return sg_table;
982 }
983 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
984 
985 /**
986  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
987  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
988  * dma_buf_ops.
989  * @attach:	[in]	attachment to unmap buffer from
990  * @sg_table:	[in]	scatterlist info of the buffer to unmap
991  * @direction:  [in]    direction of DMA transfer
992  *
993  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
994  */
995 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
996 				struct sg_table *sg_table,
997 				enum dma_data_direction direction)
998 {
999 	might_sleep();
1000 
1001 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1002 		return;
1003 
1004 	if (dma_buf_attachment_is_dynamic(attach))
1005 		dma_resv_assert_held(attach->dmabuf->resv);
1006 
1007 	if (attach->sgt == sg_table)
1008 		return;
1009 
1010 	if (dma_buf_is_dynamic(attach->dmabuf))
1011 		dma_resv_assert_held(attach->dmabuf->resv);
1012 
1013 	__unmap_dma_buf(attach, sg_table, direction);
1014 
1015 	if (dma_buf_is_dynamic(attach->dmabuf) &&
1016 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1017 		dma_buf_unpin(attach);
1018 }
1019 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1020 
1021 /**
1022  * dma_buf_move_notify - notify attachments that DMA-buf is moving
1023  *
1024  * @dmabuf:	[in]	buffer which is moving
1025  *
1026  * Informs all attachmenst that they need to destroy and recreated all their
1027  * mappings.
1028  */
1029 void dma_buf_move_notify(struct dma_buf *dmabuf)
1030 {
1031 	struct dma_buf_attachment *attach;
1032 
1033 	dma_resv_assert_held(dmabuf->resv);
1034 
1035 	list_for_each_entry(attach, &dmabuf->attachments, node)
1036 		if (attach->importer_ops)
1037 			attach->importer_ops->move_notify(attach);
1038 }
1039 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1040 
1041 /**
1042  * DOC: cpu access
1043  *
1044  * There are mutliple reasons for supporting CPU access to a dma buffer object:
1045  *
1046  * - Fallback operations in the kernel, for example when a device is connected
1047  *   over USB and the kernel needs to shuffle the data around first before
1048  *   sending it away. Cache coherency is handled by braketing any transactions
1049  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1050  *   access.
1051  *
1052  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1053  *   vmap interface is introduced. Note that on very old 32-bit architectures
1054  *   vmalloc space might be limited and result in vmap calls failing.
1055  *
1056  *   Interfaces::
1057  *
1058  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1059  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1060  *
1061  *   The vmap call can fail if there is no vmap support in the exporter, or if
1062  *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1063  *   count for all vmap access and calls down into the exporter's vmap function
1064  *   only when no vmapping exists, and only unmaps it once. Protection against
1065  *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1066  *
1067  * - For full compatibility on the importer side with existing userspace
1068  *   interfaces, which might already support mmap'ing buffers. This is needed in
1069  *   many processing pipelines (e.g. feeding a software rendered image into a
1070  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1071  *   framework already supported this and for DMA buffer file descriptors to
1072  *   replace ION buffers mmap support was needed.
1073  *
1074  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1075  *   fd. But like for CPU access there's a need to braket the actual access,
1076  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1077  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1078  *   be restarted.
1079  *
1080  *   Some systems might need some sort of cache coherency management e.g. when
1081  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1082  *   To circumvent this problem there are begin/end coherency markers, that
1083  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1084  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1085  *   sequence would be used like following:
1086  *
1087  *     - mmap dma-buf fd
1088  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1089  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1090  *       want (with the new data being consumed by say the GPU or the scanout
1091  *       device)
1092  *     - munmap once you don't need the buffer any more
1093  *
1094  *    For correctness and optimal performance, it is always required to use
1095  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1096  *    mapped address. Userspace cannot rely on coherent access, even when there
1097  *    are systems where it just works without calling these ioctls.
1098  *
1099  * - And as a CPU fallback in userspace processing pipelines.
1100  *
1101  *   Similar to the motivation for kernel cpu access it is again important that
1102  *   the userspace code of a given importing subsystem can use the same
1103  *   interfaces with a imported dma-buf buffer object as with a native buffer
1104  *   object. This is especially important for drm where the userspace part of
1105  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1106  *   use a different way to mmap a buffer rather invasive.
1107  *
1108  *   The assumption in the current dma-buf interfaces is that redirecting the
1109  *   initial mmap is all that's needed. A survey of some of the existing
1110  *   subsystems shows that no driver seems to do any nefarious thing like
1111  *   syncing up with outstanding asynchronous processing on the device or
1112  *   allocating special resources at fault time. So hopefully this is good
1113  *   enough, since adding interfaces to intercept pagefaults and allow pte
1114  *   shootdowns would increase the complexity quite a bit.
1115  *
1116  *   Interface::
1117  *
1118  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1119  *		       unsigned long);
1120  *
1121  *   If the importing subsystem simply provides a special-purpose mmap call to
1122  *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1123  *   equally achieve that for a dma-buf object.
1124  */
1125 
1126 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1127 				      enum dma_data_direction direction)
1128 {
1129 	bool write = (direction == DMA_BIDIRECTIONAL ||
1130 		      direction == DMA_TO_DEVICE);
1131 	struct dma_resv *resv = dmabuf->resv;
1132 	long ret;
1133 
1134 	/* Wait on any implicit rendering fences */
1135 	ret = dma_resv_wait_timeout(resv, write, true, MAX_SCHEDULE_TIMEOUT);
1136 	if (ret < 0)
1137 		return ret;
1138 
1139 	return 0;
1140 }
1141 
1142 /**
1143  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1144  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1145  * preparations. Coherency is only guaranteed in the specified range for the
1146  * specified access direction.
1147  * @dmabuf:	[in]	buffer to prepare cpu access for.
1148  * @direction:	[in]	length of range for cpu access.
1149  *
1150  * After the cpu access is complete the caller should call
1151  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1152  * it guaranteed to be coherent with other DMA access.
1153  *
1154  * This function will also wait for any DMA transactions tracked through
1155  * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1156  * synchronization this function will only ensure cache coherency, callers must
1157  * ensure synchronization with such DMA transactions on their own.
1158  *
1159  * Can return negative error values, returns 0 on success.
1160  */
1161 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1162 			     enum dma_data_direction direction)
1163 {
1164 	int ret = 0;
1165 
1166 	if (WARN_ON(!dmabuf))
1167 		return -EINVAL;
1168 
1169 	might_lock(&dmabuf->resv->lock.base);
1170 
1171 	if (dmabuf->ops->begin_cpu_access)
1172 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1173 
1174 	/* Ensure that all fences are waited upon - but we first allow
1175 	 * the native handler the chance to do so more efficiently if it
1176 	 * chooses. A double invocation here will be reasonably cheap no-op.
1177 	 */
1178 	if (ret == 0)
1179 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1180 
1181 	return ret;
1182 }
1183 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1184 
1185 /**
1186  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1187  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1188  * actions. Coherency is only guaranteed in the specified range for the
1189  * specified access direction.
1190  * @dmabuf:	[in]	buffer to complete cpu access for.
1191  * @direction:	[in]	length of range for cpu access.
1192  *
1193  * This terminates CPU access started with dma_buf_begin_cpu_access().
1194  *
1195  * Can return negative error values, returns 0 on success.
1196  */
1197 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1198 			   enum dma_data_direction direction)
1199 {
1200 	int ret = 0;
1201 
1202 	WARN_ON(!dmabuf);
1203 
1204 	might_lock(&dmabuf->resv->lock.base);
1205 
1206 	if (dmabuf->ops->end_cpu_access)
1207 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1208 
1209 	return ret;
1210 }
1211 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1212 
1213 
1214 /**
1215  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1216  * @dmabuf:	[in]	buffer that should back the vma
1217  * @vma:	[in]	vma for the mmap
1218  * @pgoff:	[in]	offset in pages where this mmap should start within the
1219  *			dma-buf buffer.
1220  *
1221  * This function adjusts the passed in vma so that it points at the file of the
1222  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1223  * checking on the size of the vma. Then it calls the exporters mmap function to
1224  * set up the mapping.
1225  *
1226  * Can return negative error values, returns 0 on success.
1227  */
1228 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1229 		 unsigned long pgoff)
1230 {
1231 	if (WARN_ON(!dmabuf || !vma))
1232 		return -EINVAL;
1233 
1234 	/* check if buffer supports mmap */
1235 	if (!dmabuf->ops->mmap)
1236 		return -EINVAL;
1237 
1238 	/* check for offset overflow */
1239 	if (pgoff + vma_pages(vma) < pgoff)
1240 		return -EOVERFLOW;
1241 
1242 	/* check for overflowing the buffer's size */
1243 	if (pgoff + vma_pages(vma) >
1244 	    dmabuf->size >> PAGE_SHIFT)
1245 		return -EINVAL;
1246 
1247 	/* readjust the vma */
1248 	vma_set_file(vma, dmabuf->file);
1249 	vma->vm_pgoff = pgoff;
1250 
1251 	return dmabuf->ops->mmap(dmabuf, vma);
1252 }
1253 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1254 
1255 /**
1256  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1257  * address space. Same restrictions as for vmap and friends apply.
1258  * @dmabuf:	[in]	buffer to vmap
1259  * @map:	[out]	returns the vmap pointer
1260  *
1261  * This call may fail due to lack of virtual mapping address space.
1262  * These calls are optional in drivers. The intended use for them
1263  * is for mapping objects linear in kernel space for high use objects.
1264  *
1265  * To ensure coherency users must call dma_buf_begin_cpu_access() and
1266  * dma_buf_end_cpu_access() around any cpu access performed through this
1267  * mapping.
1268  *
1269  * Returns 0 on success, or a negative errno code otherwise.
1270  */
1271 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1272 {
1273 	struct iosys_map ptr;
1274 	int ret = 0;
1275 
1276 	iosys_map_clear(map);
1277 
1278 	if (WARN_ON(!dmabuf))
1279 		return -EINVAL;
1280 
1281 	if (!dmabuf->ops->vmap)
1282 		return -EINVAL;
1283 
1284 	mutex_lock(&dmabuf->lock);
1285 	if (dmabuf->vmapping_counter) {
1286 		dmabuf->vmapping_counter++;
1287 		BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1288 		*map = dmabuf->vmap_ptr;
1289 		goto out_unlock;
1290 	}
1291 
1292 	BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1293 
1294 	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1295 	if (WARN_ON_ONCE(ret))
1296 		goto out_unlock;
1297 
1298 	dmabuf->vmap_ptr = ptr;
1299 	dmabuf->vmapping_counter = 1;
1300 
1301 	*map = dmabuf->vmap_ptr;
1302 
1303 out_unlock:
1304 	mutex_unlock(&dmabuf->lock);
1305 	return ret;
1306 }
1307 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1308 
1309 /**
1310  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1311  * @dmabuf:	[in]	buffer to vunmap
1312  * @map:	[in]	vmap pointer to vunmap
1313  */
1314 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1315 {
1316 	if (WARN_ON(!dmabuf))
1317 		return;
1318 
1319 	BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1320 	BUG_ON(dmabuf->vmapping_counter == 0);
1321 	BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1322 
1323 	mutex_lock(&dmabuf->lock);
1324 	if (--dmabuf->vmapping_counter == 0) {
1325 		if (dmabuf->ops->vunmap)
1326 			dmabuf->ops->vunmap(dmabuf, map);
1327 		iosys_map_clear(&dmabuf->vmap_ptr);
1328 	}
1329 	mutex_unlock(&dmabuf->lock);
1330 }
1331 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1332 
1333 #ifdef CONFIG_DEBUG_FS
1334 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1335 {
1336 	struct dma_buf *buf_obj;
1337 	struct dma_buf_attachment *attach_obj;
1338 	int count = 0, attach_count;
1339 	size_t size = 0;
1340 	int ret;
1341 
1342 	ret = mutex_lock_interruptible(&db_list.lock);
1343 
1344 	if (ret)
1345 		return ret;
1346 
1347 	seq_puts(s, "\nDma-buf Objects:\n");
1348 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1349 		   "size", "flags", "mode", "count", "ino");
1350 
1351 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1352 
1353 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1354 		if (ret)
1355 			goto error_unlock;
1356 
1357 
1358 		spin_lock(&buf_obj->name_lock);
1359 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1360 				buf_obj->size,
1361 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1362 				file_count(buf_obj->file),
1363 				buf_obj->exp_name,
1364 				file_inode(buf_obj->file)->i_ino,
1365 				buf_obj->name ?: "");
1366 		spin_unlock(&buf_obj->name_lock);
1367 
1368 		dma_resv_describe(buf_obj->resv, s);
1369 
1370 		seq_puts(s, "\tAttached Devices:\n");
1371 		attach_count = 0;
1372 
1373 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1374 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1375 			attach_count++;
1376 		}
1377 		dma_resv_unlock(buf_obj->resv);
1378 
1379 		seq_printf(s, "Total %d devices attached\n\n",
1380 				attach_count);
1381 
1382 		count++;
1383 		size += buf_obj->size;
1384 	}
1385 
1386 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1387 
1388 	mutex_unlock(&db_list.lock);
1389 	return 0;
1390 
1391 error_unlock:
1392 	mutex_unlock(&db_list.lock);
1393 	return ret;
1394 }
1395 
1396 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1397 
1398 static struct dentry *dma_buf_debugfs_dir;
1399 
1400 static int dma_buf_init_debugfs(void)
1401 {
1402 	struct dentry *d;
1403 	int err = 0;
1404 
1405 	d = debugfs_create_dir("dma_buf", NULL);
1406 	if (IS_ERR(d))
1407 		return PTR_ERR(d);
1408 
1409 	dma_buf_debugfs_dir = d;
1410 
1411 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1412 				NULL, &dma_buf_debug_fops);
1413 	if (IS_ERR(d)) {
1414 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1415 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1416 		dma_buf_debugfs_dir = NULL;
1417 		err = PTR_ERR(d);
1418 	}
1419 
1420 	return err;
1421 }
1422 
1423 static void dma_buf_uninit_debugfs(void)
1424 {
1425 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1426 }
1427 #else
1428 static inline int dma_buf_init_debugfs(void)
1429 {
1430 	return 0;
1431 }
1432 static inline void dma_buf_uninit_debugfs(void)
1433 {
1434 }
1435 #endif
1436 
1437 static int __init dma_buf_init(void)
1438 {
1439 	int ret;
1440 
1441 	ret = dma_buf_init_sysfs_statistics();
1442 	if (ret)
1443 		return ret;
1444 
1445 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1446 	if (IS_ERR(dma_buf_mnt))
1447 		return PTR_ERR(dma_buf_mnt);
1448 
1449 	mutex_init(&db_list.lock);
1450 	INIT_LIST_HEAD(&db_list.head);
1451 	dma_buf_init_debugfs();
1452 	return 0;
1453 }
1454 subsys_initcall(dma_buf_init);
1455 
1456 static void __exit dma_buf_deinit(void)
1457 {
1458 	dma_buf_uninit_debugfs();
1459 	kern_unmount(dma_buf_mnt);
1460 	dma_buf_uninit_sysfs_statistics();
1461 }
1462 __exitcall(dma_buf_deinit);
1463